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ASYMPTOTIC RISK COMPARISON OF IMPROVED ESTIMATORS
FOR NORMAL COVARIANCE MATRIX

By

Nariaki Suctura and Masahiro FujimMoTo

Asymptotic risks of the empirical Bayes estimators Sy by Haff [5] for a
covariance matrix 2 in a p-dimensional normal distribution are computed and
compared with that of James and Stein’s minimax estimators 2,s. For p=6, it
is shown that 35 are always better than Sy asymptotically, though the leading
terms are the same. New estimators which dominate 3,¢ for some 3 in any p
asymptotically are proposed. Some numerical comparisons are given. Exact risks
for ordinary estimators 3o and minimax estimators 3¢ are also computed and
compared with asymptotic ones for which the approximations are shown to be
excellent.

1. Introduction

Let S have a Wishart distribution with unknown scale matrix ¥ and » degrees
of freedom, for which we shall write S: Wy(x,2) and assume #>p+1. Let 3 bhe
an estimator of 2. The loss function is taken to be

1.1) L2, 3)=tr $3'~log|33'|—p
or

e 1. ac
(1.2) Ly(3, 2) =5 tr(EX7 1)~

The L, loss is equivalent to the likelihood ratio statistic for testing the hypothesis
Y=73, against all alternatives. The L. loss can also be used as a test statistic for
the same problem as in Nagao [10]. The factor 1/2 in the L, loss is not essential.
However we wish to retain it, since L, loss tends to tr(X3-'—1)42, when 5 is
close to 3. The risk function is given by RS, X)=F[Li2,2)] for i=1 or 2.
Haff [5] proved that among the scalar multiples of S, the best estimator under L,
is ®9=S/n and that under L, it is given by Z¥=S/(m+p+1), which we call
ordinary estimators. Then he considered the posterior mean of Y for a prior
distribution Wy[#’, (yC)~'] for 3-' with unknown scalar ;>0 and known p. d. matrix
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C. Tt is given by E[XS,y1=(S+7C)/(n+#n’ —p—1). In the process of estimating
7 by maximizing approximate marginal likelihood of S, he obtained ##(z) for u=
1/tr(S7'C) as an estimator for y, where #(-) is nonincreasing. He then proved that
under L, the estimator

(1.3) P ——[‘?+ui(u)C]

for 0=#(u)=2(p—1)/n, dominates 2Y'=S/n for any n>p+1 and under L, the
estimator

(1.4) S ﬁn—;pw;—f (S+wC)

for 0=t=2(p—1)/(n—p+3), dominates $@ =S/(n+p+1) for any n>p+1. It was also

shown that if #(#) in (1.3) is constant, the best choice of #(x) is ( p—1)/n and that

the best choice of ¢ in (1.4) is (p—1)/(m—p+3). In this paper we always take

these optimal values for ¢ and call them Haff’s estimators 3§ and 2§ respectively.
A minimax estimator for ¥ was earlier obtained by James and Stein (7], giving

1.5) S =KAD K

for the loss L; (i=1 or 2), where the lower triangular matrix K with positive
diagonal elements is obtained from S=KK’ and 4% =diag[4®, -, AP, For the L,
loss, they proved that 49 =1/(n+p4-1—2;) and reported that they were unable to
get explicit form of 4®. Sharma [13] derived the linear equations for 49, from
which numerical values are computed for given # and p. They were also obtained
earlier by Selliah [12].

The primary purpose of this paper is to compare the asymptotic risk of Haff's
estimator £ with that of James and Stein’s estimator £$% under L; for i=1 or 2.
Under L,, we have derived an asymptotic form of AP for large n. It is shown
that the leading terms of the asymptotic risks for £ and 2£¢) are the same and
that the next term for £ is less than that of $¢) only for 2<p=5 and for some
2. If p=6, the second term of the asymptotic expansion of Ry(IP,3) is always
larger than that of Ri(S9, ) for all

Secondly we shall propose new estimators for ¥ by minimizing risks empiric-
ally, which are given by

1 tr St 2(p—1)
(l) T < =<
(1.6) pX [}‘)-H) (r(CS Y Cl 0=p=— ”
for L, loss and
- tr CS™! 2(p—1)
[ N ———— =h=-—=
(1.7) = n+p+1 { tr(CS')y? —l’ 0=b3 n
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for I, loss. It is shown that our new estimator 3O dominates 59 for all n>p+1
and that £® dominates £¢ asymptotically. The result also holds for more general
form of 3, that is, the constant & in (1.6) can be replaced by #(-) in (1.3) for
w=tr CSY/tr(CS-"%. However we prefer to (1.6) to simplify later discussions.
The leading term of the asymptotic risk is the same as that of 24 and the second
term is less than that of £} for some Y and for all p>1. Eliminating the leading
term, the range of Ry(E®, Y) is much wider below than Ry(2¥, ¥) asymptotically.
However the absolute difference Ri(3®, 3)— Ry(Z%%, 3) or RSP, X)— Ri(E%, 2) is
not so large.

To get some idea for the errors of asymptotic approximations, the terms of
order »~* (third terms) are computed for Ri(2{,Y) and Ry(E® ¥). The exact
risks of $¢) are computed and asymptotic values up to order »~* are compared.
For 2=p=6 and »=16, asymptotic values for 3%} are accurate for three (two)
significant digits for L, (L) loss in most cases examined. The rates of the reduc-
tion of the risks of S@(Z®) with respect to 3§ are shown to be the highest
8%(20%) for i=1, n=16 and 4%(11%) for i=2, n=32 respectively within our ex-
amples computed in Tables.

2. Derivation of new estimators

Since our goal is to find an estimator S which minimizes the risk, we shall
look for a solution in a form S®=(S+7C)/n for L, or £®=(S+7C)/(n+p+1) for
L,. The risk for L, is given by

2.1 R(E®, 2')-—-%—& CZ"‘—-E[IOgI%(S+rC)S“I].

Hence the derivative with respect to y is
@.2) %—tr CE~ = Eltr(z[+SC )],

where the expectation is taken by S having W(x, Y) distribution. At y=0, the
derivative has a negative value —(p+1) tr CE~/{n(n—p—1)}, since ES™)=3""/(n—
p—1), by Kshirsagar [9], for example. This shows that the risk will be smaller
if we take y positive near zero. Assume that y is small and put the derivative
(2.2) equal to zero. We get an equation for y, an approximate solution of which
is given by

tr C3!
@.3) r=(0+ D trcaiy

which vields the estimator (1.6). The estimator (1.7) for L. is similarly derived.



106 Nariaki Suctura and Masahiro Funmoro

The constant factor » is restricted so that it dominates ordinary estimator 5§,
which will be discussed later.

3. Risks of ordinary and James and Stein’s minimax estimators

Using the Bartlett's decomposition (Giri [3], page 126) of Wishart matrix S
when Y=1, we get

- V4
3.1) Ri(2§, X)=plog n— 3 E[log yi_;.],
Jj=1
where ¥}, denotes the y* variate with m degrees of freedom. Using digamma
function ¢(x)=dlog I'(x)/dz, we can rewrite it

(3.2) plog =3 ¢ *=11L).
=

If » is an integer larger than one, we know that

(3.3) Po=T4 gt Ly

for Euler’s constant y=0.57721 56649 01532 9-.- (Abramowitz and Stegun [1]). For
half integer argument (n=1),

1 1 1

These are sufficient for the computation of R,(Z%, 2). 1If nislarge, an asymptotic
formula for ¢ is available, which is derived from Stirling’s formula (Kendall [8],
page 245)

i . h=1/2 2 (—=1)"Bri(h) 1
3.5) Plath)=logz+ P +T:1 2™ (r+1) O(.:v"”)’

where B,(%) are the Bernoulli polynomials given by By(h)=h2—h+1/6, By(h)=h*—
(3/2)h2+(1/2)h. This yields

oo sy 2P+ | p@P+3p—1)  p(p*—1)(p+2)
3.6) R(29, 3)= oy T o + Toms

+O0m™*).

Some numerical values of R,(S%,Y) are computed based on 3.2)~(3.4) and
compared with the asymptotic values (3.6) for p=2~6 and #=8~128. They are
shown in Table 1. We can see that the asymptotic approximations are excellent,
namely, for #=16 and p=6, the values are accurate with three significance digits.

Under L, loss, Haff [5] noted that

4 1
(3.7) RS89, =T
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Table 1. Vaiues of R(Z¢, )

n=8 n=16 n=32 n=64 n=128

p=2 O(n1) .37500 .187500 .093750 .046875 .023438
O(n2) .03385 .008464 .002116 .000529 .000132

O(n~3) .00391 .000488 .000061 .000008 .000001

approx. .4128 .19645 .095927 047412 .023571

exact .413314 .196484 .095929 047412 .023571

p=3 O(n1) .75000 .37500 . 187500 093750 .046875
O(n?) .10156 .02539 .006348 .001587 .000397

O(n—3) .01953 .00244 .000305 .000038 .000005

approx. .871 .4028 .19415 .095375 .047276

exact 876824 .403141 194171 .095376 .047277

p=4 O(n1) 1.2500 62500 .312500 .156250 .078125
O(n~?) .2240 .05599 .013997 .003499 .000875

O(n—3) .0586 .00732 .000916 .000114 .000014

approx. 1.533 .6883 .32741 .159864 .079014

exact 1.559962 689672 .327490 .159868 .079015

p=5 O(n—1) 1.8750 .9375 . 46875 . 234375 .117188
O(n2) .4167 .1042 .02604 .006510 .001628

O(n=3) .1367 0171 .00214 .000267 .000033

approx. 2.43 1.059 .4969 .24115 .118848

exact 2.52347 1.06300 .497161 .241166 .118849

»=6 O(n~1) 2.6250 1.3125 .65626 .328125 .164063
O(n2) .6953 .1738 .04346 .010864 .002716

O(n—3) .2734 .0342 .00427 .000534 .000067

approx. 3.59 1.521 .7040 .33952 .166845

exact 3.87328 1.53134 .704554 .339557 .166847

which is asymptotically the same as R.(2%,Y) for large ». This is the reason
why we prefer multiplier 1/2 in the definition of L, loss in (1.2). Unlike the
simple form of (3.7), the asymptotic approximations

- F1 1 plptl)
(3.8) Rz(zgnz):?i%; ) _ p(g; Yy p(§n3 Y ot

are not so excellent as Ry(ZY, ). For example, the exact value of R,(2Z®,Y) in
(3.7) for p=2 and »=16 is 0.15789, while the asymptotic value of (3.8) gives
0.15894 which is accurate for three significant digits. From Table 1, the corre-
sponding exact value of R,;(Z®,3) is 0.19648 and the asymptotic value is 0.19645
which is accurate for one more digit than Ry(3¢,Y). This is the case with other
values of parameters » and p.

Next we shall evaluate the risks of the minimax estimators by James and
Stein [7]. By considering a best equivariant estimator ¢(LSL’)=L¢(S)L’ for the
transformation group of lower triangular matrices L with positive diagonal ele-
ments, they obtained a minimax estimator of (1.5) under L, loss and derived
(3.9 R34, )= 33 logn+p=2j+1)— 3} B0 fi-se)

Jj=1
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Using digamma function ¢(z), this can be simplified as

(3.10) Llogg(ntp-2j+1)- £ (221,

which is useful for numerical computations. The asymptotic form of (3.10) is
obtained by (3.5), giving

: p(p+1) 15(3z>+1)+ p(p*—1) (p+2) n

N1 AN -4
@.11) R(27s D=4 121 120 O™?).

In Table 2 exact and asymptotic values of R,(2¢s,3) are compared. It is found
that for »=16 and p=6, the asymptotic values are accurate for three significant
digits, which is the same conclusion as for R,(£%, ). Since equivariant estimators
contain best scalar multiple of S, namely, £%, inequality Ri(Z¢%, 3)<Ri(3®, )
holds as a matter of fact. If we take difference of the risks by asymptotic form,
we get

PP -1

(3.12) R, )= Ri(3Y, )= — e

—+0(n™,

which is negative for p=2, neglecting the higher order terms. This suggests the

Table 2. Exact and asymptotic values of R, (34}, ¥

n=8 n=16 n=32 n==64 n=128
p=2 O(n~1) .37500 187500 093750 . 046875 .023438
(n~2) .01823 .004557 .001139 .000285 000071
O(n~38) .00391 .000488 .000061 .000008 000001
approx. .3971 19255 . 094950 047167 .023510
exact .39757 19257 .094952 .047168 .023510
p=3 O(n 1) .75000 .37500 187500 093750 .046875
O(n2) .03906 00977 .002441 .000610 .000153
O(n—3) .01953 .00244 .000305 .000038 .000005
approx. .809 .3872 .19025 094398 .047033
exact 81229 .38739 .190257 . 094399 .047032
p=4 On1) 1.2500 62500 312500 156250 .078125
O(n2) L0677 .01693 004232 .001058 .000265
O(n3) .0586 .00732 .000916 .000114 .000014
approx. 1.376 .6493 .31765 157422 .078404
exact 1.3927 64997 .31768 157425 078404
p=5 O(n1) 1.8750 .9375 46875 . 234375 117188
O(n2) .1042 .0260 .00651 .001628 .000407
O(n=*) .1367 L0171 .00214 000267 .000033
approx. 2.12 .981 AT774 . 236270 117628
exact 2.1713 98271 47750 . 236275 .117628
p=6 O(n 1) 2.6250 1.3125 .65625 328125 . 164063
O(n2) .1484 L0371 .00928 .002319 . 000580
O(n?) L2734 .0342 00427 000534 000067
approx. 3.05 1.384 .6698 .33098 164709
exact 3.2107 1.3889 .67003 330991 164710
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validity of the asymptotic comparisons.

Under L, loss, the exact 4% is not available. However Selliah [12] and Sharma
[13] show that 4=[4®, .--, 497, satisfies linear equations A4d=0b, where pxp matrix
A and p-vector b are given by

(3.13) n+p—1) n+p+1) n+p—3 0 e n—p+1
A n+p—3 m+p=3)(n+p—1) -en n—p+1
n—p+1 n—p+1 e (n—p+1)(n—p+3)

b=m+p—1, n+p—3,---,n—p+1).

With this 4, the risk is given by
3.1 Ri(S5s, )= b=y 32 (n2]-+ b+ DA,
j=1

We can see by checking the exact values of 4 and 4% that the choice of 4{
is always larger than 49 and the risks of 3¢ are larger than that of $%. The
best scalar multiple 1/z for L, loss and 1/(n+p+1) for L. loss lie always smaller
than the middle of 4, -, 4,. Sharma [13] gives the values of Ry(3%, Y) for p=2
and #=5(5)30. Using (3.13), we can evaluate 4 for large =, giving

1 2 . 1 , .
AP == (1= )5 A +1) = (85 +9) +577)
(3.15) +»371¢;[—2(p+ 1) (11p*+22p+12) -+ (66p*+150p +-85)
—3(28p+33) 2+ 38514+ 0n?)
and
.16 RSgy vy LBED _ pOD @tY) | PO

2n 3n? n®

Note that optimal scalar multiplier for S is 1/# under L, loss and 1/(n+p+1)
under L, loss. Asymptotic expansion of 4%°=1/(n+p+1—2j) replaced » by n+p+1
yields the same terms as in (3.15) up to order =% The difference of the risks,
Ry(Z9, X)— Ry(3%,Y) in the asymptotic form is exactly the same as (3.12) up to
Ow™). In Table 3, exact and asymptotic values of R,(3%, ) are shown based on
(3.14) and (3.16). We can see that the asymptotic approximations are worse than
Ri(3%%,,Y) and are comparative for R.(2%,Y). This suggests that the loss L, is
favourable for the asymptotic approximations. The maximum rate of reduction
of risks for 29 with respect to £% within Tables 1 and 2 is given by 17% for
n=8 and p=6. However the corresponding rate for L, loss in Table 3 is only 5%.
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Table 3. Exact and asymptotic values of Ry(S®, Y)

n=8 n=16 n=32 n==64 n=128

p=2 O(n 1) . 37500 18750 093750 .046875 023438
O(n2) —. 15625 —. 03906 —. 009766 —. 002441 —. 000610
O(n=3) .07031 .00879 .001099 .000137 .000017
approx. .289 1572 .0851 . 04457 .022844
exact . 26697 .15559 .084970 .044563 .022844
p=3 O(n1) . 75000 .37500 18750 093750 .046875
O(n~2) —.43750 —.10938 —.02734 —. 006836 —. 001709
O(n3) .28125 .03516 .00440 000549 .000069
approx. .59 .301 .1646 .08746 .045235
exact . 48250 .29211 .16393 .087422 .045232
p=4 O(n1) 1.2500 62500 .31250 .15625 078125
O(n?) —.9375 —.23438 —.05859 —.01465 —. 003662
O(n3) .7813 .09766 .01221 .00153 .000191

approx. 1.09 .488 . 266 .1431 .07465
exact .73548 .45918 . 26397 .14298 .074644
p=5 O(n1) 1.8750 .9375 . 46875 .23438 .117188
O(n?) —1.7188 —.4297 —.10742 —.02686 —.006714
O(n3) 1.7578 .2197 .02747 .00343 .000429

approx. 1.9 .73 .389 .2110 .11090

exact 1.0189 .65233 .38311 .21056 .11088
p=6 O(n~1) 2.625 1.3125 .65625 .32813 .164063
O(n—?) —2.844 —.7109 —.17773 —. 04443 —.011108
O(n~3) 3.445 4307 .05383 .00673 .000841

approx. 3.2 1.03 .532 .2904 .15380

exact 1.3283 .86807 .51965 .28952 .15374

4. Risks under L, loss

4.1. Risk of Haff’s estimator. As Sharma [13] noted, the exact values of the
risks of Haff’s estimators are difficult to compute. Asymptotic evaluation of them
gives some useful information. We shall put C=7 in (1.3) without loss of gen-
erality and assume that #(#)=b=constant, namely, the estimator

I b
(1) —
4.1) S =— <s+ — 1)

is considered for L, loss. The difference of risks can be written by

4.2) R(EW, )~ R(39, )

b o [trs- .
=Bl s |- e

which is bounded from above by

b tr 21 b [ trS—
4.3) ZE[—,[—rSVl]—IH-»Z—E[ (trs_,)z].

By the Wishart identity due to Haff [5], we get

b S-1
[+—BTS—;;§ H»



Asymptotic risk comparison of improved estimators 111

ey - s
@.4) E[trs_r]—n—«p l+2E[(trS—_“)2]'

This yields an upper bound of (4.2)
b nb

4.5) ;(—p—1+2+7>,
which is negative if and only if 0=6=<2(p—1)/n, and the minimum value is attained
by b=(p—1)/n. This is the special case of Theorem 4.3 by Haff [5]. We impose
this restriction on &. Note that b=0("!) and Y=+/n(S/n—2J3) converges in law to
a p(p+1)/2 variate normal distribution with mean zero. We can evaluate (4.2)
asymptotically as

b tr X1 nb | trS—® b'n trd L
I b R i R R e R
In getting the last term of (4.6), we should take E[tr S~*/(tr S~1)*}, which can be
evaluated by writing S/»=Y+ Y/+% and noting that £(Y)=0 and Y=0,(1), giving
tr I73(tr 27')*+O(»~"). Now we need the following lemma to complete our asymp-
totic expansion.

LemMA 4.1. Let S have a Wishart distribution Wyn,2). Then

ST eyt L (X
@7 E[(trS“)ZJ_ Ty T u {6 (tr sy
trys tryc? .
8yt ey +1} +O(nY).

Proor. From the Wishart identity, we get

ST o frST S ]
“.8) Bl mamrtr T |-es[ -2
tr 5=
+o=p=DE| = |
J ST ] ‘[<trS*2>2_. trs-s°
4.9) N e

+(m—p—1E[tr S—2].
By Haff [4], we know that

(tr 31)¢ tr 22

WD) (i) i—p—3) T (n—p) (n—5—=3)

(4.10) EltrS7]=

1 2p+3 1
= tr 2’2—1-1;—?&,5"2-}—;8—(& 34+ 0m™).
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Combined with these formulas, we get the desired result (4.7).
Substituting (4.4) and (4.7) into (4.6) and using (3.12) we get

THEOREM 4.1. An asymptotic expansion of the difference of visks belween
Haff's estimator 5 defined by (4.1) with b=(p—1)|n and James and Stein's
minimax estimator 3% for L, loss is given by

A N2
RS, 3= Ri(E9 H)=2 {<p+1><p 6)+3(p+3) t“\ 1)2]
=D [ (e oy
@.1) 2 {6 @Sy sy Ty +1l

(1P 2

3w (tr EU)°

We can see that the term of O(»™%) in (4.11) is always positive, if p=6. This

shows that the risk of 3¢ is always larger than that of 29 asymptotically, if
p=6. Note that

+0n).

vz
4.12) 1_ trd

P (r I
The lower and upper bounds of O(»~?) in (4.11) are given by

1.

A

) 1 2 9 1 2 ]
(4.13) F(p-1)<p —5p-3+-[7) and & (p—1)($'~2p+3).

Some numerical values are given in the following:
Ranges of O(»™?) in (4.11).
p=2 p=3 p=4 p=5 b=

(-33) 22 (-%%) (-3 (7 470)

The risk is unchanged for any scalar multiple of Y. Some numerical values based
on (4.11) are given in Table 4. The term of O(n~®) gives some idea for the error
of our asymptotic approximation. For Y '=21diag(l,1,---,1), the lower bound of
(4.12) is attained and for X¥'—2idiag(1,0,--- 0), the upper bound is approached.
In Table 4 we write S '=A(1, ---, 1) instead of ¥~ '=2dieg(l,---,1) for abbreviation.
Inspection of Table 4 shows that for p=6, the risk differences are positive and
that for p=5 and Y '=21dieg(l,---, 1), the values are positive for =8 and n=16,
while they are negative for #=32. Precisely speaking they are positive for »=<21
and negative for n=22. Whether this is due to the poor accuracy of the asymp-
totic approximation for small » is not clear. For p=4 and Y¥~'=2diag(l, ---,1), the
values are all negative. Thus p=5 is the boundary. 2¥ is better than S for
these type of Y if p=5. For 0=b=2(p—1)/n, inequality R, (20, < R(EY, Y) holds
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exactly. This can be verified also by the asymptotic consideration, namely, we

have

(4.14) R(E®, N —R,(Z®, Y

Lt D5 o+ [Fo0.

7*

The term of O(x?) is always negative because of (4.12). This gives again a weak
support as in (3.12) for the usefulness of the asymptotic comparison, when exact
inequality between risks is not known. From Tables 1 and 4, we can compute
the rates of the reduction of the risks of Haff’s estimator 2% with respect to the

Table 4. Asymptotic values of Ry(Z%, 3)—R,(£92, )

-t n==_8 n=16 n=32 n=>64 n=128
p=2 O(n2) —.011719] —.002930, —.000732| —.000183] -—.000046
AL 1 O(n3) .004720, . 000590 000074 .000009 .000001
approx. —.0070 —.00234 | —.000659] —.000174] —.000045
O(n-2) —.009549] — 002387 —.000597f —.000149] —.000037
A1,2) O(n3) 003400 .000425 .000053 000007 .000001
approx. —.0061 —.00196 | —.000544| --.000143] —.000036
O(n2) 001356 000339 000085 .000021 .000005
A1,10) O(n~3) —.000496] —.000062] —.000008| —.000001] —.000000
approx. .00086 .000277 .000077 .000020 .000005
O(n—2) 007813 .001953 .000488 .000122] .000031
(1, 0) O(n3) —.000651] —.000081| —.000010 —.000001] —.000000
approx. .00716 .001872 .000478 .000121 000030
p=3 O(n~2) —.031250] —.007813] —.001953| —.000488 —.000122
A1, L0 O(n=3) 012442 .001555 .000194 .000024, .000003
approx. —.019 —. 0063 —. 00176 | —.000464| -—.000119
O(n?) —.026042] —.006510] -—.001628| --—.000407| —.000102
A(1,2,3) O(n3) .010417 .001302 .000163 . 000020, .000003
approx. —.016 —. 0052 —.00146 | —.000387] —.000099
O(n—2) .014358 .003590 .000897 .000224 .000056
(1,10, 102) O(n—¥) —.003847] —.000481] —.000060] —.000008] —.000001
approx. .0105 .00311 .000837| .000217 .000055
O(n2) . 031250 .007813 .001953 .000488 .000122
A(1,0,0) O(n3) —. 005208, —.000651] —.000081] —.000010] —.000001
approx. .0260 .00716 .001872 .000478, .000121
p=4 O(n2) —. 037109 —.009277] —.002319] —.000580] —.000145
al,-- 1) O(n~3) .021973 .002747 .000343 .000043 .000005
approx. —.015 —.0065 —.00198 | —.000537] —.000140
O(n2) —.028906| —.007227| —.001807| —.000452] —.000113
A(1,2,3,4) O(n3) .019570 .002446 000306 .000038] .000005
approx. —.009 —.0048 —.00150 | —.000413] —.000108
O(n2) .056135| .014034 .003508 000877, .000219
A(1,10,102,108) O(n3) —.012895] —.001612; —.000201] —.000025 —.000003
approx. .043 .0124 .00331 .000852, .000216
O(n2) 085938 .021484 .005371 .001343 .000336
4(1,0,0,0) O(n3) —. 017578 —.002197] —.000275 —.000034] —.000004
approx. .068 .0193 .00510 .001308, .000331
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Table 4. (continued)

31 n=8 n=16 n=32 n="64 n=128
p=5 O(n2) —.012500{ —.003125] —.000781} —.000195 —.000049
A1, 1) O(n3) .033333 .004167 .000521 000065 . 000008
approx. .021 .0010 —.00026 | —.000130] —.000041
O(n~2) —.001389| —.000347 —.000087] —.000022| —.000005
X1,2,-,5 | On® .030648|  .003831|  .000479  .000060]  .000007
approx. .029 .0035 .00039 .000038 . 000002
O(n?) . 142050 .035512 .008878| .002220 .000555
(1,10, ---,109) O(n3) —.030504] —.003813| —.000477] —.000060; —.000007
approx. 112 L0317 .00840 .002160 .000547
O(n2) . 187500, . 046875 .011719 .002930 .000732
A(1,0,---,0) O(n3) —.041667, —.005208] —.000651] -—.000081] -—.000010
approx. .146 L0417 .01107 .002848 .000722
p=6 O@n?) .058594 014648 .003662 .000916 .000229
A1) | O [046568|  .005821|  .000728|  .000091| 000011
approx. 105 .0205 .00439 .001006 .000240
O(n~?) .072545 .018136) .004534 .001134 . 000283
21,2, ---,6) O(n3) .043624 .005453 +000682 .000085 .000011
2pprox. .116 .0236 .00522 .001219 .000294
O(n=2) . 287643 .071911 .017978 .004494 .001124
A1, 10, ---, 10%) O(n3) —.059523| —.007440 —.000930] —.000116| —.000015
approx. . 228 0645 .01705 .00438 .001109
O(n?) .351563 (087891 .021973 .005493 .001373
A(1,0,--,0) O(n3) —.081380] —.010173] —.001272] —.000159] —.000020
approx. .270 .078 .0207 .00533 .001353

maximum likelihood estimator 2%, namely 100X {R,(3%, 3)—Ry(ZY, I)/R(EP, 3),
which range above to 8% for #=16. The rates of the reduction of the risks of Sw
with respect to £¢ range only from —5.6% to 1.6% for n=16 in Table 4.

4.2. Risk of new estimator. Now we shall consider the risk of a new esti-
mator £ given in (1.6). We can write the risk difference

(4.15) R(Z®, 3)—R(2Y, %)

51 btrS-!
-1 -1
(tr )E[t = 2] E[log][+————trsﬂs l]

By the Wishart identity, we get

4.16) E[tr;—l—tr J zJEL[”(St ;“2)2 ]—2
+(n~p—1)E[~%%;z].

Using (4.16), the risk difference is bounded from above by
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Note that
~_3 -1 -1\2
trS=*tr S i,1+(trS )

4.18) (trs=r = TS

where the equality holds if and only if S™'=2diag(l,0,---,0) except for permuta-

tion of the diagonal elements. The upper bound (4.17) is further simplified as
b({bn (tr S1)2

(4.19) 3{(7 p+1)E[W].

Hence £ dominates 3% if 0=b=2(p—1)/n and the minimum of (4.19) is attained

by b=(p—1)/n. The choice of b is the same as for the Haff’s estimator.

To get asymptotic expansion of the risk difference (4.15), we can rewrite it as
in (4.6) by

b[/nb (tr §1)? . trS~3tr St
.20 (e )e s e |

b (tr 271 tr 33 »
T3 (ws o Toe
To evaluate each expectation asymptotically, we need the following lemma.

LEMMA 4.2. Let S have a Wishart distribution Wyn,3). Then

(tr S—1)2-
E[ trS—2 _]

(trIoy _1;[ trI4(tr 3 (tr 3
4.2D B R MG s T

trX 3 trX=t (tr2-1)
(tr —2)2 tr 32

trS-'trS-3
F[ (trS oy ]

+2]+O(n’2),

trIigrye
T (traEye

tr X tr I3 tr 3¢
(tr 22

+L [24
n

(4.22) (tr 370 tr I9412tr 3 tr 35

NCERR

1

y'—-3)2) | _
+4(tr Y32 + CRRE

{tr2="tr ¥ 4+6tr24

3(tr—2:)~2]+0(n72).

+ tr X2
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Unlike Lemma 4.1, it seems to be impossible to prove Lemma 4.2 from the
Wishart identity only. We obtained it by another method used by Ito [6], Siotani
[14], Okamoto [11], Sugiura [15), Fujikoshi [2] and others, that is, for analytic
function f(S), it holds

(4.23) E[f(%l'S)]:f(E)+ %tr(ff))zf(/l)lhz +0(n?),

where 9 is a matrix of differential operators and its (i, j) element is given by
(1/2)A +64;) @fodi;) for A=(%;). The following lemma is useful for the repeated
application of (4.23).

LevmMA 4.3, Let Fi; (ix7) be pXp matrix having 1/2 at the (i, ) and (5,7)
positions and zero ai other positions. Let Eu be diagonal matrix having 1 at i-th
diagonal and zero otherwise. Then for any symmetric matrices A=(ai;) and B=(bi),

Z ZiZj tr AEH tr BE”:Z ztzjaijbij
w7 o
(4.24)
1 1 .
Z lilj tr AEHBEHZTZ Z Zizj(lijbij+7 Z lzzan Z Zjbjj .
i ¥ 2 7

Applying Lemma 4.2 to (4.20), we get

THEOREM 4.2. An asymptotic expansion of the difference of risks between new
estimator 3V defined by (1.6) with b=(p—1)/n and James and Stein's minimax
estimator 295 for L, loss is given by

- N ~ pp*—=1 p—1 l tr X 'tr 23
[SSTD W =2 A s =
Rl(Z ,4.4) Rl(ZJS,A) e + e 2+4 (tr ,72)2

p—1 tr Y tr3ttr Xt
| 96

5w |TTa tr -2y

_p+3 (tr z"-‘)z]

12
(4.95) - ;_2)3 {<8+ (2 . D )(tr 31ty 33496 tr -1 r I

32(tr 3V +A(p+3) (tr S tr S}

+?E%Z)_‘2l4(p+4) 3 3o 2atr o+ 202 oy
3\ (tr3-t
+(12+%—) ( = 2,3 —"“i)~3J+O(n*‘).

By the inequalities (4.12) and (4.18), the term of O(»~?) in (4.25) ranges from
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(4.26) — SN0 1o £ (p-D (P 2p+3).

The lower bound is obtained by noting that (tr I-)%/tr Y 2<p and trX-'tr 3%
(tr ¥*)*=1, where both equalities are satisfied by X'=al. The upper bound is
the same as for XY given in (4.13), while the lower bound is smaller than that
of 3%, and is always negative. Some numerical values are given below. The
lower bound is considerably smaller than (4.13).

Ranges of O(x™?) in (4.25).

p=2 p=3 p=4 p=5 =6

1 11 45

(-—2, §> (—10,2) (—26, 5) (—52,12) (—90, 7)

The upper bound is approached as 3~'—1diag(1,0,--,0) or any permutation of

the diagonal elements of it. This shows that 3 is better than 3¢ for Y~'=2a/

and worse for 2 '=2diag(1,0,---,0), which is the same conclusion as in Haff’s

estimator 3. However the lower bound is always negative for 5 and it is not
dominated by 29k for any p if # is large.

Some numerical values based on Theorem 4.2 are given in Table 5, in contrast
to Table 4. For #=8 and Y~'=1/, the positive risk differences are observed, which
is probably due to the error of asymptotic approximation for small #». It is found
that for Y7'==af and Adiag(1,2, -, p), P is better than 3¢ ; for 3~'=2diag(l, 10,
-+, 10771, 20 s slightly worse than 2% ; for 3~'=1diag(l,0, ---,0), the asymptotic
differences are consistent up to O(™%). The last statement can be confirmed by
putting ¥~'=1dieg(1,0,--,0) in Theorems 4.1 and 4.2. From Tables 1, 2 and 5,
we can compute the rates of the reduction of the risks of £ with respect to
2, namely, 100X {R(39, ¥)— R,(I™®, N)}/R(ZP, X) which range above to 20% for
n=16. This may be compared with 8% for 3%. If we compare the rates of S®

Table 5. Asymptotic values of R,(3W, 3)—R (5% )

JSr

31 n=38 n=16 n=32 n=>64 n=128
p=2 O(n2) —.031250, —.007813| —.001953] —.000488 —.000122
AL, 1) O@n3) .033854 .004232 .000529 .000066 .000008
approx. .003 —.0036 —.00142 | —.000422] —.000114
O(n2) —.018438 —.004609| —.001152| —.000288 —.000072
i1,2) O(n3) 008778 .001097 .000137 .000017 .000002
approx. —. 0097 —.0035 —.00102 | —.000271] —.000070
O(n2) 005040 001260 .000315 .000079 .000020
A(1,10) O(n3) —.001753] —.000219] —.000027] —.000003 —.000000
approx. .0033 .00104 .000288 .000075 .000019
O(n2) .007813 .001953 .000488 .000122 .000031
A(1,0) O(n3) —.000651| —.000081| —.000010[ —.000001| —.000000
approx. .00716 .001872 .000478 .000121 .000030
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Table 5. (continued)

X1 n=8 n=16 n=32 n==64 n=128

p=3 O(n2) —.156250] —.039063] —.009766] —.002441f —.000610

21,1, 1) On3) 153646 019206 .002401 .000300 .000038

approx. —.003 —.020 —.0074 —.00214 | —.000573

O@(n2) —.103316| —.025829] —.006457| —.001614] —.000404

21,2,3) O(n3) 069561 .008695 .001087 000136 .000017

approx. —.034 —.0171 | —.0054 | —.00148 | —.000387

O(n?%) 021771 .005443 .001361 000340 .000085

(1,10, 102) O(n3) —.009179| —.001147, —.000143] —.000018] —.000002

approx. L0126 .0043 .00122 .000322 .000083

O(n2) 031250 .007813 .001953 000488 .000122

2(1,0,0) O(n-3%) —.005208 —.000651] —.000081] —.000010 —.000001

approx. .0260 .00716 .001872 .000478 .000121

p=4 O(n2) —.406250 —.101563] —.025391] —.006348] —.001587

A1, 1) O(n~3) 404297 .050537 .006317 .000790 .000099

approx. —.002 —.051 —.0191 —. 00656 | -—.001488

O(n?) —.276042] —.069010{ —.017253] —.004313| —.001078

41,2,3,4) O(n?) . 204965 .025621 .003203 000400 .000050

approx. —.07 —.043 —.0140 —.00391 | —.001208

O(n2) .066391 .016598 .004149 .001037 .000259

2(1,10,102,10%) O(n3) —.027263] —.003408) —.000426] —.000053] —.000007

approx. .039 .0132 .00372 .000984 .000253

O(n2) .085938 .021484 .005371 .001343 .000336

2(1,0,0,0) O(n3) —.017578] —.002197) —.000275 —.000034] —.000004

approx. .068 .0193 .00510 .001308 .000331

p=5 O(n2) —.812500 —.203125| —.050781] —.012695 —.003174

A4, -1 O(n~3) .841667 105208 .013151 .001644 .000205
approx. .03 —.10 —.038 —.0111 —. 00297

O(n~?) —.556302| —.139075] —.034769] —.008692| —.002173

21,2--,5) O(n®) .435419 .054427 .006803 000850 .000106
approx. —.12 —. 085 —.0280 —.00784 | —.00207

O(n2) . 154470 .038618 .009654 .002414 .000603

21,10, ---,104) O(n?) —.061226/ —.007653| —.000957| —.000120 —.000015

approx. .093 .0310 .00870 .00229 .000588

O(n?) . 187500 .046875 .011719 .002930 .000732

A(1,0,---,0) O(n3) —.041667| —.005208/ —.000651| —.000081| —.000010

approx. .146 .0417 .01107 .002848 .000722

p=6 O(n?) —1.406250 —.351563] —.087891] —.021973] —.005493

A1, -, 1) O(n~3) 1.529948 .191243 .023905 .002988 .000374
approx. .1 —.16 —.064 —. 0190 ~—.00512

O(n2) —.963619] --.240905 —.060226] ~—.015057, —.003764

21,2,--,6) O(n3) .782396 097799 .012225 .001528 .000191
approx. —.18 —.143 —.048 —.0135 —.00357

O(n2) .301591 .075398 .018849 .004712 .001178

(4,10, -+, 10%) O(n3) —.116287| —.014536] —.001817| —.000227} —.000028

approx. .19 .061 .0170 .00449 .001150

O(n~2) .351563 087891 .021973 .005493 .001373

1,0,--,0) O(n3) -—.081380] —.010173| —.001272| —.000159] —.000020

approx. .270 .078 .0207 .00533 .001353

with respect to £9, we get the range from —5.6% to 12% in Table 5 for n=16.
The rates for £@ with respect to $% range from —0.4% to 12% for n=16.



Asymptotic risk comparison of improved estimators 119

5. Risks under L, loss
5.1. Risk of Haff’s estimator. We shall now consider the estimator

1 b
)
G- T ntp+l [S+ trS- I_]

proposed by Haff [5], where C is taken to be [ in (1.4) without loss of generality.
The loss function is given by (1.2), throughout Section 5. It is known by Haff
[5] that the best scalar multiple of S is given by £9=S/(n+p+1). The difference
of risks can be written by

(5.2) RZ(S;;>,Z)~R2(23’,2)
-t 2 . 42220
- 2n+p+1)* E[trS"’ tr{S2 (n+p+1DE+ (trS—12 |

To evaluate each expectation, we need the following equations due to Haff (5]
derived from the Wishart identity.

tr S22 trXt- JtrS-13-t
(53) E[ trs—l —J_-HEI:U’S_I J+2E|i (trs—1>2 :I
trS13! tr 52 trS—2
6.4 2| s |- o= s [ 4e e |1
tr 3 trS-23- trs-y
6.9 s oo s Jromre G55

Together with (4.4) and Lemma 4.1, we can rewrite (5.2) as

b but | tr3- .
G| Dottt 2 s (oD
5.6)
tr 30 (tr -2y .
- (tr2ﬂ>3-+3(bn+4)-m]+0(n ).
Assuming that b=0(1/n), the term of O#%) in (5.6) is
bn\ tr¥?* bn
6.7) -ﬂ(P+1)+2n<1+—4—>Tt—r:yT)z:~n(p+1)+2n(l+—~4—>.

The condition that the R.H.S. of (5.7) is negative is given by b=2( p—1)/n which
is in contrast with the exact result b=2(p—1)/(n—p+3) in Haff [5] The equality
in (5.7) is attained by X~'=21diag(l,0, ---,0), for which the value of (5.6) is mini-
mized by

_—pD (=) 1 =3 »
(5.8) b= = (-1 (1 L >+0(n ).
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Again the result is the same as the optimal choice b=(p—1)/(n—p+3) by Haff [5]
asymptotically. Note that

(5.9 Ro(E9, D)= Ry( 29, 3

__ -1 plp+DXp-D .,
==t 5 +Om).

We get

TurorREM 5.1. An asymptotic expansion of the difference of risks between
Haff's estimator 39 defined by (5.1) and James and Stein’s minimax estimalor
39, for L, loss is given by

. V‘*Z -
Ro(29, ‘)—Rz(EfPs,Z)— [(1)+1)(/‘> 6)+3(p+3) ]

(tr5 i
p=ITL, o (tr 3722

tr X2 tr3-

+(p+1) (A.._2f)——6) (tr5—|)2 - (tr ¥ - 1)3

]—i—()(n")

where b=(p—1)(L+d[n)n and an optimal choice of 4 is p—3.

The term of O(»7?) in (5.10) is the same as that of R,(3®, 5)—R.(Z%%, ) in
Theorem 4.1. However the term of O(»7®) is different which yields poor asymp-
totic approximations as can be seen in Table 6 compared with Table 4. For
instance, when #=16, p=6 and Y~'=21], the approximate value of Ry Z®,3)—
Ry(3%,, %) is equal to —0.032. However we can not say that this is negative,
because of the error that may arise in the asymptotic approximations. The cor-
responding value for 2% is 0.0205 from Table 4 and we are certain that this is
positive. One might think that an asymptotic expansion with respect to n+p+1
is better for 3, because of (3.7). We can easily rewrite (5.10) in terms of powers
of n+p+1 instead of n. For the above example we get the term of order
(n+p+1)"% is equal to 0.007089 and the term of order (m+p+1)"° is equal to
—0.011290. The approximate value is —0.004201, which is different from —0.032.
However still the second term is larger than the first in absolute value. If we
increase =128 in this example, the approximate value is 0.000150, the correspond-
ing value in Table 6 is 0.000138. Hence these values are reliable. The fact that
the asymptotic approximations are better for L, loss than for L, loss, is ascertained
again. From Tables 3 and 6, the rates of the reduction of the risks of 2@ with
respect to 29 can be computed, the range of which is given by 0%~4% for #=32
in Table 6.
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Table 6. Asymptotic values of Ry(3®, 3)—Ry(3H, 3)
31 i n=8 | m=l6 n=32 n="64 n=128
p=2 O(n2) —.011719] —.002930, —.000732] —.000183 —.000046
AL 1) O(n3) .012207 . 001526 .000191 000024 .000003
approx. . 0005 —.0014 —.00054 | —.000159, —.000043
O(n?) —. 009549 —.002387| —.000597| —.000149] —.000037
A1,2) O(n8) .009042 001130 .000141 .000018 .000002
approx. —.0005 —.0013 —.00046 | —.000132; —.000035
O(n2) .001356) .000339 . 000085 .000021 .000005
1,100 | OGr) —.004123| —.000515] —.000064| —.000008, —.000001
approx. —.0028 —.00018 000020 .000013 .000004
O(n2) .007813] .001953 .000488 .000122, .000031
A(1,0) O(n3) —.009766| —.001221] —.000153] —.000019| -—.000002
approx. —.0020 .0007 .00034 .000103 .000028
p= O(n2) —.031250 —.007813] —.001953] —.000488 —.000122
A1,1,1) O(n3) . 035590 .004449 . 000556 .000070 .000009
approx. .004 —.0034 —.00134 | —.000419] —.000113
O(n2) —.026042 —.006510;, —.001628 —.000407 000102
A(1,2,3) O(n—3) .026259 .003282 .000410 .000051 .000006
approx. .0002 —.0032 —.00122 | —.000356[ —.000095
O(n2) .014358 .003590 . 000897 .000224 .000056
21,10,10 | O@ ) —.035581| —.004448 —.000556] —.000069 —.000009
approx. —.021 —.0009 .00034 .000155 .000047
O(n2) .031250 .007813 .001953 .000488 .000122
4(1,0,0) O(n3) —.054688] —.006836| —.000854, —.000107| —.000013
approx. —.023 .0010 .00110 .00038 .000109
p=4 O(n2) —.037109] —.009277, —.002319| —.000580] —.000145
A, -1 O(n3) .026733 .003342 .000418 .000052 .000007
approx. —.010 —.0059 —.00190 | —.000528| —.000138
O(n%) —-.028906{ —.007227, —.001807| —.000452 —.000113
21,2,3,4) | O@9) .009316  .001165|  .000146|  .000018  .000002
approx. —.0196 —.0061 —.00166 | —.000433] —.000111
O(n2) 056135 .014034 .003508 .000877, .000219
(1, 10, 102, 10%) O(n3) —.146300] —.018288| —.002286 —.000286| —.000036
approx. —.09 —.004 L0012 .00059 .000184
O(n2) . 085938 .021484 .005371 .001343 .000336
A(1,0,0,0) | O(n%) 187500, —.023438 —.002930] —.000366] —.000046
approx. —.10 —.002 .0024 .00098 .000290
p=5 O(n?) .012500 —.003125 .000781 .000195] —.000049
a1, -, 1) O(n3) —.079375] —.009922| —.001240] —.000155{ —.000019
approx. .092 —.0130 .0020 .00035 | —.000068
O(n~2) —. 001389 .000347 .000087, —.000022| —.000005
21,2,---,5) O(n3) —.106505] —.013313] —.001664] —.000208; —.000026
Approx. —.11 .014 .0018 | —.00023 | —.000031
O(n2) . 142050 .035512 .008878 .002220 .000555
A(1,10,--,10) | O(n%) —.410155 —.051269, —.006409] —.000801] —.000100
approx. —.27 -—.016 .0025 .00142 .00046
O(n2) .187500 . 046875 .011719 002930 .000732
A1,0,--,0) | O 484375 —.060547| —.007568 —.000946| —.000118
approx. —.30 —.014 .0042 .00198 .00061
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Table 6. (continued)
P n=8 n=:16 n=232 n==64 n=128
p=6 O(n~?) . 058594 .014648 .003662 .000916 .000229
a0 o —.370822] —.046353 —.005794] —.000724] —.000091
approx. —.31 —.032 —. 0021 .00019 .000138
O(n~2) . 072545 .018136 . 004534 .001134 .000283
21,2,--..6) O(n?) —.409160] —.051145 —.006393 —.000799] —.000100
approx. —.38 —.033 —. 0019 .00033 .00018
O(n?) . 287643 .071911 .017978 .004494 .001124
A1,10,-,105 | O(n9) —.924538] —.115567| —.014446] —.001806] —.000226
approx. —. 64 —.04 .004 .0027 .00090
O(n?) .351563 .087891 .021973 .005493 .001373
21,0,-,0) | O —1.044922] —.130615] —.016327| —.002041] —.000255
approx. -7 —.04 .006 .0035 .00112
5.2. Risk of new estimator. Finally we shall consider the estimator (1.7) for

C=1 without loss of generality, namely,

(5.11)

btrS—!

The risk difference can be written by

R(S®, 5)~ R59, =

(5.12)

Wishart identity in Haff [5].
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(5.14) E[
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trS—2 J n—p—2- E[

(trS71)°
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+8F[

b

Lo
Contp+1\”

trS—2

]=2E[4

(tr S~y
trS-2

tr Sy ] -(n—p—Z)E[

(trS-12trS—

(trS72)°

_ [trs !
T (mAp+1)E T trSe

+b(

1),

tr{SS~ — (4 p+ 1)1} 5

trS-’ s
o )t s J.

Each expectation can be computed by the following relations obtained from the

trS=ttrS-°

trS—*

(tr S

]+(n-~j)——3)E[

S-e

(trS—1)2

a (trs-2>2]

trS~itrS
(tr S—2)2

Sy ] S

]

trS—+ ]
(trS—2)2

_ trS2

J-e]

trS-'trS
(tr S2)

|-l s

4

For example, the first term of the expectation in the R.H.S. of (5.12) can be
expressed by the Whisart identity as
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rS™ v ‘ TS, ol trS trs2s
nE[trS_2 try ] (n—p—l)(n+p+1)E[W]+4b[W]

. trS-1y-t JtrS 'rS-3
—ZE[W]—Zl(n—I—erI)E [Ts_rz)z——]+2(n+p+1),

which can be reduced further by (5.13), (5.14) and (4.16). Assuming that b=
O(n™"), we can finally rewrite (5.12) as

b [—Zn—{—n(—gn—p_l)E[(trS*l)z}+4nE[M]

(n+p+1y | trST (trS2y
+4p+6-+ {(p+1>2—-6—%n(2p+3)} (ttrr{v‘_?z —16 (ttrr 5_:)2
(5.16)
—d(bn+2p+4) tr(‘:r*;‘;)f_s +32 tré;ff2)f_5
+8bn “ri ;;_t;l - %’i Eg §:1;4J+O(n)

By (4.18) the term of O(x%~%) in (5.16) is bounded from above by

1 tr 31y
(5.17) = bt —n(p+1)+2n -(trr L

which is negative only if 6=<2(p—1)/n. The upper bound (5.17) is attained for
S '=21diag(1,0, ---,0) or any permutation of the diagonal elements of it. For this
Y- the risk difference (5.16) can be written by

—b ——
(n+p+1y

1

(5.18) —bn‘l—n(p-l)ﬂp-1)2—<p—2)1m} +Om Y,

2

which is minimized by bo=(p—1)(1+4d/n)n for 4d=p-—3 asymptotically. This
optimal choice of b is the same as for 3¥. Using (5.9), we get

THEOREM 5.2. Awm asymptotic expansion of the diffevence of risks between
estimator 2% defined by (5.11) with b=(p—1)A+4d/n)n and James and Stein's
estimator 39y for L loss is given by

Ry(E®, ¥) = Ry(S%5, 3)

p-1 , o o (trXTE L r ¥ty
| -3+ o-30+3) 21 |

tr 22 (tr X72)?

p—1

na

(tr X-1)?

+ tr 22

[—%(Hl)(p“+p—14)—2A+(p2+6p+13—2A)

(5.19)

trY ttrX? tr Y (tr 21y
+4(4d—4p—1) (tr 32y +8 (tr 3722 (tr 3-%)
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1
Ty V(AT (r AT r T 416 tr 3 e 370
+2(tr X71Y tr X0 8(tr Y70

tr X r Y tr X _
T3y J+O(n M.

+96

An optimal choice of 4 is given by p—3.

Note that the term of O@2) for £ in (5.19) is the same as the correspond-
ing term of Theorem 4.2 for £®. Also the term of O ?) for ¥ in Theorem
5.1 is the same as that of Theorem 4.1 for 2. Hence the ranges of O(x™?) in
(4.13) and (4.26) hold also for 3% and £®. Asymptotically, the range for 3@
is wider below than that for £%. Some numerical values of the risk differences
for £® are shown in Table 7. Comparing with Table 6, we can see that for
Y-t=2al and 2diag(l,2, ---,p),ﬁ‘” is better considerably; for Y '=21diag(1,10, -,
107-1), 59 is better and for Y-'=2idiag(l,0,---,0), they are the same. The last
statement can be checked by putting 2 '=1dieg(1,0,.--,0) in (5.10) and (5.19).
Comparing with Table 5, we can see that the asymptotic approximations are poor
for 3®, Again the positive values for Y '=2/ and negative values for Y~'=

Table 7. Asymptotic values of Ry(I®, ¥)—R,(3%, Y

31 n=8 n=16 n=32 =64 n=128
p=2 O(n~2) —.031250, —.007813] —.001953] —.000488 —.000122
AL 1) O(n=3) .039063 .004883 .000610 .000076 .000010
approx. .008 —.0029 -—.00134 | —.000412] —.000113
O(n2) —.018438] —.004609] —.001152 —.000288] —.000072
A(1,2) O(n=3) .014372 001796, .000225 .000028 .000004
approx. —.004 —.0028 —.00093 | —.000260] —.000069
O(n~?) .005040 .001260 .000315 .000079 .000020
A(1,10) O(n—3) —.007077) —.000885 -—.000111] —.000014] —.000002
approx. -—.0020 .00038 .00020 . 000065 .000018
O(n?) .007813 .001953 .000488 .000122 .000031
A(1,0) O(n-3) —.009766 —.001221; —.000153] -—.000019| -—.000002
approx. —.0020 L0007 .00034 .000103 .000028
p=3 O(n2) —.156250; —.039063] -—.009766| -—.002441 —.000610
AL LD O(n—3) .236979 .029622 .003703 .000463 .000058
approx. .08 —.009 —.0061 —.00198 | —.000552
O(n2) --.103316] —.025829] —.006457] —.001614] —.000404
A(1,2,3) O(n3) 128827 .016103 .002013 .000252 .000031
approx. .26 —.010 —.0044 —.00136 | —.000372
O(n2) .021771 .005443 .001361 .000340 .000085
A(1, 10, 102) O(n3) —.042109] —.005264] --.000658 -—.000082 -—-.000010
approx. —.020 .0002 .00070 .000258 .000075
O(n=2) 031250 .007813 .001953 .000488 .000122
A(1,0,0) O(n3) —. 064688 —.006836| -—.000854] —.000107| --.000013
approx. —.023 .0010 .00110 .00038 .000109
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Table 7. (continued)

31 n=8 n=16 n=32 n=64 | =128

p=4 O(n~?) —.406250] —.101563] —.025391] ~—.006348 —.001587

a1, 1) O(n3) 708984 . 088623 .011078 .001385 .000173
approx. .30 —.013 —.014 —. 0050 —.00141

O(n%) . 276042 —.069010] —-.017253] —.004313] —.001078

A4(1,2,3,4) O(n#%) .419957 .052495 006562 .000820 .000103
approx. .14 —.017 -—.0107 —.00349 | —.00098

O(n~2) 066391 016598, .004149 .001037 .000259

AL, 10,102, 10%) O(n3) —.155830] —.019479] -—.002435 —.000304] —.000038

approx. —.09 —.003 .0017 .00073 .000221

O(n2) 085938 .021484 .005371 .001343 .000336

A(1,0,0,0) O(n3) —.187500] —.023438| —.002930 —.000366] —.000046

approx. —.10 —.002 .0024 . 00098 .000290

p=5 O(n~?) —.812500, —.203125{ —.050781| -—.012695 —.003174

a1, - 1) O(n3) 1.590625! .198828 .024854 003107 .000388
approx. .8 —.004 —.026 —. 0096 -—. 00279

O(n~?) —.556302] —.139075 —.034769] —.008692] —.002173

A1,2,--,5) O(n3) .968478 .121060 .015132 .001892 .000236
approx. .41 —.02 —.020 —.0068 —.00194

O(n?) . 154470 038618 . 009654 .002414 .000603

(1,10, ---, 10%) O(n3) —.421797| —.052725] —.006591| —.000824| —.000103
approx. —.27 —.014 .0031 .00159 .00050

O(n—%) . 187500 046875 011719 002930 .000732

1,0,--,0) O(n—3) —.484375] —.060547] —.007568] -—.000946| —.000118
approx. —.30 —.014 .0042 .00198 .00061

p=6 O(n2) —1.406250, —.351563 —.087891] —.021973] —.005493

A1, O(n3) 3.040365 .380046 .047506 .005938 .000742
approx. 1.6 .03 —.040 —. 0160 —.00475

O(n~2) —.963619| —.240905 —.060226] —.015057, —.003764

21,2,--,6) O(n3) 1.865664 .233208 029151 .003644; .000455
approx. .9 —.01 —.031 —.0114 —.00331

O(n2) .301591 .075398 013849 .004712 .001178

(1,10, ---,10%) O(n=3) —.936962, —.117120 —.014640 —.001830] —.000229
approx. —.64 —.04 .004 .0029 .00095

O(n2) .351563 .087891 .021973 .005493 .001373

A1,0,---,0) O(n—3) —1.044922 —.130615 —.016327] —.002041] —.000255
approx. —.7 —.04 .006 .0035 .00112

2diag(1,0,--,0) when n=8 or 16 in Table 7 are doubtful. From Tables 3 and 7,
we can compute the rates of the reduction of the risks for £ with respect to
3%, which range above to 11% for #=32. This may be compared with 4% for
$®. Comparing the rates for £ with respect to 3%, the range is given by
—0.2%~T7% for #=32 in Table 7. Also the rates for S® with respect to %%
range —1.2%~8% while the rates for £% with respect to 39 range only —1.2%
~0.8% for n=32.
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