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FOLDINGS OF ROOT SYSTEMS AND GABRIEL'S THEOREM

By

Toshiyuki Tanisaki

1. Introduction.

Gabriel's theorem [5] (cf. below for precise statements) was generalized by

Dlab-Ringel [3], [4] where Dynkin graphs of type Bn, Cn, Fit G2 also enter in

the classificationtogether with the graphs of type An, Dn, En in [5]. We give

in this note another generalization of [53 using the fact that Bn, Cn, Fif G2 are

obtained by the so-called folding-operation from An, Dn, E6. Our formulation is

rather similar to the original formulation in [5].

Let F be a finitegraph. We denote its set of vertices by FQ and its set of

edges by I＼ (there may be several edges between two vertices and loops joining

a vertex to itself). Let A be an orientation of f. For each /e/i we denote its

starting-point by ≪(/)and its end-point by /3(/).

For a fixed fieldk we define a category X(F, A) after Gabriel F51 as follows.

Definition 1. Let (F, A) be a finite oriented graph. A pair (V, f) is an

object of -C(F, A) if V―{Va＼aeF0} is a family of finite-dimensional vector

spaces over k, and f={ft: Vacw^V^aA^Fi} is a family of ^-linear mappings.

(V, f)―> (W, g) is a morphism if <p= {<pa: Va―*Wa＼aGFo} is a family of k-

linear mappings such that for each /e/^ the following diagram

fr

V*in

<Pacn

9≪-

Waa) ^
gl

Wfiu>

commutes.

The category X(F, A) is naturally an abelian category and in this category

the theorem of Krull-Remak-Schmidt about the essential uniaueness of direct-
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sum-decomposition of an object into indecomposable objects holds.

Definition 2. For each object (V, f)^X(F, A) we define an element dim V

of the real vector space Q)aGpQR-a by dim F=So-Gr0(dim Va)a.

Theorem 1 (Gabriel [5]). (i) Let (F, A) be a finiteconnected oriented graph.

Then there are only finitely many non-isomorphic indecomposable objectsif and

onlv if the erabh F is one of the following eraths.

(An)

(£,)

(E7)

(£≪)

≪T

a7

<xn

(w^l)

≪n-i

≪n

(w^4)

≪8

a. a. a a

≪1

a.

Oft

a2

≪3

a a

≪3

≪a

a*

a.

a.

a

≪5

≪s

OCs

a*

≪6

≪≪

≪n-i

(ii) Furthermore if the graph F coincides with one of the graphs (An), (Dn),

(E6),(E7), (E8), then dim gives a bijectionfrom the set of all the classes of iso-

morphic indecomposable objects onto the set of all the positive roots of the root

system of type (An), (Dn), (Ee),(£7),(E8) respectively.

Since Gabriel established this theorem in [5] by rather individual treatment,

Bernstein-Gelfand-Ponomarev [1] gave a simple unified proof using the theory of

root systems and Weyl groups.

Now our generalization of this theorem is formulated as follows.

For a finiteoriented graph (F, A) we denote by Aut(F, A) the automorphism

group of (F, A). Thus Aut(F, A)={a = (a0, a1) =Rr°X<5ri＼a(ff1(l))=o0(a(l)),

B(a,(l))=aQ(B(l))for alll^FA, where <&ri means the symmetric group consisting
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of all permutations of the set Ft. Now for each o^Aut{F, A) we define a func-

tor K" : X{F, A)->£{r, A) as follows. For an object (V, /), (W, g)=Ka-{V, f)

is given by Wa=Va^＼a) for all a^FQ and gi=fo-un for all /eTj. For a mor-
<p Ka-<p x

phism (V,f)-^(W,g), K°-{V,f)―>K°-(W,g) is given by (Ka'<p)a=<po-H^

for all a<^Fn.

Definition 3. Let G be a subgroup of Aut(F, A). We define a category

XG{F, A) which is a full subcategory of
~C{F,

A) as follows. For an object(V, f)

eJ7(f, A), (V, f) is an object of J7%T, A) if for each a&G Ka-{V, f) is iso-

morphic to (V, f) in the category X(F. A).

Our main theorem is the following.

Theorem 2. Let (F, A) be a finite,connected,orientedgraph and G be a

subgroup of Aut(F, A).

(i) In the category XG(F, A), the theorem of Krull-Remak-Schmidt holds.

(ii) There are only finitelymany non-isomorphicindecomposable objectsin

-CG(F,A) if and onlyif the triple(F, A, G) is one of thefollowing types.

(An) F O O O -O O (n^l) G={1}
ax a2 cc3 ocn-i an

(Bn) r

(cB) r

(W r

(£≪) r

0L＼ OCo OCx OC-zn-2 <*2rc-l

#1 a2 as

OCn+l

OCn-i

O O O O QX^

ax ≪2 OC-i OLn-3 an-VX^^

≪l oc3 oca aB a≪

(n^2)

te3)

(n^4)

tM

G={l,z}

z(ai)=a2n-i

G={l,r}

di (iSn-1)

≪i+i(i=n)

at-i (i=n+T)

G

G=

{1}

{1}
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(£0 r

(e8) r

(F<) r

CO r

Oil

fXi

OC-L

≪s

≪S

az

a4

≪4

Ui
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oc&

CXr>

as

OCe,

≪6

a6

a7

a7

(Xs

a.i

af>

G

G

{1}

{1}

G={lfr}

r(≪i)=a≪, r(a2)=0Ci

T(a.,)~ar,, r(≪.,)~≪4

r(a5)―≪3, r(a6)=ai

G acts transitively on the

set ＼ax,oc-i,cxi}and

fixes a2-

Furthermore in the graphs above, the pair (A, G) is assumed to have the property

that G is a subgroup of Aut (F, A), i.e., A is G-invariant.

(iii) // the type of the triple(F, A, G) coincides with one of the (^U)~(G2)

above, then there is a natural one-to-one correspondence between the set of all the

classes of isomorphic indecomposable objects and the set of all the positive roots

of the root system of the type (An)^(G2) respectively.

The author wishes to express his hearty gratitude to Professor N. Iwahori

for his valuable advices.

2. Some categorical arguments.

Let C be an abelian category in which each object is isomorphic to a direct

sum of finitelymany indecomposable objects and the theorem of Krull-Remak-

Schmidt holds. Let H be a finiteset consisting of equivalent functors from C

onto C. We assume that H forms a group with respect to the composition of

functors.

Definition 4. We define a full subcategory CH of C in the following way.

For an object M of C, M is an object of Cn if for all FeH F-M is isomorphic

to M in the category C.

Proposition 1. (i) In the category CH the theorem of Krull-Remak-Schmidt
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holds.

(ii) For an indecomposable object M^C, let H~＼Jf=1Fi-K be the coset decom-

position of H with respect to the subgroup K={F^H＼F-M=M}. Then M―

c iivM is an indecomposable objectin the category CH.

(iii) Any indecomposable object of Cn is isotnorphic to M which is obtained

as in (ii)for some indedomposable object M of C.

(iv) There are only finitelymany non-isomorphic indecomposable objectsin CH

if and only if there are only finitelymany non-isomorphic indecomposable objects

in C.

Proof. We firstnote that every M of CH is a direct sum of finitely many

indecomposable objects of CH. In fact thisis easily seen by induction on the

'length' k of M expressed as a direct sum of k indecomposable objects of C.

(ii) It is clear that M is an object of CH by construction. Let us prove

that M is indecomposable in CH. There existindecomposable objects Ml} ■■■, Mk

of CH such that M is isomorphic to Ma0 ･■･0M*. By the theorem of Krull-

Remak-Schmidt, M is isomorphic to an indecomposable component of some Mi

in C. Since Mi = F-Mt for every FeF and the theorem of Krull-Remak-Schmidt

holds, M is isomorphic to a direct sum component of Mt in C. Thus M coincides

with M^

(iii) Let N be an indecomposable object of CH. If M is an indecomposable

component of N in C, F-M is also isomorphic to an indecomposable component

of N in C for all F^M. So there exists N'eC such that iV is isomorphic to

M0iV. Because N and M are objects of CH, N' is an object of Ca, too. On the

other hand N is indecomposable in CB. Thus iV is isomorphic to M.

(i) In the category C the theorem of Krull-Remak-Schmidt holds. So by

(ii)and (iii)the same theorem also holds in CH.

(iv) Let 0! (resp. 02) be the set of all the classes of isomorphic indecom-

posable objects in the category C (resp. CH). By (ii)and (iii)there is a natural

mapping from 0X onto $2- And the inverse image of one element of @2 is a

finiteset and its cardinalityis less than the order of H. So @x is a finite set

if and only if 02 is a finiteset.

3. Proof of the main theorem.

Let (F, A) be a finiteoriented graph and G be a subgroup of Aut(F, A).

We firstremark the following obvious lemma.

Lemma 1. (i) KaoKT=KOT for all a, reC.
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(ii) For each a^G, Ka is an equivalence of the category.

(iii) The set H―{Ka＼o^G} forms a group with respect to the composition

of functors.

By the lemma above we can apply the arguments in §2 to our situation. If

we set C=£(F, A) and H― {Ka＼o^G}, then the category Cn equals to £°(F,A).

So Theorem 2 (i),(ii)is a consequence of Proposition 1 (i),(iv) and Theorem

1 (i). At the end of this section we prove Theorem 2 (iii).

By the Proposition 1 (ii),(iii)we can construct all the indecomposable objects

of £G{F, A) from the indecomposable objects of £{F, A). And the indecom-

posable objects of £{F, A) are described in the Theorem 1 (ii). So Theorem 2

(iii)is a consequence of the following proposition about the so-called foldings of

the root systems.

Proposition 2. Let A be a reduced irreducible root system and II be a funda-

mental root system of A (cf. N. Bourbaki [2]). For each root system of the fol-

lowing types we give a subgroup G of Aut(II) as follows. (Note that G ―Aut (II)

except the case (iv) and the case (ii)with n=3.)

(O

(ii) d=Dn+1

(n^3)

(m) J=E,

GL＼ &t a3 (Xzn-n Ct<in-1 (X2n-1

JO OLn

≪i a2 a a oCn-2 ^n^ix^^

≪1 ocs OCa a5 as

G={l,r}

(1^2n-l)

G={1,t]

at (i^n-1)

ai.1 (i=n+V)

G={1,T}

T(aO=a6, r(a2)―a2

r(ar3)=≪6, r(a4)=ar4

z(as)=ara, z(a6)=a1



(iv) J=Di

Foldings of root systems and Gabriel'stheorem

a,

a.

G operates transitivelyon

the set {ax, a3, a4} and

fixes at. Thus G^Z/3Z

or G=<S3-
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In each case of (i)~(iv)above, we define a for each a<sd as follows. Let

G=＼Ji=1GfGa be the coset decomposition of G relative to the subgroup Ga =

{a<^G＼o(a)―a}. We define a by a=2*=iO'i(a).

Then J={a＼a^J} is a root system of type Bn, Cn, Fif G2 respectively,and

tl―{a＼a^7i＼ is a fundamental root system of A respectively. Moreover for a, /?

gJ, a=fi holds if and only if there exists an element o of G such that o{a)―^.

Proof. If we put n={ai＼l^Li?^k} where k=2n―l, n+1, 6, 4 for the cases

(i)~(iv)respectively, then &i=^lj^ii<Xj with Ii={l^j^k＼3a^G s.t. a(<Xi)=aj).

So the elements of IT are linearly independent. And for any d=2i= l^i^i6 J,

m.i=mj if there exists some o^G such that o{cti)=otj,because a{&)=& for any

a^G. So each ≪ej can be written as a=S/9e5W/3jS with integral coefficients^

which are all non-negative or all non-positive.

Thus it is enough to show that 2 is a root system of type Bn, Cn, FA, G2

respectively and that if a=$ for a, /3eJ, then there exists some a^G such

that a(a)―ft. This can be seen by straightforward verifications. For example

we give the verificationsfor the cases (i),(Hi),using the notations of N. Bour-

baki [2].

(i) J={gj―e;-|l^z, j^2n, ii^j) and H={ai―e.i―ei+1＼l^i^2n―1}. r is given

by r(gi)=―02ra+i-t,so for each a=et―e< v(a)=a if and only if i-＼-j=2n-＼-l.Thus

a=ei―ej (i+j=2n+T)

a+r(a)=(et ―e2≫+i-i)―(e*―e2B+i->) (i+j=5fc2n+l).

So 5=^3 implies that there existsan element a of G such that o(a)=fi. If we

set fi=ei-e2n+i-t(X^i^n), then 2={±ft＼l^i^n}^J{±fi±fj＼i^j}. So A is a

root system of type Bn.

(iii)J={±ei+^|l^i<y^5}W{±(e8-e7-e6+S?=i(-DI'c<>e<)/2|2?=iv(0:even>

and 77= {at|l^i^6} with

≪1 =Oi+08)/2―(02+e3+04+e3+06+07)/2

=0,+e2

―&i-i―er-2 (3^i^6).
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t is given by

7-(et)=-e8-t+JC (l^i^4)

z(e5)=(y-e5)/2

r(y)=(y+3e5)/2

where x~(e1+e2+es+ei)/2

y ―gg g6 ^7･

So it is easily seen that ≪=/3 implies the existence of an element a of G with

a(a)=j3. If we set

fi=x+(es+y)/2

f2=-x+(es+y)/2

then J={±/i|l^i^4}W{±/,±/,|l^f<;^4}W{(±/1±/2±/3±/4)/2}. So 2 is a

root system of type F4.

4. Some remarks.

Remark 1. In the Theorem 2 the assumption that F is connected is not

essential.

Indeed if F is not connected let jP0―U*=i/oci)be the decomposition into con-

nected components. We can assume that G acts transitively on the set

{roci)|l^z=g&}. Now let G(f) be the subgroup of Aut(F(i＼ ici)) induced by the

subgroup {<TeG|<70(-rroco)=/oc<)}- Then by restriction we obtain a natural bijec-

tion from the set of all the classes of isomorphic indecomposable objects of

XG{F, A) onto the set of all the classes of isomorphic indecomposable objects of

XGCi＼F≪＼ A^).

Remark 2. Let F be one of the Dynkin graphs An> Dn, Ee> Eu Es. For

the category C=X{F, A) and for any finite group H consisting of equivalent

functors from C onto C, the arguments in §2 also hold. However, if A" is an

equivalent functor from C onto C, there exists some a^Aut(F, A) such that

K-M=K"-M for any M<=C. So essentially we can limit the arguments in §2

only for the case H―{Ka＼ a<=G} where G is a subgroup of Aut(F, A).

We can show the statement above as follows. If M is a simple object, then

K- M is also a simple object of C. So K induces a permutation a0 of the set Fo.
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For each edge /e/^ we define an object (V, f) by Fa(o― V^n = k, Vr=Q(y^a(l),

j8(0),fi―id and ft,=0 (I'^l). Considering the Jordan-Holder sequences of the

objects (V, f) and K-{V, f), K induces some a^Aut{F, A). It is enough to show-

that for each indecomposable object M, {Ka~1oK)-M isisomorphic to M. By the

way dim((Jft:<r"1oJfs:).M)=dImM(IfiVis simple, (K'^oKyN^N. So if TV appears

n-times in the Jordan-Holder sequence of M, it appears n-times in the Jordan-

Hodler sequence of {K'^oKyM, too). Thus by the Theorem 1 (ii),(K'^oKyM

is isomorphic to M.(This remark is due to Yohei Tanaka.)

Note added in proof.

After the preparation of this paper, the author realized that the notion of

" folding " has been already given by R. Steinberg: in [6] a theorem similar to

our Proposition 2 is proved in a unified manner.
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