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ASYMPTOTIC RISK COMPARISON OF IMPROVED ESTIMATORS

FOR NORMAL COVARIANCE MATRIX

By

Nariaki Sugiura and Masahiro Fujimoto

Asymptotic risks of the empirical Bayes estimators 2H by Haff [5] for a

covariance matrix I in a />-dimensionalnormal distributionare computed and

compared with that of James and Stein'sminimax estimatorsIJS. For p^6, it

is shown that SJS are always betterthan IH asymptotically,though the leading

terms are the same. New estimatorswhich dominate SJS for some I in any p

asymptoticallyare proposed. Some numerical comparisons are given. Exact risks

for ordinary estimatorsl0 and minimax estimators2JS are also computed and

compared with asymptotic ones for which the approximations are shown to be

excellent.

1. Introduction

Let S have a Wishart distribution with unknown scale matrix 21and n degrees

of freedom, for which we shall write S: Wp(n,I) and assume n>p + l. Let 2 be

an estimator of I. The loss function is taken to be

(1.1)

or

Lt(S, I) = tr SI-1 -＼og＼IS-l＼-p

(1.2) Ll(£i')=-Jtr(U-'-/)≪.

The Li loss is equivalent to the likelihood ratio statisticfor testing the hypothesis

I=S0 against allalternatives. The L2 loss can also be used as a test statisticfor

the same problem as in Nagao [10]. The factor 1/2 in the L2 lossis not essential.

However we wish to retain it, since Lx loss tends to tvill'1 ―/)2/2, when I is

close to I. The risk function is given by Ri(2,l1)= E[Li(Z,2)] for i= l or 2.

Haff [5] proved that among the scalar multiples of S, the best estimator under Lx

is 2(§=S＼n and that under L2 it is given by l($=S＼{n+p+V), which we call

ordinary estimators. Then he considered the posterior mean of I for a prior

distributionWv[n', (rC)"1] for I'1 with unknown scalar r>0 and known p.d. matrix
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C. It is given by E[Z＼S,y]= {S+yC)l(n + n' -p-l). In the process of estimating

y by maximizing approximate marginal likelihood of S, he obtained ut{u) for u =

l/tr(S"'C) as an estimator for y, where /(-)is nonincreasing. He then proved that

nnripr /".,thp PRtimntnr

(1.3) 2%= ―[S+ut(u)C]
n

for 0^t(u)^2(p―l)ln, dominates I^―S/n for any n>p + l and under L2 the

pcf-imdirvr

(1.4)

(1.6)

for Li loss and

(1.7)

j^O) ―
n

i<2> =

fa)―

1

n+p+1

(S+utC)
1

n+p+1

for 0^tg:2(p-l)l(n-p+3), dominates H(S)=SI(n+p + l) for any n>p+l. It was also

shown that If t(u)in (1.3) is constant, the best choice of t(u)is (p―l)/n and that

the best choice of t in (1.4) is (p―l)l(n―p+3). In this paper we always take

these optimal values for t and call them Haff s estimators Z% and 2$ respectively.

A minimax estimator for 2' was earlierobtained by James and Stein [7],giving

(1.5) tfs = KA K'

for the loss Li (i= l or 2), where the lower triangular matrix K with positive

diagonal elements is obtained from S=KK' and Aw=diag[A[i＼ ･■･,J^]. For the Lx

loss, they proved that Af = l/(n+p+1 ―2;) and reported that they were unable to

get explicitform of Af. Sharma [13] derived the linear equations for Af, from

which numerical values are computed for given n and p. They were also obtained

earlierby Selliah[12].

The primary purpose of this paper is to compare the asymptotic risk of Haff's

estimator 2$ with that of James and Stein's estimator 2% under Li for i=l or 2,

Under L2, we have derived an asymptotic form of Af for large n. It is shown

that the leading terms of the asymptotic risks for J^f and 2% are the same and

that the next term for 2ig)is less than that of 1% only for 2^/>^5 and for some

S. If p^6, the second term of the asymptotic expansion of Ri{2{^＼I) is always

larger than that of Ri{tfs, I) for allI.

Secondly we shall propose new estimators for S by minimizing risks empiric-

ally, which are piven bv

trGS^_ 1
0<.^2(/≫-l)

tr(CS-')2 I' ≪
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for Z,2loss. It is shown that our new estimator 2O) dominates Stf for alln>p + l

and that .T(2)dominates 2% asymptotically. The result also holds for more general

form of 2°＼that is, the constant b in (1.6) can be replaced by t(-)in (1.3) for

ti―trCS~lltr(CS~iy. However we prefer to (1.6) to simplify later discussions.

The leading term of the asymptotic risk is the same as that of 2% and the second

term is less than that of 2% for some 2 and for all p> 1. Eliminating the leading

term, the range of Ri(2a＼ 2) is much wider below than Ri{2%＼ 2) asymptotically.

However the absolute difference &(£≪>,2)~Ri(2%, 2) or Ri(2%＼ 2)-Ri(2fs, 2) is

not so large.

To get some idea for the errors of asymptotic approximations, the terms of

order n~* (third terms) are computed for Ri(2$, 2) and Ri{2il＼2). The exact

risks of 2% are computed and asymptotic values up to order n~3are compared.

For 2^p-^% and wi^l6, asymptotic values for 2% are accurate for three (two)

significantdigits for Lx (L2) loss in most cases examined. The rates of the reduc-

tion of the risks of 2%＼2m) with respect to 2^ are shown to be the highest

8%(20%) for z"= l, ≪^16 and 4%(11%) for i=2, n^32 respectively within our ex-

amples computed in Tables.

2. Derivation of new estimators

Since our goal is to find an estimator 2 which minimizes the risk, we shall

look for a solutionin a form Iw=(S+rC)ln for Li or Zm=(S+rC)l(n+p+l) for

L2. The risk for Lx is given by

(2.1) i?1(i(1),I')= -trC2'-1-E[log|―(S+rQS-'H
n n

Hence the derivative with respect to r is

(2.2) -trCS^-Eltriyl+SC-1)-1]
n

where the expectation is taken by S having Wp(n,S) distribution. At y=0, the

derivative has a negative value
~{p+l)

trCZ~1l{n(n―p―l)},since E(S~l)=I~1l(n―

p―1), by Kshirsagar [9], for example. This shows that the risk will be smaller

if we take y positive near zero. Assume that y is small and put the derivative

(2.2) equal to zero. We get an equation for y, an approximate solution of which

is given by

(2.3) r=(P+l)
tr Cl~l

trCCS-1)2 '

which yields the estimator (1.6). The estimator (1.7) for L2 is similarly derived
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The constant factor b is restricted so that it dominates ordinary estimator 2%＼

3. Risks of ordinary and James and Stein's minimax estimators

Using the Bartlett's decomposition (Giri [3], page 126) of Wishart matrix S

when Y ―T wp. crpf

(3.1) &($$>, 2)=p log n-1 ^[log ^-y+i],

1=1

where -fmdenotes the %2 variate with m degrees of freedom. Using digamma

function<b(x＼=d＼o&F(x)ldx.we can rewriteit

(3.2) J 1
n

plogJ-
V

.7=1

A n ―j + 1
2

)

If n is an integer larger than one, we know that

(3.3) 0(w)=l+-+...+―
l n ―

for Euler's constant j=0.57721 56649 01532 9- (Abramowitz and Stegun [1]). For

Vi^ifinfpcrprurcrnmpnt (*i.>'＼＼

(3.4)

(3.5)

(3.6)

(3.7)

A n + ＼ ) = -r-21og2+2(l + y

(p(x+h) = log x +
h-1/2

x

2n

+ ･･･ +

≫ {-l)rBr+l(h)
+s
r% xr+＼r+l)

12n2

)

)･

+0{n"i)

_J_

These are sufficientfor the computation of Ri(Hlo＼I). If n is large, an asymptotic

formula for </>is available, which is derived from Stirling'sformula (Kendall [8],

naffe 245)

+o(

where Br(h) are the Bernoulli polynomials given by B2(h)=h2 ―A+1/6, B3(h)=h3―

(ZI2)h2+ ai2)k. This vieids

12≪3

Some numerical values of Ri{2%＼I) are, computed based on (3.2)~(3.4) and

compared with the asymptotic values (3.6) for jf>=2~6 and ≫= 8~128. They are

shown in Table 1. We can see that the asymptotic approximations are excellent,

namely, for ≪^16 and p^6, the values are accurate with three significancedigits.

Under h≫loss. Haff T51 noted that
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Table 1. Values of R^&f, 2)

107

w=8 ≫=16 n=32 n=6A n=128

p=2 Oinr1)

0(n-2)

0(n-3)

approx.

exact

p=3 O(n-i)

O(n 2)

O(n-S)

approx.

exact

p-i 0{n-~l)

O(n~z)

O(≫"8)

approx.

exact

p=5 O(w-!)

O(≪"2)
O(n-3)

approx.

exact

p=6 O(w-!)

O(n~2)
O(n~3)

approx.

exact

.37500

.03385

.00391

.4128

.413314

.75000

.10156

.01953

.871

.876824

1.2500

.2240

.0586

1.533

1.559962

1.8750

.4167

.1367

2.43

2.52347

2.6250

.6953

.2734

3.59

3.87328

.187500

.008464

.000488

.19645

.196484

.37500

.02539

.00244

.4028

.403141

.62500

.05599

.00732

.6883

.689672

.9375

.1042

.0171

1.059

1.06300

1.3125

.1738

.0342

1.521

1.53134

.093750

.002116

.000061

.095927

.095929

.187500

.006348

.000305

.19415

.194171

.312500

.013997

.000916

.32741

.327490

.46875

.02604

.00214

.4969

.497161

.65626

.04346

.00427

.7040

.704554

.046875

.000529

.000008

.047412

.047412

.093750

.001587

.000038

.095375

.095376

.156250

.003499

.000114

.159864

.159868

.234375

.006510

.000267

.24115

.241166

.328125

.010864

.000534

.33952

.339557

.023438

.000132

.000001

.023571

.023571

.046875

.000397

.000005

.047276

.047277

.078125

.000875

.000014

.079014

.079015

.117188

.001628

.000033

.118848

.118849

.164063

.002716

.000067

.166845

.166847

which is asymptoticallythe same as Ri(So＼2) forlarge n.

why we prefer multiplier1/2 in the definitionof L2 loss in

simple form of (3.7),the asymptotic approximations

(3.8) J?(t<2) V^PtP
+ V

2≪2

p(p+iy

2riA

This is the reason

(1.2). Unlike the

+0(≪-4)

are not so excellent as Ri(Zo＼2'). For example, the exact value of R2(2o＼ 2')in

(3.7) for p=2 and ≪= 16 is 0.15789, while the asymptotic value of (3.8) gives

0.15894 which is accurate for three significant digits. From Table 1, the corre-

sponding exact value of Ri(I(^,I) is 0.19648 and the asymptotic value is 0.19645

which is accurate for one more digit than Rz{Zo＼ -)･ This is the case with other

values of parameters n and p.

Next we shall evaluate the risks of the minimax estimators by James and

Stein [7]. By considering a best equivariant estimator <fi(LSLf)= L<p(S)L' for the

transformation group of lower triangular matrices L with positive diagonal ele-

ments, they obtained a minimax estimator of (1.5) under Li loss and derived

(3.9)
V
s

£[log xl-j+ii
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Using digamma function

(3.10)
V
E

.;=i

ib{x), this can be simplified as

log ―(n+p- 2j +1)-
p I n-j + i

which is useful for numerical computations. The

obtained by (3.5), giving

(3.11)

)

asymptotic form of (3.10) is

P(P2-l)(P + 2)

12≫8
+0(≪"4)

In Table 2 exact and asymptotic values of R}(2%,2) are compared. It is found

that for ≪^16 and p^6, the asymptotic values are accurate for three significant

digits,which is the same conclusion as for i?i(J^＼21). Since equivariant estimators

contain best scalar multiple of S, namely, I{o＼inequality R1(I%,l')<Ri(I%＼2)

holds as a matter of fact. If we take difference of the risks by asymptotic form,

we get

(3.12) /?,(-&% 2')-/?,(£8>, 2') = -
P(P2-D

6n2
+O(ir4)

which is negative for p^2, neglecting the higher order terms. This suggests the

Table 2. Exact and asymptotic values of i?,(J＼!l,1')

≪= 8 ≫=16 n = 32 72= 64 ≪ = 128

p=2 Oinr1)

0(≪-a)

0{rr*)

approx.

exact

p=3 Oirr1)

O(nr*)

0(≪-3)

approx.

exact

/>=4 O(n~l)

O(n 2)

O(≫"8)

approx.

exact

/>=5 O(≫-])

O(n-2)

O(≫-≫)

approx.

exact

/>= 6 GO1)

O(≪-2)

O(≪--R)

approx.

exact

.37500

.01823

.00391

.3971

.39757

.75000

.03906

.01953

.809

.81229

1.2500

.0677

.0586

1.376

1.3927

1.8750

.1042

.1367

2.12

2.1713

2.6250

.1484

.2734

3.05

3.2107

.187500

.004557

.000488

.19255

.19257

.37500

.00977

.00244

.3872

.38739

.62500

.01693

.00732

.6493

.64997

.9375

.0260

.0171

.981

.98271

1.3125

.0371

.0342

1.384

1.3889

.093750

.001139

.000061

.094950

.094952

.187500

.002441

.000305

.19025

.190257

.312500

.004232

.000916

.31765

.31768

.46875

.00651

.00214

.4774

.47750

.65625

.00928

.00427

.6698

.67003

.046875

.000285

.000008

.047167

.047168

.093750

.000610

.000038

.094398

.094399

.156250

.001058

.000114

. 157422

.157425

. 234375

.001628

. 000267

. 236270

. 236275

.328125

.002319

. 000534

. 33098

.330991

.023438

.000071

.000001

.023510

.023510

.046875

.000153

.000005

.047033

.047032

.078125

.000265

.000014

.078404

. 078404

.117188

.000407

. 000033

.117628

.117628

.164063

.000580

.000067

.164709

.164710
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validity of the asymptotic comparisons.

Under L2 loss, the exact J(2)is not available. However Selliah[12] and Sharma

[13] show that J = [Jp＼･･･,Af~＼',satisfieslinear equations Ad-b, where pxp matrix

A and /)-vectorb are given by

(3.13)

A =

(n+p-1) (n+p + l)

n+p-3

n-p + 1

n+p-3

(n+p-3)(n+p-l)

n-p + 1

n―p + 1

n-p + 1

(n-p + l)(n-p+3)

b= (n+p-l, n+p-3,―,n-p + l)'.

With this A, the risk is given by

(3.14) Rt{2%, 2) =
±.p-±. f;

(n-2j+p + l)Af.

We can see by checking the exact values of zJ(1)and J(2) that the choice of Af

is always larger than Af and the risks of 1% are larger than that of 2%. The

best scalar multiple ＼＼nfor Lt loss and lj(n+p+l) for L2 loss lie always smaller

than the middle of Au ―,AP. Sharma [13] gives the values of R2(2fs, Z) for p = 2

and n ―5(5)30. Using (3.13), we can evaluate A for large n, giving

(3.15)

and

(3.16)

ri> ft ft/

+ 3^r[-2(/) + l)(ll/)2+22i> + 12) + (66/>2+ 150^+85)i

- 3(28/>+33) f+38i3] + 0(n^)

rwvu, vn_ />(/>+ !)
/>(/> + !) (2j> + l)

3≪2

P＼P±Vf
+0(n-*)

Note that optimal scalar multiplier for S is Ijn under Li loss and H{n+p-＼-1)

under L2 loss. Asymptotic expansion of Af'―l/in+p + l ―If) replaced n by n+p + 1

yields the same terms as in (3.15) up to order n~2. The difference of the risks,

R2(Z%,Z)-~jR2(I<'o＼Z)in the asymptotic form is exactly the same as (3.12) up to

O(n~2).In Table 3, exact and asymptotic values of R2(Slfs,I1)are shown based on

(3.14) and (3.16). We can see that the asymptotic approximations are worse than

Ri(S%,21) and are comparative for i?2(itg),J). This suggests that the loss L, is

favourable for the asymptotic approximations. The maximum rate of reduction

of risks for 2% with respect to 2(£>within Tables 1 and 2 is given by 17% for

n ―S and p ―6. However the corresponding rate for L2 lossin Table 3 is only 5%.
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Table 3. Exact and asymptotic values of R2(Z(ps,1')

n = 8 ≫= 16 w = 32 n ―Qi ≪=128

p=2 0{n-v)

0(≫-≫)

O(≫-8)

approx.

exact

/>=3 O(n->)

O(w"2)

approx.

exact

/≫=4 O(n-i)

O(n-2)

O(w~8)

approx.

exact

/≫=5 O(w-i)

0(n~2)

approx.

exact

/>= 6 O(w-')

O(n-8)

approx.

exact

.37500

― .15625

.07031

.289

.26697

.75000

― .43750

.28125

.59

.48250

1.2500

― .9375

.7813

1.09

.73548

1.8750

―1.7188

1.7578

1.9

1.0189

2.625

―2.844

3.445

3.2

1.3283

.18750

― .03906

.00879

.1572

.15559

.37500

― .10938

.03516

.301

.29211

.62500

― .23438

.09766

.488

.45918

.9375

― .4297

.2197

.73

.65233

1.3125

― .7109

.4307

1.03

.86807

.093750

― .009766

.001099

.0851

.084970

.18750

―.02734

.00440

.1646

.16393

.31250

― .05859

.01221

.266

.26397

.46875

― .10742

.02747

.389

.38311

.65625

― .17773

.05383

.532

.51965

.046875

― .002441

.000137

.04457

.044563

.093750

― .006836

.000549

.08746

.087422

.15625

― .01465

.00153

.1431

.14298

.23438

― .02686

.00343

.2110

.21056

.32813

― .04443

.00673

.2904

.28952

.023438

―.000610

.000017

.022844

.022844

.046875

― .001709

.000069

.045235

.045232

.078125

― .003662

.000191

.07465

.074644

.117188

― .006714

.000429

.11090

.11088

.164063

― .011108

.000841

.15380

.15374

4. Risks under Li loss

4.1. Risk of Half's estimator. As Sharma [13] noted, the exact values of the

risks of Haff's estimators are difficultto compute. Asymptotic evaluation of them

gives some useful information. We shall put C―I in (1.3) without loss of gen-

erality and assume that t{u)= b- constant, namely, the estimator

(4.1)
n ＼

b

trS-1
')

is considered for Lt loss. The difference of risks can be written by

(4.2)

(4.3)

£,(£&>, iO-i?1c£B＼2')

n I

]
log

n I
b+
2

/+

4

S"1

]

which is bounded from above by

trl'-1

trS-1

]

By the Wishart identity due to Haff [5],we get

b

tr S"1

(trS-1)2



(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

-

＼

n
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i trl'-1
trS"1

i

4

trS"2

4

4

By Haff [4], we know that

(4.10) £[trS-2] =

~ n2

yn-p-i+2E[-£s~

4

nb＼

~2~

trS-2

(trS-1)2

+ IJ6

n

]

b2n trl^3 |

~3~ (trl1-1)3 J

(tr2'~2)2

(tr^"1)4

tr^"2
+

=4e＼

+0(w"4)

S^

y+1＼+0^2)

(trS-2)2

(trS-1)3

+ (n~p-l)El

trS-3

(trS-1)2

trS"2l

tFlF1

+ (n-p-l)E[trS-2].

trJ"2

fa-p)(n-p-3)

tr2'-2 + -r(tr2'~1)2+O(w-4).

Ill

tr2'-'

trS-'1

This yields an upper bound of (4.2)

n＼

which is negative if and only if 0^b^2(p―Y)jn, and the minimum value is attained

by b = (p―l)/n. This is the special case of Theorem 4.3 by Haff [5]. We impose

this restrictionon b. Note that b=O{n~x) and Y―Vn(Sln―I) converges in law to

a p{p + l)j2 variate normal distribution with mean zero. We can evaluate (4.2)

asvmptoticallv as

＼-n+
nb

In getting the last term of (4.6), we should take EltrS^litrS'1)3], which can be

evaluated by writing S/n = 2+YlVn and noting that E(Y) = 0 and Y=OP(1), giving

tr Z~31(tr Z'^+Oin'1). Now we need the following lemma to complete our asymp-

totic expansion.

Lemma 4.1. Let S have a Wishart distributionWp(n,l). Then

(trS-1)2

tr^'2

(trJ"1)2

tr I"3
g

(tr2w)3

Proof. From the Wishart identity, we get

trS-2

(trS-1)2
tr 21-11

trS-ltr" J L(trS^)2

Ctrl'-1)2

(n-p) (n-p-1) (≫-/>-3)

tr£"2 +
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Combined with these formulas, we get the desired result(4.7).

Substituting (4.4) and (4.7) into (4.6) and using (3.12) we get

Theorem 4.1. An asymptotic expansion of the difference of risks between

Huff's estimator 1$ defined by (4.1) with b = (p―l)/n and fames and Stein's

minimax estimator 2% for Lx loss is given by

r>/vu) v＼ J? ( f (i) v＼_
]_ _＼

(4.11) +
'In"

(/> + !) (/>-6) + 3(/>+3)

1 (tr^1)4

(p-1)3 trS-3

Sn3 (trl1"1)3

tr27-3

(tr^1)8

Jtrl1-1)2

tr X~2

(trJ-1)2
+1

+0(≫-4).

We can see that the term of 0{n 2)in (4.11) is always positive,if p~^6. This

shows that the risk of St$ is always larger than that of 1% asymptotically, if

p^6. Note that

(4.12)

1

trI~z

p-(tr2~iy
<1

The lower and upper bounds of O(n~2)in (4.11) are given by

(4.13)
＼(P-l)(p2-5p-Z

+
j) and -(/>-!) (/>2-2/>

+ 8).

Some numerical values are given in the following:

Ranges of O(w~2)in (4.11)

(

p = 2

3 1

4 2

p = Z p=l

) (-*≪ (-J

/>= 5

t)
(4 ≫)

/>=6

/15 45＼
U'2J

The risk is unchanged for any scalar multiple of 2'. Some numerical values based

on (4.11) are given in Table 4. The term of O(n"3) gives some idea for the error

of our asymptotic approximation. For Z~x= Adiag(l, 1, ･･･,1), the lower bound of

(4.12) is attained and for I'1^>-Xdiag(l,0,---,0), the upper bound is approached.

In Table 4 we write 2'"1=i(l, ■･･,1) instead of I~l ―X diag(l, ･･-,1) for abbreviation.

Inspection of Table 4 shows that for />i?6, the risk differences are positive and

that for p ―5 and S~1 = Xdiag(l, ･･-,1), the values are positive for n~8 and ≪= 16,

while they are negative for ≪^32. Precisely speaking they are positive for n^21

and negative for ≪s=22. Whether this is due to the poor accuracy of the asymp-

totic approximation for small n is not clear. For />^4 and l"x=Xdiag{l, ･■･,!),the

values are all negative. Thus p = 5 is the boundary. 2'$ is better than 2% for

these type of I if p^5. For 0^b^2(p-l)ln, inequality Rx&, 2)<Ri(2%＼ 2) holds
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exactly. This can be verified also by the asymptotic consideration,namely, we

have

(4.14) iJ^^UVft^U')

The term of Oin"2) is always negative because of (4.12). This gives again a weak

support as in (3.12) for the usefulness of the asymptotic comparison, when exact

inequality between risks is not known. From Tables 1 and 4, we can compute

the rates of the reduction of the risks of Haff's estimator 2$ with respect to the

Table 4. Asymptotic values of RJZV, D-RJ&Jl, I)

21-1

≪=8 ≫= 16 ≪= 32 n=64 n=128

p=2

K＼, 2)

X{＼,10)

^(1,0)

0(n 2)

approx.

O(n 2)

O(≫-3)

approx.

O(≫-8)

approx.

O(≪~2)

approx.

―.011719

.004720

― .0070

― .009549

.003400

― .0061

.001356

― .000496

.00086

.007813

― .000651

.00716

― .002930

.000590

― .00234

― .002387

.000425

― .00196

.000339

― .000062

.000277

.001953

― .000081

.001872

― .000732

.000074

― .000659

― .000597

.000053

― .000544

.000085

― .000008

.000077

.000488

― .000010

.000478

―.000183

.000009

― .000174

― .000149

.000007

―.000143

.000021

― .000001

.000020

.000122

― .000001

.000121

― .000046

.000001

― .000045

―.000037

.000001

― .000036

.000005

― .000000

.000005

.000031

― .000000

.000030

p = 3

^(1,1,1)

^(1,2,3)

/(1,10,102)

m, o, o)

0(?r*)

0(n-'A)
approx.

O(≪~2)
O(rr3)

approx.

0(≫-2)

approx.

O(n-*)

O(n~s)

approx.

― .031250

.012442

― .019

― .026042

.010417

― .016

.014358

― .003847

.0105

.031250

― .005208

.0260

― .007813

.001555

― .0068

―.006510

.001302

― .0052

.003590

― .000481

.00311

.007813

― .000651

.00716

― .001953

.000194

― .00176

― .001628

.000163

― .00146

.000897

― .000060

.000837

.001953

― .000081

.001872

― .000488

.000024

― .000464

--.000407

.000020

― .000387

.000224

― .000008

.000217

.000488

― .000010

.000478

― .000122

.000003

― .000119

― .000102

.000003

― .000099

.000056

―.000001

.000055

.000122

― .000001

.000121

/>=4

x(l,-,l)

/((I,2,3,4)

;(1,10,102,10s)

^(1,0,0,0)

0(≪-2)
0(n-s)

approx.

O(≪-2)

O(≪"8)

approx.

O(≫-2)

O(n"3)
approx.

O(w"2)
O(n-*)

approx.

― .037109

.021973

― .015

― .028906

.019570

― .009

.056135

― .012895

.043

.085938

― .017578

.068

― .009277

.002747

― .0065

― .007227

.002446

― .0048

.014034

― .001612

.0124

.021484

― .002197

.0193

― .002319

.000343

― .00198

―.001807

.000306

― .00150

.003508

― .000201

.00331

.005371

― .000275

.00510

― .000580

.000043

― .000537

― .000452

.000038

― .000413

.000877

― .000025

.000852

.001343

― .000034

.001308

― .000145

.000005

― .000140

― .000113

.000005

― .000108

.000219

― .000003

.000216

.000336

― .000004

.000331
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Table 4. (continued)

v-i
rc=8 ≫=16 n=32 ≪=64 n=128

p=5

^(1, 2, ■--,5)

^(1,10,-,10≪)

/i(l,0
... 0)

O(≫-*)

0(n~3)

approx.

O(n-2)

O(n-3)

approx.

O(w"2)

approx.

O(w-2)

O(n~3)

approx.

― .012500

.033333

.021

― .001389

.030648

.029

.142050

― .030504

.112

.187500

― .041667

.146

― .003125

.004167

.0010

― .000347

.003831

.0035

.035512

― .003813

.0317

.046875

― .005208

.0417

― .000781

.000521

― .00026

― .000087

.000479

.00039

.008878

― .000477

.00840

.011719

― .000651

.01107

― .000195

.000065

― .000130

― .000022

.000060

.000038

.002220

― .000060

.002160

.002930

― .000081

.002848

― .000049

.000008

― .000041

― .000005

.000007

.000002

.000555

― .000007

.000547

.000732

― .000010

.000722

p=6

*(1,-,1)

,1(1,2, ..-,6)

/?(!, 10, ･･･,105)

0(n"2)

0{rr*)

approx.

O(≪-2)

O(m-≫)

approx.

O(≫"2)
O(m-≫)

approx.

O(n-2)

O(≪"s)

approx.

.058594

.046568

.105

.072545

.043624

.116

.287643

― .059523

.228

.351563

― .081380

.270

.014648

.005821

.0205

.018136

.005453

.0236

.071911

― .007440

.0645

.087891

― .010173

.078

.003662

.000728

.00439

.004534

･000682

.00522

.017978

― .000930

.01705

.021973

― .001272

.0207

.000916

.000091

.001006

.001134

.000085

.001219

.004494

― .000116

.00438

.005493

― .000159

.00533

.000229

.000011

.000240

.000283

.000011

.000294

.001124

― .000015

.001109

.001373

― .000020

.001353

maximum likelihood estimator l'g＼namely 100 x {&($%>, I)-&($%, 2)}/^(2$, I),

which range above to 8% for n^W. The rates of the reduction of the risks of 1%

with respect to S% range only from ―5.6% to 1.6% for n^.16 in Table 4.

4.2. Risk of new estimator. Now we shall consider the risk of a new esti-

mator 2a:> given in (1.6). We can write the risk difference

(4.15) i^MO-i?,^,^)

n LtrS""2

By the Wishart identity,we get

(4.16) 4

l
~E[log /+

btrS

trS 2 J L (trS 2)2

trS"2

s

+^-1)4^]

Using (4.16), the risk difference is bounded from above by

(4.17) M
trS-'trS-'

(trS~2)2 h<f p-i)b[

]

(trS-1)2

trS-2



Note that

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)
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b_

n

4

4

2
trS-'trS-1

(trS~2)2
^1+

Kt-H*[

(trS-1)2

trS~2

]

(trJ-1)2

tr S~2

+ -1-[8

n

-8
trJ-'trl"-1

(trJ-2)2

trS-'trS-3

(trS-2)2

1

trJ-'trl1-3

+A[24
n L

+4(tr2'-3)2} +

+

1

(trl-2)2

(tr^-)≪

(trJ-2)2
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(trS'1)2

trS"2

where the equality holds if and only if S~x-Xdiag{l, 0,･･･,0)except for permuta-

tion of the diagonal elements. The upper bound (4.17) is further simplified as

(trS-1)2

trS~2

1

Hence Iw dominates i'g'if 0^b^2(p-l)ln and the minimum of (4.19) is attained

by b = (p―l)ln. The choice of b is the same as for the Haffs estimator.

To get asymptotic expansion of the risk difference (4.15), we can rewrite it as

in (4.6^ bv

＼lnb *
i＼s-ntrS~'n o.

.r.rfS"'trS-'-||

To evaluate each expectation asymptotically, we need the following lemma.

Lemma 4.2. Let S have a Wishart distribution Wv(n, I). Then

trl^itrl-1)2

(tr-T-2)3

(trl^1)2 1W-+2J+0&rl>

tr S~l tvI~z tr S~*

(trl7-2)4

(tr

I-2)3
{(tr S~1)Str S~*+12 tr S~l tr 2"6

{tr2'-1tr2T-3+6tr2'-4}
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Unlike Lemma 4.1, it seems to be impossible to prove Lemma 4.2 from the

Wishart identity only. We obtained it by another method used by Ito [6],Siotani

[14], Okamoto [11], Sugiura [15], Fujikoshi [2] and others, that is, for analytic

function f(S), it holds

(4.23) *['£*)] =/(£) +
l-
tr(2d)*f(A) U* +0(n 2),

where 3 is a matrix of differentialoperators and its (i,j) element is given by

(ll2)(l+8ij)(dldXij)for A = (/dj). The following lemma is useful for the repeated

application of (4.23).

Lemma 4.3. Let En (i^j) be pxp matrix having 1/2 at the (i,j) and (j,i)

positions and zero at other positions. Let En be diagonal matrix having 1 at i-th

diagonal and zero otherwise. Then for any symmetric matrices A ―{ctij)and B―(bn),

(4.24)

i,j i,J

2 hi3 trAEijBEij = -^ Yiidjaiihj + ^Yi ton S h^u
i,j £i,j 6 i j

Applying Lemma 4.2 to (4.20), we get

Theorem 4.2. An asymptotic expansion of the difference of risks between new

estimator SC1) defined by (1.6) with b = {p―l)jn and fames and Steins minimax

estimator 2% for Lx loss is given by

R^^D-R^s.S)^^^

(4.25)

p+3

2

(trl"-1)2

tr I1""2

1

(tr£-2)3

P-H 2|4tr^Itr*~'

1i J>-l['q6tri;-ttr,y-'trS-≪

I U+(p 1)2)(tr
21-1)3tr J-8+96 tr J"1 tr T"5

1V 3 /

+ 32(trr-3)2+4(£ + 3)(tr2'~1)2tr2'-4|

+

+

|4(i>+4)tr2'-1tr2'-3+24tr2^4 + ^-(tr^-1)4j

)2££->->]≪*n.

1

(trl1-2)2

(l2
+
p+3

' 2

By the Inequalities(4.12) and (4.18), the term of O(n~~2)in (4.25) ranges from



(4.26)
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―3 (/>-!) (/>2+4/>-6) to
^-(p-l)(P2-2p+3).
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The lower bound is obtained by noting that (trl"l)2ltr2~z^pand trl^'trl1 3/

(trl"'2)2^!,where both equalitiesare satisfiedby I~l=Al. The upper bound is

the same as for 2$ given in (4.13),while the lower bound is smaller than that

of 2$, and is always negative. Some numerical values are given below. The

lower bound is considerablysmaller than (4.13).

Ranges of O(n~2)in (4.25).

p=2

(

―
")

2)

p=3

(-10,2)

p=A

(-*t)

£=5 p=6

(-52,12)
(-90,
y)

The upper bound is approached as 2 l-≫?.diag(l,0,･■･,())or any permutation of

the diagonal elements of it. This shows that 2W is better than 2% for 2~1= /il

and worse for 2~l= Xdiag(l, 0,･･･,0),which is the same conclusion as in Haff's

estimator 2$. However the lower bound is always negative for 2W and it is not

dominated by 2% for any p if n is large.

Some numerical values based on Theorem 4.2 are given in Table 5,in contrast

to Table 4. For n―S and 2~X―U, the positive risk differences are observed, which

is probably due to the error of asymptotic approximation for small n. It is found

that for J-'^/and ldiag(l,2,---,p),2w is better than 2$; for 2~'= 2 diag(l,10,

...f10p-1),-£O)is slightly worse than 2# ; for 2-1 = XdiagQ,0,―,0), the asymptotic

differences are consistent up to O(n~3). The last statement can be confirmed by

putting 2-1 = /Ldiag0-,0,―,0)in Theorems 4.1 and 4.2. From Tables 1, 2 and 5,

we can compute the rates of the reduction of the risks of Im with respect to

2<#, namely, 100xii?^, I)-R,{IW, 2))IRl(2'#,2) which range above to 20% for

≪§:16. This may be compared with 8% for 2$. If we compare the rates of 2W

Table 5. Asymptotic values of RJ&v, D-RJ&P., 2)

A=2

2~l

#1,1)

*(1,2)

/!(!,
10)

*(l,0)

0(≪~2)
0(≫-s)

approx.

(Jin-*)

O(≫-8)
approx.

O(≪~2)

O(n~3)
approx.

O(n~2)

approx.

― .031

.003

― .0184

.0087

― .0097

― .001753

.0033

.007813

― .000651

,00716

≪ = 16

― .007813

.004232

― .0036

― .004609

.001097

― .0035

.001260

― .000219

.00104

.001953

― .000081

.001872

rc=32

― .001953

.000529

― .00142

― .001152

.000137

― .00102

.000315

―.000027

― .000010

.000478

nnn

.000017

― .000271

― . uuuwo

.000075

.000122

― .000001

.000121

n=l2S

― .000122

.000008

― .000114

― .000072

.000002

― .000070

.000020

― .000000

.000019

.000031

― .000000

.000030
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Table 5. (continued)

S-1 n=8 n=16 n=32 w=64 n-128

2(1,1,1)

;(1,2,3)

X(l, 10,102)

X(l, 0, 0)

0(≫~2)
0(≫-3)

approx.

O(nr2)

O(≪"s)
approx.

O(n-2)

O(n~a)

approx.

O(n~2)
O(≪-3)

approx.

― .156250

.153646

― .003

― .103316

.069561

― .034

.021771

― .009179

.0126

.031250

―.005208

.0260

― .039063

.019206

― .020

―.025829

.008695

― .0171

.005443

― .001147

.0043

.007813

― .000651

.00716

― .009766

.002401

― .0074

― .006457

.001087

―.0054

.001361

― .000143

.00122

.001953

― .000081

.001872

― .002441

.000300

― .00214

― .001614

.000136

― .00148

.000340

― .000018

.000322

.000488

― .000010

.000478

― .000610

.000038

― .000573

― .000404

.000017

― .000387

.000085

― .000002

.000083

.000122

―.000001

.000121

^(1,2,3,4)

;(i, 10, iO2,io3)

;(1,0,0,0)

0(≪"8)
O(n-*)

approx.

O(n-*)

O(n-S)

approx.

O(≫-2)
O(n-3)

approx.

0{n~*)

O(≫"s)

approx.

― .406250

.404297

― .002

―.276042

.204965

― .07

.066391

― .027263

.039

.085938

― .017578
.068

―.101563

.050537

―.051

―.069010

.025621

― .043

.016598

― .003408

.0132

.021484

― .002197

.0193

― .025391

.006317

― .0191

― .017253

.003203

―.0140

.004149

―.000426

.00372

.005371

― .000275

.00510

―.006348

.000790

― .00556

―.004313

.000400

― .00391

.001037

― .000053

.000984

.001343

― .000034

.001308

― .001587

.000099

―.001488

― .001078

.000050

― .001208

.000259

― .000007

.000253

.000336

― .000004

.000331

p=5

a(l,-,l)

^(1,2-, 5)

^(1,10, ■･-,10*)

tfl.O .-.,0)

0(n-*)

0(≫-8)

approx.

O(≪-≫)

approx.

O(≪-2)

approx.

O(≪-2)

O(n-S)

approx.

― .812500

.841667

.03

―.556302

.435419

―.12

.154470

― .061226

.093

.187500

― .041667

.146

― .203125

.105208

― .10

―.139075

.054427

― .085

.038618

― .007653

.0310

.046875

― .005208

.0417

― .050781

.013151

― .038

―.034769

.006803

― .0280

.009654

― .000957

.00870

.011719

―.000651

.01107

―.012695

.001644

― .0111

― .008692

.000850

― .00784

.002414

― .000120

.00229

.002930

― .000081

.002848

―.003174

.000205

― .00297

― .002173

.000106

― .00207

.000603

―.000015

.000588

.000732

―.000010

.000722

p=6
J(l,-,1)

J(l,2,-,6)

A(1,O,-,O)

O(tr*)

0(≫-≫)

approx.

O(n~t)

O(n~?>)

approx.

O(≪-2)

O(≪"3)

approx.

approx.

―1.406250

1.529948

.1

― .963619

.782396

― .18

.301591

― .116287

.19

.351563

― .081380

.270

―.351563

.191243

― .16

― .240905

.097799

―.143

.075398

― .014536

.061

.087891

―.010173

.078

― .087891

.023905

― .064

― .060226

.012225

―.048

.018849

― .001817

.0170

.021973

― .001272

.0207

―.021973

.002988

― .0190

― .015057

.001528

― .0135

.004712

― .000227

.00449

.005493

― .000159

.00533

― .005493

.000374

―.00512

― .003764

.000191

― .00357

.001178

―.000028

.001150

.001373

― .000020

.001353

with respect to 1%, we get the range from ―5.6% to 12% in Table 5 for≪^16.

The ratesfor 2*(1)with respect to $% range from -0.4% to 12% for≪^16.
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5. Risks under L2 loss

5.1. Risk of Haff's estimator. We shall now consider the estimator

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

(5.7)

(5.8)

V(2)

4
tr SI-2

trS"1

[S+
b

trS-1
']

bit I-2

(trS-1)2
■

]

+ (P+1Y
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1__

n+p + 1

proposed by Haff [5], where C is taken to be / in (1.4) without loss of generality.

The loss function is given by (1.2), throughout Section 5. It is known by Haff

[5] that the best scalar multiple of S is given by 2$=SI(n+p+l). The difference

of risks can be written bv

To evaluate each expectation,we need the following equationsdue to Haff [5]

derived from the Wishart identity.

1 _rtr2-'-] rtrS-'J-'i

Together with (4.4)and Lemma 4.1,we can rewrite(5.2)as

(5.6)

-8(H^+3<fa+4>!iw]+o<≫-4>

Assuming that b=O(l/ri), the term of O(n~2)in (5.6) is

≪(/<+ l)+2≪(l+*?-)IH^a-B(/>+l)+2≪(l+^)

The condition that the R. H. S. of (5.7) is negative is given by b^2{p~l)jn which

is in contrast with the exact result b^2(p-l)j(n-p + 3) in Haff [5]. The equality

in (5.7) is attained by I~l=kdiag{l,Q,---,Q), for which the value of (5.6) is mini-

mized bv

n2-2(p-2)n -(p-l)(l+^-^-)+O(n-3)
n ＼ n I
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Again the result is the same as the optimal choice b = (p―l)l(n―p + 3) by Haff [5]

asymptotically

(5.9)

We get

Note that

PUt-D
6w2

I)

P(P + 1Y(P-1)
2ms

+ 0(≫"4)

Theorem 5.1. An asymptotic expansion of the difference of risks between

Haffs estimator1$ defined by (5.1) and James and Stein'sminimax estimator

2fs for L2 lossis given by

i?,(^≫f^-i?,(^,^)=^[(/≫ + l)(/≫-6)+3(/> + 3)-^|^r]

(5.10) + ^[^(P+me-P)-AP+i)+%P+3)f£§^

+ (/> + !) (A- 2p- 6)
tr!'~2

(trs-y

trjr-3 -i

^,Tj+O(,r.)

where b = (p―l)(1 + Aln)ln and an optimal choice of A is p―3.

The term of 0{n~2) in (5.10) is the same as that of R,{t%＼ E)~-Ri{l%, 2) in

Theorem 4.1. However the term of O(n~3) is different which yields poor asymp-

totic approximations as can be seen in Table 6 compared with Table 4. For

instance, when n = 16, p = 6 and S~1= XT, the approximate value of R2(S%＼I)―

R2(I%,I) is equal to ―0.032. However we can not say that this is negative,

because of the error that may arise in the asymptotic approximations. The cor-

responding value for 2$ is 0.0205 from Table 4 and we are certain that this is

positive. One might think that an asymptotic expansion with respect to n+p+1

is better for I%＼ because of (3.7). We can easily rewrite (5.10) in terms of powers

of n+p + 1 instead of n. For the above example we get the term of order

{n+p+iy2 is equal to 0.007089 and the term of order (n+p+iyz is equal to

―0.011290. The approximate value is ―0.004201, which is different from ―0.032.

However still the second term is larger than the first in absolute value. If we

increase m = 128 in this example, the approximate value is 0.000150, the correspond-

ing value in Table 6 is 0.000138. Hence these values are reliable. The fact that

the asymptotic approximations are better for Lx loss than for L2 loss, is ascertained

again. From Tables 3 and 6, the rates of the reduction of the risks of I'B} with

respect to Iff can be computed, the range of which is given by 0%-~4% for ws?32

in Table 6.
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Table 6. Asymptotic values of R,(ZW, I)―R9(2<-}1,1)

121

y-i w = 8 n = 16 ≪= 32 w=64 n = 128

p=2

>t(l,1)

i(l,2)

2(1,10)

^(1,0)

0(≫-3)

approx.

O(≪-2)

approx.

O(≪"2)

O(≫-3)

approx.

O(r8)

O(≫~3)

approx.

― .011719

.012207

.0005

―.009549

.009042

― .0005

.001356

― .004123

―.0028

.007813

― .009766

― .0020

― .002930

.001526

― .0014

― .002387

.001130

― .0013

.000339

― .000515

― .00018

.001953

― .001221

.0007

― .000732

.000191

― .00054

― .000597

.000141

― .00046

.000085

― .000064

.000020

.000488

―.000153

.00034

― .000183

.000024

― .000159

― .000149

.000018

― .000132

.000021

― .000008

.000013

.000122

― .000019

.000103

― .000046

.000003

― .000043

― .000037

.000002

― .000035

.000005

― .000001

.000004

.000031

― .000002

.000028

p=3
*(1,1,1)

A(l,2,3)

^(1,10,102)

^(1,0,0)

0(≫"2)

approx.

O(≫"2)

O(w"3)

approx.

O(n-2)

O(≪"3)

approx.

O(W-2)

O(n-~3)

approx.

― .031250

.035590

.004

― .026042

.026259

.0002

.014358

― .035581

― .021

.031250

― .054688

― .023

― .007813

.004449

― .0034

― .006510

.003282

-.0032

.003590

― .004448

― .0009

.007813

― .006836

.0010

― .001953

.000556

― .00134

― .001628

.000410

― .00122

.000897

― .000556

.00034

.001953

― .000854

.00110

― .000488

.000070

― .000419

― .000407

.000051

― .000356

.000224

― .000069

.000155

.000488

―.000107

.00038

― .000122

.000009

― .000113

― .000102

.000006

― .000095

.000056

― .000009

.000047

.000122

― .000013

.000109

£=4

*(1,-,1)

^(1,2,3,4)

i(l,10,102,108)

J(l, 0,0,0)

0(≫"2)
0(m~3)

approx.

O(≫"2)
O(n-3)

approx.

O(≪~2)
O(≪-3)

approx.

O(≫"2)
O(≫-s)

approx.

―.037109

.026733

― .010

― .028906

.009316

― .0196

.056135

―.146300

― .09

.085938

― .187500

― .10

― .009277

.003342

― .0059

― .007227

.001165

― .0061

.014034

― .018288

― .004

.021484

― .023438

―.002

― .002319

.000418

― .00190

― .001807

.000146

― .00166

.003508

― .002286

.0012

.005371

― .002930

.0024

― .000580

.000052

― .000528

― .000452

.000018

― .000433

.000877

― .000286

.00059

.001343

― .000366

.00098

― .000145

.000007

― .000138

― .000113

.000002

― .000111

.000219

― .000036

.000184

.000336

― .000046

.000290

p=5

^(1,2,-,5)

/i(l,10, ･･･,104)

tfl.O.-.O)

0(≪-2)
0(≫-3)
approx.

O(≫"8)
O(≪-3)
approx.

O(n-2)
O(≪-3)
approx.

O(≫-2)
O(≫-8)
approx.

― .012500

― .079375

― .092

― .001389

― .106505

― .11

.142050

―.410155

― .27

.187500

―.484375

― .30

― .003125

― .009922

― .0130

― .000347

― .013313

― .014

.035512

― .051269

― .016

.046875

― .060547

― .014

― .000781

― .001240

― .0020

― .000087

― .001664

― .0018

.008878

― .006409

.0025

.011719

― .007568

. 0042

― .000195

― .000155

― .00035

― .000022

― .000208

―.00023

.002220

― .000801

.00142

.002930

― .000946

.00198

― .000049

― .000019

― .000068

― .000005

― .000026

― .000031

.000555

― .000100

.00046

.000732

― .000118

.00061
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Table 6. (continued)

y-i
n = H ≫=16 ra=32 n=6A n=l28

/>=6

;(i,2,-,6)

2(1,10, ■･-,10G)

#1,0, ･･-,())

0(≪-2)

0(≪-3)

approx.

O(≪-a)

approx.

O(≫-2)

approx.

O(≫-2)
O(V3)

approx.

.058594

― .370822

― .31

.072545

― .409160

― .38

.287643

― .924538

― .64

.351563

―1.044922

7

.014648

―.046353

― .032

.018136

―.051145

― .033

.071911

― .115567

― .04

.087891

―.130615

― .04

.003662

― .005794

― .0021

.004534

―.006393

― .0019

.017978

― .014446

.004

.021973

― .016327

.006

.000916

― .000724

.00019

.001134

― .000799

.00033

.004494

― .001806

.0027

.005493

― .002041

.0035

.000229

―.000091

.000138

.000283

―.000100

.00018

.001124

― .000226

.00090

.001373

―.000255

.00112

5.2. Risk of new estimator. Finally we shall consider the estimator (1.7) for

C=f without loss of generality, namelv.

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

£≪> = (S+
MrS-1

trS"2

4 trS^
trS-2

trS^

trS-2

')

triSS-'-in+p+l)!}^

.)･**-]

following relations obtained from the

(trS~2)2J

rtrs-r-

i (trS-1)2
(trS-2)2

1

n+p + 1

The risk difference can be written by

R2(2t2＼2)-R*(S:%＼Z) =
b

(n+p+lf

4(
Each expectationcan be computed by

Wishart Identityin Haff [51.

L
(trS-)≪

I

the

=2Er4J^"'trS"'
L (trS-')'

-2E[^L]+^P-3)E[^f]

―]-<,-^^?.]-E[f|^]

4-8/rf
(trS-)'trS- 1 V trS- trS- 1

For example, the first term of the expectation in the R. H. S. of (5.12) can be

exoressed bv the Whisart identity as



(5.16)

(5.17)

(5.18)

(5.19)

nE＼
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trl'-1~＼-(n-p-l)(n + P+1)e＼

[-2n+n{i

123

trS"2 J L (trS-2)2 J

trS-'trS-'i ,,

n-p-l＼E

tr2^_tr2^

[-17S^J+4^L (trS-)' J

-16

+32
trS-'trS-6

(trS-'ytrS-* bn (trl1"1)4

(trl1-2)3 2 (trJ-2)2

^
■bn2-n(p + l) + 2n＼

(trl*-2)3

-1+0(≪~4)

(trl^1)2

trl1-2 '

trJ-*

(trl1-2)2

I^-bn'-nip-
l) + (p- lf-(p-2)bn +0(≫-4),

+24
tr2wtrl'~31

(trJ-2)2 J

^[-|(^+l)(j)2+^-14)-2J
+ (j)2+ 6/>+13-2J)(ttrr^_12)2

tr 21-4

(trl1-2)2

(tr S'1)*

(trJ-2)2

trS-1

trS~2

L trs-* J~4(≪+/>+i)£:

which can be reduced further by (5.13),(5.14) and (4.16). Assuming that b =

0(n~l),we can finallyrewrite (5.12) as

(n+p+iy

+4P+6+
j(j>+l)≪-6--|-≫(2l

+ 3)|
^'J

-4(to + 2/>+ 4)

+ Sbn

By (4.18) the term of O(n~2)in (5.16) is bounded from above by

which is negative only if b^2{p―l)jn. The upper bound (5.17) is attained for

I~1= /idiag(l,0,･･-,())or any permutation of the diagonal elements of it. For this

2"1"1,the risk difference (5.16) can be written by

b

(n+p + W

which is minimized by b = (p―l)(l+Jln)/n for A―p― 3 asymptotically. This

optimal choice of b is the same as for 2$. Using (5.9), we get

Theorem 5.2. An asymptotic expansion of the difference of risks between

estimator 21(2) defined by (5.11) with b = (p― l){l + Ajn)jn and fames and Stein's

estimator 2% for L2 toss is given by

R2(Z≪＼2')-R2{2%,};)

b― 1 F (＼r v-iy

+

+ 4(J-4/>-l)
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4

(tr2-2)3
{-(/>-5)(tri'-I)2tr2'-4 + 16tr2'-'tr21-6

+ 2(tr£-1)8tr2'-8 + 8(tr2'-8)2}

+96
trl'-'trl'-nr^-4

(tr I"1"2)4

|+0(w-4)

An optimal choice of A is given by p―3.

Note that the term of 0{nr) for J?(2)in (5.19) is the same as the correspond-

ing term of Theorem 4.2 for I°＼ Also the term of O(ra~2)for 1$ in Theorem

5.1 is the same as that of Theorem 4.1 for Z%. Hence the ranges of 0{n~2) in

(4.13) and (4.26) hold also for ig> and 1(2＼ Asymptotically, the range for 2m

is wider below than that for I%＼ Some numerical values of the risk differences

for Im are shown in Table 7. Comparing with Table 6, we can see that for

I~l = M and Adiag(l,2,---,p),Zm is better considerably; for I~1 = Xdiag(l,10,---,

HF"1), 2% is better and for Z-l = JLdiagQ.,Q,~-,Q), they are the same. The last

statement can be checked by putting Z~'=?.diag(l, 0,･･･,())in (5.10) and (5.19).

Comparing with Table 5, we can see that the asymptotic approximations are poor

for IiZ＼ Again the positive values for l'~l= /(I and negative values for I~1 =

Table 7. Asymptotic values of R2(I<2＼l')-R?(Zyi 1')

V-l M = 8 M=16 ≪=32 w = 64 ≪=128

p=2

-A{＼,2)

KU10)

/(l,0)

0{n-*)

0(≪-3)

approx.

O(w"2)
O(V3)

approx.

O(≫-8)

approx.

O(≫-2)

O(≪-3)

approx.

― .031250

.039063

.008

― .018438

.014372

― .004

.005040

― .007077

― .0020

.007813

― .009766

― .0020

―.007813

.004883

― .0029

― .004609

.001796

― .0028

.001260

― .000885

.00038

.001953

―.001221

.0007

― .001953

.000610

― .00134

-.001152

.000225

― .00093

.000315

― .000111

.00020

.000488

― .000153

. 00034

― .000488

.000076

― .000412

― .000288

.000028

―.000260

.000079

― .000014

.000065

.000122

―.000019

.000103

― .000122

.000010

―.000113

― .000072

.000004

― .000069

.000020

―.000002

.000018

.000031

― .000002

.000028

p=3

/(1,1,1)

/(I, 2,3)

i(l, 10, 102)

/(l,0, 0)

O(nr2)

O(≪-≫)

approx.

O(rc~2)

O(≫"3)

approx.

O(≪~2)

O(≫-s)

approx.

O(≫-2)

O(≫--≫)

approx.

― .156250

.236979

.08

― .103316

.128827

.26

.021771

― .042109

― .020

.031250

― .054688

― .023

― .039063

.029622

― .009

― .025829

.016103

― .010

.005443

― .005264

.0002

.007813

― .006836

.0010

― .009766

.003703

― .0061

― .006457

.002013

― .0044

.001361

―.000658

.00070

.001953

―.000854

.00110

―.002441

.000463

― .00198

― .001614

.000252

― .00136

.000340

-.000082

.000258

.000488

―.000107

.00038

― .000610

.000058

― .000552

―.000404

.000031

― .000372

.000085

― .000010

.000075

.000122

--.000013

.000109
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Table 7. (continued)

125

V-l ≪=8 ≫=16 n=32 w-64 n=128

A(l,-,1)

A(l,2,3,4)

A(l, 10, 102, 1Q3)

^(1, 0,0,0)

0(n->)

0(≫"8)

approx.

O(n~2)

O(≪-3)
approx.

O(≫"2)

approx.

O(rr*)

approx.

― .406250

.708984

.30

― .276042

.419957

.14

.066391

― .155830

― .09

.085938

― .187500

―.10

― .101563

.088623

― .013

― .069010

,052495

― .017

.016598

― .019479

―.003

.021484

― .023438

― .002

― .025391'

.011078

― .014

― .017253

.006562

― .0107

.004149

― .002435

.0017

.005371

― .002930

.0024

― .006348!

.001385

― .0050

― .004313

.000820

― .00349

.001037

― .000304

.00073

,001343

― .000366

.00098

― .001587

.000173

― .00141

―.001078

.000103

― .00098

.000259

― .000038

.000221

.000336

― .000046

.000290

p=5

XQ.,2,-,5)

A(l,10,-,104)

^(1,0, -･- 0)

0(≫-*)

0(≫-3)

approx.

O(n-z)

approx.

O(≫"2)

0{n~*)

approx.

O(≪"8)
0{n-*)

approx.

― .812500

1.590625

.8

― .556302

.968478

.41

.154470

― .421797

―.27

.187500

― .484375

― .30

― .203125

.198828

― .004

― .139075

.121060

― .02

.038818

― .052725

― .014

.046875

― .060547

― .014

― .050781

.024854

― .026

―.034769

.015132

― .020

.009654

― .006591

.0031

.011719

― .007568

.0042

― .012695

.003107

― .0096

― .008692

.001892

― .0068

.002414

― .000824

.00159

.002930

― .000946

.00198

― .003174

.000388

―.00279

― .002173

.000236

― .00194

.000603

― .000103

.00050

.000732

― .000118

.00061

p=6

k{＼,2, ■･･,6)

/(l.lO.-.lO6)

X(l,Q, -,0)

0(≪-a)

O(≫~3)
approx.

O(?r*)

approx.

O(n~*)
0{n~3)
approx.

O(≪-2)

O(≪~3)
approx.

―1.406250

3.040365

1.6

― .963619

1.865664

.9

.301591

― .936962

― .64

.351563

―1.044922

― .351563

.380046

.03

― .240905

.233208

― .01

.075398

― .117120

― .04

.087891

― .130615

― .04

― .087891

.047506

― .040

― .060226

.029151

― .031

.018849

― .014640

.004

.021973

― .016327

.006

-.021973

.005938

― .0160

― .015057

.003644

― .0114

.004712

― .001830

.0029

.005493

― .002041

.0035

―.005493

.000742

― .00475

― .003764

.000455

― .00331

.001178

― .000229

.00095

.001373

― .000255

.00112

/Ldiag(l,O,―,O) when ≫= 8 or 16 in Table 7 are doubtful. From Tables 3 and 7,

we can compute the rates of the reduction of the risks for Sm with respect to

2o＼ which range above to 11% for wi^32. This may be compared with 4% for

i*$. Comparing the rates for I^ with respect to i^＼ the range is given by

-0.2%~7% for n^32 in Table 7. Also the rates for 1(2) with respect to 2%

range ―1.2%~8% while the rates for 1$ with respect to 2% range only ―1.2%

-0.8% for n^32.
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