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DEFORMATIONS OF TRANSVERSELY

SYMPLECTIC AND TRANSVERSELY

CONTACT FOLIATIONS

By

J. Girbau and G. Guasp*

Introduction

The aim of this paper is to give a versality theorem for deformations of

transversely holomorphic foliations on a compact manifold with an additional

transversely symplectic or transversely contact structure and give some examples

of deformations of such structures.

First of all recall the definitions of (holomorphic) symplectic and contact

manifolds. A complex manifold M of even complex dimension q=2q' admits a

(holomorphic) symplectic structure if there exists a closed holomorphic 2-form a>

such that ce)9'^0 at each point. If the complex dimension q of M is odd, q ―

2<7'+ 1, and there is an atlas {(£/*,z＼,･･･, zqi)},a family {cot} of holomorphic 1-

forms on each Ui such that a)iA(dci)i)q'3=0 at each point and there are holomor-

phic functions etJ on Uir＼Uj with (Oi= eij(i)jthen M is said to be a (holomorphic)

contact manifold.

In 1960 Kodaira studied the theory of deformations of such structures ([7])

(among some other types of structures.) With the notations of that paper, the

symplectic complex manifolds are the /^(aO-structures with o)=dzlAdz2+ ■･･+

dzq~1A dzq and the contact complex manifolds correspond to the /＼(<w)-structures

with <o=dz1+ztdz>+ ― +zq~1dzq.

A transversely holomorphic foliation of complex codimension q on a manifold

M can be defined as a Atr-structure, where Atr denotes the pseudogroup of

local diffeomorphisms of RpxCq of the form /=(/", fa) such that

dxu dza

for MGfl, ･･･, p} and a, 6e{l, ･■■, q}. This means that M is endowed with

an atlas with local charts modeled in RpxCq whose coordinate changes belong

to Atr. The subbundle F of CTM locally generated by the vector fields of the
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form (d/dxf), (d/dzf) characterizes the foliation.

Let EF be a transversely holomorphic foliation on a manifold M. If the

complex codimension q of 3 is even, q=2q', we shall say that EF admits a

transversely (holomorphic) symplectic structure if there is a complex-valued 2-

form a) on M such that:

1. o){X,F)=0 if XzeF(F).

2. Lxa)=0 if X^F(F).

3. <w9'^0 at each point.

4. d<u=0.

If the codimension q of 3 is odd, q=2q'+l, we shall say that £Fadmits a

transversely (holomorphic) contact structure if there exists a complex-valued 1-

form o)u on a neighbourdhood U of each point such that

1. <Ou(X)=0 if X<=r(F).

2. Lx^u^O if X^F(F).

3. (OuAidauY^O at each point.

4. If Ur＼V^0 one has coy=^c/7ft>Fon C/nV, where ec/Kis a basic trans-

versely holomorphic function, that is, X(euv)―0 if X<bF(F).

From the point of view of the pseudogroups a manifold M endowed with

one of the two structures above is nothing but a JLr-manifold, where AlJ is

the pseudogroup of local diffemorphisms of RpxCq of the form /=(/", /a),

such that

dxu

dp

dza
=0

for us|l, ･･■, p) and a, 6e{l, ･･･, q), fullfilling f*a)=& with w=dzlAdz2+ ■■■

-＼-dzq~1Adzq in the symplectic case, and f*a)=e(z)a) with e(z) a non-vanishing

holomorphic function of Cq and o)=dz1+zidzs+ ･■■+zq'ldzq in the contact case.

Let us give some examples of these structures. The complex projective

spaces CP2n+1 of odd dimension are holomorphic contact manifolds in the fol-

lowing way ([6]). Let Ut be the open set of CP2n+1 of those points with

homogeneous coordinates z1, ･･･, z2n+2 such that 2*^0. Let st be the map

Ui ―> C2n+S

＼Z＼■■■, 22"+2] > {ZXIZ＼ ■■■, z'-'/z1, 1, Zi+1/Z＼ ■■■, Z^/Z')

where [z1, ･■■, a2n+2] means the point of homogenous coordinates z＼ ■■■, z2n+2.

Let o)i be the 1-form on Ui given by (Di=s*i(D, where w is the following 1-form

of C2n+2

a)=(z1dz2-z2dz1)+ ■■■+(z2n+1dz2n+2-zZn+2dz2n+1).
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One has (Di―eijWj on UiCSUj, with eij={zi/zjyt. By virtue of this construc-

tion the transversely holomorphic foliation on the real sphere 54re+3given by

the Hopf fibration s4n+3-*CP2n+1 is endowed with a natural transversely contact

structure.

Another natural example is the projective co-tangent bundle M of CP2n+l

(that is, the projectivizationof the co-tangent bundle of CP2n+1). As CP2n+l

admits a holomorphic contact structure, M is endowed with the transversely

contact structure associated to the foliationgiven by the bundle M―>CP2re＼1.

Since the complex torus T2nC obtained by the quotient C2n/{Z+iZ)2n admits

a natural holomorphic symplectic structure induced by the 2-form of C2na)―

dz'Adz2-] l-dz^-'Adz271, allthe bundles M->T2nC induce transversely holo-

morphic foliationson M with a transversely symplectic structure.

Another non-trivial example of such structures is the suspension of an

isomorphism of the symplectic structure of T2nC constructed in the following

way. Given y4eSp(2n, Z), take the quotient manifold M of RxT2nC by the

equivalence relation identifying (t,z) with (t+1, A(z)). Take the transversely

holomorphic foliation EF on M whose leaves are induced by the lines Rx{z}.

As A preserves (o then 3 is transversely symplectic.

The theory of deformations of holomorphic foliations was initiated by Ko-

daira and Spencer [8] in 1961. Gomez-Mont [5] and Duchamp-Kalka [2] gave

a weak version of the versality theorem (often called Kuranishi's theorem) for

deformations of a transversely holomorphic foliation on a compact manifold.

Girbau, Haefliger and Sundaraman [4], using the original ideas of Kodaira and

Spencer as well as a version of the classicalKuranishi's theorem for complex

structures given by Douady [1], obtained a strong versality theorem for defor-

mations of transversely holomorphic foliations.

One of the aims of this paper is to give such a versality theorem for de-

formations of transversely holomorphic foliations endowed with an additional

transversely (holomorphic) symplectic or contact structure. The sheaf of in-

finitesimal transformations of these stuctures is the sheaf 0% of germs of C°°

local vector fields X whose expression in a local chart (Ut, xuu zf) adapted to

thp fnliaHnn is

X=^X＼zt)-^+X＼Xi, zu Zi)-^,

where the Xa are holomorphic functions and X fulfils,moreover, the condition

Lxo)=0 in the symplectic case or Lx($i=h(*)i in the contact case, where At is

a basic transversely holomorphic function.
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As Kodaira and Spencer say in the introduction of their "Multifoliate struc-

tures" [8], the following pattern is needed to study the deformations of a given

structure:

1. A fine resolution of the sheaf of germs of infinitesimaltransformations

of the structure such that its space of sections is an ellipticcomplex.

2. A Lie algebra structure in thisresolution compatible with its differential

operator.

3. A procedure associating a family of deformations of the structure to

each family of degree 1 sections of the resolution, fulfillinga suitableintegra-

bility condition which depends on the Lie algebra product of point 2.

The fine resolutions of @Lr we give here (point 1) (in the symplectic as

well as the contact cases) are a combination of the resolutions of "Multifoliate

structures" and those given by Kodaira in [7]. Once the above plan is accom-

plished we are able to prove a versality theorem for these structures using the

same construction that in [4].

In this paper we put special emphasis on computing the versal space and

the versal family of deformations for the natural examples described above.

For the Hopf fibration Sin+Z-+C P2n+1 with its transversely contact structure we

prove that the versal space is smooth, that is, a neighbourhood of the origin

in the vector space H＼Sin+3, 6^)^H＼CP2n+＼ 6m), where 6a is the sheaf of

germs of holomorphic vector fields X on CP2n+1 fulfilling Lx(Di=ha)i. This

is a vector space of complex dimension (2n+2)2―(1+2+ ･･･+(2n + l)). Remark

that the versal space of the same foliation without the contact structure ([3],

[4]) is also smooth and its dimension is (2n+2)2―1.

For the projectivization of the contangent bundle of CP2n+1 with its natural

transversely contact structure we find that this structure is rigid.

An example of transversely contact structure with non-smooth versal space

is the product TnRxCP3 with the trivial transversely holomorphic foliation

whose leaves are TnRx{p}.

For the transversely symplectic structures described above we obtain the

following results. When M is the quotient manifold RxT2nC by the equiv-

alence relation (t,z)~(£+l,A(z)) with ^4eSp(2n, Z) we find that the versal

space is smooth and its dimension is the sum of dimensions of the three vector

spaces H＼T2nC, 6A), Pa and QA, where H＼T2nC, OA) is the space of holomor-

phic vector fields on T2nC invariant by A, PA is the space of those 2nX2n

matrices commuting with A and QA is the vector space of those 2nx2n antisym-

metric matrices e such that lAaA=A. For example, if n = l and
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then the versal space has dimension 3 when a + d^2 and dimension 4 when

a + d=2.

Finally we give an example of transversely symplectic structure with non-

smooth versal space. For this purpose we take a Sx-principal bundle over the

torus T2nC=C2n/(Z+iZ)2n, M-+T*nC, with Euler class eiM^H^T^C). In

this case the space of infinitesimal deformations, H＼M, @Lr), has dimension

(2n)2+f j+dim Eg, where Eq is the space of holomorphic vector fields X on

T2nC fulfillingQAiz(o=0, where m is the symplectic form of T2nC and Q is

the harmonic representative of Euler class(that is, a 2-form). So the dimension

of Hl(M, 0%) deoends on Q. We compute the versal space giving its equation

and showing that for many 2-forms Q this space is not smooth.

1. Resolutions of the sheaves RlZ

Let 1 be a transversely holomorphic foliation on a manifold M endowed

with an additional transversely contact or symplectic structure. Let &, be the

sheaf of germs of C°°local vector fields X which in local coordinates (xu, za)

adapted to 3" are of the form

^ r^ ^

where the components Xa are transversely holomorphic functions and X fulfils,

moreover, the condition LX(o=0 in the symplectic case and Lxo}i=-^i(s)iin the

contact case, where /U are transversely holomorphic functions. We shall give

a resolution of 6^ instead of the sheaf 6lJ defined in the introduction. Remark

that clJ is the quotient of 6lJ by a fine subsheaf, thus the cohomology of M

with values in these two sheaves is the same, except in degree 0.

Let A*(M) be the graded Lie algebra of C°°complex-valued differential

forms on M. Kodaira and Spencer [8] show that every degree k derivation 8

of A*(M) is determined in a local chart (xu, za) by a couple (<p,$) of vector forms

of degrees k and k + 1,

/) ri si
*-^ dxu +t dza ^ dza
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where <pu= 8(xu), <pa= 8(za),<p&= S(za),£*= (-l)k8(dxu), |a = (-l)k8{dza), $a=

(―l)k8(dza). The vector &-forms <fion each local chart Ut glue together giving

a global vector &-form. If we denote by d(pt the vector (&+l)-form on Ui

criven hv

dfpt=Hd^i^i +^?fef + ^J3if

then the d(pi―^igive a global vector (& + l)-form denoted by d(p―$. Denote^

by r] the vector (& + l)-form r)={―l)k(£―d<p).Then the derivation 8 is deter-

mined by the couple (<p,-q). If o^Ar(M) then the action of d on a is given

in terms of ip and n by the following expression:

d(a)M-l)kd(<pA<j)+<pAda + inA<J (1)

where the product A is defined in [8]. Recall that (a<g>X)Aa=aAixO when

a and a are ordinary differentialforms and X is vector field.

Denote by S)＼the vector space of all the derivations of degree k of A*(M).

3)＼is endowed with a natural Lie bracket defined by [<5,5']=55'―(―l)kk'8'8,

where k and k' are the respective degrees of d and 5f. If d=(<p, rj)and 5'=

(<pf,■/]')then

[5, 5/]=([(o, co']+ w'A<P+9Ay, -[w, co']-^', (Pl+ VAw + wA)?'), (2)

where the brackets in the right hand side are those of vector forms and the

product A means here the product of vector forms fulfillinĝ A(jSRF)=(^Aj8)

<g)Y, where /3is an ordinary form.

We have a differentialD: 3)＼-^S)Vxdefined by D(8)=[d, 5], where d is the

exterior derivative. If 8=(<p, rj)then D8=((―l)k7j, 0).

Let 1F be the ideal of A*(M) of those forms o> such that <n{Xu ■■■,Xk)=0

when Xi, ･■･,Xk are sections of F. (Recall that F is the subbundle of CTM

locally generated by {(d/dxu),(d/dza)).) IF is locally generated by {dza}. Let

S)k be the subspace of 3)＼of those derivations 8 such that 8(If)cz1f- Since

d(IF)c:lF, D maps 3)k into 5)*+1.

1.1. The symplectic case

Denote by Skw the subbundle of Ak(cTM)* of those a which can be written

in local coordinates

with Oab^Ak~XcTM)*. Let S＼nbe the sheaf of germs of sections of S＼≫.

Denote by S)k the sheaf of germs of elements of £Dk. Set Rl=3)o and 01=

JZ)k(B<Sk(i)1when k^l. Define the following maps:
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Qtr s≫ @° ― <3J°

Da,: 0i―>0i=31RS

Da,: 01 ―> @i+1 when k>0

In this way we have a sequence

by c(X)=Lx

＼≫by D^8)={D8, d(a)))

by Da>(d,a)=(D8, d(co)-da)

0 > f)tr > 0° > (Si >
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(3)

,,s=0.

Let us prove its exactness. In fact a simple computation shows that D^―O.

To prove the exactness at 0kw when k^O let s=(8, a) be such that Das=0.

This is equivalent to the fact

| D8=0

1
8(w)-da=0

From the first equation one sees that there exist 8' with D8'―8. Then second

equation is now d(8'((o)―a)=0, so there is a section a' of Sk(!0with <5'(<a)―a―

da'. Then

^(5', o')={D8', 8'{a))-do')={8, a).

An analogous argument shows the exactness of (3) at $%,.

1.2. The contact case

Suppose now that the contact structure is defined by a family {co*} of 1-

forms on each local chart Ut in such a way that (Oi= eij(t)jon UiHUj. Let Af

be the quotient A*(M)/1F. Let E be the line bundle over M defined by the

transition functions {e^-}. Let d be a degree k derivation of A*(M) and {ji}

a family of elements y^ApiUi). We shall say that the couple (8, {fi}) is an

^-derivation if [_8(eij)~]=eij(Ti―TJ)on UiC^Uj, where [<5(<?i.,)]means the class of

d(eij)modulo 1F. We shall denote by <Dk+EAF the space of E-derivations of

degree k. As d(lF)dF the exterior derivative d induces a differentialdF on

the quotient Af. If (8, {jt}) is an ^-derivation then (Dd, {dFji}) is also an E-

derivation. Let Skw be the subbundle of Ak(cTM)* of those a which in an

adapted local chart (xu, za) are expressed by a = J]aaAdza. Denote by SkWF

the quotient bundle SkM/Skw, where Skm has been defined in the subsection 1.1

(the symplectic case). We can think of sections of Ska->F as families {at} of

sections of Ska->＼Uisuch that Gi―Gj is a section of 5^2) on U＼r＼U',.Denote by

SkWF(E) the vector bundle SkMF<S)E. The sections of S＼^F(E) are families{d}

of sections of S＼1-)F＼Uisuch that ai = eij(7jon UiHUj. Denote by <Dk+EAF the

sheaf of germs of ^-derivations and by SkWF(E) the sheaf of germs of sections
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of SkWF(E). Set $l=(2)k+EAF)RSkWF(E). As S%,F vanishes then R°w=3)0+

EAF.

In order to define the differential Da: @kw^>0i+1 remark that the exterior

differencial d induces a differential ds in the sections of SkWF (since d(IF)dIF).

ds can be extended to sections of S＼i-)F(E) since detj^IF and if {Oi} is a sec-

tion of SkiVF(E) then dS(?i=eijds<Jj. We define now Da: @kw^<Di+1 by

Da,((d, in}), {Oi})=((Dd, {dF7i}), IM-riAW-d^}),

where [ ] means here classes modulo Skw. Remark that [&y*]― Ti/＼＼_a)i＼defines

a section of S＼t)F{E). In fact, as oii―QijOij we have 8((i}i)=8(eij)A(i)j+eijd(a)j)

and [5(<o-7-)]= [5(eij)3A[<Uj] + ^ij[5((Wj)], where [5(ei;)] means the class of diet/)

modulo IF and [cuj] means the class of 6)f modulo S*2). So [5(≪i)]= 5^(71―7;)

A [>/] + e^[a)J. That is

[5(<Mi)]-riA[a)i] = eo([5(a>J-)]-r>AM).

Define the map c: &%-+$% by c(X)=(Lz, MX)}), where ^(Z) are those

functions appearing in the expression Lxo)i―Xi{X)(Di. In this way we have the

sequence

o ―^ eiz ―* Ri ―> 01 ―> ■■■ (4)

Let us prove its exactness. A straightforward computation shows that

Dl=0. Suppose now k>2 and let s be an element of <%, s―((8, {ji}), {d}),

with Dws=0. This means

' D8=0

■ dFn=0 (5)

. C5((Wi)]-r<ACa)i]-dS(yi=0

Since D8―0 there is 8' such that D8'=8. Since dFji=O there is ^ with dFh

=Yi. Finally, the last equation of (5) is {.(D8')(a)i)']―dFli/＼＼_(Di~]―ds(Ti=Q. Since

Q)i^IF we shall have [_(DS')(a)i)1= [dd'(G)i)']=ds[_S'o!)i~].On the other hand

dFhAia>t] = dsUtA[<Oi]). So

ds([5'<Wi]-^A[<Wt]-(ri)=0.

We can find a representative /** of [_8fQ)i']―XiA[.(Oi']―ffi with [ti^.IF and such

that its exterior derivative with respect to the coordinates x, z vanishes. So

we can find Ti^lF such that its exterior derivative with respect to the coor-

dinates x, z is n^ We shall have

DJW, {Ti}), {M})=((≪, {7i}＼ W).
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1.3. The cohomology spaces H＼M, 9%)

Suppose now that M is compact. Since the resolutions (3) and (4) of 0lJ

are fine we have Hk(M, 0tJ)=Zk/Bk, where Zk is the space of global sections

s of @i such that Dws=0 and Bk the subspace of those sections of the form

Dms' with s' a section of 0k(U~1.In the symplectic case the leading part of

Da is

(8, a)'―>{D8, -da).

In the contact case the leading part of Dm is

((5,{Ji}＼{<Ji})>―>((Dd, {dFTi}), {dsat}).

In both cases the ellipticityof the de Rham complex gives the ellipticityof the

complex of sections of (3) and (4). So Hk(M, 0%) are finitedimensional for

£>0.

2. The bracket of sections of 0%

Let s and s' be two sections af &km and &lw respectively. We are going to

define the bracket [s, s'] as a section of @i+l in the following way. Suppose

firstwe are in the symplectic case. Then s=(d, a) and s'=(d', a') with d^.3)k,

d'&S)1, a^FiSM)1) and o's=r(S＼i}). We define

Is, s']=([≪,d'l (-l)k5(o')-(-l)kl5'(e)). ( 6 )

In the contact case we shall have s=((<5,{ji}),{ot}), s'=((d',{yi}),{a't}).

We define

is, s']=(([5, d'i {[dm)-(-i)ki5'(?im
(7)

{[(-l)*(3(aO-fiAff{)-(-l)"+I(3'(ffi)-f{A5,)]}),

where ff, 5j, fi and d^ are representatives of Ju at, j'tand a＼respectively.

If s^r(0i), s'^r(0lw) and s"^F{<I> ) then one can prove the following facts:

1. Is, s']=(-l)"+1[s', s].

2. (-D*m[s, [s',s^l+C-D^Ls', [s', s]]+(-ir'[s*, Is, s'J]=0.

3. D^Cs, s']= [I>o,s,s']+(-l)*[s, DaS'l.

3. The integrability condition

3.1. The symplectic case

Fix (£F,ay)a transversely holomorphic foliationon a compact manifold M
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with a transversely symplectic structure (d. Denote by F its associated bundle

(defined in the introduction). We are going to associate a section of Oi to

each couple {1', <y'),where 5' is a transversely holomorphic foliation close

enough to ff and co' a transversely symplectic structure on £F'close enough to

co. Here close enough will mean that (ff',co')is such that all the steps in the

construction we are going to give make sense.

Denote by Nu0=eTM/F the normal bundle of type (1, 0) of 2＼ Choose a

splitting cTM=F($)Nh0. Let F' be the bundle corresponding to £F'. Suppose

that F' is close enough to F in such a way that F' is the graphic of a mor-

phism 6: F-+N1-0 of vector bundles. That is F' = {X+6(X) with X^F}. 0

can be extended to a morphism CTM―>CTM with the condition <9Ui,o=O. Let

<p be the vector form on M denned by ^>=id+0. In each local chart (U, xu, za)

of M adapted to £Fset <pu=(p(d/dxu),(pa=<p(d/dza), <pa=(p{d/dza). Suppose that

<pis close enough to the identity in order that <pu,ipa,(fE is a basis of CTXM

at each point. We shall have [_<px,(o^SC^w where the indices X, p.,v

denote all the indices a, a and u. Let d be the derivation whose firstcom-

ponent is <p and whose action on dxx is

d(dxi)=-j^Citldx1'Adx't, (8)

where xx means za or za when X=a or ^=a.

As i7' is an integrable distribution(it corresponds to the foliation 3') one

has C^=0 when a, /3ge{u,a}. So deiZ)1. 5 fulfils[5, 5]=0 (see [8]). Define

B=d―8. Then the condition [5, 5]=0 is equivalent to Dd-{l/2)[d, o]=0.

Define the 2-form e on M by

e(Z, r)=a>'(y(A'), ^(F)).

Set a ―e―oj. We shall prove that ffGH^)) and that the couple s―(o, a) fulfils

the equation

Dvs-jls, s]=0. (9)

When X(eF(F) then <p{X)^r(F') so e(X, lr)=0 when X^F{F). So ssr(cS^2)).

As ≪ is also a section of <S(2)then a^F(S%). Equation (9) is equivalent to

the two equations

M-y[5, 5]=0 (10)

^(<a+<r)-c(<r=0. (11)

The firstone being satisfied, we have to prove only (11). As o>is closed (11)
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is equivalent to (d―<5)(<y+a)=0, that is d((o+a)=0. Given the above local

chart (U, xu, za) adapted to % let {Bx} be the dual basis of <px. Since #ae/F-

then (a' will be expressed

Then

s=^(o'abdzaAdzb

since z{(d/dza), (d/dzb))=G)'((pa, <Pb)=(o'ab- Let us write now the condition da)'=Q.

Q=d6D' = ^<pz(a)'ab)0xAdaA0b+a)'abddaAdb--(o'al>daAddb.

But dex=-a/2)y,cLdfAdv. So

0=2(^KJ-y<C%+^<oC£v)^A^A^

where (DrPv―Owhen one of the two indices A or pt is an u or an a. On the

other hand

d(e)=^d(a)'ab)dzaA dzb+a)fabd(dza)A dzb-a)'abdzaAd( dzb)

―(hv definifinn of ft)

H<px(.<o'ab)dxxAdzaAdzb-^Q)fabCf/ldxxAdxfAdz1'

+ ^<bCbXtxdza f＼dxlAdx?

= !}(<Pi((0pv)―^<0'(≫C%+^a'XpC<>tll)dxAAdxftAdx1'=Q

So d((o+o)=de=Q, proving (11).

Reciprocally, given a section s=(<5, a) of Rl close enough to the zero

section and fulfilling the integrability equation (9) we are going to associate a

couple ($', a)') to it, where 2"' is a transversely holomorphic foliation with a

transversely syrnplectic structure <*>'.

Equation (9) is equivalent to (10) and (11). Let 8 be the derivation d―d.

Then (10) is equivalent to [<5, <5]=Q. Let <p be the first component of 8 (<p is a

vector 1-form). Given a local chart (U, xu, za) adapted to £Fset <pu―<p(d/dxu),

(pa=<p(d/dza), (pa―<pid/dza). As <p is close to the identity (since 8 is close to d)

{<px} is a basis at each point of U. Set [^>;, ^]=SC^^. Condition [5, 5]=0

is equivalent to (8) (see [8]). Since 8<b£>1 one has C5^=0 when a, /3g{m, a}.

Set F'=<p(F). One has [F', f']cF'. This integrability condition leads (by

Newlander-Nirenberg theorem) to the existence of a transversely holomorphic

foliation %' whose associate bundle (in the sense of the introduction) is F'.
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Condition (10) is equivalent to d(co->ro)=0. Set f=(a-＼-a. Let w' the 2-form

given by

w'{X, Y)=r(<p-＼X), <p~＼Y)).

From the condition d(j)--=0 one proves easily iX(D'=Lxo)'―0 when X^F(F')

and da/=0. So co'is a transversely symplectic structure on 3'.

3.2. The contact case

Fix {3, (o) a transversely holomorphic foliation 3 on a compact manifold

M with a transversely contact structure a) given by a family {a;*} of 1-forms

at each adapted local chart (£/*,x", 2?). Let us associate a section of (Pi to

each couple (3', a>'),where 3' is a transversely holomorphic foliation close

enough to 3 and to'a transversely contact structure on 3' close enough to m.

Let {£/*}be a covering of M such that each Ui is the domain of an adapted

local chart (Uif xut,zat)of 3 and domain of an adapted local chart (Ut, yuiyC?)

of 3'. Suppose (Oi^etjODjand <w£= e^ on UiCSUj, with Z(ei;)=0 if X^P(F)

and Z'(0i;-)=O if X'&F(F'). As in the symplectic case we associate to 3' a

derivation <5fulfilling[<5,5]=0. Set d―d―8. Then [5, <5]=0 is equivalent to

(10). We can find a family {^} of functions on each Ut such that fti―fij=

＼og(eyeij) on UiC^Uj. Remark that as the e＼jare close to etj then the quotients

e'nl&ij are close to 1, so we can choose a well-defined determination of the

logaritm. Then the fit can be defined by

j"i=S/u logie'ik/etk),

where {hk＼ is a partition of unity. Set yi=(d―d)fjii=d[ii. Let us prove that

the couple (5, [ft]}) is an .^-derivation with respect to te bundle E with transi-

tion functions {e^}. We have

7i―7j=S(fii―fij)=8(＼ogeh―log eo).

But de'ij―ipAde'ij―ip^ide'ij/dz1),where <pis the firstcomponent of 8. As (p(F)=

F' we have [5(6^-)]=0 because for a^{u, a] one has

(since ^'(6^=0 if I'ef(F')). So we have

En] - Eft]= - E5(logei;)]= E(d-<5)(logetjy＼= [5(log ei;-)],

because d logeoe/F. So (Eft]―Eft])^j=E^(^)] showing that (<S,[^]) is an

is-derivation.

Set Vt=exp ≪iand Ci=(l/vi)a)i. Let sf be the 1-form on Ut given by
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£i(X)=Ci((p(X)).

Set Oi=Si―a)i. One has ai―21,0, on UiC＼U$. So s=((<5, {[ft]}), ＼{oi＼Y)is a

section of <f>i,.Let us prove that s fulfils equation (9). One can see that (9)

is equivalent to (10) and the two following equations

L(d-5)ft]=0 (12)

[5((Ui+ a<)-d<T1] = [ft A((Ui+ffi)], (13)

where the classes in (12) are classes modulo iF but the classes in (13) are classes

modulo lFf＼lF.

(12) is fulfilled because ji―{d―d)[ii=dpii and <52=0 since 18, 5]=0. Since

d(!)i^.IF/＼lF one has

[5(a)t+ffi)-d<Ti] = [(d-5)(Q>i + <ri)-rf^] = -[5((Wi + a<)] = -[5ef].

As in section 3.1 denote by {8X} the dual basis of {<px}, where <px―(p(d/dxk).

If oi'iis expressed by

and

one has, by definition of s^,(ei)a={{^'i)a/vi). So

£i= S dza
(o)Qg

Vi

But, as Vi=expui} 5(l/vi)=5(exp(―^0)=―exp(―ptt)d(fit)=―(l/vjft. So

To prove (13) it sufficesto prove that [<5(S(o>0a^a)]=0. But

d(^(a)'i)adza)=^<px((<o!i)a)dx*Adza+(<Oi)ad(dza)

=by (8)

= ^x{{o)'i)a)dxx f＼dza-^-{(i)ttaC%dxx Adx?

If we are only interested in classes modulo IfAIf we shall have

[^(S(w0a^a)] = [S^a((ft>0aMxaA^a]-[2]((y0aC^rfxaArfx^]

where a<E.{u, a). But as <pais a section of F' we have

Proving that
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(when p.^a then (<y0/< is zero). So [<5(S(a>0adza]=0.

Reciprocally, given a section s=((<5, [fa]), [#*]) of Rl close enough to zero

and fulfilling (9) one can associate a couple (EF', ay') to it close enough to (3, m).

We do not give here this construction explicitly, but we remark that, as in

the symplectic case, the Newlander-Nirenberg theorem must be used to associate

a fniinHnn <7' fn ft

4. Deformations of the structure parametrized by a non-reduced analytic

space

Given a (non-reduced) analytic space S denote by Al£the pseudogroup of

local C°°automorphisms of SxRpxCq of the form

(s, xu, za)> >(s, fv(s, x, z), f＼s,z)),

where u, ve{l, ･■･,p}, a, b^{l, ･■■,q) and the functions fa(s, z) are holo-

morphic. A family of transversely holomorphic foliations parametrized by S

is nothing but a topological space DC, a continuous map %: DC-^-S, a structure

of Jsr-manifold on DC given by an atlas (Vu <pt),where VidDC is open and <pt

is a homeomorphism from Vt onto an open subset of SxRpxCq, and a collec-

tion {<f>ij}of elements of Al£verifying KS°(pi= x (where tvsis the projection on

S), 0ii=id, <j)ij°<f>jk=<!>ikand <pi=<f>ija<pj,where in the last condition ^tj is

regarded only as a continuous map. For any s<=S the fibre Ms=7r"1(s) inherits

a JJr-structure, that is, we have (Ms, %s) where ffs is a transversely holomor-

phic foliationon Ms.

Given (M, 3) a transversely holomorphic foliation on a compact manifold

and an analytic space S with a distinguished point ogS, a family DC ^ S of

transversely holomorphic foliations parametrized by S is called a deformation

of (M, EF) if there exists a J£^isomorphism c: (M, 3)-^(M0, %o). Such a de-

formation is denoted by (DC, z, S, o, c).

A complex vector bundle of rank k over DC can be described as the object

obtained by glueing together the open sets ViXCk by means of transformations

of the form

GtJ(s, xuu z＼,t)=(s, $Us, xuj,z% <J>ails,z% gtJ(s, xl zbj)-t),

where the ^tj are the coordinate changes of DC and gtj are C°°functions with

values in GL(k, C) depending holomorphically on s and fulfillingthe cocycle

conditions gu―1, gik―gij-gjk- If S―>DC is such a vector bundle, a section of

S can be defined as a C°°morphism DC-+G which in each local chart is given by

(s, x, z) >->(s, x, z, t(s, x, z)). We shall denote by Fs( ) the space of sections
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When k―p-＼-2qand ga is the jacobian matrix

dfij dfa 801

dxuj dzaj dzaj

0

0

Ml

dzj

0

0

dzaj
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we obtain the bundle T.3? calledthe complex tangent bundle of 2C along the

fibresof 3C―>S. If k―fi+q and Ma is the jacobian matrix

dxut dzaj

0

whe obtain the bundle F^-^X associated to the natural transversely holomorphic

foliation on X.

We can define the space Ars(X) of complex-valued r-forms on X as

rs(Ar{cT3C)*). A natural exterior
derivative d : Ars(X)^Ars+＼X) is obtained

derivating only with respect to the variables x, z, z but not with respect to the

parameter s.

Given a transversely holomorphic foliation (M, 20 and a transversely sym-

plectic structure w on ?, a deformation of (M, 9, <o)is a couple ((2C, ■k,S, o, c),

(s)s),where (X, iz, S, o, c) is a deformation of (M; S£)and <os^.A%{2£) fulfilling
ji

c*(q)0)=q),ixa)s=LxODs=0 when X<^rs(Fs), (t)qs-^Qand dcos=0. In an analogous

way we can define the notion of deformation of (M, 1, <o) when a) is a trans-

versely contact structure on EF.

Two deformations of (M, 3, <u),((3C, n, S, o, c),o>s)and {{X', icr, S, o, c'),<o't)

parametrized by the same (S, o), are called equivalent if there is an open

neighbourhood S" of o in S and an isomorphism /: 3£＼S"-+3£'＼s"of A%-

manifolds over the identity of S" such that f*(a)'s)=o)s in the symplectic case

and f*(a}'s)=eo)s in the contact case, where e is a transversely holomorphic

function on "＼"c.

5. Relation between deformations of (M, 1, at)and families of sections

of $i fulfilling the integrability condition

Let (M, 9, <o) be a transversely holomorphic foliationon a compact manifold

M with a transversely svmnlectic or contact structure (o. It is not difficultto
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prove the existence of a vector bundle E1 on M whose space of sections F{EX)

coincides with F(0i), where 01 has been intruced in section 1. Given an

analytic space S take the trivial family 2C=SxM->S and the trivial vector

bundle e=SxE1 over 3C. We shalldenote by Fs(@u) the space Fs(<5)introduced

in section 4. By putting parameters in the construction given in section 3,

given a deformation ((2C,iz,S, o, c),ojs)of (M, 3, of)we can find an open neigh-

bourhood S" of o in S such that the construction of section 3 works in S",

that is, we are able to associate an element of FS"($L) fulfillingthe integrability

condition to the couple (3C＼s; <os). Nevertheless, to associate (as in section 3)

a family of deformations (2£,cds)over a suitable neighbourhood S" of o to each

element of Fs(0L) fulfillingthe integrability condition we must use a New-

lander-Nirenberg theorem with parameters (see section 3.) But such a theorem

only works in the C°°case. So we are lead to suppose that the initialmanifold

Mis r and that the initialfoliation 1 on M is also C°. With these assump-

tions we are able to associate to every element of WFsiE1) fulfillingthe in-

tegrability condition a family of deformations (2£,<ws) of (M, 3, ai) over a

suitable neighbourhood S" of o. We may suppose without lost of generality

that (M, 3) is Cm because any transversely analytic foliation is isotopic to a

real analytic foliation([91).

6. Versality theorem

Let (M, ?, c) be a transversely holomorphic foliation 3 on a compact mani-

fold M endowed with a transversely holomorphic symplectic or contact structure

a). Let ((3f,7i,S, o, c),(os)be a deformation of (M, £F,a>) parametrized by an

analytic space S with a distiguished point o (we shall abbreviate such a de-

formation by (3C＼s,<os)). Given another analytic space S' with a distinguished

point o' and a morphism / : S'->S of analytic spaces with f(o')=o, let 3Cf be

the fibre product 3£f= S'Xs2£={(s', u)(ES'XT＼f(s')=7t(u)}. We shall have

natural projections

/

JLf > -X

71'
＼
r
＼n

y / y

S' ―> S

If {(Vi, (pi)}is a yfssr-atlasof DC with coordinate changes {^i;} we take the

structure of A%-manifold on 3Cf given by the atlas {{f~＼Vt),<pi)),where (pt:

f~＼Vi)-*S'X(RpxCq) is the map defined by <pi=n'X(7rRpxC<i°<pi°f),and the

coordinate changes 6'i}given by
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#,: (s, x, z)―>{s', #//(s), x, z), tUf(s), *))･

Then / restricted to tt'"1^) gives an isomorphism of ^f£r-manifoldsbetween

Mor=7:'~＼o')and Mo―i:~＼o). Denote by i' the composition (M, 2r)-^M0^M0'.

Then the couple ((3f/, o', S', t'),f*(<os))is a deformation of (M, £F,<y) para-

metrized by (S', o'),called the inverse image of ((2C,o, S, c),<os).

Definition. A deformation (T＼s, <ws) of (M, £F,<y) parametrized by (5, o)

is called versal if the two following conditions are fulfilled:

1. Given any other deformation (3C'＼s',<*v) of (M, 2", <w) parametrized by

the analytic space (S', o') there is a neighbourhood S" of o' in S' and a mor-

phism /: S"―>S of analytic spaces, with f(o')=o, such that the inverse image

(2£f＼s>,f*(a)s)) is equivalent to (T'＼S', <ds-)(see the end of section 4 for the

definition of equivalent).

2. The differential do<f at o' of the above morphism / is unique (among

those morphisms fulfilling condition 1).

Theorem, (versality) Let (M, 3, ≪)a transversely holomorphic foliation on

a compact manifold endowed with a transversely holomorphic sympletic or contact

structure. Then there exists a versal deformation (3C＼s,(os) of (M, 3, at) para-

metrized by a pair (S, o), where o is the origin of the finitedimensional complex

vector space Hl{M, c%) and S is an analytic subspace of thiscohomology space

defined by an equation f(s)=O, where f is a holomorphic map from a neigh-

bourhood U of the origin o of H＼M, clJ)into H2(M, 6lJ) whose jet of order 2

at o is the quadratic form s-^＼_s,si.

We shall not give here a detailed proof of this theorem. Simply we men-

tion that the discussions in the preceding sections allows to translate here the

standard construction of Douady [1] (see also [4]). We shalldescribe, however,

how the versal family is built in order to use this construction in the com-

putations of examples of the following sections.

Fix a large enough real positive number r and denote by rF{0km) the r-

Sobolev's completion of the space F(0kw) of sections of the sheaf 0＼＼introduced

in section 1. Choose a real analytic riemannian metric on M(by the reasoning

at the end of section 5 we can suppose M real analytic as well as 3). This

metric induces real analytic scalar products in each rF(@kw). Let D% be the

adjoint of Dm: rF(0ka))-^r-1F(0kJ-1)with respect to these products. Set 1=

{seT(0i) such that D%(Dws-{l/2)ls, s])=0}. I is a Banach submanifold of

rF(0l) in a neighbourhood of the origin whose tangent space ToS is ker Da,.
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Set H=Zr＼ker D*. Then H is a (finite dimensional) submanifold of 2 in a

neighbourhood of 0 with tangent space T0#=ker Danker DZ=H＼M, 6lJ). One

can prove that H can be defined alternatively as the set of those serF(0,J,)

satisfying the ellipticequation

DZ(Das- y[s, s~])+Da,D*s=O

This implies that the elements s<=H belong to °°r(0^).Let S be the analytic

subspace of H of those s fulfillingthe integrability equation Dms―(l/2)[s, s]=0.

In a neighbourhood of the origin each sgS defines (because of the integrability

condition) a transversely holomorphic foliation 3S endowed with a tranversely

holomorphic symplectic or contact structure o)s. Then (ff4,Q)s)s(=sis the versal

family of deformations.

It is well known (see for example [9]) that an alternative decription of H

and S is the following:

H=＼s^r(0i) such that s=Hs+±rD* G[s, s]}

where Hs means the harmonic part of s and G denotes the Green's operator.

S={se# with H＼_s,s]=0}

where i/[s, s] means the harmonic part of [s,s].

We mention here the uniqueness(up to ismorphisms) of the versal space

(see for example [4]) and the following extremely useful corollaryof the

versalitytheorem.

Corollary, (see [4]) Let (3C'＼s',av) be a deformation of (M, ff,<w) /wra-

metrized by (Sr, o'). If S' is smooth (that is, a neighbourhood of the origin of a

complex vector space) and if the Kodaira-Spencer's map

p: T0.S'―+H＼M, 6>Lr)

is an isomorphism then (3C'＼s<,gv) is versal.

The Kodaira-Spencer's map is defined as follows. If

0,/s', x, z)=(s', WW, x, z), tfj(s',z))

are the coordinate changes of 2£'and if v^T0>S' then the vector fields

give a 1-cocycle with values in QlJ whose cohomology classis p(v).
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7. The versal family of deformations of the examples given in the

introduction

7.1. The Hopf fibration Sin+3->CP2n+1

The versal space of the transversely holomorphic foliation£Fon S4re+3whose

leaves are the fibres of the Hopf fibrationis described in [3] and [4]. It is

smooth, that is, a neighbourhood of the origin in the vector space H＼Sin+s, QlJ)

whose dimension is(2n+2)2―1. We are now interested in the versal space and

the versal deformation of the same foliationwith the additional transversely

contact structure a) described in the introduction. Our firstaim is the computa-

tion of H＼S4n+s, 01/). Denote by 0 the sheaf of germs of holomorphic vector

fields on CPZn+1, by ca the sheaf of germs of holomorphic vector fields X on

CP2n+1 fulfilling LxOix―liOii- Let O be the sheaf of germs of holomorphic

functions on CP2n+1 and 6 the sheaf of germs of pairs {X, {p.i}),where X is

a holomorphic vector fieldand the p.iare holomorphic functions on each one

of the Ui fulfillingfit-fiJ=X(etj)/eij on Utr＼Uj. Finally,let Q＼E) be the sheai

of families of holomorphic 1-forms {at}, each at being defined on Uu and ful-

fillingOi―eijOj on UiC＼Uj. We have the following two exact sequences

o―>0―>e―>e―>o

0 ―>6m ―> 0 ―> Q＼E) ―> 0

where the projection O-^Q＼E) is the map induced by

(X, {fti})―> {Lxa>i―fii<Oi}.

Since H＼CP2n+＼ 6)=Hi(CP2n+＼ o)=0 for />0, we deduce from the firstexact

sequeuce that

dim H＼CPan+1, 0)=dim H＼CP%n+＼ 6)+dim(CP2n+1, O)=(2n + lf

and H＼CP2n+1, 6)=0. One can compute easily from the definitionsthe follow-

ins- dimensions:

dimH＼CP2n+1, 6>a))=(2rc+2)2-(l+2+･･･+(2n + l))

dimH＼CP2n+1, Q＼E))=l+2+ ･･･+(2n + l)

Since, moreover, H%CP2n+1, Q＼E))―0 for z>0 we deduce from the second

exact sequence the vanishingof H＼CP2n+1, 0J and H＼CPSn+1, 6W). By virtue

of the Leray's spectral sequence of the Hopf fibrationn: Sin+3->CP2n+1 we

have the followingexact sequence:
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II
0

―> H＼CP2n+＼ &m),

II

0

where M＼S＼ QSi) is the sheaf over CP2n+1 associating to U the group

H＼tz ＼U),OtJ＼n-＼(jjS).When U is small enough this group is isomorphic to

H＼U, Ovlu^HKS1, R).

So M＼S＼ Osi) is isomorphic to 0ffl. Thus we have H＼S4n+＼ 0Lr)=

H＼CPzn+＼ c≪). That is

dimH＼Sin+＼ 0Lr)=(2n+2)2-(l+2+ ･･･+(2n + l)).

Following the ideas of [4] (the construction of the versal family for the

transversely holomorphic foliation without contact structure) we want to built

now a deformation of (S4n+S, 3, <o) parametrized by H＼CPZn+1, dj. First of

all remark that the fibres of the Hopf fibration are the intersection with S4n+3

of the (complex) integral curves of the radial vector field£of C2n+Z:

=2**
d_

Denote by p the canonical projection p : c2n+2-*CP2n+1. For each 77s

H°(CP2n+＼ (9a) take a holomorphic vector field rj on C2n+2 whose projection

by p* is 7] and such that [jy,£]=0. For rj small enough the (complex) integral

curves of £+j? define a new foliation on C2n+2―{0}. Denote by £F, the folia-

tion that it induces in S4n+3. We want to endow 1 v with a transversely con-

tact structure (Dv.

The holomorphic vector fieldsIon C2n+2 conmuting with the radial vector

field £ are linear. That is, of the form X^XXd/dz1) with Xi=J]XijXi,

where XJceC.

If a is now a 1-form on C2n+2 of the form a = J]aiJzidzJ with a^-eC, the

Lie derivative Lxa is given by

Lxa=^{X)aki+X＼a}u)zidzi

We see, thus, that Lxoc is also linear with coefficients(Lia)i;cC given by

(Lza)<j=2(*5a*f+*$≪,*)･

This suggests the use of the matrix notation. Denote also by X the matrix

(X{) and by a the matrix (a^O- The above equality is written
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Lxa^Xa+aX.

If a is a linear form on C2n+2 and X a linear vector field, condition a(X)=0

is written in matrix notation

Let a) be the linear 1-form on C2n+2

w=(z1dz2-z2dz1)+ ■■■+(z2n+1dz2n+z-z2n+2dzzn+1).

One has <y(|)=0 and Lio)―2(n(where £is the radial vector field). For every

y]^H＼CP2n+＼ ej (small enough) set X=£+i). We shall have Lxa)=Kw (with

K constant). In matrix form we shall write this

tXa)+wX=Ka).

Find now a linear 1-form a fulfilling<r(X)=0 and Lxg = co. In matrix nota-

tion this conditions will be written

f 'Xa + aX^ca
＼
'oX+'Xcr^O

Set fjt―caX. These equations (in terms of [x) become

f ftX+'Xfi^cfi

which are fulfilledby [i=―m and c=K. So a=tX~1o) fulfilsthe desired con-

ditions(remark that X has an inverse because X=$+fj with rj small).

At each small enough neighbourhood U of a point of C2n+2―{0} take a

non-vanishing function fv fulfillingthe equation X(fu)+cfu=Q. Then au=fu(i

will be a 1-form on £/such that au(X)=0 and Lx≪j/=0. So it will be a basic

1-form on U with respect to the foliationinduced on C2n+Z by the vector field

Z=|+jy. The restrictions of the av to the sphere S4n+3 (for those U in-

tersecting S4n+3) will give a transversely contact structure a)v for the foliation

3V. In this way we have a deformation (Sin+＼ 3V, odv)of the foliation(S4n+3r

3, cd) parametrized by a neighbourhood of the origin of H＼CP2n+1, Qa>)=

H＼Sin+z, 6lJ). The same argument of [4] applies now to show that the

Kodaira-Spencer's map of this deformation is an isomorphism. So by virtue of

the corollary of the theorem of versality, this deformation is versal.

7.2. Other examples cf transversely contact structures

Let M the projective cotangent bundle of CPZn+1 (that is, the projectiviza
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tion of the cotangent bundle). The foliation given by the bundle M->CP2n+1

admits a natural transversely contact structure (from the contact structure of

CP2n+1). The Leray's spectral sequence of this bundle gives easily H＼M, 0lJ)

=0, so that this structure is rigid.

The following example corresponds to a foliationwith transversely contact

structure whose versal family of deformations is parametrized by a nonsmooth

analytic space. In the product manifold M―TnRxCP3 take the foliation

whose leaves are the submanifolds TnRx{p} with the natural transversely

contact structure induced by the contact structure cd of CP3. One has ci,r=

C^Oaj, where C denotes the constant sheaf with stalk C over TnR and Om is

the sheaf over CP3 of germs of holomorphic vector fieldr X fulfillingLxooi =

2m. As H＼CP3, 6>o,)=0 one has

H＼M, etJ)=H＼TnR, C)0H°(CP3, OJ

wich is a space of complex dimension lOn.

In order to compute the versal space let us endow the space of sections of

the sheaf @i (of section 3.2) with a hermitian product in the following way.

Take in M the product of the Fubini's metric of CPZ by the flatriemannian

metric of TnR. If d, d'<=3)k are expressed by the pairs of global vector forms

d=(<p, 7]),8'=(<p',7]')we define the hermitian product <<5,8'} by

where <.<p,<p')and (rj,rj'}mean the usual products of vector forms. Let E be

the line bundle on M defined by the transition functions {e^}- (Recall that e^

are the functions on Utr＼Uj such that <Oi=eijQ)j). Take a hermitian metric h

in the bundle E. If s=(<5, {yt),{#*}), s'=(d', [ft],{a'S are sections of @i (see

section 3.2) we define the product

<s, s'>=<5, <5'>+<5(wi)-riA≪*, dX<Oi)-7iA(ot>h + <ffi,al>h

Remark that d(a)i)―TiAm is a (global) element of S^ME), with the nota-

tions of section 3.2. Remark also that <s, s>=0 implies d―0, Gi―Q and TiAm

=0. But as {YiJ^S^piE) this implies 7^=0. This proves that the hermitian

product is non-degenerate.

Take a basis {Xa}a=1,..,10of H＼CP＼ Qm) and denote by {dxu}u=u...,n the

1-forms on TnR induced by the canonical 1-forms dxu of Rn. Denote by 8au

the element of S)1 given by the pair of global vector forms (dxu<S)Xa, 0). Let

(Xa)i be the holomorphic function on UitzCP3 such that LXaQ)i=(Aa)ia)i. Denote

by sau the section of Oi given by



Deformations of transversely

S au =(8au, {{h)idxu}, {0})

501

One can prove that each sau is harmonic. The bracket [sau, s6u] is given by

isau, sbv-]=([5au, 8bv}, {(Xaab)t-Xb(Xa)i)dxuAdxv}, {0})

where [_dau, Sbv] is the derivation given by the pair of global vector forms

((dxuRdxv)(g)[Xa, Xb~＼,0). One sees that the brackets ＼_sau,sbv] are also harmonic.

According to section 6 the versal space will be (in this case) the analytic sub-

space of C10n defined by the equation [s, s]=0, where s is expressed in the

basis {sau} of harmonic elements of F(0l) by s = T]kauSau with kau complex

numbers.

If n = l then u=v=l and in this case the brackets [saa, sftl,]=0 so that

(only in this case) the versal space is smooth.

7.3. The suspension of T2nC by an element of Sp(2n, Z)

Let T2nC be the complex torus C2n/(Z+iZfn. Given A^$p(2n, Z) we

take the quotient manifold M of RxTZnC by the equivalence relationidentify-

ing (t, z) with (£+1, A{zj). Take the transversely holomorphic foliation £F on

M whose leaves are induced by the lines Rx{z}. As A preserves the sym-

plectic 2-form o)=dz1Adz*+ ■■■-hdz271'1Adz271 on T2nC then 3 is transversely

symplectic. We want to construct the versal family of deformations of (M, £F,<u).

We have a natural projection -k: M^S1 whose fibres are transverse to 2".

We can then use the Leray's spectral sequence of it to compute the cohomology

space H＼M, (9lr). We shall have the following exact sequence

0―>H＼S＼ 7v(6lJ))―^H＼M, Qlr)―*H＼S＼ M＼T2nC, 6lJ))

―> H＼S＼ jr(@Lr))

As S1 can be covered by two contractible open sets with contractible intersec-

tions and as 7i{dlJ) is a locally constant sheaf we obtain easily that

H(S＼ ^(0Lr))-O.

Let us compute HKS1, TiiO'J)). Set £/i=]0,I[ci2, i/2=]l/2, 3/2[c/2, Fx=

piUxXT^C), V2=p(U2xT2nC), where />: RxT2nC^M is the canonical projec-

tion. On each F,- we can take coordinates

<pt: Vt―>UiXT2nC

x―>(U,zl ■■■,zT)

with p(tu z＼,■■■, z＼n)―x. In Vxr＼V2 we shall have
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if ^GElO, l/2[ if ^eHl/2, 1[

Let Uu U2 be the open sets in S1 given by £7iand U2. In the Cech cohomology

of the covering {Uu U2} with values in the sheaf ?r((9Lr)the 0-cohains are the

couples (su s2) with

Sl=^]aa

where aa and /3a are constants. The 1-cochains are sections s12 of z(6lJ) on

UiHUz given by

Hxa

d

dz°i

*>'w

when fEElO,l/2[

when fe]l/2, 1[

with xa, ya constants. As (d(su s2))iz=s2―s1 we deduce easily that the degree

1 cohomology is the quotient of the global holomorphic vector fields on T2nC

by the image of the morphism 1―A*, where / is the identity and A* is the

morphism induced by A on the vector fields,because the cocycle slz given by

X1=JlX(i(d/dza1)whent(E]O, l/2[ and by Xz=^X%{d/dzi) when fe]l/2,1[ defines

the same cohomology class that the cocycle given by E(Z?―X2){d/dzax) when

fe]0, l/2[ and by 0 when fe]l/2, l[ (since the difference is 5(0, XZ)). So

H1(S1, 7r(@Lr))is isomorphic to the vector space of holomorphic vector fields on

TznC invariant by A*.

Let us compute now H＼S＼ JC＼T2nC, O'J)). Denote by 6m the sheaf of

germs of holomorphic vector fields X on T2nC such that Lx(n―0. First of all

compute H＼TZnC, &m). The condition LX(d is equivalent to the fact that the

1-form ax―Xzdzl-＼-X1dzz-＼-■･･is closed (that is, locally exact). This gives a

natural exact sequence of sheaves

0 ―> c ―> O ―> 9m ―> 0

where C is the constant sheaf with stalk C and O the sheaf of germs of holo-

morphic functions. From the associated cohomology sequence (by using the

fact that the morphism H＼C)-^H＼O) is the projection of the space of 2-forms

into the space of (0, 2)-forms) we deduce that

dim H＼T2nC, 6L)= (≪+(22")
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In terms of the resolution of 6m given in 1.1(corresponding to the foliationon

T2nC whose leaves are the points) a basis of H＼T2nC, 6m) can be given by

the sections of 01 given by sba=(5ba,0), a, 6e{l, ･･･,In), s'ab=(0,dzaAdzb), a,

&e{l, ･･･, 2m} with a<b, where 8ba is the 1-derivation given by the couple

of global vector forms (dza(?§(d/dzb),0).

Let us give now a basis of H＼M, 6lJ) (which is the direct sum of H＼S＼

TtiO'J))and H＼S＼ M＼TtnC, OlJ)). If X is a holomorphic vector fieldon T2nC

invariant by A, let 8X be the 1-derivation on M given by the couple of global

vector forms (dt<S>X, 0), where t is the coordinate of S＼ Let sx be the (closed)

section of 01 given by Sx=(8x, 0). If (p and e are matrices fulfilling(pA=A(p

and tA&A=s, denote by s9 and ss the (closed) sections of Ol given by the

couples s9=(^(pbdb, 0), ss=(Q, J]eabdzaAdzb). Let Xk, <pu em be bases of the

spaces of vector fieldson T2nC invariant by A, of the matrices <p fulfilling<pA=

A<p and of the matrices s such that lAtA=^e. Then the classes of the sections

sxk, stpvs£m are a basis of H＼M, 6lJ).

As the brackets of each couple of linear combinations of these sections

vanish then the following family of sections of Oi parametrized by H＼M, QlJ)

H＼M, @Lr)―>T(0i)

is an integrable family. As the Kodaira-Spencer's morphism of this family is

the identity then this family is vesal by the corollary of the versality theorem.

8. Examples of transversely symplectic foliations with versal families

of deformations parametrized by non-smooth analytic spaces

Let T2nC be the complex torus C2n/{Z-＼-iZfn with its symplectic form

w^dz'Adz2-] Ydzin~l/＼dzln.Let it: M^T2nC be a principal SJ-bundle over

TznC. We shall suppose that the Euler class e(M) of M belongs to Hh＼T2nC,

C). This is equivalent to the existence of a holomorphic line bundle L-*T2nC

with a hermitian metric h such that the principal£/(l)-bundleof unitary vectors

of L is isomorphic to the bundle M->T2nC.

Let £F be the foliation on M whose leaves are the fibres of %. 3 is en-

dowed with the transversely symplectic structure given by o). Our purpose is

to describe the versal family of deformations of (M, 1, oi). Take a connection

p' on M (p' is a global 1-form taking imaginary values on real vectors). We

can choose p' such that its curvature dp' is harmonic in T2nC. Set ,o=

(＼/2izi)p'.Then Q = dp EHu＼T2nC) is the harmonic representative of e(M).



504 J. Girbau and G. Guasp

We have ＼
|0
= 1, where + means the integral along the fibres.

From the Leray's spectral sequence of M-^T2nC we have

A
0 ―> H＼T2nC, <9J ―> H＼M, eij) ―> H°(T2nC, 6L) ―^ H＼T2nC, Q'J)

To compute H＼M, QlJ) from this sequence we need the dimension of the kernel

of A. To this end we prefer to describe the above exact sequence from a

differentialpoint of view instead of obtaining it from the Leray's spectral

sequence. Let us begin by introducing resolutions of the sheaves QlJ and cm

different from the general resolution introduced in section 1.1. If z1,■･■, zZn

are the coordinates in (an open set) T2nC induced by the canonical coordinates

of C2n then {dza} are global 1-forms and {dza, dz, p} is a basis of the space

of vector 1-forms at each point of M. Let {Za, Za, (d/dt)＼its dual basis. Then

7
_ j (J_＼JL
Za~dza p＼dza)dt

is the horizontal liftof (d/dza). Every vector form <pis expresed in the basis

{Za, Za, (d/dt)＼by

(p= ^(paZa + T^(paZa + (ft
1

dt

where (pa, <pa and (pl are ordinary forms. We shall say that cp is horizontal of

type (1, 0) if (pa=(pt=§. Denote by S)'v the space of degree p derivations given

by couples of global vector forms (<p, rf) with <p and rj horizontal of type (1, 0).

Remark that if 8<=2)'v then Dd<=3)'v+＼ Let O'J be the sheaf of germs of

elements of -S'^S^t1 when p^O. Let @'J be the sheaf of germs of elements

of £)'°.We shall have the following fine resolution of Oir:

Da Dw
0 > fi)tr > 0>o > 0n > ...

where Dm is the differentialintroduced in section 1.1. When we take the trivial

foliationin T2nC whose leaves are the points we obtain a resolution of c≪,

Da,

(we denote by 0'J" the resolution of 6L as the resolution of 6lJ).

We define the integration along the leaves

I : fiM, 0 >j>)―> P(T2nC, 0 rp x)

in the following way. If a=(5, a)^F{M, 0'J3)with 8=(<p, r))=$'p, <p=^<paZa,
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8 is the degree (p ―1) derivation

The morphism
f
: F(M, R'J>)-+r(T2nC,RTX) is onto. Denote by Kv its
si

kernel. We have the following exact sequence of differentialcomplexes

0 ―>Kp ―> T(M, 0'J>)―> F(T2nC, 0'J-1) ―> 0

leading to the following cohomology sequence

A'
> HP(K*) ―> HP(M, 0lJ) ―> Hp-＼T2nC, &m) ―^ HP+＼K*) ―> ■■■

If d=(<p, f])^S)'^nc,<p=H<pa(d/dza), r]=^r]a(d/dza), denote by X(d)the element

of £)'£given by the pair (2T7r*(^a)Za, Z7z*(7]a)Za). Denote also by X the map

X: r(T2nC, 0'J)―> Kpar(M, Q'*)

id, a) ―> (X(8),x*<j)

X is a morphism of complexes which induces an isomorphism in cohomology.

The morphism A^^^A'

A: H＼T2nC, <9J ―> H＼M, 8CJ)

is given by X-> class of (0, ―Q/＼ixa>). So X will belong to ker A if (0, ―Q/＼

ixa))=Dm{d, a)={dd, 8(<o)-da). As D8=Q then 8 is a pair (<p,0) and 8(a>)=

―d(<pA<o). So QAix(i>=d((pA(D―o). As Q is harmonic this is equivalent to

QAix<o=0. So

ker A={Z holomorphic vector fields on T2nC fulfillingQAix(t)=0}

From the exact sequence

0 ―> H＼T2nC, 6m) ―> H＼M, 6lJ) ―> ker A ―> 0

dim H＼M, OtJ)=(2nf+(2^+dim kerA

To compute the versal family of deformations of (M, 3, cd) let us define

hermitian products in F(M, @'mp)- We define a riemannian metric g on M by

dt)
=1
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Az- !)=≪(*･■iH(Z- z')=0

If <p and (p are horizontal vector forms of type (1, 0),<p=2(paZa, <J)=Z(paZa,

we define their hermitian product (<p,0> by

<p, <py=[^<paA*fg(Za> zb)

where * means the Hodge's operator associated to g. We define a hermitiai

product < , > in 3)'v in the following way. If 81} 8^3)'v are represented ty

couples of global forms 81=(<p1, 07O,82=(<p2,rj^)then

Finally we define a hermitian product < , > in F(M, O'J) in the following way

If alt az<=r(M, 0'J*)are represented by couples ai=(8lt d), ≪2=(52,<r2)where

8i=((pi, f)i),̂2=(^2, 572)then

<≪x,≪2>=<51, 52>+<(71-(-l)>1Aty, <72-(-l)p^2A(o>

Now denote by ^a≫the vector 1-form dza(^Zb, a, 6e{l, ･･･,2n}. Let ^a,

be the (closed) derivation given by the couple of global forms 8ab=((pab,0). Lei

(Xab be the section of @'J given by the couple aa6=(<5a&,0). Denote by ficdthe

element of F{M, @fJ) given by the couple jScd=(O, dzcf＼dzd) with c<d and c.

de{l, ･･･, 2n). Take now a basis {Xt} of kerAc#°(T2nC, c,,)(vector fields

fulfillingQ/＼ix^=0). Denote by Xj the horizontal lift of X*. Set (pi=p(£)Xi,

Let <5j be the (closed) derivation given by the pair 8i=(<pt,0). Let yt be the

section of @fJ given by the couple ft=(5*, 0). It is not difficultto see thai

{otab,fica,Ti) is a basis of the space H1 of harmonic elements of F(M, @fJ).

An easy computation shows that

[Aab, aed]=0

[≪o6,iScd]=0

[≪a6,7'i]=((rf5aA/a/a≪6fi)0^i,0)

In, ri＼={((pMZiQ)RZMpr＼iZj)Rzu o),o)

All these brackets are also harmonic sections of ^L2-

As the Kuranishi's space S is defined by

S={s^H such that H[s, sl=0}
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we see that (in this case) S^is^H1 such that [s, s]=0}. If s is expressed by

then the equation [s, s]=0 is equivalent to

H2sabsj[aab, rA+2slmsjiplm, ni + s's^Ti, fr]=0

We see that S contains always the submanifold given by the equations sj=(,

for /e{l, ･･･, dimker A}, corresponding to the deformations of the complex and

the symplectic structure of T2nC. When dimkerA=0 then S is smooth. But,

in general, S is not.

For example, suppose that n ―＼and that the Euler class of M―>T2nC is

Q = Adz1Adz1+Bdz2Adz1-Bdz1Adz2+Cdz2Adz*

with A and C complex numbers with vanishing real part and B any complex

number. In this case kerA is the space of vector fieldsX=X1(d/dz1)+X＼d/dz2)

with X1 and Xz complex numbers fulfilling

f AX1-＼-BXz=0

＼
BX'-CX^Q

When AC+BB^O then kerA={0}. But when AC+BB=O then kerA is

not trivial. Suppose, for example, ^4^0. Then kerA is the 1-dimensional

space generated by the vector field X―{B/A){d/dz1)―(d/dz2). In this case the

dimension of Hl(M, OlJ) is 6 and S is given by the equations

s%Bsn+(BB/A)sia+As21+Bs2t)=Q J

where s11, s12, s21, s22, s' and s" are the coordinates associated to the basis ＼an,

≪iz,a2i, a22> jS,7} described above.
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