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ON REPRESENTATIONS OF THE BIMODULE DA
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Abstract. Let A be a finite-dimensionalalgebra over an algebraic-

ally closed field k. A representation of the A-A bimodule DA ―

Homfe(A k) is a module over the matrix algebra:

We firstprove that A is representation-finite(and in fact simply

connected) whenever A is an iterated tiltedalgebra of Dynbin type.

We then assume that A is a tilted algebra of Dynkin type, and

characterise A by its Auslander-Reiten quiver.
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Introduction

Let A be a basic, connected, finite-dimensional algebra over an algebraic-

ally closed field k, and T(A) = AxDA be its trivialextension by its minimal

injective cogenerator DA=Uomk(A, k). It was proved by Hughes and Waschbiisch

in [13] (see also [12], [9]) that if A is a tiltedalgebra of Dynkin type A, then

T(A) is representation-finiteof Cartan class A, and conversely, if T(A) is re-

presentation-finiteof Cartan class A, there exists a tiltedalgebra B of Dynkin

type A such that T{B)^T{A). It was then shown in [2] that 7(^4) is represen-

tation-finiteof Cartan class A if and only if A is an iterated tiltedalgebra of

Dynkin type A. Moreover, the construction in [13] suggested that the represen-

tations of T(A) were related to the representations of the A-A bimodule DAr

or, what amounts to the same, the modules over the matrix algebra:
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The aim of this paper is to study the representations of the matrix algebra

A in the case where A is (iterated) tiltedof Dynkin type. We shall firstprove

that A is representation-finite(and even simply connected) whenever A is an

iterated tiltedalgebra of Dynkin type. If A is in fact tilted of Dynkin type A,

we shall describe a functor F: mod A-^mod T(A) which is surjective on the

Indecomposables, and whose restrictionon a fullsubcategory of mod A preserves

the Auslander-Reiten sequences and the irreducible maps, thus providing us with

a simple combinatorial description of the Auslander-Reiten quiver Fj of A: let

S be an (arbitrary) complete slicein the Auslander-Reiten quiver FA of A, then

S generates a configuration (ZA)C of ZA [9], which is stable under the action

■oft~mJ (here, r denotes the translation of {ZA)C, and mj denotes the Coxeter

number of A minus one, thus mAn=n, mDn―2n―'i, raSe=ll, mEl ―YI and mE8―29)

and in which S embeds fully; let now [S, T~mjS~]denote the fullconnected

■subquiverof (ZA)C consisting of all the vertices lying between S and t~mjS,

then Fj is constructed by glueing the full connected subquiver of FA consisting

of the predecessors (respectively,successors) of S to the left (respectively, to the

right of IS, r-m4S].

The above descriptionyields a characterisation of A in terms of its Auslander-

Reiten quiver. Recall firstthat a slice[11] in a simply connected translation

quiver is a fullconvex subquiver S such that, if x is a predecessor of S, then

<5 contains precisely one vertex from the r-orbit of x. We may now state:

Theorem Let B a basic, connected, finite-dimensional k-algebra. There

exists a tiltedalgebra A of Dynkin type A such that B^A if and only if FB is

simply connected and contains a sliceS of underlying graph A such that:

(1) All projective B-modules which are not injective are predecessors of S.

(2) All projective-injectiveB-modules lie between S and t~m^S.

(3) All injective B-modules which are not projective are successors of z~m^S.

Throughout this paper, k will denote a fixed algebraically closed field. We

shall freely use properties of the Auslander-Reiten sequences and the Auslander-

Reiten quiver such as can be found in [4] and [10]. For tilted algebras and

their properties, we refer to [7] and [11]. We shall use essentiallythe results

of [131
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1.1. Let A be a finite-dimensional ^-algebra. Recall that a (finite-dimen-

sional) representation of the /1-A-bimodule DA―Horn k(A, k) is a triple (UA, VA, <f>),

where UA and VA are right (finite-dimensional) modules, and <f>is an ,4-linear

map from UA(£)ADAA to VA. A morphism of representations f: (U, V, 0)->

(W, V, <j>')consists of a pair of yl-linear maps g: UA-*U'A, h: VA―>V'A such that

/i0=0'(g01). It is well-known that the category of (finite-dimensional) represen-

tations of the bimodule DA is equivalent to the category of (finite-dimensional)

right modules over the matrix algebra:

[A 01
A= =

DA A

＼＼a °

lU
ft
Ma, b^A, q(BDA＼

endowed with the ordinary matrix addition, and the multiplicationinduced by

the bimodule structure of DA.

setting:

e

i:

Indeed, writing 1 for the identity of A, and.

0"

0. Lo

0'

1

any right ^-module M can be written in the form (U, V, <f>),where U:=Me',

V'.―Me and <f>is the multiplication map <fr:u(g)q-^uq(for u^U and q^DA).

In the sequel, these two categories will always be identified.

Observe that A is a QF-3 algebra [18]; indeed, e'A and Ae are, respectively,

a right and a left minimal faithful yl-module. Observe also that the trivial

extension T{A)=AxDA is the subalgebra of A consisting of all the matrices

, such that a=b. Our main objective will be to study the relations be-
Iq bl

tween the categories of finite-dimensional right modules mod A, mod A and

mod T(A).

1.2. We shall, from now on, assume that A is a quotient of a finite-dimen-

sional hereditary algebra, that is to say, that the ordinary quiver QA of A has

no oriented cycles. We shall denote by 1, 2, ･･･,n the vertices of QA and by

&＼><?2･･･en the corresponding primitive orthogonal idempotents, which we as-

sume to be admissibly ordered (that is to say, such that ejAet^O implies i'Sj)-

We shalllet S(i) denote the simple module corresponding to the vertex ig^^o,

P(i) and I(i)denote respectively its projective cover and injective envelope. In

order to distinguish between the two copies of A given respectively by eAe and

e'Ae', we shall denote the firstone by A, and the second one by A'. Accord-

ingly, Q*A will denote the quiver of A', i' the vertex of Q'A corresponding to
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^(Qa)o and e'tthe corresponding idempotent.

The ordinary quiver QA of the algebra A may now be constructed as follows.

Clearly, QA and Q'A are both full connected subquivers of QA, and every vertex

of Qa is a vertex of either QA or Q'A. Also, there is an arrow i'―>j whenever

rad(e'iAejj/radXe'iAe^^O. Observe that e'i'Aey=D{ejAei)and therefore if ejAe^Q,

there is a non-zero path in QA from i' to j. Also, since e'iA^D(Aei), each P(1')a

is projective-injective,and its socle is just S(i). On the other hand, every P{i)j

has its support lying in QA, thus is a projective A-module. Dually, I(i')A has

its support lying completely in Q'A and is an injective .A'-module.

For our purposes, another description of QA will be needed. First, we recall

the following developments from [131: consider the matrix algebra:

A=

･s

0

0

I

■s,
･v

Vm + t -nm + [

N
･s

s ･s.

where matrices have only finitelymany non-zero entries,Am=A and Qm~ADAA

for all meZ, all the remaining entries are zero and multiplication is induced

from the canonical maps AC&DA^DA, DA<g>A^DA and the zero maps DARDA
A A A

->0. Let v be the automorphism of A induced by the identity maps Am+i->Am,

Qm+i-^Qm- Then A＼v~>T(A). An A-rnodule consists of a family {Um, <j>m)m&z

of ,4-modules Um and .4-linearmaps <j>m: UmRDA->Um-l such that, for all meZ,

An JUinear map f:(Um, <f>m)m<=z-*(U'm,^)aeit consists of a family of ^-linear

maps (/m: Um-+U'm)nGz such that, for all raeZ,

We shall let, as in [13], Mod A (respectively, mod A) denote the category of

^4-modules (Um, j>-m)m^z such that dimfel7m<oo for all ?≪eZ (respectively,

dimfe(0 Um)<oo). Then v induces an automorphism of Mod A, and the sub-
me.Z

category Mod"A of Mod A consisting of the y-invariant modules and ^-invariant

morphisms is equivalent to mod T(A) by the functor which maps the T(A)-moduk

M on the ^-module (Um, $m)mez such that Um=M (considered as an yl-moduie;
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for all m, and 0m is induced by the action of DA on M [13].

Clearly, A is identified to the quotient algebra of A defined by the surjection,

and therefore Qj is identified to the full subquiver of Q2 defined by the ver-

tices: {(i, 0)＼i^(QA)o} and {(?, l)＼i^(QA)0} (in our previous notation, (2, 0) is i

and (/. 1) is /').

1.3. Since the trivialextension T{A) is a subalgebra of A, the inclusion

map T{A)-*A defines a functor F: mod A-*mod T(A) (by restrictionof the scalars)

as follows: for an ^4-module (UA, VA, 0), the T(^)-module M:=F{U, V, $) has

the v4-module structure of UA(&VA, and the multiplicationof (u, y)eMby g^DA

is given by:

(m, v)o=(0, <p{uRq))

Thus, for (u, v)eM and
＼a °1

(u, v)

^T(A):

01

a]

We define in the same way the action of F on the morphisms: if f―(g, h):

(U, V, 4>)-*(U',V, $') is an ^-linear map, we put F(f) :=gRh: URV->U'(BV/

as an A-linear map, the compatibility of this definition with the multiplication

by elements of DA follows from the fact that h<j>=<j>'{gRl).

We shall now give another description of the functor F. Let E be the

canonical embedding functor of mod A in mod A (which is obtained by "extend-

ing by zeros"): it is full, exact, preserves indecomposable modules and their

composition lengths. We also have a functor P: mod ^4―>mod T(A) (denoted 0

in [13]) which is full,exact, preserves indecomposable modules and their com-

positionlengths and also Auslander-Reiten sequences and irreducible maps: it is

the compositionof the functor mod A->ModvA given by M-≫ c vmM, /-> 0 vmf

(forM, N in mod A and /eHoma(M, iV)) and the equivalenceModw^4~mod T(A)

describedin (1.2). We shallprove:

Lemma F=F°E.

Proof. Indeed, for an ^4-module (U, V, <j>),E(U, V, 0) is the y?-module

(Wm, d>m)mBZ defined by:
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W0=V, Wx=Ut Wm^0 for m^O, 1,
and

<f>1=$:URDA―>V, ^m=0 formal.

This module is mapped on the module (W'm, <f>'m)m<EZin ModvA which is such

that W'n=UARVA for all weZ, and fm: W'mRDA^W'w.-x is defined, for all

meZ, by:

<P'm((u,v)R?)=(0, ^(mR9))

(for (u, v)et707 and q^DA). Finally, (W'mi <p'm)mezis mapped on the T(A)-

module whose y4-module structure is that of UA(&VA, and where the action of

DA on U@V is induced by the mapping <p'm. Thus, if (u, y)ef/0V, ae/4 and

qs=DA:

(ua, va-＼-6(u<g)q)).

That is, F and F°E coincide on the objects. It is easily checked that they

coincide also on the morphisms, and hence F~F°E.

Corollary The functor F preserves the indecomposable modules and their

composition lengths.

1.4. We shall now give a sufficientcondition for A to be simply connected:

Proposition Let A be a basic,connected, iterated tiltedalgebra of Dynkin

type, then A is simply connected.

Proof. Let A be a basic, connected, iterated tiltedalgebra of Dynkin type,

then, by [2], the trivialextension T(A) is representation-finite. The existence

of a functor F: mod A-+mod T(A) which preserves indecomposable modules and

composition lengths implies that the indecomposable y4-modul.esmust have bounded

length. Since A is connected, it follows from [3] that itis representation-finite.

Observe that, by (1.2), A is a quotient of a finite-dimensional hereditory

algebra. On the other hand, A is simply connected [1], hence it satisfiesthe

condition (S) of [6] : that is to say the indecomposable projective yl-modules

have separated radicals. By the construction of Qj, this implies that those in-

decomposable projective /l-modules which are also projective in mod A have

separated radicals. Now the remaining indecomposable projective /l-modules are

also injective, their radicals are indecomposable and hence separated. Thus A

satisfiesthe condition (S), and is therefore simply connected.

Remarks and Examples It is possible that A be representation-finite(and
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even simply connected) even though A may not be iterated tiltedof Dynkin type.

Consider indeed the following example: let A(n, s) (n>s) denote the algebra

given by the quiver:

≪i a2 an-i
I <_ 2 <■ 3 <―- <― n ―＼< n

bound by ≪i≪i+1･･･ai+s+i=0 (l^/^n―s) [15]. Then the algebra A~/＼{§,3) is

easily checked to be iterated tiltedof Euclidean type E8, but A is representation-

finiteand in fact simply connected (for, there is a full exact embedding [16] of

mod A into the module category over the algebra T2( A (11,3)) of alltwo by two lower

triangular matrices with coefficientsin A(ll, 3),and T2(A(11,3)) is representation-

finiteby [15]). In general, however, if A is iterated tilted of Euclidean type,

A is not representation-finite,for instance, the algebra B given by the quiver:

bound by apx―O and fiy―de is tiltedof type DA, but B is of tame representa-

tion type.

2. The main results

2.1. For an algebra C, we shall denote by zc (or simply r, if no ambiguity

may arise)its Auslander-Reiten translation DTr, and by Fc its Auslander-Reiten

quiver. We shall identify indecomposable C-modules with their isomorphism

classes, thus with the corresponding vertices of Fc. Recall from [5] that a

path Ma->Mr^ >Mt in Fc is called sectionalif Mi^zMi+2 for any O^ii^t―2.

A connected subquiver of Fc in which every path is sectionalis called a subsec-

tion. A subsection S is called a sectionif for any irreducible map M-+N with

M^S, either NeS or zN^S. Thus, if a section contains an indecomposable

summand of the radical of an indecomposable projective,it must contain that

projective.

From now on, we shall always assume that A is a basic, connected, tilted

algebra of Dynkin type A. This implies, by Proposition (1.4),that A is simply

connected. We shall also assume that Fa is given the partial order induced by

the arrows: thus M^N means that there exists an oriented path from Mto N.

Let now S~ be the full subquiver of Fj consisting of those indecomposable

/1-modules M such that there exists an oriented path from M to an indecom-

posable projective ^-module, and moreover every such path is sectional. Clearly,
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S- is connected and is a subsection of Fj. In the same way, we let S+ be the

subsection of Fj consisting of all the indecomposable y4-modufes N such that

there is an oriented path from an indecomposable injective .A'-moduIe to N, and

every such path is sectional. Our firstobjectives will be to prove that S-<S+

and that S~ and S'+ are isomorphic to complete slicesin FA and FA> respectively.

2.2. Lemma For every i^(QA)0, ws have P(i')A>S- mid P(i')A<S+.

Proof. Assume firstthat i^(QA)0 is such that P(i')^S.. Without loss of

generality, we may suppose that the radical of P{i')Ais the indecomposable in-

jective y4-module I(i)A: indeed, the minimal elements among the indecomposable

projective-injective /t-modules are such that their radicals are indecomposable

injective /1-modules (corresponding to the strong sinks: see (1.2) and [13]).

Then, since P(i')S<S-> there exists an oriented path in FA from P{i') to an in-

decomposable projective /1-modufe P(j)A. Now, rad P(i')A=I(i)A and hence we

have a path in FA:

r :I(i)A―* P{i')j -^ > P{j)A.

The restriction y' of y to mod A gives a path in I＼ from I(i)A to P(j)A. But

A is a tiltedalgebra of Dynkin type, hence y' must be a sectional path in FA

which, in particular, must factor through an indecomposable summand JA of

I(i)/S(i). Now / is also an indecomposable yl-module, hence must lie on y.

But then we have in F-i a situation:

where a and /3 are arrows, and j" a non-trivialpath, and this is impossible by

[17], Corollary (6). The proof of the second assertion is similar.

Corollary (1) (i) // M^S-, then the support Supp M of M is contained

in QA.

(ii) // N^S+, then the support Supp N of N is contained

in O'A.

Proof. We shall only prove (i), since the proof of (ii)is similar. If fe

(QA)0 is such that Homj(P(i'), M)^0, then P{if)^M. Since M£S_, this implies

P(i')<S, which is impossible by the previous lemma.
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Corollary (2) S-^S+

Proof. Indeed, if thisis not the case, there exist M&S+ and iVe<S_ such

that M^N. Since NeS-, we have M^S- and then Supp M<=QA. On the

other hand, M^S'+ implies Supp MQQ'A. This is a contradiction since QAr＼QrA―4>-

2.3. Let now B be a representation-finitetiltedalgebra (but not necessarily

of Dynkin type), and S be an arbitrary complete slice of FB. If there exists

in S a sink MB which is not projective, we can replace M by rM and every

irreduciblemap / of codomain M and domain on S by of, thus obtaining a new

complete slice of FB. Repeating this process as many times as necessary, we

ultimately reach a complete slice X of FB which is characterised by the fact

that all its sinks are projective. By construction, X^S for every complete slice

S of FB. X will be called the left extremal slice of FB. Dually, we can define

the right extremal slice Si to be the complete slice of FB which has allits

sources injective. Another characterisation of the extremal slicesis as follows:

Lemma. (i)

(ii)

MB>Sl if and onlyif pd M>1.

MB<S if and onlyif id M<1.

Proof of (i) If MB>Si, then zM~^<R, and, since Si is a complete slice,

there exists an epimorphism 0 R-^xM. In particular,for some source / of SI,

we have HomB(/, rM)=£0. But / is injective, hence pd M>1.

Conversely, if pd M>＼, then YiomB(DB, rM)^0 and there exists an inde-

composable injective B-module IB such that HomB(/, rM)^0. Since I^St, we

have xM^Sl and hence M>31.

Let us denote by ＼_X,SC＼the full connected subquiver of FB consisting of

those MB such that X^M^Sl (that is, [£, iR] consists of those vertices of FB

lying on a complete slice). Also, let T(B) denote the trivialextension BkDB.

We have:

Corollary. Let B be a tiltedalgebra of Dynkin type, then [<T, Sl＼is the

maximal full connected subquiver of FB to be embedded fully in rT(_B).

Proof. This follows at once from the previous lemma and [121, Theorem (6).

2.4. Proposition. (i)

(ii)

6'_is the left extremal sliceof FA.

S'+is the right extremal slice of FA

Proof, of (i) It follows from Corollary (2.2.1) that every module on <S_ is
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an
^4-module.

To prove that
<S_

is a complete slicein FA, let us startby prov-

ing that no indecomposable projective /i-module is a proper successor of
<S_

and

no indecomposable injective /l-module is a proper predecessor of
<S_.

The first

assertion being clear by construction, let I(i)A be an indecomposable injective

y4-module such that I(i)<S- in FA. We may again, without loss of generality,

suppose that I{i)is minimal among the indecomposable injective .A-modules, and

then /(i')=radP{i')A. But in this case, /(*)<<S_ implies that P{i')j^S- which

contradicts Lemma (2.2).

It follows that S- contains at least one representative from each r-orbit of

indecomposable /i-modules. In fact, S- being a subsection of Fj, but also of FA

(because the support of each predecessor of S- liesinside QA) contains at most

one, and hence exactly one representative of each r-orbit of indecomposable

./4-mGdules. By construction, S- is convex and it certainly does not contain

oriented cycles (because A is simply connected). Therefore, S- is a complete

slicein FA. Since, by construction, all the sinks in S- are indecomposable pro-

jective 74-modules, S- is in fact the left extremal slice of FA.

2.5. Let us now denote by F=[_S~, S+~]the full connected subquiver of Fj

consisting of those indecomposable y4-modules M such that S~^M^S+. By

Lemma (2.2), all the indecomposable projective-injective/4-modules lie in F.

Also, by Proposition (2.4), the underlying graph of the subsections S- and S+

is A. In the sequel, we shall call ^-subsection of a translation quiver any sub-

section whose underlying graph is A.

Recall that the surjection A-^A induces an embedding F2-+F2 which is not

fullin general.

Lemma. F is the maximal full connected subquiver of Fj such that the

embedding F-^Fj-^Fx is full.

Proof. We firstobserve that a module in F which is not projective-injective

can only be projective in mod A if it belongs to S-, and can only be injective

in mod A if it belongs to S+ (by Proposition (2.4)). Since S- and S'+ are com-

plete slices of FA and FA> respectively, they are fully embedded in FA (by [13]

or [9]).

Let now M be a source in <S_. In particular, M cannot be an injective A-

module. We have two cases to consider: if M is not an indecomposable injective

A-module, T21M=ta'1M. If we replace M by t^M and every irreducible map /

of domain M and codomain on S~ by ajlf, we obtain a new A-subsection Sy of

Fj which is also a complete sliceof FA and is therefore fully embedded in Fa-

If, on the other hand, M is an indecomposable injective y4-module I(i)A,the
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section of FA containing 6"- contains also the projective-injectivemodule P(ifh.

which is such that rad P{i')A~Ri)A- We thus replace M by r51M=P(f/)/S(z) and

every irreducible map / of domain M and codomain on 6'_ by aj1/. We obtair

in this way a complete slice St in the tiltedalgebra Si A [13] of type A, where

Si A is the algebra whose ordinary quiver is the full connected subquiver of Q~A

determined by V and QA＼{i} with the inherited relations. In particular,the A-

subsection St is again fully embedded in F^. Observe that Pit') is mapped m

the process on an indecomposable projective-injectiveA-module. Applying again

the same considerations to Su we obtain a new A-subsection S2 which is alsc

fully embedded in FA. Inductively, we find a sequence of A-subsections:

which have the property that the sections they determine with the indecom-

posable projective-injective
^4-modules

are fully embedded in FA. This process

stops at St, where St is such that allits sources are indecomposable injective

^4-modules
(and hence A '-modules), that is to say, <St―S+. This completes the

proof that the embedding F-^F'x is full. The maximality assertion follows from

Corollary (2.3) and Proposition (2.4).

Corollary (1) The embedding Fa-^Fx is fullif and onlyif A is hereditary.

Proof. Indeed, it follows from the lemma that this embedding is full if

and only if F=^Fa and this is the case if and only if S- consists of projective

i4-modules
and S+ consists of injective ^'-modules. By construction, both of

these conditions are equivalent to the condition that A be hereditary.

Corollary (2) Let S+ and S- denote respectively the right extremal slict

of FA and the left extremal sliceof F'A<, then S-^S+<S-^6+.

Proof. It follows from Corollary (2.3) and the previous lemma that[£-,£+]

Qf and hence S~^S+^S+. Similarly, S-^S'-^S+. Since the support of every

predecessor of S+ lies entirely in QA and the support of every successor of SL

lies entirelyin Q'A, we have S+<SL.

2.6. Let now J. denote the additive subcategory of mod A generated by the

indecomposable /1-modules lying in F, and let F' be the restrictionto J. of the

functor F of (1.3),that is to say, F' is the composition of the embedding jl―>

mod A and of the functor F: mod /l-->mod T(A).

Theorem. The functor F':
<J->mod

T(A) preserves the indecomposable
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modules, their composition lengths, the Auslander-Reiten sequences and the ir-

reducible maps. Considered as a mapping /T―>/"Yu>> it is surjective.

Proof. Let us recall that the functor F: mod A->mod T(A) preserves the

indecomposable modules, their composition lengths, the Auslander-Reiten sequences

and the irreducible maps. On the other hand, considered as a mapping T^―

FT(A), it is surjective,in fact, F% is connected and /"Vi^/Yu) [13]. It suffices

thus to prove, by Lemma (2.5), that F contains two A-subsections which belong

to the same fibre of a complete slicein FA considered as a full connected sub-

quiver in rTU). Now we have just seen that S+<S'+ and that [S+, £+]£/"'is

fully embedded in FA. But S+ and S'+ are respectively the right extremal slices

of A and A'=v'1A (see (1.2)). Therefore, they correspond under the auto-

morphism of F% defined by v:S+ ―v~1S+. In particular,they belong to the same

fibre.

The above theorem allows us to describe the fundamental domains for the

representation-finite trivial extension algebra T(A). Recall that Larrion and

Salmeron [14] have proved that, if A is a representation-finite,connected, finite-

dimensional ^-algebra such that Fa does not contain oriented cycles, then the

universal cover [8] Fa of FA contains a fullsubtranslation quiver 2 which is

isomorphic to the Auslander-Reiten quiver of a simply connected algebra, and

which contains at least one point from each fibre of the covering morphism

Fa~-*Fa- 2 is then called a fundamental domain for A. To extend this result

to the case of the representation-finitetrivialextension algebra T(A), we define

a fundamental domain (respectively, an exact fundamental domain) for T(A) to be

a fullconnected subquiver of F% which contains at least one point (respectively,

exactly one point) of each fibre of the map F2->FTU) and which is also a full

connected subquiver of the Auslander-Reiten quiver of a simply connected algebra.

It follows from Lemma (2.5) and Theorem (2.6) that F is a fundamental domain

for T(A), maximal inside FA. Moreover, Corollary (2.5.1)implies that F is in

fact equal to the Auslander-Reiten quiver of the simply connected algebra A if

and only if A is hereditary. The exact fundamental domains are constructed as

follows: let S be an arbitrary complete slicein FA considered as a A-subsection

of Fa (in particular, S~^S^S+). Then there exists a unique A-subsection S'

which is such that <S'~v~1S. In fact, Sf=T2mjS, where mj denotes the Coxeter

number of the graph A minus one, thus mAn―n, mDn=2n―3, inE(.―11,mEl―Yl

and mEg=29. Hence the exact fundamental domains are precisely the half-open

intervals of the forms [<S,<S'[and ]<S,
<S'].

It also follows from the proof of

the theorem that FT(A) is obtained from one of these intervals by identifying
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the two A-subsections S and S'.

We then deduce a simple combinatorial description of FA: let S be an

arbitrary complete slice of FA, it embeds fully in FA, we shall let So denote its

image in FA and put S'Q:―r'im^S0; FA is then constructed by glueing the full

connected subquiver of FA consisting of the predecessors (respectively,succes-

sors) of S to the left (respectively, to the right) of [£0,So"]identifying 6' with

So (respectively,S'o).

For a representation-finitealgebra C, let n(C) denote the number of isomor-

phism classes of indecomposable C-modules. We have:

Corollary. n(A)=n(T(A))+n(A). Consequently, n(A)'^3n(A), and equality

holds if and only if A is hereditary.

Proof. Let S be a complete slice in FA, considered as a full connected

subquiver of FA, and put 6>/=r2mjtS. Then an indecomposable /1-module M

either liesin [6',
<S'],

in which case it is associated to a unique isomorphism

class of an indecomposable T(A)-module, or else,if M&[S, <S'],it must satisfy

one of the following two conditions: either MA<S, or MA^S'. In the firstcase,

MA is in fact an indecomposable A-module (because S^S+) which strictlypre-

cedes the complete slice S, and in the second MA is an indecomposable A '-module

(because S'^SL.) which lies on S'~v"xS or succeeds it. But in thislatter case,

M is associated to a unique indecomposable ./1-module lying on S, or succeeding

to it. This proves the firstassertion. The second follows from the first and

[20], Theorem (2.12).

2.7. Let now /' be a simply connected translation quiver, we shall denote

convex subquiverS such that,if xS<S, then S contains preciselyone vertex

from the r-orbitof x. Observe that thisis a more general concept than that

of complete slice. We may now stateour next theorem.

Theorem. Let B be a basic, connected, finite-dimensional k-algebra. Then

there exists a tiltedalgebra A of Dynkin type A such that B^A if anly if FB

is simply connected and contains a sliceS of underlying graph A such that:

(1) All projective B-modules which are not injective are predecessors of S.

(2) All projective-injectiveB-modules lie between S and v'mjS.

(3) All injective B-modules which are not projective are successorsof x'mAS.

Proof. We firstcheck the necessity of the conditions. If B=A, for A

tiltedof Dynkin type A, then FB is simply connected by Proposition (1.4). The
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other conditions follow from (2.4) and (2.6).

Conversely, assume that B satisfies the stated conditions. Observe firs

that S is connected, since it has A for underlying graph. Let PB be the direc

sum of the indecomposable projective B-modules which are not injective, and le

y4~End Pb- We claim that A is a tiltedalgebra of type A. It follows from (1

and (2) that every indecomposable j5-module which precedes 6' has its suppor

completely contained in A, and consequently, the fullconnected subquiver of F t

consisting of those B-modules which are predecessors of S is fully embedded ir

FA. On the other hand, by hypothesis, S is convex, does not contain orientec

cycles (because FB is simply connected) and contains one representative frorr

the r-orbit of each of its predecessors. Since every projective y4-module is i

predecessor of S in FB, hence in FA, S contains one representative from the

r-orbitof each of the indecomposable projective /4-modules. Now A is represen-

tation-finite,and has no oriented cycles in its Auslander-Reiten quiver, hence it

follows that S is a complete slicein FA and A is indeed a tilteda tiltedalgebra

of Dynkin type A.

By the necessity part of the theorem, the algebra A satisfiesalso the stated

conditions. We claim that FA and FB are isomorphic translation quivers. We

firstobserve that, as shown above, the full connected subquiver of FA consisting

of those indecomposable ^-modules which precede S is fully embedded in both

FA and FB. We shall denote by p(Sj) and p(SB) its respective images, and by

SA and SB the respective images of the slice S of FA in F-j and FB. Thus,

there is a translation quiver isomorphism /: p(SB)^p(Sj), and /rsU) = '/ii(/U))

for each xS<SB. Next we consider the two intervals [_SB,z~mASB~]of FB and

[Sa, r-m^S3] of FA. It follows from (2.5) and [9], §3 that [S2, T-m^Sj] is

isomorphic, as a translation quiver, to one full period of the configuration of

ZA associated to the
tS-section

algebra A, which is stable under the action of

z~mJ. Now every module in the open interval [_SB,t~mASB']which is projective

or injective is in fact projective-injective,therefore this open interval is a union

of sections formed by parallelA-subsections together with the projective-injective

modules. On the other hand, the position of each projective-injectiveis in fact

uniquely determined by the length function. Thus [SB, r~mdSB] is also (again

by [9],§3) isomorphic to one full period of the configuration of ZA associated

to A. This extends / to a translation quiver isomorphism from [<SB,r"mjSB'] to

ISj, z-^Sj-], and lrB(T-mix) = lrB(x)=lr-(f(x))^lrl(f(T~mJx)) for each x on <SB.

Finally, since no projective modules are successors of r~mASB,f can be extended

to a translation quiver isomorphism /: FB^FA (indeed, the remaining parts of

these translation quivers are uniquely determined by the values of the respective
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length functions on z~m-!SIiand T~mjSj and these are equal). Since our algebras

are simply connected, this implies that B^A.

2.8 Remarks. (1) The above resultsare no longer true if A is assumed to be

an iterated tiltedalgebra of Dynkin type, but not tilted. For instance, if A is

the iterated tiltedalgebra of type Ae given by the quiver:

≪! ≪2 ≪3 ≪4 ≪5
i<― 2 ≪*―3 <― 4 <― 5 <―-6

bound by ai≪j+1=0(l^z'^4), then Fj has no .46-subsection.

(2) We may generalise the above results in the following way: let AU)

denote the (finite-dimensional)quotient algebra of A defined by:

A (O-―

^4o
At

0

Q, A2

0

Qt At

(thus, A ―A*-"). Then, if A Is a basic, connected, iterated tilted algebra of

Dynkin type, AU) is simply connected. Also, if A is moreover assumed to be

tilted,we can describe, just as above, the Auslander-Reiten quiver of A(t) which

then contains t exact fundamental domains for T(A).
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