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1. Introduction

The quaternionic sectional curvature of an indefinite quaternionic Kahler

manifold is investigated in [6], where it is shown that its treatment presents

certain analogies with that of the holomorphic sectional curvature of an inde-

finiteKahler manifold [1].

An important feature of indefinitemetrics is the existence of null geodesies,

and the study of the Jacobi operator along such geodesies. A simple examina-

tion of the curvature tensor of an indefinite Kahler manifold of constant holo-

morphic sectional curvature shows that its restrictionto degenerate holomorphic

planes vanishes identically. Such condition R(U, JU, JU, U)―Q is shown in [3]

to be strictlyweaker than constant holomorphic sectional curvature. In fact,

the product M^xM^c) of two positive definite Kahler manifolds endowed

with the metric g=glR(―gi) satisfiesR(U, JU, JU, Z7)=0 but its holomorphic

sectional curvature is not constant, unless c=0.

When one considers an indefinite quaternionic Kahler manifold of constant

^-sectionalcurvature, the curvature tensor is expressed in terms of the metric

and the almost complex structures of the quaternionic structure. From that

expression it immediately follows that

(1) R(U, <})U,<j>U,U)=0, 0=1, J,K,

where {/, /, K} is any local basis of the bundle of almost complex structures

on M.

The aim of this paper is to investigate such condition (1), and to prove

that it is characteristic of indefinite quaternionic space forms. This makes a

significant difference in the study of the curvature of indefinite quaternionic

Kahler manifolds with respect to the complex case. We will show the fol-
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Theorem A. Let (M, g, V) be an indefinite quaternionic Kdhler manifold.

Then M is an indefinite quaternionic space form if and only if

R(U, <j)U,<j>U,U)=Q

for all null vector U, <fi=I,J, K.

Theorem A has been stated previously in [6, Th. 7.3], but the proof there

seemed to be inadequate because of the lack of convergence, in general, of a

certain real sequence. Moreover, perhaps that approach is too difficultto repair,

because of a counterexample [3] to the complex case [1, Th. 6.5]. For this

reason, we provide a completely different proof.

Finally, considering the expression of the curvature tensor of an indefinite

quaterionic space form, we obtain the form of the Jacobi operator along null

geodesies for such spaces. As a direct application, we show the nonexistence

of conjugate points along null geodesies in indefinite quaternionic space forms.

We will follow the notations of [6] and we refer to it (see also [2], [7]),

for the definitionsof the ^-sectionalcurvature and some basic facts concerning

the curvature tensor of an indefinite quaternionic Kahler manifold. All mani-

folds are assumed to be connected.

2. Preliminaries

Let (M, g, V) be an indefinite almost quaternionic manifold, i.e., V a 3-

dimensional bundle of almost complex structures on M, and g an indefinite

metric of signature (Ap, 4q), (p-^q=n) satisfying

gtyX, <f>Y)=g(X, Y)

for all vector fields X, Y(EX(M), 0=/, /, K, {I, J, K) being a local basis of V.

(M, g, V) is said to be indefinite Kdhler if the bundle V is parallel with

respect to the metric connection 7 induced by g. As a consequence of such

condition, one has the following identities for the curvature tensor [6]

R(X, Y, Z, W)=R(X, Y, IZ, IW)

1

{g(Z, JW)Ric(X, JY)+g(Z, KW)Ric{X, KY)},

{g(Z,IW)Ric{X, IY)+g(Z, KW)Ric(X, KY)},

n + 2

R(X, Y, Z, W)=R{X, Y, JZ, JW)

n+~2
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R(X, Y, Z, W)=R(X, Y, KZ, KW)

for all <j>=/, /, K.

{g(Z, IW)Ric(X, lY)+g{Z, JW)Ric(X, JY)＼,
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1

M + 2

for all X, Y, Z, W vector fields on M, where Rtc is the Ricci tensor of M,

dim M=4n.

Throughout this paper we assume the existence of null vectors U, (g(U, U)

=0) and hence it must be p, q^l. An important consequence of this fact is

that the metric is Einstein, because dim M=4n >8.

Lemma 1. Let (M, g, V) he an indefinite almost quaternionic manifold, and

U a null vector, U^TmM. Then there exist orthogonal vectors X, Y^TmM

spanning a totallyreal plane such that U―X+Y.

Proof. Let {Eu ･･･, Ein) be an orthonormal basis at m, and write U―

^,4iiiJiiEi+ 'Eij=ip+i[x}Ej, where the first 4/>-vectors in the basis above are as-

sumed to be spacelike, and the last 4(n―p) timelike. Put X'=^i＼l1)LiEi, Y'=

2£LP+i PjEj> and consider the subspace W spanned by {Xf, IX', JX', KX', Y',

1Y', JY', KY'}.

Let Xx be an arbitrary spacelike vector in W, and consider the 4-plane W1 =

Q(Xi), spanned by {Xlf IXU JXU KXX}. Let W2 denote the complementary

orthogonal subspace of Wx in W. Since Wx is invariant by the quaternionic

structure <f>=I, J, K and W2 is orthogonal to Wlt W2 is also invariant.

Now, since U^W, there exist asfi and /3e^2 such that U=a+fi. The

result follows if we put X=a, Y = B. D

In order to analize (1), the following identities will be used extensively,

Lemma 2. Let (M, g, V) be an indefinitequaternionic Kdhler manifold satis-

fying condition(1). Then for each pair of orthogonal vectors X, Y^3C(M) with

g{X, X)=-g(Y, Y),

(a) R(X, <j)X,X, <j>Y)-R{X, $X, <j>X,Y)

=R(Y, $Y, 4>Y, X)-R{Y, <]>Y,Y, <j>X)

(b) R(X, <j>X,<j>X,X)+R(Y, <j>Y,$Y, Y)=2R(X, &X, Y, #Y)

+2R(X, $Y, Y, <j>X)+R(X, AY, X, 6Y)+R(Y, 6X, Y, AX)

Proof. Since X is orthogonal to Y, and g(X, X)=-g(Y, Y), then X+Y
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and X―Y are null vectors, and hence

R{X±Y, $X±<j>Y, <pX±$Y, X±Y)=0.

Now the result follows by linearizing this expression. □

The next proposition shows the significanceof condition (1) in terms of the

Jacobi operator along null geodesies

Proposition 3. An indefinite quaternionic Kahler manifold, (M, g, V),

satisfiescondition (1) if and only if

(3) R{U, $U)$U=4U

for all null vectors U, and some functions e$, $&=/, /, K.

Proof. It is clear that (3) implies (1). Conversely, if (1) holds, then

R(U, <j>U)<f>U<=<Jjy. Since U^iUy, it will be enough to show that

g(R(U, $U)<f>U, V)=0, for all null vectors Fe<f/>-L.

For each null Fe<£/>-"-,U+sV is a null vector, and hence

R(U+sV, (j>U+s<f>V,<j>U+s<j>V,U+sV)=Q.

Linearizing this expression, and considering the coefficientof s, we have

0=2R(U, <!>U,<f>U,V)+2R(U, <j>U,<f>V,U)=4g(R(U, <j>U)<f>U,V),

which shows that R(U, <f>U)<f>U=c$U for every null vector U, <f>=I,J, K. □

Lemma 4. Let (M, g, V) be a 4n-dimensional indefinite quaternionic Kahler

manifold satisfying condition (1), and (7eTmM a null vector. If U=X-＼-Y for

some X, Y spanning a totallyreal plane as in Lemma 1, then

(4)
clu=4szR(U, Z, Z, £/)-

3Sc

4n(n+2)
Sz{g(U, JZY+g(U, KZf}

for all unit Z such that <{X, IX}>±Z±_<{Y, IY}>

(5) c$=4szR(U, Z, Z, U)-
3Sc

4n(n+2)
Sz{g(u,izy+g{u, KZf)

for allunit Z such that({X, JX}>J_Z±<{Y, JY}}

(6) c#=UzR(U, Z, Z, U)-
3Sc

4n(n+2)
ez{g(U,lZf+g{U, JZf)

for all unit Z such that ({X, KX})>A_Z±.({Y, KY}}, where Sc denotes the scalar

curvature of M.

Proof. Let us show (4). Let X, Y be vectors as In Lemma 1 such that
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U=X+Y, and consider V a null vector such that g(U, V)=-l/2, (V=l/4g(X, Xy1

{Y―X)). Let Z be an arbitrary unit vector such that Ze<{I, IX}>X and Zg

<{F, /F}>＼ Let (Dt denote the vector o≫t=l/V^(f/+^szVF), where ez=g(Z, Z).

Since <{Z, IX}}±Z±<{Y, IY}}, it is clear that Z<=<{U, IU}>＼ Ze

<{7, /F}>x, and moreover that

<{Z, IZ}}_L<{o)t, Io)t}>, g(Z, Z)=-g(<ot, o)t).

Hence, condition (b) in Lemma 2 gives us,

R(Z, IZ, IZ, Z)+R(a>t, I(ot>Iwt, (ot)=2R(Z, IZ, a>t,Iwt)

+2R(Z, Io)t,(Dt,IZ)+R(Z, I(ot,Z, Ia>t)+R(fi>t,IZ, a)t,IZ),

tR(Z, IZ, IZ, Z)+jR(U+tszV, I(U+tszV), 1(U+UZV), U+UZV)

=-2R{Z, IZ, U+tezV, I(U+tezV))+2R(Z, I(U+tezV), U+tszV, IZ)

+ R(Z, I(U+UZV), Z, I(U+tezV))+R(U+tezV, IZ, U+tszV, IZ).

Linearizing previous expression and taking limits as £―≫0,one gets

2szR(U, IU, IU, V)+2szR(U, IU, IV, U)

=2R(U, IU, Z, IZ)+2R(U, IZ, Z, IU)+R(U, IZ, U, IZ)+R(Z, IU, Z, IU).

Using the identities(2), it follows that R(U, IU, IV, U)=R(U, IU, IU, V), and

(7) -2szcIu=2R(U, IU, Z, IZ)+2R{U, IZ, Z, IU)

+R(U, IZ, U, IZ)+R{Z, IU, Z, IU).

Once again, from (2),one has R{Z, IU, Z, IU)=R(U, IZ, U, IZ), and hence

(7) becomes

-szcb-RiU, IU, Z, IZ)+R(U, IZ, Z, IU)+R(U, IZ, U, IZ).

Once again, from (2), and using the firstBianchi identity, one gets after

(8)

cu=ezR(U, Z, Z, U)+3ezR(U, IZ, 1Z, U)

3Sc

4n(n+2)
ez＼g(z,juy+g(z, Kuy＼

If we put Z=/Z in (8), one gets R(JJ, Z, Z, U)=R(U, IZ, IZ, U), and the

result is obtained from previous equation. The remaining identities (5) and (6)

are obtained in the same wav. n
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Corollary 5. Let (M, g, V) be an indefinite quaternionic Kdhler manifold

satisfying condition (1). Then

Cj/―ty―Cy ,

for each null U.

Proof. Let U be an arbitrary null vector, U^TmM, and show that da―c^.

Put U=X+Y for some orthogonal X, Y spanning a totally real plane as in

Lemma 1, and take Z=JX. Since <{X, IX}}±JXl{{Y, IY}> and <{X, KX}>

l/Il<{F, KY}}, it follows from (4) and (6) in previous lemma that ch=c§.

The remaining cases are obtained in the same way. □

Corollary 6. Let (M, g, V) be an indefinite quaternionic Kdhler manifold

of dim M>8 satisfying condition(1), and Ue.TmM a null vector. If U=X+Y

for some orthogonal X, Y spanning a totallyreal plane as in Lemma 1, then

(9) <$=UZR(U,Z,Z,U), $=I,J,K,

for all unit Z such that Q(X)±Z 1_Q(Y).

Proof. It follows directlv from (4),(5) and (6) in previous lemma. □

3. Constancy of the quatemionic sectional curvature

In [6], the following criteria for the constancy of the quaternionic sec

tional curvature is obtained.

Lemma 7. Let (M, g, V) be an indefinite quaternionic Kdhler manifold of

real dimension 4n^8. // for any m^M, there exists a local basis {I, J, K} of

V such that R(X, <f>X,<j>X,Y)=0, for every orthonormal vectors X, Y^TmM

spanning a totallyreal plane and some <j>=I,J, K, then Mis an indefinite quater-

nionic space form.

Next theorem gives conditions on the Jacobi operator along spacelike, time-

like and null geodesies, each of them equivalent to the constancy of the q-sec-

tional curvature.

Theorem 8. For an indefinite quaternionic Kdhler manifold, (M, g, V), the

following conditions are equivalent

(a) The q-sectionalcurvature is constant,

(b) R(X, 6X)6X^X, for all spacelike vectors X.
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(c) R(X, $X)$X~X,

(d) R(U, <j>U)<j>U=%

where ~ means proportional,and $=I, J',K

for all timelike vectors X

for all null vectors U.
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Proof. If the ^-sectional curvature is a constant c, then R(X, <J>X)<}>X=

cg{X, X)X, which shows the necessity of (b). To see the sufficiency, we will

look at R(X, <j>X,$X, Y) for all possible {X, Y) spanning a totally real plane,

and use Lemma 7. If X is spacelike, then by (b), R{X, <ftX,$X, Y)=0.

If X is timelike and Y is also timelike then there exists an unit spacelike

vector Z such that Q(X)±Z±Q(Y); hence R(XZ+X, l<j)Z+(f>X,l(j>Z-＼-<j)X,Y)

=0, for U|>1, and we get R(X, <f>X,<f>X,Y)=0. If Y is spacelike, then

XY+pX satisfiesg(XY+fiX, AY+fiX)=X2~fi2 and Q(XY+fiX)±Q(XX+/iY) hence

R(ZY+ftX, X^Y+fi^X, tyY+ft$X, XX+pY)=Q, for X2-fi2>0. Linearizing this

expression it follows that R(X, $X, <1>X,Y)=0.

The equivalence between (c) and (a) is obtained in an analogous way.

To prove that (d) is equivalent to (a), we proceed as follows. If the q-

sectional curvature is a constant c, for every tangent vector X, R(X, (j>X)<j)X―

cg{X, X)X, and hence R(U, $U)$U=0 for every null vector U.

For the sufficiencywe use again Lemma 7. Let X and Y be unitary tangent

vectors spanning a totally real plane. If g(X, X)=―g(Y, Y), then X+Y and

X―Y are null vectors, and therefore using (d)

R{X+Y, <j>X+<j>Y,<f>X+<f>Y,X-Y)-R{X-Y, <f>X-(}>Y,<j)X-<j)Y,X+Y)=0,

from which we get

(10) R(X, <f>X,<j>X,Y)-R(Y, $Y, §Y, *)=0.

Considering now (10) and (a) in Lemma 2, it follows that R{X, $X, (f>X,Y)―Q.

Now, if g(X, X)=g(Y, Y) then consider Z a unit vector with g(Z, Z)―

-g{X, X) such that Q(X)±Q(Z)±Q(Y). Since {X, AZ+Y) spanns a totally

real plane, it follows that R{X, $X, <f>X,XZ+Y)=Q for values of U|>1, and

hence R{X, <j>X,<j)X,Y)=0. D

It is clear now that what remains for proving that condition (1) is equi-

valent to constant ^-sectional curvature in quaternionic Kahler manifolds is to

show that the functions ct vanish identically.

Proposition 9. Let (Min, g, V) be an indefinite quaternionic Kdhler mam

fold satisfying condition(1). Then the Ricci tensor satisfies
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(11)

for any nullvector U<=TmM,

RiciJJ,U)={n+A)4,

Proof. Let m be an arbitrary point on M, U a null vector U^TmM, and

consider X, Y<=TmM unit vectors spanning a totallyreal plane with U=k(X+Y)

as in Lemma 1. Decompose the tangent space TmM=(X, IX, JX, KX}@

<X, IY, JY, KYy@(Zx, ■■■,Z4n_8>, where <ZU ■■■,Zin-%> is an orthonormal

basis of (Q(X)RQ(Y)Y. With respect to such a basis, the Mcci tensor has the

expression

(12) Ric(U, U)=R(X, U, U, X)-R(Y, U, U, Y)+R{IX, U, U, IX)

-R(IY, U, U, IY)+R(JX, U, U, JX)-R(JY, U, U, JY)

+R(KX, U, U, KX)-R(KY, U, U, KY)

+42's(£i, Zt)R(Zt, U, U, Zt)

Now,

R(X, U, U, X)-R{Y, U, U, Y)

= k2R(X, X+Y, X+Y, X)-k2R(Y, X+Y, X+Y, Y)=0,

and

R($X, U, U, <j>X)-R((j)Y,U, U, <j>Y)

= k2R(0X, X+Y, X+Y, (j>X)-k2R{<j)Y,X+Y, X+Y, <j>Y)

= k*R(X+Y, <j){X+Y), <j>{X+Y), (X-Y))

=g(c$U, k~＼X-Y))=24
■

Using the identities in Lemma 4 and Corollaries 5 and 6, we obtain the

result from (12). □

Now, we can prove the anounced

Theorem A. Let (M, g, V) be an indefinite quaternionic Kdhler manifold.

Then M is an indefinite quaternionic space form if and only if

R(U, <f>U,4>U, U)=0

for all null vectors U, <j>―I,J, K.

Proof. Since any indefinitequaternionic Kahler manifold of dim M=4n^8

is Einstein, it follows from (11) that
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(n+4)cft=Ric(U, £/)=0.
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This shows that c$=Q for all null U, $=I, J, K, and the result follows from

(d) in Theorem 8. □

As a direct consequence of Proposition 9 and Theorem A, we state the

following result on the boundedness of the ^-sectionalcurvature.

Theorem 10. Let (M, g, V) be an indefinite quaternionic Kdhler manifold.

If the q-sectionalcurvature is bounded from above {or from below) on spaceliki.

quaternionic planes and bounded from below {or from above) on timelike quater-

nionic planes, then it is constant.

Proof. Let U<=TmM be an arbitrary null vector, and Z an unit vector

orthogonal to U. Then Zn―U-＼-l/nZ is a sequence of non null vectors aproxi-

mating U. The Zn are spacelike or timelike if and only if Z is so, and hence

R{Zn, <j>Zn,<j>Zn,Zn)£Ag{Zn> Znf

for some constant A if g{Z, Z)―l, and

R{Zn, <j)Zn,<!>Zn,Zn)^Bg{Zn, ZB)8,

for some real B, if g(Z, Z)=―1.

Taking limits in previous expressions as n^oo, one gets

R{U, $U, <j)U,U)^0, R{U,<j)U, $U,U)^Q,

and hence R(JJ, <j>U,<frU,U)―0 for all null U. Now the result follows from

Theorem A. □

Remark 11. Using the expression obtained in [6] for the curvature tensor

of an indefinite quaternionic space form,

(13) R(X, Y)Z=^ {g{Y, Z)X-g{X, Z)Y+g{IY, Z)IX-g{IX, Z)IY

+g{JY, Z)JX-g{JX, Z)JY+g{KY, Z)KX-g{KX, Z)KY

+2g{X, IY)IZ+2g{X, JY)JZ+2g{X, KY)KZ)

it follows that for any totallyreal degenerate plane tc―({X. Y＼),

(14)

and

(15)

R(X, Y, Y, X)=Q

R(X,$X,#Y,Y)=O, <f>=I,J, K
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Now, if U is a null vector, then {U, <f>U]spanns a degenerate totally real

plane {<f>―I,J, K), and hence, applying either (14) or (15) to {U, <j>U),it must

be R(U, $U, <j>U,U)=Q, which shows that the quaternionic sectional curvature

is constant, according to previous Theorem A. Hence, it is clear that for an

indefinite quaternionic Kahler manifold, conditions (1),(14) and (15) are, each

of them, equivalent to constant quaternionic sectionalcurvature. (Compare with

the results in [31 for the complex case). □

4. The Jacobi equation along null geodesies

Finally, we shall solve the Jacobi equation along a null geodesic y in an

indefinite quaternionic space form. We will follow the notations in [4]. Let

fx denote the nondegenerate normal bundle of y, fL―y1/iy''>,Rr the projection

on f1 of the Jacobi operator, RrX=R(X, y')y'and X=n(X) for any vector field

X along j, with %: yx>-*yxthe projection. Also let X' be the covariant deriva-

tive of X along y defined by X'=K^JrX), for any X vector fieldalong y.

Since y'(t)^Tr(t)M is a null vector, there exist spacelike and timelike X, Y

<=Tnt)M spanning a totallyreal plane such that y'(t)―X+Y. Complete Q{X)@

Q(Y) to an orthogonal basis of TrwM, and consider the parallel frame along j

given by

{X, Y, ItX, ItY, JtX, JtY, KtX, KtY, Zu ■■■,Z4re_8},

where {It,Jt, Kt} denotes a rotating basis of the bundle V along y(t)such that

the covariant derivatives ly^^t vanish for $―1, J, K. Hence the projection

ihx, fir, fix, fir, fox, Kir, z,-, z4n_8＼,

of the basis above, is a parallel basis of fx. Considering the expression (13)

of the curvature tensor of an indefinite quaternionic Kahler manifold of con-

stant quaternionic sectional curvature c, the matrix of the Jacobi operator Rr

with respect to the basis above is block diagonal

where L is the 2x2 matrix

L =

Rr=

L

jg(X, X) -^g{X, X)

jg(X, X) -jg(X, X)
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Now, we state the following result on the existence of conjugate points

along null geodesies.

Theorem 12. Let (M, g, V) be an indefinite quaternionic space form. Then

there are no conjugate points along null geodesies.

Proof. Let A(t) be a solution of the Jacobi equation, A"+Rr°A=0, satis-

fying the initialconditions A(0)=0, A'(0)=Id. Then, j has a conjugate point

of zero at t if and only if det 4(0=0 [41.

Considering the expression above of the Jacobi operator Rr, one can solve

explicitely the Jacobi equation, and obtain the endomorphism-valued function A

to be a block diagonal matrix of the form

/

W)=
＼

with P(t)the 2x2 matrix

Pit)

P(t)

-4rg(X, X)t

Hence det A(t)=tin 2, which shows the nonexistence of conjugate points

along r. □

Remark 13. If y is a nonnull geodesic, and the ^-sectionalcurvature is

constant c, one can also show the nonexistence of conjugate points along geo-

desies y with c＼y',f'XO, and the existence of a conjugate point of zero at

each t―(c{yf,y'yyl'zkit,for positive values of k, if c(r',r/>>0.
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