ON REPRESENTATIONS OF THE BIMODULE DA

By

Ibrahim ASSEM

Abstract. Let A be a finite-dimensional algebra over an algebraically closed field k. A representation of the A-A bimodule DA = $\operatorname{Hom}_k(A, k)$ is a module over the matrix algebra:

$$\overline{A} = \begin{bmatrix} A & 0 \\ DA & A \end{bmatrix}$$

We first prove that \overline{A} is representation-finite (and in fact simply connected) whenever A is an iterated tilted algebra of Dynbin type. We then assume that A is a tilted algebra of Dynkin type, and characterise \overline{A} by its Auslander-Reiten quiver.

1980 Mathematics Subject Classification: Primary 16A46; Sedcondary 16A64.

Key words and phrases: Representations of DA, iterated tilted algebras, trivial extension algebras.

Introduction

Let A be a basic, connected, finite-dimensional algebra over an algebraically closed field k, and $T(A)=A \ltimes DA$ be its trivial extension by its minimal injective cogenerator $DA=\operatorname{Hom}_k(A, k)$. It was proved by Hughes and Waschbüsch in [13] (see also [12], [9]) that if A is a tilted algebra of Dynkin type Δ , then T(A) is representation-finite of Cartan class Δ , and conversely, if T(A) is representation-finite of Cartan class Δ , there exists a tilted algebra B of Dynkin type Δ such that $T(B) \cong T(A)$. It was then shown in [2] that T(A) is representation-finite of Cartan class Δ if and only if A is an iterated tilted algebra of Dynkin type Δ . Moreover, the construction in [13] suggested that the representations of T(A) were related to the representations of the A-A bimodule DA, or, what amounts to the same, the modules over the matrix algebra :

Received November 5, 1984.

Ibrahim ASSEM

$$\overline{A} = \begin{bmatrix} A & 0 \\ DA & A \end{bmatrix}.$$

The aim of this paper is to study the representations of the matrix algebra \overline{A} in the case where A is (iterated) tilted of Dynkin type. We shall first prove that \overline{A} is representation-finite (and even simply connected) whenever A is an iterated tilted algebra of Dynkin type. If A is in fact tilted of Dynkin type Δ , we shall describe a functor F: mod $\overline{A} \rightarrow \text{mod } T(A)$ which is surjective on the indecomposables, and whose restriction on a full subcategory of mod \overline{A} preserves the Auslander-Reiten sequences and the irreducible maps, thus providing us with a simple combinatorial description of the Auslander-Reiten quiver $\Gamma_{\overline{A}}$ of \overline{A} : let ${\mathcal S}$ be an (arbitrary) complete slice in the Auslander-Reiten quiver ${\mathcal \Gamma}_{{\mathcal A}}$ of ${\mathcal A}$, then S generates a configuration $(Z\Delta)_{\mathcal{C}}$ of $Z\Delta$ [9], which is stable under the action of τ^{-m_d} (here, τ denotes the translation of $(Z\Delta)_c$, and m_d denotes the Coxeter number of Δ minus one, thus $m_{A_n} = n$, $m_{D_n} = 2n-3$, $m_{E_6} = 11$, $m_{E_7} = 17$ and $m_{E_6} = 29$) and in which S embeds fully; let now $[S, \tau^{-m_{d}}S]$ denote the full connected subquiver of $(Z\Delta)_c$ consisting of all the vertices lying between S and $\tau^{-m}\Delta S$, then $\Gamma_{\overline{A}}$ is constructed by glueing the full connected subquiver of Γ_{A} consisting of the predecessors (respectively, successors) of \mathcal{S} to the left (respectively, to the right of [S, $\tau^{-m} \Delta S$].

The above description yields a characterisation of \overline{A} in terms of its Auslander-Reiten quiver. Recall first that a slice [11] in a simply connected translation quiver is a full convex subquiver S such that, if x is a predecessor of S, then S contains precisely one vertex from the τ -orbit of x. We may now state:

THEOREM Let B a basic, connected, finite-dimensional k-algebra. There exists a tilted algebra A of Dynkin type Δ such that $B \cong \overline{A}$ if and only if Γ_B is simply connected and contains a slice S of underlying graph Δ such that:

- (1) All projective B-modules which are not injective are predecessors of S.
- (2) All projective-injective B-modules lie between S and $\tau^{-m} \Delta S$.
- (3) All injective B-modules which are not projective are successors of $\tau^{-m_A}S$.

Throughout this paper, k will denote a fixed algebraically closed field. We shall freely use properties of the Auslander-Reiten sequences and the Auslander-Reiten quiver such as can be found in [4] and [10]. For tilted algebras and their properties, we refer to [7] and [11]. We shall use essentially the results of [13].

1. Definitions and preliminary results:

1.1. Let A be a finite-dimensional k-algebra. Recall that a (finite-dimensional) representation of the A-A-bimodule $DA = \operatorname{Hom}_k(A, k)$ is a triple (U_A, V_A, ϕ) , where U_A and V_A are right (finite-dimensional) modules, and ϕ is an A-linear map from $U_A \otimes_A DA_A$ to V_A . A morphism of representations $f: (U, V, \phi) \rightarrow (U', V', \phi')$ consists of a pair of A-linear maps $g: U_A \rightarrow U'_A$, $h: V_A \rightarrow V'_A$ such that $h\phi = \phi'(g \otimes 1)$. It is well-known that the category of (finite-dimensional) representations of the bimodule DA is equivalent to the category of (finite-dimensional) right modules over the matrix algebra:

$$\overline{A} = \begin{bmatrix} A & 0 \\ DA & A \end{bmatrix} = \left\{ \begin{bmatrix} a & 0 \\ q & b \end{bmatrix} | a, b \in A, q \in DA \right\}$$

endowed with the ordinary matrix addition, and the multiplication induced by the bimodule structure of DA. Indeed, writing 1 for the identity of A, and setting:

$$e := \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \qquad e' := \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix},$$

any right \overline{A} -module M can be written in the form (U, V, ϕ) , where U := Me', V := Me and ϕ is the multiplication map $\phi : u \otimes q \rightarrow uq$ (for $u \in U$ and $q \in DA$). In the sequel, these two categories will always be identified.

Observe that \overline{A} is a QF-3 algebra [18]; indeed, $e'\overline{A}$ and $\overline{A}e$ are, respectively, a right and a left minimal faithful \overline{A} -module. Observe also that the trivial extension $T(A)=A \ltimes DA$ is the subalgebra of \overline{A} consisting of all the matrices $\begin{bmatrix} a & 0 \\ q & b \end{bmatrix}$ such that a=b. Our main objective will be to study the relations between the categories of finite-dimensional right modules mod \overline{A} , mod A and mod T(A).

1.2. We shall, from now on, assume that A is a quotient of a finite-dimensional hereditary algebra, that is to say, that the ordinary quiver Q_A of A has no oriented cycles. We shall denote by 1, 2, \cdots , n the vertices of Q_A and by $e_1, e_2 \cdots e_n$ the corresponding primitive orthogonal idempotents, which we assume to be admissibly ordered (that is to say, such that $e_jAe_i \neq 0$ implies $i \leq j$). We shall let S(i) denote the simple module corresponding to the vertex $i \in (Q_A)_0$, P(i) and I(i) denote respectively its projective cover and injective envelope. In order to distinguish between the two copies of A given respectively by $e\overline{A}e$ and $e'\overline{A}e'$, we shall denote the first one by A, and the second one by A'. Accordingly, Q'_A will denote the quiver of A', i' the vertex of Q'_A corresponding to

 $i \in (Q_A)_0$ and e'_i the corresponding idempotent.

The ordinary quiver Q_A of the algebra \overline{A} may now be constructed as follows. Clearly, Q_A and Q'_A are both full connected subquivers of $Q_{\overline{A}}$, and every vertex of $Q_{\overline{A}}$ is a vertex of either Q_A or Q'_A . Also, there is an arrow $i' \rightarrow j$ whenever rad $(e'_i \overline{A} e_j)/\operatorname{rad}^2(e'_i \overline{A} e_j) \neq 0$. Observe that $e'_i \overline{A} e_j = D(e_j A e_i)$ and therefore if $e_j A e_i \neq 0$, there is a non-zero path in $Q_{\overline{A}}$ from i' to j. Also, since $e'_i \overline{A} \cong D(\overline{A} e_i)$, each $P(i')_{\overline{A}}$ is projective-injective, and its socle is just S(i). On the other hand, every $P(i)_{\overline{A}}$ has its support lying in Q_A , thus is a projective A-module. Dually, $I(i')_{\overline{A}}$ has its support lying completely in Q'_A and is an injective A'-module.

For our purposes, another description of $Q_{\bar{A}}$ will be needed. First, we recall the following developments from [13]: consider the matrix algebra:

where matrices have only finitely many non-zero entries, $A_m = A$ and $Q_m = {}_A DA_A$ for all $m \in \mathbb{Z}$, all the remaining entries are zero and multiplication is induced from the canonical maps $A \bigotimes_A DA \cong DA$, $DA \bigotimes_A A \cong DA$ and the zero maps $DA \bigotimes_A DA$ $\rightarrow 0$. Let ν be the automorphism of \hat{A} induced by the identity maps $A_{m+1} \rightarrow A_m$, $Q_{m+1} \rightarrow Q_m$. Then $\hat{A} | \nu \cong T(A)$. An \hat{A} -module consists of a family $(U_m, \phi_m)_{m \in \mathbb{Z}}$ of A-modules U_m and A-linear maps $\phi_m : U_m \otimes DA \rightarrow U_{m-1}$ such that, for all $m \in \mathbb{Z}$,

$$\phi_{m-1}(\phi_m\otimes 1)=0.$$

An \hat{A} -linear map $f: (U_m, \phi_m)_{m \in \mathbb{Z}} \to (U'_m, \phi'_m)_{m \in \mathbb{Z}}$ consists of a family of A-linear maps $(f_m: U_m \to U'_m)_{m \in \mathbb{Z}}$ such that, for all $m \in \mathbb{Z}$,

$$f_{m-1}\phi_m = \phi'_m(f_m \otimes 1).$$

We shall let, as in [13], Mod \hat{A} (respectively, mod \hat{A}) denote the category of \hat{A} -modules $(U_m, \phi_m)_{m \in \mathbb{Z}}$ such that $\dim_k U_m < \infty$ for all $m \in \mathbb{Z}$ (respectively, $\dim_k(\bigoplus_{m \in \mathbb{Z}} U_m) < \infty$). Then ν induces an automorphism of Mod \hat{A} , and the subcategory Mod^{ν} \hat{A} of Mod \hat{A} consisting of the ν -invariant modules and ν -invariant morphisms is equivalent to mod T(A) by the functor which maps the T(A)-module M on the \hat{A} -module $(U_m, \phi_m)_{m \in \mathbb{Z}}$ such that $U_m = M$ (considered as an A-module)

for all m, and ϕ_m is induced by the action of DA on M [13].

Clearly, \overline{A} is identified to the quotient algebra of \widehat{A} defined by the surjection,

$$\hat{A} \longrightarrow \begin{bmatrix} A_0 & 0 \\ Q_1 & A_1 \end{bmatrix}$$

and therefore $Q_{\bar{A}}$ is identified to the full subquiver of $Q_{\hat{A}}$ defined by the vertices: $\{(i, 0) | i \in (Q_A)_0\}$ and $\{(i, 1) | i \in (Q_A)_0\}$ (in our previous notation, (i, 0) is i and (i, 1) is i').

1.3. Since the trivial extension T(A) is a subalgebra of \overline{A} , the inclusion map $T(A) \rightarrow \overline{A}$ defines a functor $F: \mod \overline{A} \rightarrow \mod T(A)$ (by restriction of the scalars) as follows: for an \overline{A} -module (U_A, V_A, ϕ) , the T(A)-module $M:=F(U, V, \phi)$ has the A-module structure of $U_A \oplus V_A$, and the multiplication of $(u, v) \in M$ by $q \in DA$ is given by:

$$(u, v)q = (0, \phi(u \otimes q))$$

Thus, for $(u, v) \in M$ and $\begin{bmatrix} a & 0 \\ q & a \end{bmatrix} \in T(A)$:

$$(u, v) \begin{bmatrix} a & 0 \\ q & a \end{bmatrix} = (ua, va + \phi(u \otimes q))$$

We define in the same way the action of F on the morphisms: if f=(g, h): $(U, V, \phi) \rightarrow (U', V', \phi')$ is an \overline{A} -linear map, we put $F(f):=g \oplus h: U \oplus V \rightarrow U' \oplus V'$ as an A-linear map, the compatibility of this definition with the multiplication by elements of DA follows from the fact that $h\phi=\phi'$ ($g\otimes 1$).

We shall now give another description of the functor F. Let E be the canonical embedding functor of mod \overline{A} in mod \widehat{A} (which is obtained by "extending by zeros"): it is full, exact, preserves indecomposable modules and their composition lengths. We also have a functor $\widehat{F}: \mod \widehat{A} \rightarrow \mod T(A)$ (denoted Φ in [13]) which is full, exact, preserves indecomposable modules and their composition lengths and also Auslander-Reiten sequences and irreducible maps: it is the composition of the functor $\mod \widehat{A} \rightarrow \mod^{\nu} \widehat{A}$ given by $M \rightarrow \bigoplus_{m \in \mathbb{Z}} \nu^m M$, $f \rightarrow \bigoplus_{m \in \mathbb{Z}} \nu^m f$ (for M, N in mod \widehat{A} and $f \in \operatorname{Hom}_{\widehat{A}}(M, N)$) and the equivalence $\operatorname{Mod}^{\nu} \widehat{A} \rightarrow \mod T(A)$ described in (1.2). We shall prove:

LEMMA $F = \hat{F} \circ E$.

PROOF. Indeed, for an \overline{A} -module (U, V, ϕ) , $E(U, V, \phi)$ is the \hat{A} -module $(W_m, \phi_m)_{m \in \mathbb{Z}}$ defined by:

 $W_0 = V, \quad W_1 = U, \quad W_m = 0 \text{ for } m \neq 0, 1,$ $\psi_1 = \phi: U \otimes DA \longrightarrow V, \quad \psi_m = 0 \text{ for } m \neq 1.$

This module is mapped on the module $(W'_m, \phi'_m)_{m \in \mathbb{Z}}$ in Mod^{*}Â which is such that $W'_m = U_A \bigoplus V_A$ for all $m \in \mathbb{Z}$, and $\phi'_m : W'_m \otimes DA \to W'_{m-1}$ is defined, for all $m \in \mathbb{Z}$, by:

$$\phi'_m((u, v) \otimes q) = (0, \phi(u \otimes q))$$

(for $(u, v) \in U \oplus V$ and $q \in DA$). Finally, $(W'_m, \phi'_m)_{m \in \mathbb{Z}}$ is mapped on the T(A)-module whose A-module structure is that of $U_A \oplus V_A$, and where the action of DA on $U \oplus V$ is induced by the mapping ϕ'_m . Thus, if $(u, v) \in U \oplus V$, $a \in A$ and $q \in DA$:

$$(u, v) \begin{bmatrix} a & 0 \\ q & a \end{bmatrix} = (ua, va + \phi(u \otimes q)).$$

That is, F and $\hat{F} \circ E$ coincide on the objects. It is easily checked that they coincide also on the morphisms, and hence $F = \hat{F} \circ E$.

COROLLARY The functor F preserves the indecomposable modules and their composition lengths.

1.4. We shall now give a sufficient condition for \overline{A} to be simply connected:

PROPOSITION Let A be a basic, connected, iterated tilted algebra of Dynkin type, then \overline{A} is simply connected.

PROOF. Let A be a basic, connected, iterated tilted algebra of Dynkin type, then, by [2], the trivial extension T(A) is representation-finite. The existence of a functor $F: \mod \overline{A} \rightarrow \mod T(A)$ which preserves indecomposable modules and composition lengths implies that the indecomposable \overline{A} -modules must have bounded length. Since \overline{A} is connected, it follows from [3] that it is representation-finite.

Observe that, by (1.2), \overline{A} is a quotient of a finite-dimensional hereditory algebra. On the other hand, A is simply connected [1], hence it satisfies the condition (S) of [6]: that is to say the indecomposable projective A-modules have separated radicals. By the construction of $Q_{\overline{A}}$, this implies that those indecomposable projective \overline{A} -modules which are also projective in mod A have separated radicals. Now the remaining indecomposable projective \overline{A} -modules are also injective, their radicals are indecomposable and hence separated. Thus \overline{A} satisfies the condition (S), and is therefore simply connected.

Remarks and Examples It is possible that \overline{A} be representation-finite (and

222

and

even simply connected) even though A may not be iterated tilted of Dynkin type. Consider indeed the following example: let $\wedge(n, s)$ (n>s) denote the algebra given by the quiver:

$$1 \xleftarrow{\alpha_1} 2 \xleftarrow{\alpha_2} 3 \xleftarrow{\dots} \dots \xleftarrow{n-1} \xleftarrow{\alpha_{n-1}} n$$

bound by $\alpha_i \alpha_{i+1} \cdots \alpha_{i+s+1} = 0$ $(1 \le i \le n-s)$ [15]. Then the algebra $A = \land (9, 3)$ is easily checked to be iterated tilted of Euclidean type \tilde{E}_s , but \overline{A} is representationfinite and in fact simply connected (for, there is a full exact embedding [16] of mod \overline{A} into the module category over the algebra $T_z(\land(11, 3))$ of all two by two lower triangular matrices with coefficients in $\land(11, 3)$, and $T_z(\land(11, 3))$ is representationfinite by [15]). In general, however, if A is iterated tilted of Euclidean type, \overline{A} is not representation-finite, for instance, the algebra B given by the quiver:

bound by $\alpha\beta\gamma=0$ and $\beta\gamma=\delta\varepsilon$ is tilted of type \tilde{D}_4 , but \bar{B} is of tame representation type.

2. The main results

2.1. For an algebra C, we shall denote by τ_c (or simply τ , if no ambiguity may arise) its Auslander-Reiten translation DTr, and by Γ_c its Auslander-Reiten quiver. We shall identify indecomposable C-modules with their isomorphism classes, thus with the corresponding vertices of Γ_c . Recall from [5] that a path $M_0 \rightarrow M_1 \rightarrow \cdots \rightarrow M_t$ in Γ_c is called sectional if $M_i \not\approx \tau M_{i+2}$ for any $0 \leq i \leq t-2$. A connected subquiver of Γ_c in which every path is sectional is called a subsection. A subsection S is called a section if for any irreducible map $M \rightarrow N$ with $M \in S$, either $N \in S$ or $\tau N \in S$. Thus, if a section contains an indecomposable summand of the radical of an indecomposable projective, it must contain that projective.

From now on, we shall always assume that A is a basic, connected, tilted algebra of Dynkin type Δ . This implies, by Proposition (1.4), that \overline{A} is simply connected. We shall also assume that $\Gamma_{\overline{A}}$ is given the partial order induced by the arrows: thus $M \leq N$ means that there exists an oriented path from M to N.

Let now S_{-} be the full subquiver of $\Gamma_{\overline{A}}$ consisting of those indecomposable \overline{A} -modules M such that there exists an oriented path from M to an indecomposable projective A-module, and moreover every such path is sectional. Clearly,

Ibrahim ASSEM

 S_{-} is connected and is a subsection of $\Gamma_{\overline{A}}$. In the same way, we let S'_{+} be the subsection of $\Gamma_{\overline{A}}$ consisting of all the indecomposable \overline{A} -modules N such that there is an oriented path from an indecomposable injective A'-module to N, and every such path is sectional. Our first objectives will be to prove that $S_{-} < S'_{+}$ and that S_{-} and S'_{+} are isomorphic to complete slices in Γ_{A} and $\Gamma_{A'}$ respectively.

2.2. LEMMA For every $i \in (Q_A)_0$, we have $P(i')_{\overline{A}} > S_-$ and $P(i')_{\overline{A}} < S'_+$.

PROOF. Assume first that $i \in (Q_A)_0$ is such that $P(i') \leq S_-$. Without loss of generality, we may suppose that the radical of $P(i')_{\overline{A}}$ is the indecomposable injective A-module $I(i)_A$: indeed, the minimal elements among the indecomposable projective-injective \overline{A} -modules are such that their radicals are indecomposable injective A-modules (corresponding to the strong sinks: see (1.2) and [13]). Then, since $P(i') \leq S_-$, there exists an oriented path in $\Gamma_{\overline{A}}$ from P(i') to an indecomposable projective A-module $P(j)_A$. Now, rad $P(i')_{\overline{A}} = I(i)_A$ and hence we have a path in $\Gamma_{\overline{A}}$:

$$\gamma: I(i)_A \longrightarrow P(i')_{\overline{A}} \longrightarrow \cdots \longrightarrow P(j)_A.$$

The restriction γ' of γ to mod A gives a path in Γ_A from $I(i)_A$ to $P(j)_A$. But A is a tilted algebra of Dynkin type, hence γ' must be a sectional path in Γ_A which, in particular, must factor through an indecomposable summand J_A of I(i)/S(i). Now J is also an indecomposable \overline{A} -module, hence must lie on γ . But then we have in $\Gamma_{\overline{A}}$ a situation:

where α and β are arrows, and γ'' a non-trivial path, and this is impossible by [17], Corollary (6). The proof of the second assertion is similar.

COROLLARY (1) (i) If $M \leq S_{-}$, then the support Supp M of M is contained in Q_{A} .

(ii) If $N \ge S'_+$, then the support Supp N of N is contained in Q'_A .

PROOF. We shall only prove (i), since the proof of (ii) is similar. If $i \in (Q_A)_0$ is such that $\operatorname{Hom}_{\overline{A}}(P(i'), M) \neq 0$, then $P(i') \leq M$. Since $M \leq S_-$, this implies $P(i') \leq S$, which is impossible by the previous lemma.

Corollary (2) $S_{-} \leq S'_{+}$

PROOF. Indeed, if this is not the case, there exist $M \in S'_+$ and $N \in S_-$ such that $M \leq N$. Since $N \in S_-$, we have $M \leq S_-$ and then Supp $M \subseteq Q_A$. On the other hand, $M \in S'_+$ implies Supp $M \subseteq Q'_A$. This is a contradiction since $Q_A \cap Q'_A = \phi$.

2.3. Let now *B* be a representation-finite tilted algebra (but not necessarily of Dynkin type), and *S* be an arbitrary complete slice of Γ_B . If there exists in *S* a sink M_B which is not projective, we can replace *M* by τM and every irreducible map *f* of codomain *M* and domain on *S* by σf , thus obtaining a new complete slice of Γ_B . Repeating this process as many times as necessary, we ultimately reach a complete slice \mathcal{L} of Γ_B which is characterised by the fact that all its sinks are projective. By construction, $\mathcal{L} \leq S$ for every complete slice *S* of Γ_B . \mathcal{L} will be called the *left extremal slice* of Γ_B . Dually, we can define the *right extremal slice* \mathcal{R} to be the complete slice of Γ_B which has all its sources injective. Another characterisation of the extremal slices is as follows:

LEMMA. (i) $M_B > \Re$ if and only if pd M > 1. (ii) $M_B < \mathcal{L}$ if and only if id M < 1.

PROOF of (i) If $M_B > \Re$, then $\tau M \ge \Re$, and, since \Re is a complete slice, there exists an epimorphism $\bigoplus_{R \in \Re} R \rightarrow \tau M$. In particular, for some source I of \Re , we have Hom_B(I, τM) $\neq 0$. But I is injective, hence pd M > 1.

Conversely, if pd M>1, then $\operatorname{Hom}_B(DB, \tau M)\neq 0$ and there exists an indecomposable injective B-module I_B such that $\operatorname{Hom}_B(I, \tau M)\neq 0$. Since $I \ge \mathcal{R}$, we have $\tau M \ge \mathcal{R}$ and hence $M > \mathcal{R}$.

Let us denote by $[\mathcal{L}, \mathcal{R}]$ the full connected subquiver of Γ_B consisting of those M_B such that $\mathcal{L} \leq M \leq \mathcal{R}$ (that is, $[\mathcal{L}, \mathcal{R}]$ consists of those vertices of Γ_B lying on a complete slice). Also, let T(B) denote the trivial extension $B \ltimes DB$. We have:

COROLLARY. Let B be a tilted algebra of Dynkin type, then $[\mathcal{L}, \mathcal{R}]$ is the maximal full connected subquiver of Γ_B to be embedded fully in $\Gamma_{T(B)}$.

PROOF. This follows at once from the previous lemma and [12], Theorem (6).

2.4. PROPOSITION. (i) S_{-} is the left extremal slice of Γ_{A} . (ii) S'_{+} is the right extremal slice of $\Gamma_{A'}$.

PROOF. of (i) It follows from Corollary (2.2.1) that every module on S_{-} is

an A-module. To prove that S_{-} is a complete slice in Γ_{A} , let us start by proving that no indecomposable projective A-module is a proper successor of S_{-} and no indecomposable injective A-module is a proper predecessor of S_{-} . The first assertion being clear by construction, let $I(i)_{A}$ be an indecomposable injective A-module such that $I(i) < S_{-}$ in $\Gamma_{\overline{A}}$. We may again, without loss of generality, suppose that I(i) is minimal among the indecomposable injective A-modules, and then $I(i) = \operatorname{rad} P(i')_{\overline{A}}$. But in this case, $I(i) < S_{-}$ implies that $P(i')_{\overline{A}} \leq S_{-}$ which contradicts Lemma (2.2).

It follows that S_{-} contains at least one representative from each τ -orbit of indecomposable A-modules. In fact, S_{-} being a subsection of $\Gamma_{\overline{A}}$, but also of Γ_{A} (because the support of each predecessor of S_{-} lies inside Q_{A}) contains at most one, and hence exactly one representative of each τ -orbit of indecomposable A-modules. By construction, S_{-} is convex and it certainly does not contain oriented cycles (because \overline{A} is simply connected). Therefore, S_{-} is a complete slice in Γ_{A} . Since, by construction, all the sinks in S_{-} are indecomposable projective A-modules, S_{-} is in fact the left extremal slice of Γ_{A} .

2.5. Let us now denote by $\Gamma = [\mathcal{S}_{-}, \mathcal{S}'_{+}]$ the full connected subquiver of $\Gamma_{\overline{A}}$ consisting of those indecomposable \overline{A} -modules M such that $\mathcal{S}_{-} \leq M \leq \mathcal{S}'_{+}$. By Lemma (2.2), all the indecomposable projective-injective \overline{A} -modules lie in Γ . Also, by Proposition (2.4), the underlying graph of the subsections \mathcal{S}_{-} and \mathcal{S}'_{+} is Δ . In the sequel, we shall call Δ -subsection of a translation quiver any subsection whose underlying graph is Δ .

Recall that the surjection $\hat{A} \rightarrow \bar{A}$ induces an embedding $\Gamma_{\bar{A}} \rightarrow \Gamma_{\hat{A}}$ which is not full in general.

LEMMA. Γ is the maximal full connected subquiver of $\Gamma_{\overline{A}}$ such that the embedding $\Gamma \rightarrow \Gamma_{\overline{A}} \rightarrow \Gamma_{\overline{A}}$ is full.

PROOF. We first observe that a module in Γ which is not projective-injective can only be projective in mod \overline{A} if it belongs to S_- , and can only be injective in mod \overline{A} if it belongs to S'_+ (by Proposition (2.4)). Since S_- and S'_+ are complete slices of Γ_A and $\Gamma_{A'}$ respectively, they are fully embedded in $\Gamma_{\widehat{A}}$ (by [13] or [9]).

Let now M be a source in S_{-} . In particular, M cannot be an injective A-module. We have two cases to consider: if M is not an indecomposable injective A-module, $\tau_{A}^{-1}M = \tau_{A}^{-1}M$. If we replace M by $\tau_{A}^{-1}M$ and every irreducible map f of domain M and codomain on S_{-} by $\sigma_{A}^{-1}f$, we obtain a new Δ -subsection S_{1} of Γ_{A} which is also a complete slice of Γ_{A} and is therefore fully embedded in Γ_{A} . If, on the other hand, M is an indecomposable injective A-module $I(i)_{A}$, the

227

section of $\Gamma_{\overline{A}}$ containing S_{-} contains also the projective-injective module $P(i')_{\overline{A}}$ which is such that rad $P(i')_{\overline{A}} = I(i)_A$. We thus replace M by $\tau_{\overline{A}}^{-1}M = P(i')/S(i)$ and every irreducible map f of domain M and codomain on S_{-} by $\sigma_{\overline{A}}^{-1}f$. We obtain in this way a complete slice S_1 in the tilted algebra $S_i^{+}A$ [13] of type Δ , where $S_i^{+}A$ is the algebra whose ordinary quiver is the full connected subquiver of $Q_{\overline{A}}$ determined by i' and $Q_A \setminus \{i\}$ with the inherited relations. In particular, the Δ subsection S_1 is again fully embedded in $\Gamma_{\widehat{A}}$. Observe that P(i') is mapped in the process on an indecomposable projective-injective \widehat{A} -module. Applying again the same considerations to S_1 , we obtain a new Δ -subsection S_2 which is also fully embedded in $\Gamma_{\widehat{A}}$. Inductively, we find a sequence of Δ -subsections:

$$S_{-} \leq S_{1} \leq S_{2} \leq \cdots$$

which have the property that the sections they determine with the indecomposable projective-injective \overline{A} -modules are fully embedded in $\Gamma_{\hat{A}}$. This process stops at \mathcal{S}_t , where \mathcal{S}_t is such that all its sources are indecomposable injective \overline{A} -modules (and hence A'-modules), that is to say, $\mathcal{S}_t = \mathcal{S}'_+$. This completes the proof that the embedding $\Gamma \to \Gamma_{\hat{A}}$ is full. The maximality assertion follows from Corollary (2.3) and Proposition (2.4).

COROLLARY (1) The embedding $\Gamma_{\overline{A}} \rightarrow \Gamma_{\widehat{A}}$ is full if and only if A is hereditary.

PROOF. Indeed, it follows from the lemma that this embedding is full if and only if $\Gamma = \Gamma_{\overline{A}}$ and this is the case if and only if S_{-} consists of projective *A*-modules and S'_{+} consists of injective *A'*-modules. By construction, both of these conditions are equivalent to the condition that *A* be hereditary.

COROLLARY (2) Let S_+ and S'_- denote respectively the right extremal slice of Γ_A and the left extremal slice of $\Gamma_{A'}$, then $S_- \leq S_+ < S'_- \leq S'_+$.

PROOF. It follows from Corollary (2.3) and the previous lemma that $[\mathcal{S}_{-}, \mathcal{S}_{+}] \subseteq \Gamma$ and hence $\mathcal{S}_{-} \leq \mathcal{S}_{+} \leq \mathcal{S}_{+}'$. Similarly, $\mathcal{S}_{-} \leq \mathcal{S}_{-}' \leq \mathcal{S}_{+}'$. Since the support of every predecessor of \mathcal{S}_{+} lies entirely in Q_{A} and the support of every successor of \mathcal{S}_{-}' lies entirely in Q'_{A} , we have $\mathcal{S}_{+} < \mathcal{S}_{-}'$.

2.6. Let now \mathcal{A} denote the additive subcategory of mod \overline{A} generated by the indecomposable \overline{A} -modules lying in Γ , and let F' be the restriction to \mathcal{A} of the functor F of (1.3), that is to say, F' is the composition of the embedding $\mathcal{A} \rightarrow \mod \overline{A}$ and of the functor $F: \mod \overline{A} \rightarrow \mod T(A)$.

THEOREM. The functor $F': \mathcal{A} \rightarrow \text{mod } T(A)$ preserves the indecomposable

modules, their composition lengths, the Auslander-Reiten sequences and the irreducible maps. Considered as a mapping $\Gamma \rightarrow \Gamma_{T(A)}$, it is surjective.

PROOF. Let us recall that the functor $\hat{F}: \mod \hat{A} \to \mod T(A)$ preserves the indecomposable modules, their composition lengths, the Auslander-Reiten sequences and the irreducible maps. On the other hand, considered as a mapping $\Gamma_{\hat{A}} \to \Gamma_{T(A)}$, it is surjective, in fact, $\Gamma_{\hat{A}}$ is connected and $\Gamma_{\hat{A}}/\nu \cong \Gamma_{T(A)}$ [13]. It suffices thus to prove, by Lemma (2.5), that Γ contains two Δ -subsections which belong to the same fibre of a complete slice in Γ_A considered as a full connected subquiver in $\Gamma_{T(A)}$. Now we have just seen that $\mathcal{S}_+ < \mathcal{S}'_+$ and that $[\mathcal{S}_+, \mathcal{S}'_+] \subseteq \Gamma$ is fully embedded in $\Gamma_{\overline{A}}$. But \mathcal{S}_+ and \mathcal{S}'_+ are respectively the right extremal slices of A and $A' = \nu^{-1}A$ (see (1.2)). Therefore, they correspond under the automorphism of $\Gamma_{\hat{A}}$ defined by $\nu: \mathcal{S}'_+ = \nu^{-1}\mathcal{S}_+$. In particular, they belong to the same fibre.

The above theorem allows us to describe the fundamental domains for the representation-finite trivial extension algebra T(A). Recall that Larrión and Salmerón [14] have proved that, if Λ is a representation-finite, connected, finitedimensional k-algebra such that Γ_A does not contain oriented cycles, then the universal cover [8] $\tilde{\Gamma}_A$ of Γ_A contains a full subtranslation quiver Σ which is isomorphic to the Auslander-Reiten quiver of a simply connected algebra, and which contains at least one point from each fibre of the covering morphism $\tilde{\Gamma}_A \rightarrow \Gamma_A$. Σ is then called a fundamental domain for A. To extend this result to the case of the representation-finite trivial extension algebra T(A), we define a fundamental domain (respectively, an exact fundamental domain) for T(A) to be a full connected subquiver of $\Gamma_{\hat{A}}$ which contains at least one point (respectively, exactly one point) of each fibre of the map $\Gamma_{\hat{A}} \rightarrow \Gamma_{T(A)}$ and which is also a full connected subquiver of the Auslander-Reiten quiver of a simply connected algebra. It follows from Lemma (2.5) and Theorem (2.6) that Γ is a fundamental domain for T(A), maximal inside $\Gamma_{\overline{A}}$. Moreover, Corollary (2.5.1) implies that Γ is in fact equal to the Auslander-Reiten quiver of the simply connected algebra \overline{A} if and only if A is hereditary. The exact fundamental domains are constructed as follows: let $\mathcal S$ be an arbitrary complete slice in Γ_A considered as a Δ -subsection of $\Gamma_{\overline{A}}$ (in particular, $\mathcal{S}_{-} \leq \mathcal{S} \leq \mathcal{S}_{+}$). Then there exists a unique Δ -subsection \mathcal{S}' which is such that $S' = \nu^{-1}S$. In fact, $S' = \tau_{\overline{A}}^{-m} \Delta S$, where m_{Δ} denotes the Coxeter number of the graph Δ minus one, thus $m_{A_n}=n$, $m_{D_n}=2n-3$, $m_{E_6}=11$, $m_{E_7}=17$ and $m_{E_8}=29$. Hence the exact fundamental domains are precisely the half-open intervals of the forms $[\mathcal{S}, \mathcal{S}']$ and $]\mathcal{S}, \mathcal{S}']$. It also follows from the proof of the theorem that $\Gamma_{T(A)}$ is obtained from one of these intervals by identifying

the two Δ -subsections S and S'.

We then deduce a simple combinatorial description of $\Gamma_{\overline{A}}$: let \mathcal{S} be an arbitrary complete slice of Γ_A , it embeds fully in Γ_A , we shall let \mathcal{S}_0 denote its image in $\Gamma_A^{\hat{A}}$ and put $\mathcal{S}'_0 := \tau_A^{\overline{A}}{}^m \mathcal{AS}_0$; Γ_A is then constructed by glueing the full connected subquiver of Γ_A consisting of the predecessors (respectively, successors) of \mathcal{S} to the left (respectively, to the right) of $[\mathcal{S}_0, \mathcal{S}'_0]$ identifying \mathcal{S} with \mathcal{S}_0 (respectively, \mathcal{S}'_0).

For a representation-finite algebra C, let n(C) denote the number of isomorphism classes of indecomposable C-modules. We have:

COROLLARY. $n(\overline{A}) = n(T(A)) + n(A)$. Consequently, $n(\overline{A}) \ge 3n(A)$, and equality holds if and only if A is hereditary.

PROOF. Let S be a complete slice in Γ_A , considered as a full connected subquiver of $\Gamma_{\overline{A}}$, and put $S' = \tau_{\overline{A}}^{-m} 4S$. Then an indecomposable \overline{A} -module Meither lies in [S, S'], in which case it is associated to a unique isomorphism class of an indecomposable T(A)-module, or else, if $M \in [S, S']$, it must satisfy one of the following two conditions: either $M_{\overline{A}} < S$, or $M_{\overline{A}} \ge S'$. In the first case, $M_{\overline{A}}$ is in fact an indecomposable A-module (because $S \le S_+$) which strictly precedes the complete slice S, and in the second $M_{\overline{A}}$ is an indecomposable A'-module (because $S' \ge S'_-$) which lies on $S' = \nu^{-1}S$ or succeeds it. But in this latter case, M is associated to a unique indecomposable A-module lying on S, or succeeding to it. This proves the first assertion. The second follows from the first and [20], Theorem (2.12).

2.7. Let now Γ be a simply connected translation quiver, we shall denote by l_{Γ} the length function on $\Gamma[8]$. Recall from [11] that a *slice* in Γ is a full convex subquiver S such that, if $x \leq S$, then S contains precisely one vertex from the τ -orbit of x. Observe that this is a more general concept than that of complete slice. We may now state our next theorem.

THEOREM. Let B be a basic, connected, finite-dimensional k-algebra. Then there exists a tilted algebra A of Dynkin type Δ such that $B \cong \overline{A}$ if anly if Γ_B is simply connected and contains a slice S of underlying graph Δ such that:

- (1) All projective B-modules which are not injective are predecessors of S.
- (2) All projective-injective B-modules lie between S and $\tau^{-m} 4S$.
- (3) All injective B-modules which are not projective are successors of $\tau^{-m_{\Delta}S}$.

PROOF. We first check the necessity of the conditions. If $B=\overline{A}$, for A tilted of Dynkin type Δ , then Γ_B is simply connected by Proposition (1.4). The

other conditions follow from (2.4) and (2.6).

Conversely, assume that *B* satisfies the stated conditions. Observe first that *S* is connected, since it has Δ for underlying graph. Let P_B be the direct sum of the indecomposable projective *B*-modules which are not injective, and let $A = \text{End } P_B$. We claim that *A* is a tilted algebra of type Δ . It follows from (1) and (2) that every indecomposable *B*-module which precedes *S* has its support completely contained in *A*, and consequently, the full connected subquiver of Γ_B consisting of those *B*-modules which are predecessors of *S* is fully embedded in Γ_A . On the other hand, by hypothesis, *S* is convex, does not contain oriented cycles (because Γ_B is simply connected) and contains one representative from the τ -orbit of each of its predecessors. Since every projective *A*-module is a predecessor of *S* in Γ_B , hence in Γ_A , *S* contains one representative from the τ -orbit of each of the indecomposable projective *A*-modules. Now *A* is representation-finite, and has no oriented cycles in its Auslander-Reiten quiver, hence it follows that *S* is a complete slice in Γ_A and *A* is indeed a tilted a tilted algebra of Dynkin type Δ .

By the necessity part of the theorem, the algebra \overline{A} satisfies also the stated conditions. We claim that $\Gamma_{\overline{A}}$ and Γ_{B} are isomorphic translation quivers. We first observe that, as shown above, the full connected subquiver of Γ_A consisting of those indecomposable A-modules which precede S is fully embedded in both $\Gamma_{\overline{A}}$ and Γ_{B} . We shall denote by $p(S_{\overline{A}})$ and $p(S_{B})$ its respective images, and by $S_{\overline{A}}$ and S_{B} the respective images of the slice S of Γ_{A} in $\Gamma_{\overline{A}}$ and Γ_{B} . Thus, there is a translation quiver isomorphism $f: p(\mathcal{S}_B) \rightarrow p(\mathcal{S}_{\overline{A}})$, and $l_{\Gamma_B}(x) = l_{\Gamma_{\overline{A}}}(f(x))$ for each $x \leq S_B$. Next we consider the two intervals $[S_B, \tau^{-m_A}S_B]$ of Γ_B and $[\mathcal{S}_{\overline{A}}, \tau^{-m}\mathcal{A}\mathcal{S}_{\overline{A}}]$ of $\Gamma_{\overline{A}}$. It follows from (2.5) and [9], §3 that $[\mathcal{S}_{\overline{A}}, \tau^{-m}\mathcal{A}\mathcal{S}_{\overline{A}}]$ is isomorphic, as a translation quiver, to one full period of the configuration of $Z\Delta$ associated to the S-section algebra A, which is stable under the action of τ^{-m} . Now every module in the open interval $[S_B, \tau^{-m} A S_B]$ which is projective or injective is in fact projective-injective, therefore this open interval is a union of sections formed by parallel Δ -subsections together with the projective-injective modules. On the other hand, the position of each projective-injective is in fact uniquely determined by the length function. Thus $[S_B, \tau^{-m} \Delta S_B]$ is also (again by [9], § 3) isomorphic to one full period of the configuration of $Z\Delta$ associated to A. This extends f to a translation quiver isomorphism from $[S_B, \tau^{-m_A}S_B]$ to $[\mathcal{S}_{\overline{A}}, \tau^{-m}\mathcal{A}\mathcal{S}_{\overline{A}}], \text{ and } l_{\Gamma_{B}}(\tau^{-m}\mathcal{A}x) = l_{\Gamma_{B}}(x) = l_{\Gamma_{\overline{A}}}(f(x)) = l_{\Gamma_{\overline{A}}}(f(\tau^{-m}\mathcal{A}x)) \text{ for each } x \text{ on } \mathcal{S}_{B}.$ Finally, since no projective modules are successors of $\tau^{-m_{\mathcal{A}}}S_{B}$, f can be extended to a translation quiver isomorphism $f: \Gamma_B \cong \Gamma_{\overline{A}}$ (indeed, the remaining parts of these translation quivers are uniquely determined by the values of the respective

length functions on $\tau^{-m_{\mathcal{J}}}\mathcal{S}_{B}$ and $\tau^{-m_{\mathcal{J}}}\mathcal{S}_{\overline{\mathcal{A}}}$ and these are equal). Since our algebras are simply connected, this implies that $B \cong \overline{\mathcal{A}}$.

2.8 REMARKS. (1) The above results are no longer true if A is assumed to be an iterated tilted algebra of Dynkin type, but not tilted. For instance, if A is the iterated tilted algebra of type A_6 given by the quiver:

$$1 \stackrel{\alpha_1}{\longleftarrow} 2 \stackrel{\alpha_2}{\longleftarrow} 3 \stackrel{\alpha_3}{\longleftarrow} 4 \stackrel{\alpha_4}{\longleftarrow} 5 \stackrel{\alpha_5}{\longleftarrow} 6$$

bound by $\alpha_i \alpha_{i+1} = 0$ (1 $\leq i \leq 4$), then $\Gamma_{\overline{A}}$ has no A_6 -subsection.

(2) We may generalise the above results in the following way: let $A^{(i)}$ denote the (finite-dimensional) quotient algebra of \hat{A} defined by:

$$A^{(t)} = \begin{pmatrix} A_0 & & & 0 \\ Q_1 & & & \\ & Q_2 & A_2 & \\ & & \ddots & \ddots & \\ 0 & & & Q_t & A_t \end{pmatrix}$$

(thus, $\overline{A} = A^{(1)}$). Then, if A is a basic, connected, iterated tilted algebra of Dynkin type, $A^{(t)}$ is simply connected. Also, if A is moreover assumed to be tilted, we can describe, just as above, the Auslander-Reiten quiver of $A^{(t)}$ which then contains t exact fundamental domains for T(A).

Acknowledgements I would like to express my gratitude to Y. Iwanaga for the useful discussions we held on the subject.

References

- [1] Assem, I., lterated tilted algebras of types B_n and C_n , J. Algebra 84(2) (1983), 361-390.
- [2] Assem, I., Happel, D. and Roldán, O., Representation-finite trivial extension algebras, J. Pure Appl. Algebra. 33 (1984), 235-242.
- [3] Auslander, M., Applications of morphisms determined by objects, Proc. Conf. on Representation Theory (Philadelphia 1976), Marcel Dekker (1978), 245-327.
- [4] Auslander, M. and Reiten, I., Representation theory of artin algebras III and IV, Comm. Algebra 3 (1975), 239-294 and 5 (1977), 443-518.
- [5] Bautista, R., Sections in Auslander-Reiten quivers, Proc. ICRA II (1979), Springer Lecture Notes No. 832 (1980), 74-96.
- [6] Bautista, R., Larrión, F. and Salmerón, L., On simply connected algebras, J. London Math. Soc. 27(2) (1983), 212-220.
- Bongartz, K., Tilted algebras, Proc. ICRA III (1980), Springer Lecture Notes No. 903 (1982), 26-38.
- [8] Bongartz, K. and Gabriel, P., Covering spaces in Representation theory, Invent. Math. 65 (1982), 331-378.

- [9] Bretscher, O., Läser, C. and Riedtmann, C., Selfinjective and simply connected algebras, Manuscripta Math. **36**(3) (1981), 253-308.
- [10] Gabriel, P., Auslander-Reiten sequences and representation-finite algebras, Proc. ICRA II (1979), Springer Lecture Notes No. 831 (1980), 1-71.
- [11] Happel, D. and Ringel, C.M., Tilted algebras, Trans. Amer. Math. Soc. 274(2) (1982), 399-443.
- [12] Hoshino, M., Trivial extensions of tilted algebras, Comm. Algebra 10(18) (1982), 1965-1999.
- [13] Hughes, D. and Waschbüsch, J., Trivial extensions of tilted algebras, Proc. London Math. Soc. 46(3) (1983), 347-364.
- [14] Larrión, F. and Salmerón, L., On Auslander-Reiten quivers without oriented cycles, Bull. London Math. Soc. 16 (1984), 47-51.
- [15] Marmaridis, N., On the representation type of certain triangular matrix algebras, Comm. Algebra 11 (17) (1983), 1945-1964.
- [16] Ringel, C.M., Tame algebras, Proc. ICRA II, Springer Lecture Notes No. 831 (1980), 137-287.
- [17] Salmerón, L., Stratifications of finite Auslander-Reiten quivers, Publ. Prel. Universidad Nacional Autónoma de México No. 64 (1983).
- [18] Tachikawa, H., On Quasi-Frobenius rings and their generalisations, Springer Lecture Notes No. 351 (1973).
- [19] Tachikawa, H., Representations of trivial extensions of hereditary algebras, Proc. ICRA II (1979), Springer Lecture Notes No. 832 (1980), 579-599.
- [20] Yamagata, K., Extensions over hereditary artinian rings with self-dualities I, J. Algebra 72(2) (1981), 386-433.

Department of Mathematics University of Ottawa 585 King Edward Ottawa, Ontario K1N 9B4, Canada. Current Address: Fakultät für Mathematik, Universität Bielefeld, 4800, Bielefeld 1, Federal Republic of Germany.