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A NOTE ON FREE DIFFERENTIAL GRADED

ALGEBRA RESOLUTIONS

Introduction

By

D. Tambara

We work ove a field k. A differentialgraded algebra (dga for short) in this

paper is a graded ^-algebra U = Rn>0Un with differentiald of degree -1. Given a

^-algebra R, it is well-known that there exists a free dga resolution £:£/―≫/?

(Baues [2]). That is, U is a dga which is free as a graded algebra, £ is a dga

map, and the sequence

_*_>£/_*_>..._*_>£/_§_>*_>()

is exact. Such a resolution is thought of as a prolongation of a presentation of R

by generators and relations, and expected to contain lots of information about

homology of R. Although free dga's frequently appear in homotopical algebra

such as [2], not much seems to be known about the structure of free dga

resolutions of algebras.

We study here a relationship between a free dga resolution of R and a free

bimodule resolution of the i?-bimodule R. Let U be a dga which is free on a

graded space E, and e:U^>R an augmentation map. We construct a complex

RRER R of freei?-bimodules with augmentation a : RR ER R-^>Q,R, where QR

is the kernel of the multiplication map RRR^>R. If £ is a resolution, then so is

G (Proposition 1.2).The converse is true when R is a connected graded algebra

and U,£ are taken to be compatible with the grading of R (Theorem 3).

Therefore, the verification of the exactness of £:£/―>/?reduces to that of

<j:RRERR-*Q.r, which is much easier.

Using thiscriterion,we give explicit free dga resolutions of Koszul algebras

and theirgeneralizations.

Notation. For a graded module M =
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R.,>n^,.'we write M+ =c
()M

. For a
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^-module V, T(V) is the tensor algebra on V. When

give T(V) the induced grading.

V is a graded ^-module, we

1. The bimodule resolution associated with a dga resolution

A dga is a graded algebra U = Rn>0Un equipped with a linear map d:U ―>U

such that d2=0,d(Un)^ (/,_,and d(xy) = d(x)y +(-1)" xd(y) for xeUp,yeUq. A

dga (U, d) is said to be freeif the graded algebra U is free, that is, U = T(E) for

some graded subspace E of U.

Any algebra can be viewed as a dga concentrating in degree 0. Let U be a

dga and R an algebra. A dga map e:U ―≫R is called a resolution if

is exact.

It is well-known that given an algebra R, there exist a free dga U and a

resolution e:U^>R. For example, see [2, Lemma 7.21], where a more general

statement is proved. Although our results are logically independent of this fact,

we briefly review a construction of a free dga resolution.

First, take a surjective algebra map U(0) = T(E0)^> R from a tensor algebra.

Suppose we have constructed a dga Uin) which is free on a graded space

Eo <c･･･c£',, and a dga map UOl) ―≫R which induces isomorphism on homology in

degree < n. Then take a linear map 0 :£,,+,―≫Ker(d: U{nn)―>£/,'"})so that Im0

covers Hn(U{n)).Put U(n+i) = T(E0 0---0£,i+1) and extend the differential of UUl)

to the differential d of U{"+]) so that d＼En+,=(j). Then /f,,(£/("+l))= 0. Thus we

obtain an increasing sequence of free dga's Uu'＼n>0. Then t/ = U,,^/(") together

with the map Uo = Ui0) ―>R provides a free dga resolution of R.

In this section we give a construction of a free J?-bimodule resolution of the

i?-bimodule R from a free dga resolution of R. This is based on an idea of Shukla

in [5].

Let R be an algebra, U = (T(E),d) a free dga and e:U^R a dga map.

Define an i?-bimodule map p: RRUR J?-> RR ER R by

p(lRxr--xllRl) =
i£(xr--xi_])RxiR£(xi+]---xn)

;=1

for xv---,xn e E and

p(lRlRl) = Q.

Then p(RRUnR R)a RR EnR R , because e(U+) = 0 .

Define an i?-bimodule map d: RR ER R^> RR ER R as thecomposite
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RRERR^RRURR d >RRURR-^RRERR.

Then d(RREnRR)c:RR£,_, RR.

Define an Z?-bimodule map a: RR ER i?-> RR R by

<J(1RXR1) = £(X)R1-1R£(X).

G vanishes on RRE.RR.

Proposition 1.1. d2 = 0,ad = 0

Thus we obtain a complex ofi?-bimodules

^RREnRR―^ ^RRE0RR―^RRR mult >/?->().

Proposition 1.2. If e:U―> R is a resolution, then thiscomplex is exact.

401

2. Proof of Propositions 1.1 and 1.2

Viewing U as just an algebra, we form the standard free resolution of the U

bimodule U ([3]):

8_>uRu>+2)_S_^ $->uRU mult >£/->0

S(uQ R ･･･ R ≪;i+1) =
i

(-1)''k0 R ･･ ･ R m.m/+1 R ･･･ <8> m/!+

/=0

Each term of the resolutionis a complex as a tensor product of the complex U,

and each 8 is a chain map, because the multiplicationURU ^>U is so.

Now regard R as a {/-bimodule through the map e:U―>R. Applying the

functor RRu ()Ru R to the standardresolution,we obtain a complex

7-^RRUR"RR-^―> 7―>RRR mult >R >0,

whose terms are complexes and differentials7 are chain maps. So we have a

double complex B having terms Bpq =(RRURP R R)q for p,q>0. This was

consideredby Shukla [5]. The propositionsare proved by relatingHlpH"(B) and

H"Hlp(B) with Hp+c/(totB).Here H＼Hn mean the homology with respect to the

first,second index respectively,and totB is the totalcomplex of B.

We firsttreatHlHl＼B).

(i) We have a diagram
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RRURURR―^->RRURR P >RRERR >0

'I

RRR

where the firstrow is exact and the triangleis commutative.

Proof. Forget the differentialgraded structure of U for a moment. As U is

the tensor algebra on E, a minimal free resolution of the £/-bimodule U is given

by

0^URERU―L->URU mult >E/->0

where t(1<8>*R1) = jcR1-1Rjc for xeE([2,p. 181, Ex2]). Define a CZ-bimodule

map 0:URURU-^URERU by

9(1 R x,･･-xn R 1)= X x,･･･jc,._,R x,.R xi+]･■■xn

e(iRiRi) = o

for i,-xe£. 0 is the identity on URERU and the diagram

uRuRu ^^->

URERU ―^->

uRu

uRu

is commutative. By the exactness of the standard and the minimal resolutions,it

follows that the sequence

U R U R U R U ―^-≫U R U R U ―^-≫f/R E R U -> 0

is exact. Now apply S^O^i? to the above diagram and the sequence. As

p = R<g>i;6R,,R, a = RR,, T<B>,,/?,the assertion follows.

Proof of Proposition 1.1. Since yis a chain map, it follows from the exact

sequence of (i) that RRERR becomes a complex with differential d' and p

becomes a chain map. By the definition of d and the fact that p is the identity on

RRERR, we know o>'= <9.Thus (RRERR,d) is a complex and p,a are chain

maps.

(ii)The homology of the complex

^―>RREnRR―^ ^RRE0RR ° )RRR

at RREnRR is isomorphic to Hn+,(totB).
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PROOF. As noted in (i), the [/-bimoduSe U has projective dimension 1. So ■

Hl(B) = Tor"Ru""(RRR,U) = 0 for p>＼. By (i), we have H＼{B) = Ker a,

HlJB) = Coko.So

H＼(B･ ) = RRE' RR if q>0

= Ker(RRE0RR―^R<S)R) if q = 0

Hlo(BJ = O if q>0.

Hence HqxH＼{B) is the homology at RREqRR of the complex in the statement

and the spectral sequence degenerates to give HxqlH＼(B)= HqM(toi B) for q > 0.

(iii)If e:U -> R is a resolution, then Hn (totB) = 0 for n > 0.

Proof. By Kiinneth we have

Exl(Bpv )= Hq(RRURpRR) =
＼DR(P+2)

0

if

if

q = 0

q>0

and the complex

■■■^≪iI(^.)->..-->^l(^)i.)

is isomorphic to the standard free resolution of the i?-bimodule R, which is

acyclic. Hence HlpHlql(B)= 0 unless p = q = 0.Then Hn(totB) = 0 for n > 0.

Now Proposition 1.2 follows from (ii)and (iii).

3. Case where R is graded

In this section we state a converse of Proposition 1.2 under certain

assumptions. As before, let R be a ^-algebra, U = (T(E),d) a free differential

graded algebra with augmentation e:U ―>R. Here we further assume that

･ R is a connected graded algebra, thatis, /?= c,,>,/?'"with R° =k.

･ E has another grading E = Rmi0E'" compatible with the original one, that

is, £,=c,,>,£; with E"=Emr＼EH.

E° =0

Then the upper grading of E induces the grading U = @m>0U'" so that U is a

doubly graded algebra.The thirdconditionmeans thatthe graded algebra Uo is

connected.We finallyassume

d{Um)czU'＼£{Um)ciRm
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Remark. For any connected graded algebra R, one can find a resolution

£:(/―>/? satisfyingthe above conditions. This is easily seen from the

constructionreviewed in Section 1.

THEOREM 3. The following are equivalent.

(1) £:U ―>R is a resolution.

(2) The complex

^-*RREnRR―^ ^RREQRR―^RRR mult )/?-≫0

is exact.

(3) The complex

EnRR―^
$-+E0RR―2-^R―!l->k->0

is exact, where d ―k R Rd, O =kRR<J and 7]is the projection.

(2) =s>(3) is obvious, and (3) => (2) follows from a version of Nakayama's

lemma. We shall prove (3) =$ (1) in the next section.

The map d on E is given also as E―^ERU lRe >ER R, and a = -e on

E (see (v) of the next section).

4. Proof of Theorem 3

Let 91 be the set of finite sequences v = (v,,---,vf) of non-negative integers.

Write |v|= v,H ＼-vr,/(v) = r. For ^u = (//,,･･･,fie/)and v = ( v,,--,vr), define

We write also 0* =((),･･･,0),0*l = ((),･･･,0,1)(& is the number of 0).

Define a partial order < on 91 as follows. For /n and v as above we set fi < v

if |/i|= |v| and /I,=vl,---,juh_l=vh_v}ih <vh for some h<q,r. Note that //0' < v0J

if and only if fi<v. Let 9l'= {(v1,---,vr)e9(|r>O,v;. >0}. Then < is a total order

on the subset {v e W ||v|= ≪} for each n > 0.

For v = (v,,---,vr)e9l', define v_ =(v,,"-,vr_1,v/.-1).

For ve§t,weset £r = ^ R･ ･･ R£,, . Then

t/ = T(E) =eL i/0 = r(£0) = e£. t/. = e evu0.

For v g 91, let

pr ＼U-*E , n :U->R E
k=EUn
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be the projections with respect to the above decomposition for U.

(i) d(E)^EU.

PROOF. Clearly d(En)a Un_x c EU if n > 1. And

d(Ex) c Ker(£:UQ^R)<z £/0+= E0U0

by the assumption Uq -k.

We define a map d* :U+ ―>£/as follows. First, J* on £+is the composite

E+_<L^ERU 1RKR >ERu0,

where k0 is the projection onto Uo. As U+=URE+RU0, we can then define d*

on U+ by

for xeUp,yeE+,zeU0. Clearly J* is right f/0-linear and left skew IMinear.

Also d*(EvU0)cz EV_UQ for veW.

(ii)For jce EVUO with v e ?t' we have

d(x)-di,(x)E c £ t/0

fi<v-

and in particular ti*(jc)= nv d(x).

Proof. Let v = (v,,---,v,.).As d and d* are right i/0-linear, we may assume

jc= jc,･･･xr with x,£Ev ,■■■,xre £v.Then

d(x) =
r
1 ±xi---x )_ld(xi)xM---xr

II ±xl--xi_ipTxd(xi)xM-xr

1=1i

where A runs over elements of §1such that |A|

if i-r and A, < v -1, then

If

is

= r and A, = V

= v,-l,/(A)>l (by (i)).If i<r or

(v,,-",v,
1U(v,+1,--,vr)<v

-1, then X = (vr ―1,0,･･･,0). The sum of the terms for such i,X

±*,"-*r_iX Pr(y no^W = dJx)

Thus ^W-^WeR^,^.

(iii) phd(xy) = (-lflxp^d(y) for A,ne%xeEx,yeU
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Proof. Expanding d(x) as above, we see prA^(d(x)y)= 0

(iv)Let /ie?l, veW, ^<v. If nv d(E^)*0, then ji

iJ>0.

= V O'lO7 for some

PROOF. We have prxd(E^)*Q for some A = v_0*,*>0. Put r = /(v),q = l(jii),

p = /(A)= r + k .Then q < p by (i),and there exists h < q such that

/i,= Ap---,/!,,_,= Aft_,,

M/H-l=K+p-q+l>'">llq =^p-

If /z<r, then fi>v, a contradiction. If /i= r, then /i= vQq~r, which is also

impossible. Hence h > r and ＼i= v_0'10-/for some i,j.

Let rj:R^k be the projection map. ERR = kRR(R<8)ERR) becomes a

complex with differential<9= k RR d and augmentation G-kRRo:ERR^R.

(v) We have

d＼E:E―^ERU lR£ )ERR, o＼E = -e.

Proof. By the definition of p and the fact rj£(E) = O, we have a

commutative diagram

u pW >

U

ERU
1R£

RRERR

I r/RlRl

ERR.

From thisand (i),the firstassertion follows. The second is clear.

(vi) The following diagram is commutative.

EnRU0 -!^―>

En_xRU0
1R£

EnRR

■Id

£,_, R R.

Proof. Follows from (v) and the definitionof d≪.

From now on we assume (3) of Theorem 3.

(vii) e:U -> R is onto.

Proof. The exactness of E0RR ° >R ^ >k implies R+=e(EQ)R. So R

is generatedby s(E0) as a ^-algebra.

(viii)UX―^>UQ―^R is exact.
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Proof. By (vi) we have a commutative diagram

17, => £,R[/0 10£ > E,RR

d-i

u

0

R

z) E0RU0 lR£ >

h
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Consider the ideal / = Ker(e :Uo -≫R) c £/+= Eo R Uo. By the exactness of the

right column of the diagram, we have / c di,(ElR f/0)+ Ker(lR e), hence

Iczd(U＼) + EaI. Since */(£/,)is an ideal of f/0,we have I = d{Ux) by Nakayama's

lemma.

(ix) [//1+1―^-> Un ―^ f/fI_,is exact for n > 0.

Proof. Fix p>0. Let us show the exactness in upper degree p. Firstly we

note that the set {ve9T|;rv,(£/,f)*0} is finite.Indeed, such v must satisfy ＼v＼= n

and #{i＼vi=0}<p because #J=O.So l(v)<n + p.

For O^xgU^ , let H(x) be the greatest element of {ve W＼nv(x)*R} with

respect to the order <. We shall show that if O^xe Ker(d: f/,f―>£/,f_,),then there

exists j t/,f+1such that H(x-d(y))< H(x) or x-d(y) = 0. Then the exactness

will follow by induction.

Put H(x) = v = (v,,-",vr) and v,.= m>0,v' = (v,,---,vr_l). Also put xjJ=nfJ(x)

for fieW. Then * = *,+!^<p^ . We have

0 = 7TlPd(x) = nv d(xv)+ X ^,, d(xM).

By (ii), ^, d(xv) = di,(xv). If (i<v and ^, rf(jc//)?t0, then, by (iv), flOk = v.Q'W

for some /, 7, /:. Hence fi-v_O'l as /ie?I'. So x^eEv RU{. Then, by (iii),

Kvd(x^)eEv Rd(U{). Thus we know d*(xv)t EvRd(U{). Hence

(1R £)<*(*,) = 0(*).

By (vi), the diagram

Ev,REm+lRUQ

E,REmRU,

'-I

E, R E. R Uo

101R£ ) E,REm+xRR

mR£
) E,,REmRR

1R1R£ . -

llR<?

<8>E, R R

commutes up to sign. By (*), (vii) and the exactness of the right column, there
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exists z e(Ev, R Em+l R U0)p such that

xv - d≪(z) g Ker(Ev <8>(/0 'R£ >Ev R /?)= £,.R J(f/,).

Since J* operates as ±＼Rd on EVRUX, we have jc,,-rf*(z) = J*(m) for some

uG(EvRuly.

But by (ii),

rf(z)-^(z)G0£ t/0

d(u)-dt(u)e 0 EM0

where jig W. Hence

x-d(z + u)

as required.

= xv-d(z + u)+l xueREu
u

0

5. Examples of resolutions

We shall firstgive a free dga resolution of a Koszul algebra. Let R be a

connected graded algebra generated by elements of degree 1 with defining

relations of degree 2. So we can write as R ―T(V)/(I) where /cVRV. Put

/<">= n VRiRlRVRJ ^VR"

i+j=n-2

for n>0. We understand /(0>= k, I(l)= V. R is called a Koszul algebra if

the following complex of right /^-modules is exact.

Here the differentialis induced by the inclusion maps

/("1c/W)RVc/(lH)Ri?.

For equivalent definitions of Koszul algebras, see [1],[4].

Let A :l{p+q)-> I(p)R l{q)be the inclusion map for p,q>Q.1Lct E = Rn>J(n)

with bigrading En=En+l =/("+1). Put U = T(E). Let d:U^U be the derivation

such that

d(x)= I (-1)'Am(jc) for xeEn.

p,q>0

Let e:U ―>/? be the algebra map such that £(x)= x for * e £0= V and £(*)= 0

for xeE .
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PROPOSITION 5.1. e:(U,d)^> R is a free dga resolution.

Proof, d2 =0 follows from the coassociativity of Ape/.ed = 0

d be as in Theorem 3. For x&En we have

d{x) = {＼R£) 1 (-l)"AM(x) = (-i)"A;iJ(jc).

409

is clear. Let

Hence, up to sign, d coincides with the differentialof the above free resolution

of the i?-module k. So e: U ―≫R is a resolution.

We next introduce a generalization of a Koszul algebra, for which we give a

free dga resolution. Fix an integer e>2. Let R = T(V)/(I) with /cVRf. As

before, define

/<">= p vR'R/RvR7cvR".

i+j=n-e

Consider the complex of righti?-modules

-≫/(e"+1)<8>R -≫/(CT1>R /?-> >I0)RR-i /<0>R /?-> ik-^ 0

where the differentialis induced by the inclusion maps

/M)c/wRVc/wRi?

j{en) r(e(n-l)+l)^ yR(e-l) r(f(n-l)+l)^ n

We say /?is an e-Koszul algebra if the above complex is exact.

Remark, (i) 2-Koszul just means Koszul. (ii) k[x]l(xe) is e-Koszul. (iii)Let

icVRV. If T(V)/(J) is Koszul, then T(V)l(J(e)) is e-Koszul. We omit the

proof.

Let us give a free dga resolution of an e-Koszul algebra R = T(V)/(I). Let

n>0 n>＼

rr pen+＼ j(en+＼)t? pen _ j(en)E2n=E =1 , tln_x=t -1 .

Put Eev=Rn>_0E2ll, Eoi=Rn>]E2n_i. Let

511:^->£OdR^od

8 ■E ―≫ERe

S0l:Eev^EevREod

be the maps whose components are respectively the inclusion maps
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j(e(/,+---+/(,+I)) t(W,+I) (OJ.../5) ir(<''<.+1)

j(e(i+j)+＼) . w(ei)0 j(e/+l)

7(f(/+/)+l) i(ei+l) ^ r(f/)I ―7 1 V&1 I

Put U = T(E). Let d: U -≫U be the derivation such that

E=@d

n>0

_{SO-SU on Eod

U
01-510 on Eev

Let e: U ―>R be the algebra map which is the identity on Eo = V and vanishes on

PROPOSITION 5.2. e:(U,d)-^R is a free do,aresolution

PROOF. Again d2 = 0 is a consequence of the coassociativityof the maps

8u,S0,Si0,S0l.Recall the descriptionof d after Theorem 3. We have the

equalitiesof maps

(£2,,-.~^(E R U)2n_2
me

)E2n_2 R R)

= {E2n_x ^ E2n_2R £*'-> ^> £2n_2R i?),

(£2n-^(E R £)2n_, 10£ )E2n_xR i?)

(l(8>e)501=0,

(lR£)<Sn=O.

Hence d equals the differentialof the free resolution of the /^-module k up to

sign. So by Theorem 3 e : U ―>R is a resolution.
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