ON REPRESENTATIONS OF THE BIMODULE DA

By
Ibrahim Assem

Abstract

Let A be a finite-dimensional algebra over an algebraically closed field k. A representation of the $A-A$ bimodule $D A=$ $\operatorname{Hom}_{k}(A, k)$ is a module over the matrix algebra:

$$
\bar{A}=\left[\begin{array}{cc}
A & 0 \\
D A & A
\end{array}\right]
$$

We first prove that \bar{A} is representation-finite (and in fact simply connected) whenever A is an iterated tilted algebra of Dynbin type. We then assume that A is a tilted algebra of Dynkin type, and characterise \bar{A} by its Auslander-Reiten quiver.

1980 Mathematics Subject Classification: Primary 16A46; Sedcondary 16A64.

Key words and phrases: Representations of $D A$, iterated tilted algebras, trivial extension algebras.

Introduction

Let A be a basic, connected, finite-dimensional algebra over an algebraically closed field k, and $T(A)=A \ltimes D A$ be its trivial extension by its minimal injective cogenerator $D A=\operatorname{Hom}_{k}(A, k)$. It was proved by Hughes and Waschbüsch in [13] (see also [12], [9]) that if A is a tilted algebra of Dynkin type Δ, then $T(A)$ is representation-finite of Cartan class Δ, and conversely, if $T(A)$ is re-presentation-finite of Cartan class Δ, there exists a tilted algebra B of Dynkin type Δ such that $T(B) \leadsto T(A)$. It was then shown in [2] that $T(A)$ is represen-tation-finite of Cartan class Δ if and only if A is an iterated tilted algebra of Dynkin type Δ. Moreover, the construction in [13] suggested that the representations of $T(A)$ were related to the representations of the A - A bimodule $D A$, or, what amounts to the same, the modules over the matrix algebra:

[^0]\[

\bar{A}=\left[$$
\begin{array}{cc}
A & 0 \\
D A & A
\end{array}
$$\right]
\]

The aim of this paper is to study the representations of the matrix algebra \bar{A} in the case where A is (iterated) tilted of Dynkin type. We shall first prove that \bar{A} is representation-finite (and even simply connected) whenever A is an iterated tilted algebra of Dynkin type. If A is in fact tilted of Dynkin type Δ, we shall describe a functor $F: \bmod \bar{A} \rightarrow \bmod T(A)$ which is surjective on the indecomposables, and whose restriction on a full subcategory of $\bmod \bar{A}$ preserves the Auslander-Reiten sequences and the irreducible maps, thus providing us with a simple combinatorial description of the Auslander-Reiten quiver $\Gamma_{\bar{A}}$ of \bar{A} : let S be an (arbitrary) complete slice in the Auslander-Reiten quiver Γ_{A} of A, then S generates a configuration $(\boldsymbol{Z} \Delta)_{C}$ of $\boldsymbol{Z} \Delta$ [9], which is stable under the action of $\tau^{-m_{\Delta}}$ (here, τ denotes the translation of $(\boldsymbol{Z} \Delta)_{C}$, and m_{Δ} denotes the Coxeter number of Δ minus one, thus $m_{A_{n}}=n, m_{D_{n}}=2 n-3, m_{E_{6}}=11, m_{E_{7}}=17$ and $m_{E_{8}}=29$) and in which \mathcal{S} embeds fully; let now $\left.\left[\mathcal{S}, \tau^{-m}\right\lrcorner \mathcal{S}\right]$ denote the full connected subquiver of $(\boldsymbol{Z} \Delta)_{C}$ consisting of all the vertices lying between \mathcal{S} and $\tau^{-m} \mathcal{S}_{\mathcal{S}}$, then $\Gamma_{\bar{A}}$ is constructed by glueing the full connected subquiver of Γ_{A} consisting of the predecessors (respectively, successors) of S to the left (respectively, to the right of $\left[\mathcal{S}, \tau^{-m} \Delta \mathcal{S}\right]$.

The above description yields a characterisation of \bar{A} in terms of its AuslanderReiten quiver. Recall first that a slice [11] in a simply connected translation quiver is a full convex subquiver \mathcal{S} such that, if x is a predecessor of \mathcal{S}, then \mathcal{S} contains precisely one vertex from the τ-orbit of x. We may now state:

Theorem Let B a basic, connected, finite-dimensional k-algebra. There exists a tilted algebra A of Dynkin type Δ such that $B \simeq \bar{A}$ if and only if Γ_{B} is simply connected and contains a slice S of underlying graph Δ such that:
(1) All projective B-modules which are not injective are predecessors of S.
(2) All projective-injective B-modules lie between \mathcal{S} and $\tau^{-m} \mathcal{S}$.
(3) All injective B-modules which are not projective are successors of $\tau^{-m_{4}} \mathcal{S}$.

Throughout this paper, k will denote a fixed algebraically closed field. We shall freely use properties of the Auslander-Reiten sequences and the AuslanderReiten quiver such as can be found in [4] and [10]. For tilted algebras and their properties, we refer to [7] and [11]. We shall use essentially the results of [13].

1. Definitions and preliminary results:

1.1. Let A be a finite-dimensional k-algebra. Recall that a (finite-dimensional) representation of the A - A-bimodule $D A=\operatorname{Hom}_{k}(A, k)$ is a triple $\left(U_{A}, V_{A}, \phi\right)$, where U_{A} and V_{A} are right (finite-dimensional) modules, and ϕ is an A-linear map from $U_{A} \otimes_{A} D A_{A}$ to V_{A}. A morphism of representations $f:(U, V, \phi) \rightarrow$ ($U^{\prime}, V^{\prime}, \phi^{\prime}$) consists of a pair of A-linear maps $g: U_{A} \rightarrow U_{A}^{\prime}, h: V_{A} \rightarrow V_{A}^{\prime}$ such that $h \phi=\phi^{\prime}(g \otimes 1)$. It is well-known that the category of (finite-dimensional) representations of the bimodule $D A$ is equivalent to the category of (finite-dimensional) right modules over the matrix algebra:

$$
\bar{A}=\left[\begin{array}{cc}
A & 0 \\
D A & A
\end{array}\right]=\left\{\left.\left[\begin{array}{ll}
a & 0 \\
q & b
\end{array}\right] \right\rvert\, a, b \in A, q \in D A\right\}
$$

endowed with the ordinary matrix addition, and the multiplication induced by the bimodule structure of $D A$. Indeed, writing 1 for the identity of A, and setting :

$$
e:=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad e^{\prime}:=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

any right \bar{A}-module M can be written in the form (U, V, ϕ), where $U:=M e^{\prime}$, $V:=M e$ and ϕ is the multiplication map $\phi: u \otimes q \rightarrow u q$ (for $u \in U$ and $q \in D A$). In the sequel, these two categories will always be identified.

Observe that \bar{A} is a $Q F-3$ algebra [18]; indeed, $e^{\prime} \bar{A}$ and $\bar{A} e$ are, respectively, a right and a left minimal faithful \bar{A}-module. Observe also that the trivial extension $T(A)=A \ltimes D A$ is the subalgebra of \bar{A} consisting of all the matrices $\left[\begin{array}{ll}a & 0 \\ q & b\end{array}\right]$ such that $a=b$. Our main objective will be to study the relations between the categories of finite-dimensional right $\operatorname{modules} \bmod \bar{A}, \bmod A$ and $\bmod T(A)$.
1.2. We shall, from now on, assume that A is a quotient of a finite-dimensional hereditary algebra, that is to say, that the ordinary quiver Q_{A} of A has no oriented cycles. We shall denote by $1,2, \cdots, n$ the vertices of Q_{A} and by $e_{1}, e_{2} \cdots e_{n}$ the corresponding primitive orthogonal idempotents, which we assume to be admissibly ordered (that is to say, such that $e_{j} A e_{i} \neq 0$ implies $i \leqq j$). We shall let $S(i)$ denote the simple module corresponding to the vertex $i \in\left(Q_{A}\right)_{0}$, $P(i)$ and $I(i)$ denote respectively its projective cover and injective envelope. In order to distinguish between the two copies of A given respectively by $e \bar{A} e$ and $e^{\prime} \bar{A} e^{\prime}$, we shall denote the first one by A, and the second one by A^{\prime}. Accordingly, Q_{A}^{A} will denote the quiver of A^{\prime}, i^{\prime} the vertex of Q_{A}^{\prime} corresponding to
$i \in\left(Q_{A}\right)_{\mathrm{s}}$ and e_{i}^{\prime} the corresponding idempotent.
The ordinary quiver Q_{A} of the algebra \bar{A} may now be constructed as follows. Clearly, Q_{A} and Q_{A}^{\prime} are both full connected subquivers of $Q_{\bar{A}}$, and every vertex of $Q_{\bar{A}}$ is a vertex of either Q_{A} or Q_{A}^{\prime}. Also, there is an arrow $i^{\prime} \rightarrow j$ whenever $\operatorname{rad}\left(e_{i}^{\prime} \bar{A} e_{j}\right) / \operatorname{rad}^{2}\left(e_{i}^{\prime} \bar{A} e_{j}\right) \neq 0$. Observe that $e_{i}^{\prime} \bar{A} e_{j}=D\left(e_{j} A e_{i}\right)$ and therefore if $e_{j} A e_{i} \neq 0$, there is a non-zero path in $Q_{\bar{A}}$ from i^{\prime} to j. Also, since $e_{i}^{\prime} \bar{A} \simeq D\left(\bar{A} e_{i}\right)$, each $P\left(i^{\prime}\right)_{\bar{A}}$ is projective-injective, and its socle is just $S(i)$. On the other hand, every $P(i)_{\bar{A}}$ has its support lying in Q_{A}, thus is a projective A-module. Dually, $I\left(i^{\prime}\right)_{\bar{A}}$ has its support lying completely in Q_{A}^{\prime} and is an injective A^{\prime}-module.

For our purposes, another description of $Q_{\bar{A}}$ will be needed. First, we recall the following developments from [13]: consider the matrix algebra:

where matrices have only finitely many non-zero entries, $A_{m}=A$ and $Q_{m}={ }_{A} D A_{A}$ for all $m \in Z$, all the remaining entries are zero and multiplication is induced from the canonical maps $A \otimes_{A} D A \leftrightharpoons D A, D A \bigotimes_{A} A \simeq D A$ and the zero maps $D A \bigotimes_{A} D A$ $\rightarrow 0$. Let ν be the automorphism of \hat{A} induced by the identity maps $A_{m+1} \rightarrow A_{m}$, $Q_{m+1} \rightarrow Q_{m}$. Then $\hat{A} \mid \nu \simeq T(A)$. An \hat{A}-module consists of a family $\left(U_{m}, \phi_{m}\right)_{m \in Z}$ of A-modules U_{m} and A-linear maps $\phi_{m}: U_{m} \otimes D A \rightarrow U_{m-1}$ such that, for all $m \in \boldsymbol{Z}$,

$$
\phi_{m-1}\left(\phi_{m} \otimes 1\right)=0 .
$$

An \hat{A}-linear map $f:\left(U_{m}, \phi_{m}\right)_{m \in Z} \rightarrow\left(U_{m}^{\prime}, \phi_{m}^{\prime}\right)_{m \in Z}$ consists of a family of A-linear maps ($\left.f_{m}: U_{m} \rightarrow U_{m}^{\prime}\right)_{m \in \boldsymbol{Z}}$ such that, for all $m \in \boldsymbol{Z}$,

$$
f_{m-1} \phi_{m}=\phi_{m}^{\prime}\left(f_{m} \otimes 1\right) .
$$

We shall let, as in [13], $\operatorname{Mod} \hat{A}($ respectively, $\bmod \hat{A})$ denote the category of \hat{A}-modules $\left(U_{m}, \phi_{m}\right)_{m \in Z}$ such that $\operatorname{dim}_{k} U_{m}<\infty$ for all $m \in \boldsymbol{Z}$ (respectively, $\left.\operatorname{dim}_{k}\left(\underset{m \in \mathbb{Z}}{ } U_{m}\right)<\infty\right)$. Then ν induces an automorphism of $\operatorname{Mod} \hat{A}$, and the subcategory $\operatorname{Mod}^{\nu} \hat{A}$ of Mod \hat{A} consisting of the ν-invariant modules and ν-invariant morphisms is equivalent to $\bmod T(A)$ by the functor which maps the $T(A)$-module M on the \hat{A}-module $\left(U_{m}, \phi_{m}\right)_{m \in Z}$ such that $U_{m}=M$ (considered as an A-module)
for all m, and ϕ_{m} is induced by the action of $D A$ on M [13].
Clearly, \bar{A} is identified to the quotient algebra of \hat{A} defined by the surjection,

$$
\hat{A} \longrightarrow\left[\begin{array}{cc}
A_{0} & 0 \\
Q_{1} & A_{1}
\end{array}\right]
$$

and therefore $Q_{\bar{A}}$ is identified to the full subquiver of $Q_{\hat{A}}$ defined by the vertices: $\left\{(i, 0) \mid i \in\left(Q_{A}\right)_{0}\right\}$ and $\left\{(i, 1) \mid i \in\left(Q_{A}\right)_{0}\right\}$ (in our previous notation, $(i, 0)$ is i and ($i, 1$) is i^{\prime}).
1.3. Since the trivial extension $T(A)$ is a subalgebra of \bar{A}, the inclusion map $T(A) \rightarrow \bar{A}$ defines a functor $F: \bmod \bar{A} \rightarrow \bmod T(A)$ (by restriction of the scalars) as follows: for an \bar{A}-module $\left(U_{A}, V_{A}, \phi\right)$, the $T(A)$-module $M:=F(U, V, \phi)$ has the A-module structure of $U_{A} \oplus V_{A}$, and the multiplication of $(u, v) \in M$ by $q \in D A$ is given by :

$$
(u, v) q=(0, \phi(u \otimes q))
$$

Thus, for $(u, v) \in M$ and $\left[\begin{array}{ll}a & 0 \\ q & a\end{array}\right] \in T(A)$:

$$
(u, v)\left[\begin{array}{ll}
a & 0 \\
q & a
\end{array}\right]=(u a, v a+\phi(u \otimes q))
$$

We define in the same way the action of F on the morphisms: if $f=(g, h)$: $(U, V, \phi) \rightarrow\left(U^{\prime}, V^{\prime}, \phi^{\prime}\right)$ is an \bar{A}-linear map, we put $F(f):=g \oplus h: U \oplus V \rightarrow U^{\prime} \oplus V^{\prime}$ as an A-linear map, the compatibility of this definition with the multiplication by elements of $D A$ follows from the fact that $h \phi=\phi^{\prime}(g \otimes 1)$.

We shall now give another description of the functor F. Let E be the canonical embedding functor of $\bmod \bar{A}$ in $\bmod \hat{A}$ (which is obtained by "extending by zeros"): it is full, exact, preserves indecomposable modules and their composition lengths. We also have a functor $\hat{F}: \bmod \hat{A} \rightarrow \bmod T(A)$ (denoted Φ in [13]) which is full, exact, preserves indecomposable modules and their composition lengths and also Auslander-Reiten sequences and irreducible maps: it is the composition of the functor $\bmod \hat{A} \rightarrow \operatorname{Mod}^{\nu} \hat{A}$ given by $M \rightarrow \underset{m \in \mathcal{Z}}{\oplus} \nu^{m} M, f \rightarrow \underset{m \in \mathcal{Z}}{\oplus} \nu^{m} f$ (for M, N in $\bmod \hat{A}$ and $f \in \operatorname{Hom}_{\hat{A}}(M, N)$) and the equivalence $\operatorname{Mod}^{\nu} \widehat{A} \leftrightharpoons \bmod T(A)$ described in (1.2). We shall prove:

Lemma $F=\hat{F} \circ E$.
Proof. Indeed, for an \bar{A}-module $(U, V, \phi), E(U, V, \phi)$ is the \hat{A}-module $\left(W_{m}, \psi_{m}\right)_{m \in Z}$ defined by:
and

$$
W_{0}=V, \quad W_{1}=U, \quad W_{m}=0 \quad \text { for } \quad m \neq 0,1
$$

$$
\psi_{1}=\phi: U \otimes D A \longrightarrow V, \quad \psi_{m}=0 \quad \text { for } m \neq 1
$$

This module is mapped on the module $\left(W_{m}^{\prime}, \psi_{m}^{\prime}\right)_{m \in Z}$ in $\operatorname{Mod}^{\nu} \hat{A}$ which is such that $W_{m}^{\prime}=U_{A} \oplus V_{A}$ for all $m \in Z$, and $\psi_{m}^{\prime}: W_{m}^{\prime} \otimes D A \rightarrow W_{m-1}^{\prime}$ is defined, for all $m \in Z$, by :

$$
\phi_{m}^{\prime}((u, v) \otimes q)=(0, \dot{\phi}(u \otimes q))
$$

(for $(u, v) \in U \oplus V$ and $q \in D A$). Finally, $\left(W_{m}^{\prime}, \psi_{m}^{\prime}\right)_{m \in Z}$ is mapped on the $T(A)$ module whose A-module structure is that of $U_{A} \oplus V_{A}$, and where the action of $D A$ on $U \oplus V$ is induced by the mapping ψ_{m}^{\prime}. Thus, if $(u, v) \in U \oplus V, a \in A$ and $q \in D A$:

$$
(u, v)\left[\begin{array}{ll}
a & 0 \\
q & a
\end{array}\right]=(u a, v a+\phi(u \otimes q))
$$

That is, F and $\hat{F} \circ E$ coincide on the objects. It is easily checked that they coincide also on the morphisms, and hence $F=\hat{F} \circ E$.

Corollary The functor F preserves the indecomposable modules and their composition lengths.
1.4. We shall now give a sufficient condition for \bar{A} to be simply connected:

Proposition Let A be a basic, connected, iterated tilted algebra of Dynkin type, then \bar{A} is simply connected.

Proof. Let A be a basic, connected, iterated tilted algebra of Dynkin type, then, by [2], the trivial extension $T(A)$ is representation-finite. The existence of a functor $F: \bmod \bar{A} \rightarrow \bmod T(A)$ which preserves indecomposable modules and composition lengths implies that the indecomposable \bar{A}-modules must have bounded length. Since \bar{A} is connected, it follows from [3] that it is representation-finite.

Observe that, by (1.2), \bar{A} is a quotient of a finite-dimensional hereditory algebra. On the other hand, A is simply connected [1], hence it satisfies the condition (S) of [6]: that is to say the indecomposable projective A-modules have separated radicals. By the construction of $Q_{\bar{A}}$, this implies that those indecomposable projective \bar{A}-modules which are also projective in $\bmod A$ have separated radicals. Now the remaining indecomposable projective \bar{A}-modules are also injective, their radicals are indecomposable and hence separated. Thus \bar{A} satisfies the condition (S), and is therefore simply connected.

Remarks and Examples It is possible that \bar{A} be representation-finite (and
even simply connected) even though A may not be iterated tilted of Dynkin type. Consider indeed the following example: let $\wedge(n, s)(n>s)$ denote the algebra given by the quiver:

$$
1 \longleftarrow \alpha_{1}-2 \longleftarrow \alpha_{2}-3 \longleftarrow \ldots \quad n-1 \longleftarrow \alpha_{n-1} n
$$

bound by $\alpha_{i} \alpha_{i+1} \cdots \alpha_{i+s+1}=0(1 \leqq i \leqq n-s)$ [15]. Then the algebra $A=\wedge(9,3)$ is easily checked to be iterated tilted of Euclidean type $\widetilde{\boldsymbol{E}}_{8}$, but \bar{A} is representationfinite and in fact simply connected (for, there is a full exact embedding [16] of $\bmod \bar{A}$ into the module category over the algebra $T_{2}(\wedge(11,3))$ of all two by two lower triangular matrices with coefficients in $\wedge(11,3)$, and $T_{2}(\wedge(11,3))$ is representationfinite by [15]). In general, however, if A is iterated tilted of Euclidean type, \bar{A} is not representation-finite, for instance, the algebra B given by the quiver:

bound by $\alpha \beta \gamma=0$ and $\beta \gamma=\delta \varepsilon$ is tilted of type \tilde{D}_{4}, but \bar{B} is of tame representation type.

2. The main results

2.1. For an algebra C, we shall denote by τ_{C} (or simply τ, if no ambiguity may arise) its Auslander-Reiten translation $D T r$, and by Γ_{C} its Auslander-Reiten quiver. We shall identify indecomposable C-modules with their isomorphism classes, thus with the corresponding vertices of Γ_{c}. Recall from [5] that a path $M_{0} \rightarrow M_{1} \rightarrow \cdots \rightarrow M_{t}$ in Γ_{C} is called sectional if $M_{i} \neq \tau M_{i+2}$ for any $0 \leqq i \leqq t-2$. A connected subquiver of Γ_{C} in which every path is sectional is called a subsection. A subsection \mathcal{S} is called a section if for any irreducible map $M \rightarrow N$ with $M \in \mathcal{S}$, either $N \in \mathcal{S}$ or $\tau N \in \mathcal{S}$. Thus, if a section contains an indecomposable summand of the radical of an indecomposable projective, it must contain that projective.

From now on, we shall always assume that A is a basic, connected, tilted algebra of Dynkin type Δ. This implies, by Proposition (1.4), that \bar{A} is simply connected. We shall also assume that $\Gamma_{\bar{A}}$ is given the partial order induced by the arrows: thus $M \leqq N$ means that there exists an oriented path from M to N.

Let now \mathcal{S}.. be the full subquiver of $\Gamma_{\bar{A}}$ consisting of those indecomposable \bar{A}-modules M such that there exists an oriented path from M to an indecomposable projective A-module, and moreover every such path is sectional. Clearly,
\mathcal{S}_{-}is connected and is a subsection of $\Gamma_{\bar{A}}$. In the same way, we let \mathcal{S}_{+}^{\prime} be the subsection of $\Gamma_{\bar{A}}$ consisting of all the indecomposable \bar{A}-modules N such that there is an oriented path from an indecomposable injective A^{\prime}-module to N, and every such path is sectional. Our first objectives will be to prove that $\mathcal{S}_{-}<\mathcal{S}_{+}^{\prime}$ and that \mathcal{S}_{-}and \mathcal{S}_{+}^{\prime} are isomorphic to complete slices in Γ_{A} and $\Gamma_{A^{\prime}}$ respectively.

2.2. Lemma For every $i \in\left(Q_{A}\right)_{0}$, we have $P\left(i^{\prime}\right)_{\bar{A}}>S_{\text {. }}$ and $P\left(i^{\prime}\right)_{\bar{A}}<\mathcal{S}_{+}^{\prime}$.

Proof. Assume first that $i \in\left(Q_{A}\right)_{0}$ is such that $P\left(i^{\prime}\right) \leqq \mathcal{S}_{\text {. }}$. Without loss of generality, we may suppose that the radical of $P\left(i^{\prime}\right)_{A}$ is the indecomposable injective A-module $I(i)_{A}$: indeed, the minimal elements among the indecomposable projective-injective \bar{A}-modules are such that their radicals are indecomposable injective A-modules (corresponding to the strong sinks: see (1.2) and [13]). Then, since $P\left(i^{\prime}\right) \leqq S_{-}$, there exists an oriented path in $\Gamma_{\bar{A}}$ from $P\left(i^{\prime}\right)$ to an indecomposable projective A-module $P(j)_{A}$. Now, $\operatorname{rad} P\left(i^{\prime}\right)_{\bar{A}}=I(i)_{A}$ and hence we have a path in $\Gamma_{\bar{A}}$:

$$
\gamma: I(i)_{A} \longrightarrow P\left(i^{\prime}\right)_{\bar{A}} \longrightarrow \cdots \longrightarrow P(j)_{A} .
$$

The restriction γ^{\prime} of γ to $\bmod A$ gives a path in Γ_{A} from $I(i)_{A}$ to $P(j)_{A}$. But A is a tilted algebra of Dynkin type, hence γ^{\prime} must be a sectional path in Γ_{A} which, in particular, must factor through an indecomposable summand J_{A} of $I(i) / S(i)$. Now J is also an indecomposable \bar{A}-module, hence must lie on γ. But then we have in $\Gamma_{\bar{A}}$ a situation:

where α and β are arrows, and $\gamma^{\prime \prime}$ a non-trivial path, and this is impossible by [17], Corollary (6). The proof of the second assertion is similar.

Corollary (1) (i) If $M \leqq \mathcal{S}_{-}$, then the support Supp M of M is contained in Q_{A}.
(ii) If $N \geqq \mathcal{S}_{+}^{\prime}$, then the support Supp N of N is contained in Q_{A}^{\prime}.

Proof. We shall only prove (i), since the proof of (ii) is similar. If $i \in$ $\left\langle Q_{A}\right)_{0}$ is such that $\operatorname{Hom}_{\bar{A}}\left(P\left(i^{\prime}\right), M\right) \neq 0$, then $P\left(i^{\prime}\right) \leqq M$. Since $M \leqq S_{-}$, this implies $P\left(i^{\prime}\right) \leqq S$, which is impossible by the previous lemma.

Corollary (2) $S_{-} \leqq S_{+}^{\prime}$
Proof. Indeed, if this is not the case, there exist $M \in \mathcal{S}_{+}^{\prime}$ and $N \in \mathcal{S}_{-}$such that $M \leqq N$. Since $N \in \mathcal{S}_{-}$, we have $M \leqq \mathcal{S}_{-}$and then Supp $M \subseteq Q_{A}$. On the other hand, $M \in \mathcal{S}_{+}^{\prime}$ implies Supp $M \subseteq Q_{A}^{\prime}$. This is a contradiction since $Q_{A} \cap Q_{A}^{\prime}=\boldsymbol{\phi}$.
2.3. Let now B be a representation-finite tilted algebra (but not necessarily of Dynkin type), and S be an arbitrary complete slice of Γ_{B}. If there exists in \mathcal{S} a sink M_{B} which is not projective, we can replace M by τM and every irreducible map f of codomain M and domain on \mathcal{S} by σf, thus obtaining a new complete slice of Γ_{B}. Repeating this process as many times as necessary, we ultimately reach a complete slice \mathcal{L} of Γ_{B} which is characterised by the fact that all its sinks are projective. By construction, $\mathcal{L} \leqq \mathcal{S}$ for every complete slice \mathcal{S} of Γ_{B}. \mathcal{L} will be called the left extremal slice of Γ_{B}. Dually, we can define the right extremal slice \mathcal{R} to be the complete slice of Γ_{B} which has all its sources injective. Another characterisation of the extremal slices is as follows:

Lemma. (i) $M_{B}>\mathcal{R}$ if and only if $p d M>1$.
(ii) $M_{B}<\mathcal{L}$ if and only if id $M<1$.

Proof of (i) If $M_{B}>\mathcal{R}$, then $\tau M \geqq \mathcal{R}$, and, since \mathcal{R} is a complete slice, there exists an epimorphism $\underset{R \in \mathcal{Q}}{\oplus_{\mathcal{Q}}} R \rightarrow \tau M$. In particular, for some source I of \mathscr{R}, we have $\operatorname{Hom}_{B}(I, \tau M) \neq 0$. But I is injective, hence pd $M>1$.

Conversely, if pd $M>1$, then $\operatorname{Hom}_{B}(D B, \tau M) \neq 0$ and there exists an indecomposable injective B-module I_{B} such that $\operatorname{Hom}_{B}(I, \tau M) \neq 0$. Since $I \geqq \mathscr{R}$, we have $\tau M \geqq \mathcal{R}$ and hence $M>\mathcal{R}$.

Let us denote by [\mathcal{L}, \mathscr{R}] the full connected subquiver of Γ_{B} consisting of those M_{B} such that $\mathcal{L} \leqq M \leqq \mathscr{R}$ (that is, $[\mathcal{L}, \mathscr{R}]$ consists of those vertices of Γ_{B} lying on a complete slice). Also, let $T(B)$ denote the trivial extension $B \ltimes D B$. We have:

Corollary. Let B be a tilted algebra of Dynkin type, then $[\mathcal{L}, \mathscr{R}]$ is the maximal full connected subquiver of Γ_{B} to be embedded fully in $\Gamma_{T(B)}$.

Proof. This follows at once from the previous lemma and [12], Theorem (6).
2.4. Proposition. (i) \mathcal{S}_{-}is the left extremal slice of Γ_{A}.
(ii) \mathcal{S}_{+}^{\prime} is the right extremal slice of $\Gamma_{A^{\prime}}$.

Proof. of (i) It follows from Corollary (2.2.1) that every module on $\mathcal{S}_{\text {. }}$ is
an A-module. To prove that S_{-}is a complete slice in Γ_{A}, let us start by proving that no indecomposable projective A-module is a proper successor of S_{-}and no indecomposable injective A-module is a proper predecessor of \mathcal{S}.. The first assertion being clear by construction, let $I(i)_{A}$ be an indecomposable injective A-module such that $I(i)<\mathcal{S}_{-}$in $\Gamma_{\bar{A}}$. We may again, without loss of generality, suppose that $I(i)$ is minimal among the indecomposable injective A-modules, and then $I(i)=\operatorname{rad} P\left(i^{\prime}\right)_{\bar{A}}$. But in this case, $I(i)<\mathcal{S}_{\text {- }}$ implies that $P\left(i^{\prime}\right)_{\bar{A}} \leqq \mathcal{S}_{-}$which contradicts Lemma (2.2).

It follows that \mathcal{S}_{-}contains at least one representative from each τ-orbit of indecomposable A-modules. In fact, \mathcal{S}_{-}being a subsection of $\Gamma_{\bar{A}}$, but also of Γ_{A} (because the support of each predecessor of S_{-}lies inside Q_{A}) contains at most one, and hence exactly one representative of each τ-orbit of indecomposable A-modules. By construction, \mathcal{S}_{-}is convex and it certainly does not contain oriented cycles (because \bar{A} is simply connected). Therefore, \mathcal{S}_{-}is a complete slice in Γ_{A}. Since, by construction, all the sinks in \mathcal{S}_{-}are indecomposable projective A-modules, \mathcal{S}_{-}is in fact the left extremal slice of Γ_{A}.
2.5. Let us now denote by $\Gamma=\left[\mathcal{S}_{-}, \mathcal{S}_{+}^{\prime}\right]$ the full connected subquiver of $\Gamma_{\bar{A}}$ consisting of those indecomposable \bar{A}-modules M such that $\mathcal{S}_{-} \leqq M \leqq \mathcal{S}_{+}^{\prime}$. By Lemma (2.2), all the indecomposable projective-injective \bar{A}-modules lie in Γ. Also, by Proposition (2.4), the underlying graph of the subsections \mathcal{S}_{-}and \mathcal{S}_{+}^{\prime} is Δ. In the sequel, we shall call Δ-subsection of a translation quiver any subsection whose underlying graph is Δ.

Recall that the surjection $\hat{A} \rightarrow \bar{A}$ induces an embedding $\Gamma_{\bar{A}} \rightarrow \Gamma_{\hat{A}}$ which is not full in general.

Lemma. $\quad \Gamma$ is the maximal full connected subquiver of $\Gamma_{\bar{A}}$ such that the embedding $\Gamma \rightarrow \Gamma_{\bar{A}} \rightarrow \Gamma_{\hat{A}}$ is full.

Proof. We first observe that a module in Γ which is not projective-injective can only be projective in $\bmod \bar{A}$ if it belongs to \mathcal{S}_{-}, and can only be injective in $\bmod \bar{A}$ if it belongs to \mathcal{S}_{+}^{\prime} (by Proposition (2.4)). Since S_{-}and S_{+}^{\prime} are complete slices of Γ_{A} and $\Gamma_{A^{\prime}}$ respectively, they are fully embedded in $\Gamma_{\hat{A}}$ (by [13] or [9]).

Let now M be a source in $\mathcal{S}_{\text {. }}$. In particular, M cannot be an injective \bar{A} module. We have two cases to consider: if M is not an indecomposable injective A-module, $\tau_{A}^{-1} M=\tau_{A}^{-1} M$. If we replace M by $\tau_{A}^{-1} M$ and every irreducible map f of domain M and codomain on S_{-}by $\sigma_{A}^{-1} f$, we obtain a new Δ-subsection S_{1} of $\Gamma_{\bar{A}}^{\prime}$ which is also a complete slice of Γ_{A} and is therefore fully embedded in $\Gamma_{\hat{A}}$. If, on the other hand, M is an indecomposable injective A-module $I(i)_{A}$, the
section of $\Gamma_{\bar{A}}$ containing \mathcal{S}_{-}contains also the projective-injective module $P\left(i^{\prime}\right)_{\bar{A}}$ which is such that $\operatorname{rad} P\left(i^{\prime}\right)_{\bar{A}}=I(i)_{A}$. We thus replace M by $\tau_{\bar{A}}^{-1} M=P\left(i^{\prime}\right) / S(i)$ and every irreducible map f of domain M and codomain on S_{-}by $\sigma_{\bar{A}}^{-1} f$. We obtain in this way a complete slice S_{1} in the tilted algebra $S_{i}^{+} A$ [13] of type Δ, where $S_{i}^{\dagger} A$ is the algebra whose ordinary quiver is the full connected subquiver of $Q_{\bar{A}}$ determined by i^{\prime} and $Q_{A} \backslash\{i\}$ with the inherited relations. In particular, the Δ subsection \mathcal{S}_{1} is again fully embedded in $\Gamma_{\hat{\mathrm{A}}}$. Observe that $P\left(i^{\prime}\right)$ is mapped in the process on an indecomposable projective-injective \hat{A}-module. Applying again the same considerations to \mathcal{S}_{1}, we obtain a new Δ-subsection \mathcal{S}_{2} which is also fully embedded in $\Gamma_{\hat{A}}$. Inductively, we find a sequence of Δ-subsections:

$$
\mathcal{S}_{-} \leqq \mathcal{S}_{1} \leqq \mathcal{S}_{2} \leqq \cdots
$$

which have the property that the sections they determine with the indecomposable projective-injective \bar{A}-modules are fully embedded in $\Gamma_{\hat{A}}$. This process stops at \mathcal{S}_{t}, where \mathcal{S}_{t} is such that all its sources are indecomposable injective \bar{A}-modules (and hence A^{\prime}-modules), that is to say, $\mathcal{S}_{t}=\mathcal{S}_{+}^{\prime}$. This completes the proof that the embedding $\Gamma \rightarrow \Gamma_{\hat{A}}$ is full. The maximality assertion follows from Corollary (2.3) and Proposition (2.4).

Corollary (1) The embedding $\Gamma_{\bar{A}} \rightarrow \Gamma_{\hat{A}}$ is full if and only if A is hereditary.
Proof. Indeed, it follows from the lemma that this embedding is full if and only if $\Gamma=\Gamma_{\bar{A}}$ and this is the case if and only if \mathcal{S}_{-}consists of projective A-modules and \mathcal{S}_{+}^{\prime} consists of injective A^{\prime}-modules. By construction, both of these conditions are equivalent to the condition that A be hereditary.

Corollary (2) Let \mathcal{S}_{+}and \mathcal{S}_{-}^{\prime} denote respectively the right extremal slice of Γ_{A} and the left extremal slice of $\Gamma_{A^{\prime}}$, then $\mathcal{S}_{-} \leqq \mathcal{S}_{+}<\mathcal{S}_{-}^{\prime} \leqq \mathcal{S}_{+}^{\prime}$.

Proof. It follows from Corollary (2.3) and the previous lemma that $\left[\mathcal{S}_{-}, \mathcal{S}_{+}\right]$ $\subseteq \Gamma$ and hence $\mathcal{S}_{-} \leqq \mathcal{S}_{+} \leqq \mathcal{S}_{+}^{\prime}$. Similarly, $\mathcal{S}_{-} \leqq \mathcal{S}_{-}^{\prime} \leqq \mathcal{S}_{+}^{\prime}$. Since the support of every predecessor of S_{+}lies entirely in Q_{A} and the support of every successor of S_{-}^{\prime} lies entirely in Q_{A}^{\prime}, we have $\mathcal{S}_{+}<\mathcal{S}_{-}^{\prime}$.
2.6. Let now \mathcal{A} denote the additive subcategory of $\bmod \bar{A}$ generated by the indecomposable \bar{A}-modules lying in Γ, and let F^{\prime} be the restriction to A of the functor F of (1.3), that is to say, F^{\prime} is the composition of the embedding $\mathcal{A} \rightarrow$ $\bmod \bar{A}$ and of the functor $F: \bmod \bar{A} \rightarrow \bmod T(A)$.

Theorem. The functor $F^{\prime}: \mathcal{A} \rightarrow \bmod T(A)$ preserves the indecomposable
modules, their composition lengths, the Auslander-Reiten sequences and the irreducible maps. Considered as a mapping $\Gamma \rightarrow \Gamma_{T(A)}$, it is surjective.

Proof. Let us recall that the functor $\hat{F}: \bmod \hat{A} \rightarrow \bmod T(A)$ preserves the indecomposable modules, their composition lengths, the Auslander-Reiten sequences and the irreducible maps. On the other hand, considered as a mapping $\Gamma_{\hat{A}} \rightarrow$ $\Gamma_{T_{(A)}}$, it is surjective, in fact, $\Gamma_{\hat{A}}$ is connected and $\Gamma_{\hat{A}} /\left\llcorner\simeq \Gamma_{T(A)}\right.$ [13]. It suffices thus to prove, by Lemma (2.5), that Γ contains two Δ-subsections which belong to the same fibre of a complete slice in Γ_{A} considered as a full connected subquiver in $\Gamma_{T(A)}$. Now we have just seen that $\mathcal{S}_{+}<\mathcal{S}_{+}^{\prime}$ and that $\left[\mathcal{S}_{+}, \mathcal{S}_{+}^{\prime}\right] \subseteq \Gamma$ is fully embedded in $\Gamma_{\bar{A}}$. But \mathcal{S}_{+}and \mathcal{S}_{+}^{\prime} are respectively the right extremal slices of A and $A^{\prime}=\nu^{-1} A$ (see (1.2)). Therefore, they correspond under the automorphism of $\Gamma_{\hat{A}}$ defined by $\nu: \mathcal{S}_{+}^{\prime}=\nu^{-1} \mathcal{S}_{+}$. In particular, they belong to the same fibre.

The above theorem allows us to describe the fundamental domains for the representation-finite trivial extension algebra $T(A)$. Recall that Larrión and Salmerón [14] have proved that, if Λ is a representation-finite, connected, finitedimensional k-algebra such that Γ_{A} does not contain oriented cycles, then the universal cover [8] $\tilde{\Gamma}_{A}$ of Γ_{A} contains a full subtranslation quiver Σ which is isomorphic to the Auslander-Reiten quiver of a simply connected algebra, and which contains at least one point from each fibre of the covering morphism $\tilde{\Gamma}_{A} \rightarrow \Gamma_{A} . \quad \Sigma$ is then called a fundamental domain for Λ. To extend this result to the case of the representation-finite trivial extension algebra $T(A)$, we define a fundamental domain (respectively, an exact fundamental domain) for $T(A)$ to be a full connected subquiver of $\Gamma_{\hat{A}}$ which contains at least one point (respectively, exactly one point) of each fibre of the map $\Gamma_{\hat{A}} \rightarrow \Gamma_{T(A)}$ and which is also a full connected subquiver of the Auslander-Reiten quiver of a simply connected algebra. It follows from Lemma (2.5) and Theorem (2.6) that Γ is a fundamental domain for $T(A)$, maximal inside $\Gamma_{\bar{A}}$. Moreover, Corollary (2.5.1) implies that Γ is in fact equal to the Auslander-Reiten quiver of the simply connected algebra \bar{A} if and only if A is hereditary. The exact fundamental domains are constructed as follows: let \mathcal{S} be an arbitrary complete slice in Γ_{A} considered as a Δ-subsection of $\Gamma_{\bar{A}}$ (in particular, $\mathcal{S}_{-} \leqq \mathcal{S} \leqq \mathcal{S}_{+}$). Then there exists a unique Δ-subsection \mathcal{S}^{\prime} which is such that $\mathcal{S}^{\prime}=\nu^{-1} \mathcal{S}$. In fact, $\mathcal{S}^{\prime}=\tau_{\bar{A}}^{-{ }^{m}} \Delta \mathcal{S}$, where m_{Δ} denotes the Coxeter number of the graph Δ minus one, thus $m_{A_{n}}=n, m_{D_{n}}=2 n-3, m_{E_{6}}=11, m_{E_{7}}=17$ and $m_{E_{8}}=29$. Hence the exact fundamental domains are precisely the half-open intervals of the forms $\left[\mathcal{S}, \mathcal{S}^{\prime}[\right.$ and $\left.] \mathcal{S}, \mathcal{S}^{\prime}\right]$. It also follows from the proof of the theorem that $\Gamma_{r(A)}$ is obtained from one of these intervals by identifying
the two Δ-subsections \mathcal{S} and \mathcal{S}^{\prime}.
We then deduce a simple combinatorial description of $\Gamma_{\bar{A}}$: let \mathcal{S} be an arbitrary complete slice of Γ_{A}, it embeds fully in $\Gamma_{\hat{\mathrm{A}}}$, we shall let \mathcal{S}_{0} denote its image in $\Gamma_{\hat{A}}$ and put $\mathcal{S}_{0}^{\prime}:=\tau_{\hat{A}}^{\boldsymbol{\pi}^{m} \mathcal{S}_{0}} ; \Gamma_{A}$ is then constructed by glueing the full connected subquiver of Γ_{A} consisting of the predecessors (respectively, successors) of \mathcal{S} to the left (respectively, to the right) of [$\left.\mathcal{S}_{0}, \mathcal{S}_{0}^{\prime}\right]$ identifying \mathcal{S} with \mathcal{S}_{0} (respectively, \mathcal{S}_{0}^{\prime}).

For a representation-finite algebra C, let $n(C)$ denote the number of isomorphism classes of indecomposable C-modules. We have:

Corollary. $n(\bar{A})=n(T(A))+n(A)$. Consequently, $n(\bar{A}) \geqq 3 n(A)$, and equality holds if and only if A is hereditary.

Proof. Let \mathcal{S} be a complete slice in Γ_{A}, considered as a full connected subquiver of $\Gamma_{\bar{A}}$, and put $\mathcal{S}^{\prime}=\tau_{\bar{A}}{ }^{-\mu} \Delta \mathcal{S}$. Then an indecomposable \bar{A}-module M either lies in $\left[\mathcal{S}, \mathcal{S}^{\prime}\right]$, in which case it is associated to a unique isomorphism class of an indecomposable $T(A)$-module, or else, if $M \oplus\left[\mathcal{S}, \mathcal{S}^{\prime}\right]$, it must satisfy one of the following two conditions: either $M_{\bar{A}}<\mathcal{S}$, or $M_{\bar{A}} \geqq S^{\prime}$. In the first case, $M_{\bar{A}}$ is in fact an indecomposable A-module (because $\mathcal{S} \leqq \mathcal{S}_{+}$) which strictly precedes the complete slice \mathcal{S}, and in the second $M_{\bar{A}}$ is an indecomposable A^{\prime}-module (because $\mathcal{S}^{\prime} \geqq \mathcal{S}_{-}^{\prime}$) which lies on $\mathcal{S}^{\prime}=\nu^{-1} \mathcal{S}$ or succeeds it. But in this latter case, M is associated to a unique indecomposable A-module lying on \mathcal{S}, or succeeding to it. This proves the first assertion. The second follows from the first and [20], Theorem (2.12).
2.7. Let now Γ be a simply connected translation quiver, we shall denote by l_{Γ} the length function on $\Gamma[8]$. Recall from [11] that a slice in Γ is a full convex subquiver \mathcal{S} such that, if $x \leqq \mathcal{S}$, then \mathcal{S} contains precisely one vertex from the τ-orbit of x. Observe that this is a more general concept than that of complete slice. We may now state our next theorem.

Theorem. Let B be a basic, connected, finite-dimensional k-algebra. Then there exists a tilted algebra A of Dynkin type Δ such that $B \leadsto \bar{A}$ if anly if Γ_{B} is simply connected and contains a slice \mathcal{S} of underlying graph Δ such that:
(1) All projective B-modules which are not injective are predecessors of \mathcal{S}.
(2) All projective-injective B-modules lie between \mathcal{S} and $\tau^{-m} \mathcal{S}$.
(3) All injective B-modules which are not projective are successors of $\tau^{-m} \Delta \mathcal{S}$.

Proof. We first check the necessity of the conditions. If $B=\bar{A}$, for A tilted of Dynkin type Δ, then Γ_{B} is simply connected by Proposition (1.4). The
other conditions follow from (2.4) and (2.6).
Conversely, assume that B satisfies the stated conditions. Observe first that \mathcal{S} is connected, since it has Δ for underlying graph. Let P_{B} be the direct sum of the indecomposable projective B-modules which are not injective, and let $A=$ End P_{B}. We claim that A is a tilted algebra of type Δ. It follows from (1) and (2) that every indecomposable B-module which precedes S has its support completely contained in A, and consequently, the full connected subquiver of Γ_{B} consisting of those B-modules which are predecessors of \mathcal{S} is fully embedded in Γ_{A}. On the other hand, by hypothesis, S is convex, does not contain oriented cycles (because Γ_{B} is simply connected) and contains one representative from the τ-orbit of each of its predecessors. Since every projective A-module is a predecessor of \mathcal{S} in Γ_{B}, hence in Γ_{A}, S contains one representative from the τ-orbit of each of the indecomposable projective A-modules. Now A is represen-tation-finite, and has no oriented cycles in its Auslander-Reiten quiver, hence it follows that S is a complete slice in Γ_{A} and A is indeed a tilted a tilted algebra of Dynkin type Δ.

By the necessity part of the theorem, the algebra \bar{A} satisfies also the stated conditions. We claim that $\Gamma_{\bar{A}}$ and Γ_{B} are isomorphic translation quivers. We first observe that, as shown above, the full connected subquiver of Γ_{A} consisting of those indecomposable A-modules which precede \mathcal{S} is fully embedded in both $\Gamma_{\bar{A}}$ and Γ_{B}. We shall denote by $p\left(\mathcal{S}_{\bar{A}}\right)$ and $p\left(\mathcal{S}_{B}\right)$ its respective images, and by $\mathcal{S}_{\bar{A}}$ and \mathcal{S}_{B} the respective images of the slice \mathcal{S} of Γ_{A} in $\Gamma_{\bar{A}}$ and Γ_{B}. Thus, there is a translation quiver isomorphism $f: p\left(\mathcal{S}_{B}\right) \rightarrow p\left(\mathcal{S}_{\bar{A}}\right)$, and $l_{\Gamma_{B}}(x)=l_{\Gamma_{A}^{-}}(f(x))$ for each $x \leqq \mathcal{S}_{B}$. Next we consider the two intervals $\left[\mathcal{S}_{B}, \tau^{-m} \mathcal{S}_{B}\right]$ of Γ_{B} and [$\mathcal{S}_{\bar{A}}, \tau^{-m^{\prime} \mathcal{S}_{\bar{A}}}$] of $\Gamma_{\bar{A}}$. It follows from (2.5) and [9], $\S 3$ that $\left[\mathcal{S}_{\bar{A}}, \tau^{\left.-m_{\Lambda} \mathcal{S}_{\bar{A}}\right]}\right.$ is isomorphic, as a translation quiver, to one full period of the configuration of $Z \Delta$ associated to the \mathcal{S}-section algebra A, which is stable under the action of
 or injective is in fact projective-injective, therefore this open interval is a union of sections formed by parallel Δ-subsections together with the projective-injective modules. On the other hand, the position of each projective-injective is in fact uniquely determined by the length function. Thus $\left[\mathcal{S}_{B}, \tau^{-m} \mathcal{S}_{B}\right]$ is also (again by [9], §3) isomorphic to one full period of the configuration of $Z \Delta$ associated to A. This extends f to a translation quiver isomorphism from $\left[S_{B}, \tau^{-m} \mathcal{S}_{B}\right]$ to $\left[\mathcal{S}_{\bar{A}}, \tau^{-m_{A}} \mathcal{S}_{\bar{A}}\right]$, and $l_{\Gamma_{B}}\left(\tau^{-m_{A}} x\right)=l_{\Gamma_{B}}(x)=l_{\Gamma_{A}^{-}}(f(x))=l_{\Gamma_{A}^{-}}\left(f\left(\tau^{-m_{A}}\right)\right)$ for each x on \mathcal{S}_{B}. Finally, since no projective modules are successors of $\tau^{-m} \mathcal{S}_{B}, f$ can be extended to a translation quiver isomorphism $f: \Gamma_{B} \simeq \Gamma_{\bar{A}}$ (indeed, the remaining parts of these translation quivers are uniquely determined by the values of the respective
length functions on $\tau^{-m} \mathcal{S}_{B}$ and $\tau^{-m} A_{S_{A}}$ and these are equal). Since our algebras are simply connected, this implies that $B \hookrightarrow \bar{A}$.
2.8 Remarks. (1) The above results are no longer true if A is assumed to be an iterated tilted algebra of Dynkin type, but not tilted. For instance, if A is the iterated tilted algebra of type \boldsymbol{A}_{6} given by the quiver:

$$
1 \stackrel{\alpha_{1}}{\leftarrow} 2 \stackrel{\alpha_{2}}{\leftarrow} 3 \stackrel{\alpha_{3}}{\longleftarrow} 4 \stackrel{\alpha_{4}}{\leftarrow} 5{ }^{\alpha_{5}}{ }^{2}
$$

bound by $\alpha_{i} \alpha_{i+1}=0(1 \leqq i \leqq 4)$, then $\Gamma_{\bar{A}}$ has no \boldsymbol{A}_{6}-subsection.
(2) We may generalise the above results in the following way: let $A^{(t)}$ denote the (finite-dimensional) quotient algebra of \hat{A} defined by:

$$
A^{(t)}=\left(\begin{array}{cccccc}
A_{0} & & & & & 0 \\
Q_{1} & A_{1} & & & & \\
& & & & & \\
& Q_{2} & & A_{2} & & \\
& & \ddots & \ddots & \ddots & \\
0 & & & Q_{t} & & A_{t}
\end{array}\right)
$$

(thus, $\bar{A}=A^{(1)}$). Then, if A is a basic, connected, iterated tilted algebra of Dynkin type, $A^{(t)}$ is simply connected. Also, if A is moreover assumed to be tilted, we can describe, just as above, the Auslander-Reiten quiver of $A^{(t)}$ which then contains t exact fundamental domains for $T(A)$.

Acknowledgements I would like to express my gratitude to Y. Iwanaga for the useful discussions we held on the subject.

References

[1] Assem, I., Iterated tilted algebras of types \boldsymbol{B}_{n} and \boldsymbol{C}_{n}, J. Algebra 84 (2) (1983), 361-390.
[2] Assem, I., Happel, D. and Roldán, O., Representation-finite trivial extension algebras, J. Pure Appl. Algebra. 33 (1984), 235-242.
[3] Auslander, M., Applications of morphisms determined by objects, Proc. Conf. on Representation Theory (Philadelphia 1976), Marcel Dekker (1978), 245-327.
[4] Auslander, M. and Reiten, I., Representation theory of artin algebras III and IV, Comm. Algebra 3 (1975), 239-294 and 5 (1977), 443-518.
[5] Bautista, R., Sections in Auslander-Reiten quivers, Proc. ICRA II (1979), Springer Lecture Notes No. 832 (1980), 74-96.
[6] Bautista, R., Larrión, F. and Salmerón, L., On simply connected algebras, J. London Math. Soc. 27(2) (1983), 212-220.
[7] Bongartz, K., Tilted algebras, Proc. ICRA III (1980), Springer Lecture Notes No. 903 (1982), 26-38.
[8] Bongartz, K. and Gabriel, P., Covering spaces in Representation theory, Invent. Math. 65 (1982), 331-378.
[9] Bretscher, O., Läser, C. and Riedtmann, C., Selfinjective and simply connected algebras, Manuscripta Math. 36 (3) (1981), 253-308.
[10] Gabriel, P., Auslander-Reiten sequences and representation-finite algebras, Proc. ICRA II (1979), Springer Lecture Notes No. 831 (1980), 1-71.
[11] Happel, D. and Ringel, C. M., Tilted algebras, Trans. Amer. Math. Soc. 274 (2) (1982), 399-443.
[12] Hoshino, M., Trivial extensions of tilted algebras, Comm. Algebra 10 (18) (1982), 1965-1999.
[13] Hughes, D. and Waschbüsch, J., Trivial extensions of tilted algebras, Proc. London Math. Soc. 46 (3) (1983), 347-364.
[14] Larrión, F. and Salmerón, L., On Auslander-Reiten quivers without oriented cycles, Bull. London Math. Soc. 16 (1984), 47-51.
[15] Marmaridis, N., On the representation type of certain triangular matrix algebras, Comm. Algebra 11 (17) (1983), 1945-1964.
[16] Ringel, C.M., Tame algebras, Proc. ICRA II, Springer Lecture Notes No. 831 (1980), 137-287.
[17] Salmerón, L., Stratifications of finite Auslander-Reiten quivers, Publ. Prel. Universidad Nacional Autónoma de México No. 64 (1983).
[18] Tachikawa, H., On Quasi-Frobenius rings and their generalisations, Springer Lecture Notes No. 351 (1973).
[19] Tachikawa, H., Representations of trivial extensions of hereditary algebras, Proc. ICRA II (1979), Springer Lecture Notes No. 832 (1980), 579-599.
[20] Yamagata, K., Extensions over hereditary artinian rings with self-dualities I, J. Algebra 72 (2) (1981), 386-433.

Department of Mathematics
University of Ottawa
585 King Edward
Ottawa, Ontario
K1N 9B4, Canada.

Current Address:

Fakultät für Mathematik,
Universität Bielefeld,
4800, Bielefeld 1,
Federal Republic of Germany.

[^0]: Received November 5, 1984.

