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1. Introduction.

All spaces considered in this paper are assumed to be compact and metrizable.

Let ¢ be a homeomorphism from a space (X, d) onto itself. Then ¢ is
expansive if there is ¢>0 such that for every x, y&X with x#y there is neZ
for which d(¢™(x), @"(y))>c. Given 6>0, a sequence {x;::EZ} is a d-pseudo-
orbit of ¢ if d(¢(xs), x441)<0 for every i Z. Given >0, a sequence {x;:1EZ}
is e-traced by a point ye=X if d(¢*(y), x)<e for every i€Z. We say that ¢
has the pseudo orbit tracing property (abbrev. P.O.T.P.) if for every ¢>0 there
is 6>0 such that every d-pseudo-orbit of ¢ can be e-traced by some point of X.

For a space (X, d) we denote by X(X) the space of all homeomorphisms
of X with the metric d(¢p, ¢)=max{d(p(x), ¢(x)): xX} for every ¢, p= K(X).
Let &X)={p=H(X): ¢ is expansive} and P(X)={p&H(X): ¢ has P.O.T.P.}.

In Section 3 we are concerned with the Cantor set C. The Cantor set C
is the unique zero-dimensional infinite group. N. Aoki [1] proved that every
group automorphism of C has P.O.T.P. M. Sears [6] proved that &(C) is dense
in 4(C), constructing a dense subset A of &(C) in #(C). M. Dateyama [3]
proved that @(C) is dense in 4 (C), constructing a dense subset @ of 2(C) in
J(C). However, for the sets A and # above we have ANB=¢. So it is
unknown whether the set &(C)N®(C) of all expansive homeomorphisms with
P.O.T.P. of C is dense in 4(C). In Section 3 we shall prove the following
theorem.

THEOREM 1. The set of all expansive homeomorphisms with P.O.T.P. of the
Cantor set C is dense in I (C).

We know [6] that &(C) is of first category. So &(C)NP(C) is also of first
category.

The convergent sequence is another standard zero-dimensional space, classed
with the Cantor set. In Section 4 we shall prove the following theorem.
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THEOREM 2. Let S={0, 1, 1/2,1/3, ---}. Then

(a) the set of all expansive homeomorphisms of S is dense in I(S),

(b) the set of all homeomorphisms with P.O. T.P. of S is dense in J(S),
(¢) S has no expansive homeomorphism with P.O.T.P.

In Section 5 we shall construct a zero-dimensional space having no expansive
homeomorphism.

2. Preliminaries.
Let DZ=TI{D;:icZ}, where D;={0, 1} for every i€Z. We define the
metric d on DZ? by

1/min{\k!:xk¢yk} if Xo=Yo
d(x, y)=

if XoF Vo

for every x=(x;), y=(y;)&D?.

Obviously, (D4, d) is homeomorphic to the Cantor set. For a homeomorphism
of a compact metrizable space X it is clear that both expansiveness and P.O.T.P.
do not depend on the choice of metrics on X. Thus we may regard (D%, d) as
the Cantor set.

For every ¢, je Z with i<j we put D@, j)=II{D::i<k<j} and for every
feDG, j) we put ¢*(f)=j and ¢ (f)=i. We define the order < on U{D(, 7):1¢, j
eZ with i<j}\ D% as follows: f<g if and only if one of the following condi-
tions holds; (1) f=g, 2) feDG, j), g&D(k, ), k<i, j<land f,=g, for every
m,i=m<j, 3) feDG, j), gD? and f,=g, for every m, i<m<j, where f=
(fi, fivn, ==, f3) for f€ DG, j) and f=(-, f-4, fo, f1, =) for f€D?. For every
feD@, ;) and any neN with i<—n and n<j (or for every f=D? and any
neN)we put fio= -n, fon+1, ==, fn)ED(—n, n). For every f=D(, j) we put
A;=pi}(f), where p;;: DZ—D(, j) is the projection.

If a space X is the union of a pairwise disjoint collection {X;:As A} of
open-and-closed subsets of X, then we represent X as X=@{X,: 1= 4}.

3. Proof of Theorem 1.

Let ¢: D?—D? be a homeomorphism and ¢>0. We shall construct an ex-
pansive homeomorphism ¢ with P.O.T.P. such that J(gb, ¢)=max{d({(x), ¢(x)):
xeD?}<e.

We take k, n=N such that 1/k<e and d(¢(x), ¢(y))<1/k for every x, y= D?
with d(x, y)<1/n.
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Claim 1. For every feD(—n, n) there are h(f)eD(—k, k) and g(f)=
D(—1,, l,) for some [, LN, i=1, 2, satisfying the following three conditions;

(@ D*=B{Ass: fED(—n, m)},

b)Y (AT Aness,

© hNH=gh).

Proof of Claim 1. From diam A,<1/n it follows that diam ¢(A;)<1/k.
Since DZ=@{A,: heD(—k, k)} and d(A,, Ax)=1/n for every h, h'=D(—Fk, k)
with A#h', there is h(f)SD(—k, k) such that ¢(A;)CA,,. For every he
D(—Fk, k) list {feD(—n, n): h(f)=h} as {fri: 1<i<pn}. Forevery i, 1<i< pa,
we take gni=h such that A,=PD{A,,,: 1Si<p,}. Let us set g(frn)=gn; for
every heD(—k, k) and any 7, 1</<p,. Then g(/) and h(f) have all the re-
quired properties.

Next, we shall construct a homeomorphism ¢: D*—~D?. For every x&D?
we define ¢(x) as follows.

Let f=x,=D(—n, n) and g(f)=D(—I,, l,).

Case 1. [,+/0,=2n and [,=n.

Let us set
- (g it —lL<i<l,
} Xi+1 if L+1=s
(p(x))i= . .
1 Xitiy+lg+2 if n—{—L—-1=s/=—[—1
Xi-on+lj+1p+1 it iSn—[—[,—2
and

M«(f)=1 and M-(f)=—2n+l+L+1.
Case 2. ;+{,<2n and [,<n.

Let us set
(g if —4L=<i<l,
[xiﬂ if i£—n—2
Xizonto if —n—1=Z5/<—0,—1

(@(X»t:l

Xivon-1y-tp41 AL LH1=d
and
M*(f)=2n—1l—l,+1 and M-(f)=1.

Case 3. otherwise, i.e. (/;4+/,=2n and l,<n) or (/,+{,<2n and {;>n).
In this case we have [,<n</,. Let us set
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(g i —hL=ish
(@(x))i=3 Xirn-1, it L+1=s
]xi+L1—n if ig"lr‘l
and
M+ (fy=n—I, and N (f)=[—n.
Then it is obvious that ¢4,: A;—Ags is a homeomorphism. By (a), ¢ is a
homeomorphism from DZ onto itself. Let us set m=max{—c (g(f)), ct(g(f:
feD(—n, n)}.
By the construction of ¢ the following claim is easily seen.

Claim 2. Let x, y&D? with d(x, y)=1/k<1/2m.

(i) If xp# v, then d(p(x), ¢(x)=1/] and x,#y,, where [=k—M*(x ).

(i) If x_z#y-s then d(p'(x), ' (y)=1/l and x_,#y-;, where [=k—
M=(xn).

By Claim 2, 1/2m is an expansive constant for ¢. Thus ¢ is expansive,

To prove that ¢ has P.O.T.P. we need the following mappings a and S.

For every fe\U{DG, /): i, j€Z with i<—n and n=j} let us set

a(f)=max{g: g<¢(h) for every heD? with f<h}.
For every g&\U{D(, j): i, j€Z with i<—m and m=j} let us set
B(g)=max{f: f<¢~'(h) for every he D* with g<h}.

We shall show that ¢ has P.O.T.P.

Let ¢,>0. We take d=1/N such that 1/N<min{e,;, 1/2m}. Let {x*:i€Z}
be a d-pseudo-orbit of ¢. Let K(—1)=—N—1. By induction on 0<ieZ, we
choose K(;) and y,=D; for every j, K(i—1)<j<K(), satisfying the following
conditions:

(d) K@E—1)<K(@),

(&) c*a'(¥)=N,

() a'(y)iv=xly,
where y'=(y_y, V_w+1, *, Yran<ED(—N, K@)

In case =0, let K(0)=N and for every j, —K(—1)<j<K(0), let y;=xj.
Assume that K () and y;, K(G—1)<j<K (), are chosen such that the above con-
ditions hold. Let us set K(G+1D=K(@)-+M(a¥(y",) and y;=xiiky-xa+n for
every 7, KG)<j<K(@E+1). It is easy to check that all induction hypothesis are
satisfied. Let L(1)=N-+1. By induction on 0=i=Z, similarly as above, we
choose L(i) and y,&D; for every j, LG)Zj<L(i+1), satisfying the following
conditions :



Homeomorphisms of zero-dimensional spaces 493

(8 LEO<LE+D,

) (B Uy N==N,

(1) ﬁ‘i(yi)mzx’f]v,
where y'=(yra, Yz, -, Y¥)ED(LE), N). Let usset y=(-, y_y, Yo, Y1, =)
€D? Then for every i=0 we have ¢(3)>a¥(y%) and ai(y%),y=x'y. This im-
plies that ¢*(y),y==x!y and therefore we have d(¢%(y), x))<1/N<e,. For every
¢<0 we have ¢*(y)>B"%y*) and B~(y") y==xiy. This implies that O M iv=xiy
and therefore we have d(¢%(y), x")<1/N<e,. Hence {x:i€Z} is ¢,-traced by
y. Therefore ¢ has P.O.T.P.

We show that d(¢p, ¢)<<e. By the construction of ¢, ¢((A,))=A,;, for every
f€eD(—n, n). For every xéDZ, we have x= A for some fD(—n, n). Thus,
by (¢), we have ¢(x)c@(A;)=A,»CAnys. On the other hand, by (b), we have
POEY(A)C Ares>. From diam A, pr=1/(k+1)<e it follows that d(p(x), ¢(x))
<e. Hence we have d(p, ¢)<e. Theorem 1 has been proved.

4. Proof of Theorem 2.

Let d be the Euclidean metric on S={0, 1, 1/2, 1/3, ---}. Note that a map-
ping ¢:S—S is a homeomorphism if and only if ¢ is one-to-one, onto and
©(0)=0. For every neN we set S,={1/(n—1), 1/(n—2), ---, 1}.

(@) Let ¢=Ji(S) and ¢,>0. We construct ¢=&(S) such that d(p, P)<e,.
To do this, we take nN with 1/n<e, For every meN, m<n, we take
xnES such that ¢(x,)=1/m. Let [=max{l/x,:m<n}-+1. For every k<N,
k=1, let us set

1/(k—2) if k={+2; for some /N
o1/ k=1 1/(k+2) if k={4+2/—1 for some /€N
1/(+1) if k=I.

For every meN, m<n, let us set ¢(x,)=1/m (=¢(xn). Let ¢0)=0, and for
every x&S,—{xn: m<n} let ¢(x) be an element of S;—S, such that ¢(x)+¢(x")
for every x, x’€S,—{xn:m<n} with x#x’. Then ¢ is one-to-one, onto and
¢(0)=0. Thus g=4(S). By the construction of ¢, it is obvious that d(p, ¢)=<
1/n<e,. Let ¢=1/(21*+2l). Note that U 1/0)={1/{}. We show that ¢ is an
expansive constant for ¢. Let x, y&S with x#y. We may assume that x=0.
If xS, then d(x, y)>c. If x&S,, then ¢i(x)=1// for some i=Z, and there-
fore d(p'(x), ¢'(3))>c. Hence we have p=&(S).

(b) Let ¢=4(S) and ¢,>0. We costruct ¢o=2(S) such that d(gp, ¢)<e,.
Let n,{ and x,, m<n, be as in (a). For every x&S, let ¢o(x) be as in (a).
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For every x€S5S—S, let ¢(x)=x. Then, similarly as in (a), we have @=J4(S)
and d(p, ¢)<e,. To prove that ¢ has P.O.T.P. let &>0. Take ke N with
1/k<min{e,, 1/1}. Let d=1/(k*+£k). Note that Ux1/)={1/j} for every jEN,
7<k. It suffices that every d-pseudo-orbit of ¢ can be g,-traced by some point
of S. Let {y;:i€Z} be a d-pseudo-orbit of ¢. If y,&S—S,, then y;=1/n<e
for every i€Z. Thus {y;:i€Z} is e,-traced by y,. If y,ES,, then V=@ (Vo)
for every i€Z. Thus {y;:i€Z} is e-traced by y,. Hence ¢ has P.O.T.P.

(¢) Let p=&(S) with an expansive constant ¢. It is enough to prove that
e P(S). We take neN with 1/n<c. Assume that 1/m is a periodic point for
every meN, m<n. Then U{Orb(l/m): m<n} is finite, where Orb(x)=
{o(x): i€Z}. Pick up a point x&S—(J{Orb(l/m): m<n}\J{0}). Then we
have Orb(x)CS—S,, therefore d(¢(x), p*(0)<1/n<c for every i€Z. This is
a contradiction. Take m<n such that 1/m is not a periodic point. Let e=
1/m*+m). For every d>0 we can take /&N such that eY(1/my<é and
"' (1/m)< 0, because 1115‘} ¢*(1/m)y=0 the }L[B 7' (1/m)=0. Let us set

{ ©i(1/m) if 051
Yorit+i— ) .
ot (1/my if 15521

Then {y;:i€Z} is a d-pseudo-orbit of ¢. Assume that {y,:i€Z} is e-traced
by yS. Since U.1/m)={1/m} and y,,,=1/m for every k€ Z, we have ()
=1/m for every k<Z. This implies that 1/m is a periodic point. This is a
contradiction. Hence S has no expansive homeomorphism with P.O.T.P.

5. A zero-dimensional space having no expansive homeomorphism.

S. Fujii [4] proved that a space X is zero-dimensional if and only if the
identity mapping idy has P.O.T.P. So every zero-dimensional space has at
least one homeomorphism with P.O.T.P. We know ([2], or see [5]) that the
unit interval has no expansive homeomorphism. However, as far as the author
knows it is unknown whether there is a zero-dimensional space having no ex-
pansive homeomorphism. In this section we construct such a space X. Note
that the space X above is contained in the Cantor set, because the Cantor set is

universal for the class of zero-dimensional spaces.

Let CC[0, 1] be the Cantor set and S={0, 1, 1/2, ---} a convergent sequence.
Let X,=(CPHS™)/{0, 0,} be the quotient space obtained by identifying {0, 0,} to
a point x, where 0=C and 0,=(0, 0, ---, 0)&S", for every neN, and let X,=
{x,} be a one-point space. Let X=U{X,:ncNU{0}}. We give X a topology
as follows. Let @®(x)={U:U is a neighborhood of x in X,} for every xe X,
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neN, and B(x)={U{X;: j<i}UX,: JEN}. Then {B(x): x= X} is a neigh-
borhood system. Obviously the space X with the topology generated by {B(x):
x< X} is compact, metrizable and zero-dimensional. Next we show that X has
no expansive homeomorphism. To do this let ¢ be a homeomorphism of X.
The point x, is the only point that has arbitrarily small neighborhoods contain-
ing a set homeomorphic to the Cantor set, a set homeomorphic to S*, and no
set homeomorphic to S™*'. Therefore we have o(xn.)=x, for every neN.
Thus ¢ has infinitely many fixed points. Hence ¢ is not expansive.

After | finished writing an early version of this paper, I knew that T. Shi-
momura [7] also proved Theorem 1, independently.
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