
Almost Kahler manifolds

Tv = ZN"hlN"b2 =
i,(N"

11N" 32+^*4^" 42)
a,b=＼ ≪=l

= g(N(e,,e]),N(e,,Je])) + g(N(e4,ei),N(e4,Je]))

= -g(N(ei,el),JN(e,,el))-g(N(e4,el),JN(e4,el))

= 0.

Similarly, we have

T22=T3, = T44=h＼N＼＼2,

and

Consequently, we have

･M3 ~~-*14 ~~*23 ""
T = T ― 0

― '34 ― W
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By Proposition 3.1, we see that M is an Einstein and weakly *- Einstein manifold.

Since c andf are constant on M,T* is also constant by (3.9), that is, M is

*-Einstein. Then, taking account of the theorem of Sekigawa and Vanhecke [10],

we can conclude that M is Kahlerian. ■

REMARK. From the result of U. K. Kim, I-B. Kim and J-B. Jun [3], it will

be also obtained thatM is Einstein and weakly *-Einstein.

COROLLARY 3.4. Let M be a 4-dimensional compact almost Kdhler manifold

of constant holomorphic sectional curvature satisfying

Then M is a Kdhler manifold.

Proof. This follows from Theorem 3.2 and Theorem 3.3. ■

COROLLARY 3.5. Let M he a 4-dimensional compact almost Kdhler manifold

of pointwise constant holomorphic sectional curvature. If M satisfiesthe condition

(b), then M is a Kdhler manifold.

PROOF. Under the condition (b), we can see that the function c is constant on

M ([6]). Hence this follows immediately from Theorem 3.3. ■
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1. Introduction

Throughout this paper G,Z(G) and C denote a finitegroup, the center of G

and the fieldof complex numbers respectively. For a finiteset S, we denote the

number of elements in S by ＼S＼.

Let Irr(G) be the fullset of irreducible C-characters of G and X(G) be the

character ring of G. If R is any subring of C, we write RX(G) to denote the R-

algebra of/^-linear combinations of irreducible C-characters of G.

Suppose G and H are finite groups. Weidman showed that if X(G) is

isomorphic to X(H), then G and H have the same character table.

In addition Saksonov proved the following theorem, which is a strengthened

THEOREM 1.1. (Saksonov) Suppose R is the ring of all algebraic integers

and there exists an R-algebra isomorphism (f>from RX(G) onto RX(H). //

Irr(G) = {Xi>'">Xh} ana> Irr(H) = {y/i,･･･,y/h}, then the following holds:

(i) The character tables of G and H are the same.

(ii) Q(Xi) = £jVr (/ = 1,･･･,/i) where the £,are roots of unity and i ―>i' is a

From now on we assume that R is the ring of all algebraic integers. Then in

thispaper we intend to prove the following theorem.

THEOREM 1.2. Suppose G and H are finitegroups. Then we have

(i) If u is a central element in G and xu : RX(G) ―>RX(G) is the map defined

by x ~^(X(U)IX0>))X where x^Jrr(G) and 1 is the identity element of G, then

Tu is an R-automorphism of RX(G). Furthermore the map u ―>Xu is a group

isomorphism of Z(G) onto a subgroup T = (t,|u e Z(G)} of AutiRX(G)).
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(ii) Every R-isomorphism <j>:RX(G) ―≫RX(H) is the composition of an R-

isomorphism 9 that maps Irr(G) onto Irr(H) with an automorphism of RX(H)

of the form Xu for some element u in Z(H).

(iii) The full group A = Aut(RX(G))is the product of the subgroup T of part

(i) above, which is normal, with the subgroup P consisting of those automorphisms

that map Irr(G) onto Irr(G).

2. Proof of Theorem 1.2

In orderto prove Theorem 1.2 we prove a basiclemma concerning the roots

of unitywhich appear in Saksonov's Theorem.

LEMMA 2.1. Suppose for each character % in Irr(G), there is a root of

unity e(x) sucn tnat each product £(x)X£(V)W forX>＼ Jrt Irr(G) is a non-

negative integer linear combination of £(£)£,as % runs over Irr(G). Then there

exists u in Z(G) such that e(y) = y(u)l y(l) for every character y in Irr(G).

PROOF. If we are given % and y/in Irr(G), then we assume that

XW = ^lrr{G)mfi and £(X)X£(＼)W = l^lrnG)n4£(^

where the coefficients m^ and n^ are non-negative integers. Then it follows

easily that m^ = n* for all characters £ in Irr(G) and thus the map

(j>:%―>£(X)X defines an automorphism
of the algebra CX(G). In particular the

map 0 permutes the primitive idempotents of this C-algebra (See the proof of

Lemma 2.3 in [3]) and so it carries the characteristic class function of the

identity to the characteristicclass function of some other conjugacy class, say the

class K. Therefore we have

u in Z(G), as claimed.

O/|G|)IZ6//r(C)eU)^(l)^ = (l/|Cc(v)|)Ijr6lfr(C)^(v)^

where v is an element in K. It follows that for each irreducible character % in

Irr(G) we have X(^)£(X) = ＼K＼%(u)where u = v"1. Applying this where x ^s ^e

principal character yields that |^T|is a root of unity and so u is a central element

in G. Thus for every character y in Irr(G), e(y)= y(u)/ y(l) for some element

Proof of Theorem 1.2. (i) Suppose u is a centralelement in G. Then for

each character % in Irr(G) we denote by e(x) and T(x) the root of unitygiven

by #(m)/'#(1)and the irreduciblematrix representationof G which affords %

respectively.We assume furtherthatfor y,w in Irr(G),%W = ^^i <r＼m£where
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the m^ are non-negative integers. Then we show £(£)= £(%)£(y/) for m^O.

Indeed T(x)(u) = diag(e(%), ■■-,£(%))and T(y/)(u) = diag(£(y/),･･･,£(y/)) which

have diagonals of lengths ^(1) and y/(l) respectively. Hence

r(^)(w) <8>T(y/)(u) = diag(£(x)£(y/), ･･･,£(#)£(V))

where T(x)RT{y) is the Kronecker product of T(^) and T(y/). Since

T(x)RT(＼j/) is the representation of G which affords p//＼ we have £(%) = £(%)

£(yO for ra^O, as claimed. Therefore we have £(x)X£(WW = ^^/rr(G) m^£(0^-

Thus the map th defined by x
~^£(X)X

is an ^-automorphism of RX(G).

The fact that Z{G) = 71 is easy to prove and so we omit its proof.

(ii) Now we can easily observe that Saksonov's result guarantees that the

image of Irr(G) under 0 satisfies the hypotheses of Lemma 2.1 for H. Hence we

may write </)(Xj)= £(y/r)y/r, £(＼]/r)= y/r(u)/y/r(l) for some element u in Z(H),

(/ = 1,･･･,/!) where Irr(G) = {^,, ･･･,%h], Irr(H) = [＼i/l,---,yfh} and i -≫/' is a

permutation.

Therefore the map tm defined by iff―>£(＼ff)y/is an /?-automorphism of

/≪"(#) from fact (i) above. If we put 0 = t;!0, then 0(^.) = th"'(0(X-)) = ^,"

(i-l,---,h) and so 0 maps Irr(G) onto Irr(H). Hence we have (j)= Tu9, as

required.

(iii) Fact (iii) follows since fact (ii) tells us that A = TP and it is clear from

fact (ii) that A induces a permutation action on Irr(G) and T is the kernel of this

action. This completes the proof of the theorem. Q.E.D.
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