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CORRECTION TO “ON CONJUGATE LOCI AND CUT
LOCI OF COMPACT SYMMETRIC SPACES I”

By

Masaru TAKEUCHI

In our previous paper [3], Lemma 3.1 was incomplete. The correct state-
ment is as follows.

LEMMA 3.1. Let HeCn\S. If HEO, we have SAI'— {0} #0 and
msnr(H)=|H].

Proor. By Theorem 3.1 there exists A</— {0} such that |H|=|H—A]|
and |H|<|H—A’| for any A’el’. Put HH=H—A. Then the argument in the
proof of Theorem 2.7 in Sakai [2] shows

2@y, H)| =1 for any yelt.
On the other hand, H=e§—0 implies
0=2(r, H)<1 for any ye2,.
Thus, recalling that 2(y, A)=2(y, H)—2(y, H)e Z for any ye2, we get 2(7, A)
=0, 1 or —1 for any y<2, and hence we have
(*) rel, (r, A>0= (1, H)=0.
Now we define
B={reX; 7, A>0 or (1, =0, (r, H)=0}.

Then B is a closed system of roots containing 7 or —7 for each y€2. Thus
by a characterization of Borel-Hirzebruch ([1], Corollary 4.10) for systems of
positive roots, which is valid also for a general (not necessarily reduced) root

system, there exists an order >’ on a’ such that B contains the set X, of all
positive roots with respect to >’. By (*) we have then

0=2(r, A=1, 0=2(, H)<1l  for any y2’.
Therefore
S'={hea; 0<2(y, h)<1l for any yel’}
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is a fundamental cell whose closure S’ contains 0, A and H. Since HeSNS,
we can find seW such that sS’=S and sH=H. Put B=sA. Then BeS~[—{0}
and

|H—B|=|s(H-A)|=|H—Al|=H]|.

This completes the proof.
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