SOME ALMOST-HOMOGENEOUS COMPLEX STRUCTURES ON $P^2 \times P^2$

Mirella MANARESI

1. Introduction

It is well known that on $P^1(C) \times P^1(C)$ there exists an infinite sequence of different complex structures, namely the Hirzebruch surfaces Σ_{2m} , $m \in \mathbb{N}$. These surfaces are of the form $P(\mathcal{O}_{P^1}(m) \oplus \mathcal{O}_{P^1}(-m))$ and are all almost-homogeneous (see [H]). In generalization of this, Brieskorn has studied \mathbb{P}^n -bundles over \mathbb{P}^1 and has proved that all complex structures on $\mathbb{P}^1 \times \mathbb{P}^n$ satisfying some supplementary conditions (see [Br], (5.3)) are such \mathbb{P}^n -bundles. All these structures are almost-homogeneous.

Motivated by these results, it is natural to consider complex structures on $P^2 \times P^2$ of the form P(E), where E is a topologically trivial holomorphic vector bundle of rank 3 on P^2 . In contrast with the situation on P^1 , a complete classification of such bundles is not known, however Bănică has classified all topologically trivial rank 2 vector bundles on P^2 (see [B], §2). In particular these bundles do not depend only on discrete parameters, but also on "continuous" moduli. Using rank 3 vector bundles on P^2 of the form $E := F \oplus \mathcal{O}_{P^2}$, with F topologically trivial of rank 2, one can easily construct complex structures on $P^2 \times P^2$, depending on "continuous" moduli, which are not almost-homogeneous.

Here we study some examples of almost-homogeneous complex structures on $P^2 \times P^2$ of the form P(E), for homogeneous and almost-homogeneous E. In §2 are studied the cases when E is $T_{P^2}(-1) \oplus \mathcal{O}_{P^2}(-1)$ or its dual (together with $\mathcal{O}_{P^2}^{\oplus 3}$, these are the only topologically trivial homogeneous rank 3 vector bundles on P^2 , see for example [M]). It turns out that the automorphism group of $X_1 := P(T_{P^2}(-1) \oplus \mathcal{O}_{P^2}(-1))$ has an open orbit, whose complement is an irreducible homogeneous hypersurface (hence X_1 gives an example of the manifolds classified by Ahiezer [Ah]), while the automorphism group of $X_2 := P(T_{P^2}(-2) \oplus \mathcal{O}_{P^2}(1))$ has an open orbit, whose complement is irreducible and homogeneous of codimension 2. In §3 we consider the complex manifold $X := P(F \oplus \mathcal{O}_{P^2})$ with F a topologically trivial rank 2 vector bundle on P^2 of generic splitting type (-1, 1)and we prove that the automorphism group of X has an open orbit, whose complement is an irreducible hypersurface, which contains a whole fiber of P(E).

The author is a member of G.N.S.A.G.A. of the C.N.R.

This paper was written with the financial support of M.P.I. (Italian Ministry of Education).

Received September 2, 1985.

Mirella MANARESI

Section 1.

In this section we introduce some notations and preliminary material.

Here a vector bundle is always a holomorphic vector bundle and we often identify vector bundles and locally free sheaves. Following the notations of [OSS] for a vector bundle $E \rightarrow S$ we denote by E(x) the fiber over a point $x \in S$.

Let S be a complex manifold, $E \xrightarrow{\pi} S$ a rank *m* vector bundle on S, and let $P(E) \xrightarrow{p} S$ be the corresponding projective bundle. Set X := P(E). We denote by

- -Aut (E) the group of all biholomorphic maps $E \rightarrow E$, which transform fibers in fibers and are linear on fibers;
- -Aut (P(E)) the group of all biholomorphic maps of P(E) into itself, which transform fibers in fibers;
- $-\operatorname{Aut}_{S}(E)$, $\operatorname{Aut}_{S}(P(E))$ the subgroups of all elements of $\operatorname{Aut}(E)$ and $\operatorname{Aut}(P(E))$ respectively, which induce the identity on S;
- -PGL (*E*) the subgroup of all elements of $\operatorname{Aut}_{S}(P(E))$, which are induced by elements of $\operatorname{Aut}_{S}(E)$;

-Aut(X) the group of all biholomorphic maps of X onto itself.

(1.1) PROPOSITION.

With the same notations as above, let us suppose S simply connected. Then

$$\operatorname{Aut}_{S}(P(E)) = \operatorname{PGL}(E).$$

PROOF: Let U be a simply connected open subset of S such that E|U is trivial. An element $\phi \in \operatorname{Aut}_U(\mathcal{P}(E|U))$ can be regarded as a holomorphic map $\overline{\phi}: U \to \operatorname{PGL}(m)$. Since U is simply connected and SL (m) is a coverning space of PGL (m), the map $\overline{\phi}$ can be lifted to a holomorphic map $\overline{\phi}: U \to \operatorname{SL}(m)$, and this gives an element $\Phi \in \operatorname{Aut}_S(E|U)$, which induces ϕ .

Now let $\phi \in \operatorname{Aut}_S(P(E))$ and let $\mathcal{U} := \{U_i\}_{i \in I}$ be an open covering of S such that every U_i is simply connected and $E | U_i$ is trivial. Then for each U_i there exists $\Phi_i \in \operatorname{Aut}_{U_i}(E | U_i)$ with det $\Phi_i = 1$, which induces ϕ . On $U_i \cap U_j$ the two matrices Φ_i and Φ_j induce the same projective automorphism ϕ , therefore they coincide up to the multiplication by an *m*-th root of unity. Thus we obtain an element of $H^1(S, \mu_m)$, where μ_m is the locally constant sheaf of *m*th roots of unity. Since *S* is simply connected $H^1(S, \mu_m) = 0$, hence $\Phi_i \cdot \Phi_j^{-1} = \lambda_i \cdot \lambda_j^{-1}$ where λ_i, λ_j are *m*-th roots of unity. Thus the $\lambda_i^{-1} \cdot \Phi_i$ can be glued together to give an element $\Phi \in \operatorname{Aut}_S(E)$ which induces ϕ .

We recall the following

(1.2) DEFINITION.

Let S be a homogeneous complex manifold and let $E \xrightarrow{\pi} S$ be a vector bundle on S.

We say that E is homogeneous if for all $g \in Aut(S)$ one has $g^*E \simeq E$.

We say that E is almost-homogeneous if there exists a subgroup G of Aut (S), one of whose orbits is a Zariski open dense subset of S, such that $g^*E \simeq E$ for all $g \in G$.

(1.3) COROLLARY.

Let S be a homogeneous simply connected complex manifold, $E \xrightarrow{} S$ a homogeneous vector bundle on S and let $P(E) \xrightarrow{} S$ be the corresponding projective bundle. Then there is the exact sequence

$$0 \rightarrow \text{PGL}(E) \rightarrow \text{Aut}(\mathcal{P}(E)) \rightarrow \text{Aut}(S) \rightarrow 0.$$

PROOF: This is an obvious consequence of (1.1).

Section 2.

In this section we show that the complex manifolds $X_1 := P(T_{P^2} \oplus \mathcal{O}_{P^2})$ and $X_2 := P(T_{P^2}(-3) \oplus \mathcal{O}_{P^2})$ are almost-homogeneous and we determine the orbits with respect to the action of the group of automorphisms.

It is well known (see [A], th. 3) that in the decomposition $E := E_1 \oplus \cdots \oplus E_n$ of a vector bundle over a compact variety into direct sum of indecomposable bundles, the bundles E_i are uniquely determined up to order and isomorphy; however in general the bundles E_i are not uniquely determined as subbundles of E.

(2.1) LEMMA.

Let $E_1 := T_{P^2} \oplus \mathcal{O}_{P^2}$. In this decomposition only the vector bundle $F_1 := T_{P^2} \oplus 0$ is uniquely determined as subbundle of E_1 .

PROOF: We first observe that the vector bundle $G_1 := 0 \oplus \mathcal{O}_{P^2}$ is not uniquely determined as subbundle of E, since it is not invariant under an automorphism $\phi \in \operatorname{Aut}_S(E_1)$ of the form

$$\begin{pmatrix} id_{T_{P^2}} & \psi \\ \hline 0 & id_{\mathcal{O}_{P^2}} \end{pmatrix}$$

with $\psi \in \text{Hom}(\mathcal{O}_{P^2}, T_{P^2}), \psi \neq 0.$

On the other hand, from the Euler sequence

$$0 \to \mathcal{O}_{P^2}(-1) \to \mathcal{O}_{P^2}^{\oplus 3} \to T_{P^2}(-1) \to 0,$$

if follows that the vector bundle $T_{P^2}(-1)$ is generated by global sections, therefore $F_1(-1)$ is the subbundle of $E_1(-1)$ generated by $\Gamma(\mathbf{P}^2, E_1(-1))$ and this characterizes $F_1(-1)$ as subbundle of $E_1(-1)$.

(2.2) COROLLARY.

Let $E_2 := T_{P^2}(-3) \oplus \mathcal{O}_{P^2}$. In this decomposition only the vector bundle $G_2 := 0 \oplus \mathcal{O}_{P^2}$ is uniquely determined as subbundle of E_2 .

PROOF: Since E_2 is the dual bundle of E_1 and G_2 consists of the linear forms on E_1 , which are zero on $F_1 := T_{P^2} \oplus 0$, the assertion follows from (2.1).

(2.3) THEOREM.

Let $E_1 := T_{P^2} \oplus \mathcal{O}_{P^2}$ and let $X_1 := \mathbb{P}(E_1)$. The group Aut (X_1) has exactly two orbits: $A_1 := \mathbb{P}(T_{P^2} \oplus 0)$ and $A_2 := X_1 - A_1$.

PROOF: We first prove that A_1 is transformed into itself by all $\phi \in \operatorname{Aut}(X_1)$. By [S], th. A, Aut $(X_1) = \operatorname{Aut}(P(E_1))$, hence ϕ determines an automorphism $\overline{\phi} \in \operatorname{Aut}(S)$ and an isomorphism $P(E_1) \cong \overline{\phi}^* P(E_1)$, which induces the identity on P^2 and which can be identified with ϕ . Therefore E_1 is isomorphic to $\overline{\phi}^* E_1 \otimes \mathcal{O}_{P^2}(k)$ and calculating the first Chern classes one sees that k=0. Thus ϕ induces an isomorphism $\Phi: E_1 \cong \overline{\phi}^* E_1$, which must transform $(T_{P^2} \oplus 0)(x)$ into $(\overline{\phi}^*(T_{P^2} \oplus 0))(x) = (T_{P^2} \oplus 0)(\overline{\phi}(x))$ for all $x \in P^2$. Therefore $\phi(P(T_{P^2} \oplus 0))$ $= P(T_{P^2} \oplus 0)$.

Now we prove that the action of Aut (X_1) is transitive on both A_1 and A_2 , by showing that for all $x \in \mathbb{P}^2$ the subgroup of Aut (X_1) , which fixes the fiber $\mathbb{P}(E_1)_x$, acts transitively on $A_1 \cap \mathbb{P}(E_1)_x$ and on $A_2 \cap \mathbb{P}(E_1)_x$. Let ξ , $\xi' \in A_1 \cap \mathbb{P}(E_1)_x$. They correspond to lines r, r' of \mathbb{P}^2 through the point x. Let $\alpha \in Aut(\mathbb{P}^2)$ be such that $\alpha(x) = x$ and $\alpha(r) = r'$ and take an element $\phi \in Aut(\mathbb{P}(E_1))$ such that $\overline{\phi} = \alpha$. It is easy to show that $\phi(\xi) = \xi'$.

Since End
$$E_1 = \begin{pmatrix} \text{End } T_{P^2} & \text{Hom } (\mathcal{O}_{P^2}, T_{P^2}) \\ \hline & \text{Hom } (T_{P^2}, \mathcal{O}_{P^2}) & \text{End } \mathcal{O}_{P^2} \end{pmatrix}$$

and since $\operatorname{Aut}_{P^2}(T_{P^2}) \simeq \operatorname{Aut}_{P^2}(\mathcal{O}_{P^2}) \simeq C^*$ the action on $P(E_1)_x$ of an element of PGL (E_1) can be thought as the action on P^2 , with projective coordinates $(x_1:x_2:x_3)$, of a matrix like

$$\begin{pmatrix} \lambda & 0 & a_1 \\ 0 & \lambda & a_2 \\ 0 & 0 & \mu \end{pmatrix} \quad \text{with} \quad \lambda, \mu \in C^*, a_1, a_2 \in C.$$

In this \mathbb{P}^2 , $A_1 \cap \mathbb{P}(E_1)_x$ can be identified with the line $x_3 = 0$ and $A_2 \cap \mathbb{P}(E_1)_x$ with the complement of such a line; therefore it is clear that PGL (E) acts transitively on $A_2 \cap \mathbb{P}(E_1)$.

(2.4) THEOREM.

Let $F_2 := T_{P^2}(-3) \oplus \mathcal{O}_{P^2}$ and let $X_2 := P(E_2)$. The orbits of X_2 with respect to the action of Aut (X_2) are exacty $B_1 := P(0 \oplus \mathcal{O}_{P^2})$ and $B_2 := X_2 - B_1$.

PROOF: With an argument similar to the one used in prop. (2.3) and using (2.2), one has that all $\phi \in \text{Aut}(X_2) = \text{Aut}(P(E_2))$ transform B_1 into itself.

Since for all $x \in \mathbb{P}^2$, $B_1 \cap \mathbb{P}(E_2)_x$ consists exactly of one point, we have only to prove that for all $x \in \mathbb{P}^2$ the action of the subgroup Σ of Aut (X_2) , containing all automorphisms, which fix the fiber $\mathbb{P}(E_2)_x$, is transitive on $B_2 \cap \mathbb{P}(E_2)_x$.

Let $(x_1:x_2:x_3)$ and $(y_1:y_2:y_3)$ be two points in $B_2 \cap P(E_2)_x$. With an argument similar to the one used in proving prop. (2.3), there exists $\phi \in \Sigma$, which transforms $(x_1:x_2:x_3)$ into $(y_1:y_2:y_3')$. Now there exists an element ψ in PGL (E_2) (whose action on $P(E_2)_x$ can be thought as the action on P^2 of a matrix like

$$\begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ a_1 & a_2 & \mu \end{pmatrix} \text{ with } \lambda, \mu \in C^*, a_1, a_2 \in C \text{), which transforms } (y_1; y_2; y_3') \text{ in } (y_1; y_2; y_3).$$

Section 3.

In this section we show that the complex manifold $P(F \oplus \mathcal{O}_{P^2})$, where F is a rank 2 topologically trivial vector bundle on P^2 of generic splitting type (-1, 1), is almost-homogeneous.

(3.1) PROPOSITION.

Let F be a rank 2 topologically trivial vector bundle on \mathbb{P}^2 of generic splitting type (-1, 1). Then

i) there is an exact sequence:

(*)
$$0 \to \mathcal{O}_{P^2}(1) \xrightarrow{\sim} F \xrightarrow{\sim} \mathcal{G}_Z(-1) \to 0,$$

where Z is a simple point of \mathbf{P}^2 , which determines the bundle F up to isomorphy;

- ii) $F \simeq F^{\vee}$ (that is F is self-dual);
- iii) F is almost-homogeneous.

PROOF: i) The existence of the exact sequence (*) has been proved by Banica (see [B], lemma 4).

Now let F' be a vector bundle on P^2 , which makes exact the sequence

$$0 \to \mathcal{O}_{P^2}(1) \to F' \to \mathcal{G}_Z(-1) \to 0.$$

Both F and F' correspond to elements η , $\eta' \in \operatorname{Ext}^1(\mathcal{G}_Z(-1), \mathcal{O}_{P^2}(1))$, which are not zero, since the trivial extension $\mathcal{O}_{P^2}(1) \oplus \mathcal{G}_Z(-1)$ is not a vector bundle. But, from [B], §2, dim $\operatorname{Ext}^1(\mathcal{G}_Z(-1), \mathcal{O}_{P^2}(1)) = 1$, therefore $\eta = a\eta'$ with $a \in C^*$, hence $F \simeq F'$.

- ii) Since F has rank 2, we have $F^{\vee} \simeq F \otimes \det F^{\vee} \simeq F$.
- iii) Let $G := \{g \in Aut(\mathbb{P}^2) | g(Z) = Z\}$, and let $g \in G$.

The vector bundle g^*F makes exact the sequence

$$0 \to \mathcal{O}_{P^2} \to g^*F \to \mathcal{G}_Z(-1) \to 0$$

and with the same argument used in (i), $g^*F \simeq F$.

(3.2) LEMMA.

Let $E := F \oplus \mathcal{O}_{P^2}$, with F as in (3.1), and let $\mathfrak{V}_1 := \alpha(\mathcal{O}_{P^2}(1)) \oplus 0$, $\mathfrak{V} := \alpha(\mathcal{O}_{P^2}(1)) \oplus \mathcal{O}_{P^2}$. The filtration $\mathfrak{V}_1 \subset \mathfrak{V} \subset E$ is invariant with respect to Aut (E).

PROOF: From the exact sequence (*), one has $\Gamma(\mathbf{P}^2, F) = \Gamma(\mathbf{P}^2, \alpha(\mathcal{O}_{\mathbf{P}^2}(1)))$. It follows $\mathcal{V} = \mathcal{O}_{\mathbf{P}^2} \cdot \Gamma(\mathbf{P}^2, E)$. In the same way, from the exact sequence

$$0 \to \mathcal{O}_{P^2} \xrightarrow{\sim} F(-1) \xrightarrow{\sim} \mathcal{G}_Z(-2) \to 0$$

one has $\Gamma(\mathbb{P}^2, F(-1)) = \Gamma(\mathbb{P}^2, \alpha'(\mathcal{O}_{\mathbb{P}^2}))$, hence $\mathcal{V}_1(-1) = \mathcal{O}_{\mathbb{P}^2} \cdot \Gamma(\mathbb{P}^2, E(-1))$.

(3.3) THEOREM.

Let $E := F \oplus \mathcal{O}_{P^2}$, with F as in (3.1), and let X := P(E). The action of Aut (X) on X has an open orbit, whose complement is an irreducible hypersurface $H \subset X$, which can be described as follows: let V be the subbundle of $E | P^2 - Z$ defined by $V := (\alpha(\mathcal{O}_{P^2}(1)) \oplus \mathcal{O}_{P^2}) | P^2 - Z$. Then $H = P(V) \cup P(E)_Z$.

PROOF: We first observe that, from the fact that Z is characterized by the property that every non-zero section of E(-1) vanishes exactly on Z (see the proof of (3.2)), it follows that every $\phi \in \operatorname{Aut}(X)$ (=Aut (P(E)) by [S], th. A) transforms $P(E)_Z$ into itself. By lemma (3.2), with an argument similar to the one used in proving prop. (2.3), one has that every $\phi \in \operatorname{Aut}(X)$ transforms also P(V) into itself.

Now we show that Aut (X) acts transitively on $A := X - (\mathbf{P}(V) \cup \mathbf{P}(E)_Z)$, by proving that for all $x \in \mathbf{P}^2 - Z$ the subgroup PGL (E) of Aut (X) acts transitively on $A \cap \mathbf{P}(E)_x$.

We observe that End
$$E = \left(\begin{array}{c|c} \operatorname{End} F & \operatorname{Hom} (\mathcal{O}_{P^2}, F) \\ \hline & \\ \end{array} \right) + \operatorname{Hom} (F, \mathcal{O}_{P^2}) & \operatorname{End} \mathcal{O}_{P^2} \end{array} \right).$$

From the exact sequence (*) we get the exact sequence

 $(**) \qquad 0 \to \operatorname{Hom}(F, \mathcal{O}_{P^2}(1)) \to \operatorname{End} F \to \operatorname{Hom}(F, \mathcal{G}_Z(-1)) \to \cdots$

Since the endomorphisms of F, which are in Im $\sigma = \text{Ker } \tau$, cannot be surjective, $id_F \notin \text{Ker } \tau$, hence dim (Hom $(F, \mathcal{G}_Z(-1))) \ge 1$. On the other hand, from (*) we have also the exact sequence

$$0 \to \text{Hom}(\mathcal{G}_{Z}(-1), \mathcal{G}_{Z}(-1)) \to \text{Hom}(F, \mathcal{G}_{Z}(-1)) \to \text{Hom}(\mathcal{O}_{P^{2}}(1), \mathcal{G}_{Z}(-1)) \to \cdots$$

where Hom $(\mathcal{O}_{P^2}(1), \mathcal{I}_Z(-1))$ Hom $(\mathcal{O}_{P^2}(1), \mathcal{O}_{P^2}(-1))=0$. Therefore Hom $(F, \mathcal{I}_Z(-1))$ \simeq Hom $(\mathcal{I}_Z(-1), \mathcal{I}_Z(-1))$ Hom $(\mathcal{I}_Z(-1), \mathcal{O}_{P^2}(-1))$ and the last, by Riemann's extension theorem, is isomorphic to Hom $(\mathcal{O}_{P^2}(-1), \mathcal{O}_{P^2}(-1)) \simeq C$. Therefore, Hom $(F, \mathcal{I}_Z(-1))$ $\simeq C$, and, since $\tau(id_F) \neq 0$, the morphism τ of (**) is surjective and (**) becomes

$$(**)' \qquad 0 \to \operatorname{Hom}(F, \mathcal{O}_{P^2}(1)) \to \operatorname{End} F \to \operatorname{Hom}(F, \mathcal{G}_Z(-1)) \to 0.$$

Again from (*), we have the exact sequence

$$0 \to \operatorname{Hom} \left(\mathcal{G}_{Z}(-1), \mathcal{O}_{P^{2}}(1) \right) \to \operatorname{Hom} \left(F, \mathcal{O}_{P^{2}}(1) \right) \to \operatorname{End} \left(\mathcal{O}_{P^{2}}(1) \right) \to 0,$$

since $H^1(Hom (\mathcal{G}_Z(-1), \mathcal{O}_{P^2}(1)) \simeq H^1(\mathcal{O}_{P^2}(2)) = 0$

as codim Z=2. Moreover, since $Hom(\mathcal{G}_Z(-1), \mathcal{O}_{P^2}(1)) \simeq Hom(\mathcal{O}_{P^2}(-1), \mathcal{O}_{P^2}(1)) \simeq \mathcal{O}_{P^2}(2)$ and $End(\mathcal{O}_{P^2}(1)) \simeq \mathcal{O}_{P^2}$ are globally generated, for any point x in $P^2 - Z$ every homomorphism of F(x) into $(\mathcal{O}_{P^2}(1))(x)$ is induced by an element of Hom $(F, \mathcal{O}_{P^2}(1))$. Now we fix a point x in $P^2 - Z$ and a base v_1, v_2 of F(x) such that $v_1 \in (\alpha(\mathcal{O}_{P^2}(1))(x)$. With respect to such a base the automorphisms of F(x) induced by global automorphisms of F can be represented by matrices of the type $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ with $a, c \in C^*, b \in C$. From (*) we have the exact sequence $0 \rightarrow \text{Hom}(\mathcal{O}_{P^2}, \mathcal{O}_{P^2}(1)) \rightarrow \text{Hom}(\mathcal{O}_{P^2}, F) \rightarrow \text{Hom}(\mathcal{O}_{P^2}, \mathcal{G}_Z(-1)=0,$

hence Hom $(\mathcal{O}_{P^2}, F) \simeq$ Hom $(\mathcal{O}_{P^2}, \mathcal{O}_{P^2}(1))$, that is every homomorphism of \mathcal{O}_{P^2} into F has values in $\alpha(\mathcal{O}_{P^2}(1))$. From (*) we have also

$$0 \to \operatorname{Hom} (\mathcal{G}_{Z}(-1), \mathcal{O}_{P^{2}}) \to \operatorname{Hom} (F, \mathcal{O}_{P^{2}}) \to \operatorname{Hom} (\mathcal{O}_{P^{2}}(1), \mathcal{O}_{P^{2}}) = \Gamma(\mathbb{P}^{2}, \mathcal{O}_{P^{2}}(-1)) = 0$$

hence Hom $(F, \mathcal{O}_{P^2}) \simeq$ Hom $(\mathcal{G}_Z(-1), \mathcal{O}_{P^2})$, that is every homomorphism of F into \mathcal{O}_{P^2} is zero on $\alpha(\mathcal{O}_{P^2}(1))$. Now we complete the base v_1, v_2 of $F(x) \simeq (F \oplus 0)(x)$ to a base $v_1, v_2, v_3 \in E(x)$ by adding a vector $v_3 \in (0 \oplus \mathcal{O}_{P^2})(x)$. With respect to such a base the automorphisms of E(x) induced by global automorphisms of E can be represented by a matrix of the type

$$\begin{pmatrix} a & b & d \\ 0 & c & 0 \\ 0 & e & f \end{pmatrix} \quad \text{with} \quad a, c, f \in C^*, b, d, e \in C.$$

Since $A \cap P(E)_x$ can be identified with the complement of the line $x_2=0$, an easy computation shows that the action of PGL (E) on $A \cap P(E)_x$ is transitive.

Now we prove that $H := \mathbf{P}(V) \cup \mathbf{P}(E)_Z$ is an irreducible hypersurface in X, by showing that $H = \overline{\mathbf{P}(V)}$. Let U be an open neighbourhood of Z, over which the bundles F and $\mathcal{O}_{P^2}(1)$ are trivial and let (e_1, e_2) and e bases of F | U and $\mathcal{O}_{P^2}(1) | U$ respectively. With respect to these bases, the morphism $\alpha: \mathcal{O}_{P^2}(1) \to F$ can be described as $\alpha(e) = f_1e_1 + f_2e_2$, where f_1, f_2 are holomorphic functions on U, which have exactly one common zero in the point Z. In $\mathbf{P}(E) | U \simeq U \times \mathbf{P}^2$ we have

$$\mathbf{P}(V) | U - Z = \{ (p; t_1:t_2:t_3) \in (U - Z) \times \mathbf{P}^2 | t_1 f_2(p) - t_2 f_1(p) = 0 \},\$$

hence

$$\overline{P(V)|U-Z} = \{(p; t_1:t_2:t_3) \in U \times P^2 | t_1 f_2(p) - t_2 f_1(p) = 0\}$$

= $P(V)|(U-Z) \cup P(E)_Z.$

Mirella MANARESI

References

- [Ah] Ahiezer, D. N., Algebraic groups acting transitively in the complement of a homogeneous hypersurface. Soviet Math. Dokl. 20 (1979) 278-281.
- [A] Atiyah, M., On the Krull-Schmidt theorem with applications to sheaves. Bull. Soc. Math. France 84 (1956) 307-317.
- [B] Bănică, C., Topologisch triviale holomorphe Vektorbündel auf Pⁿ(C). J. reine angew. Math. (Crelles Journal) 344 (1983) 102-119.
- [Br] Brieskorn E., Über holomorphe P_n-Bündel über P₁. Math. Annalen 157 (1965) 343-357.
- [H] Hirzebruch F., Über eine Klasse von einfach-zusammenhängenden komplexen Mannigfaltigkeiten. Math. Annalen 124, (1951) 77-86.
- [M] Manaresi, M., Families of homogeneous vector bundles on P². J. Pure and Applied Algebra 35 (1985) 297-304.
- [OSS] Okonek, C., Schneider, M., Spindler, H., Vector Bundles on Complex Projective Spaces. Progress in Math. 3, Birkhäuser 1980.
- [S] Sato, E., Varieties which have different projective bundle structures. Preprint.

Mirella Manaresi Università di Bologna Dipartimento di Matematica P.za di Porta S. Donato, 5 40127 Bologna (Italia)