$$
\begin{aligned}
T_{12} & =\sum_{a, b=1}^{4} N_{b 1}^{a} N^{a}{ }_{b 2}=\sum_{a=1}^{4}\left(N^{a}{ }_{31} N^{a}{ }_{32}+N^{a}{ }_{41} N^{a}{ }_{42}\right) \\
& =g\left(N\left(e_{3}, e_{1}\right), N\left(e_{3}, J e_{1}\right)\right)+g\left(N\left(e_{4}, e_{1}\right), N\left(e_{4}, J e_{1}\right)\right) \\
& =-g\left(N\left(e_{3}, e_{1}\right), J N\left(e_{3}, e_{1}\right)\right)-g\left(N\left(e_{4}, e_{1}\right), J N\left(e_{4}, e_{1}\right)\right) \\
& =0
\end{aligned}
$$

Similarly, we have

$$
T_{22}=T_{33}=T_{44}=\frac{1}{4}\|N\|^{2}
$$

and

$$
T_{13}=T_{14}=T_{23}=T_{24}=T_{34}=0
$$

Consequently, we have

$$
T_{i j}=\frac{1}{4}\|N\|^{2} g_{i j}
$$

By Proposition 3.1, we see that M is an Einstein and weakly $*$ - Einstein manifold. Since c and τ are constant on M, τ^{*} is also constant by (3.9), that is, M is *-Einstein. Then, taking account of the theorem of Sekigawa and Vanhecke [10], we can conclude that M is Kählerian.

REMARK. From the result of U.K. Kim, I-B. Kim and J-B. Jun [3], it will be also obtained that M is Einstein and weakly $*$-Einstein.

Corollary 3.4. Let M be a 4-dimensional compact almost Kähler manifold of constant holomorphic sectional curvature satisfying

$$
\rho-\rho^{*}=\frac{\tau-\tau^{*}}{4} g
$$

Then M is a Kähler manifold.

Proof. This follows from Theorem 3.2 and Theorem 3.3.

COROLLARY 3.5. Let M be a 4-dimensional compact almost Kähler manifold of pointwise constant holomorphic sectional curvature. If M satisfies the condition (b), then M is a Kähler manifold.

Proof. Under the condition (b), we can see that the function c is constant on M ([6]). Hence this follows immediately from Theorem 3.3.

References

[1] S. I. Goldberg, Integrability of almost Kähler manifolds, Proc. Amer. Math. Soc. 21 (1969), 96-100.
[2] A. Gray, Curvature identities for Hermitian and almost Hermitian manifolds, Tôhoku Math. J. 28 (1976), 601-612.
[3] U.K. Kim, I-B. Kim and J-B. Jun, On self-dual almost Hermitian 4-manifolds, Nihonkai Math. J. 3 (1992), 163-176.
[4] T. Oguro and K. Sekigawa, Non-existence of almost Kähler structure on hyperbolic spaces of dimension $2 n(\geqq 4)$, Math. Ann. 300 (1994), 317-329.
[5] Z. Olszak, A note on almost Kähler manifolds, Bull. Acad. Polon. Sci. 26 (1978), 139-141.
[6] T. Sato, On some almost Hermitian manifolds with constant holomorphic sectional curvature, Kyungpook Math. J. 29 (1989), 11-25.
[7] T. Sato, On some compact almost Kähler manifolds with constant holomorphic sectional curvature, Geometry of Manifolds, Ed. by Shiohama, Academic Press, 1989, 129-139.
[8] K. Sekigawa, On some 4-dimensional compact Einstein almost Kähler manifolds, Math. Ann. 271 (1985), 333-337.
[9] K. Sekigawa, On some compact Einstein almost Kähler manifolds, J. Math. Soc. Japan 39 (1987), 677-684.
[10] K. Sekigawa and L. Vanhecke, Four-dimensional almost Kähler Einstein manifolds, Ann. Mat. Pura Appl. CLVII (1990), 149-160.
[11] L. Vanhecke, Almost Hermitian manifolds with J-invariant Riemannian curvature tensor,
[12] Y. Watanabe and K. Takamatsu, On a K-space of constant holomorphic sectional curvature, Kōdai Math. Sem. Rep. 25 (1973), 297-306.

Takuji Sato
Faculty of Engineering,
Kanazawa University,
Kanazawa, Japan

ON AUTOMORPHISMS OF A CHARACTER RING

Dedicated to Professor Tosiro TSUZUKU

By
Kenichi Yamauchi

1. Introduction

Throughout this paper $G, Z(G)$ and C denote a finite group, the center of G and the field of complex numbers respectively. For a finite set S, we denote the number of elements in S by $|S|$.

Let $\operatorname{Irr}(G)$ be the full set of irreducible C-characters of G and $X(G)$ be the character ring of G. If R is any subring of C, we write $R X(G)$ to denote the R algebra of R-linear combinations of irreducible C-characters of G.

Suppose G and H are finite groups. Weidman showed that if $X(G)$ is isomorphic to $X(H)$, then G and H have the same character table.

In addition Saksonov proved the following theorem, which is a strengthened version of Weidman's theorem.

THEOREM 1.1. (Saksonov) Suppose R is the ring of all algebraic integers and there exists an R-algebra isomorphism ϕ from $R X(G)$ onto $R X(H)$. If $\operatorname{Irr}(G)=\left\{\chi_{1}, \cdots, \chi_{h}\right\}$ and $\operatorname{Irr}(H)=\left\{\psi_{1}, \cdots, \psi_{h}\right\}$, then the following holds:
(i) The character tables of G and H are the same.
(ii) $\phi\left(\chi_{i}\right)=\varepsilon_{i} \psi_{i^{\prime}} \quad(i=1, \cdots, h)$ where the ε_{i} are roots of unity and $i \rightarrow i^{\prime}$ is a permutation.

From now on we assume that R is the ring of all algebraic integers. Then in this paper we intend to prove the following theorem.

Theorem 1.2. Suppose G and H are finite groups. Then we have
(i) If u is a central element in G and $\tau_{u}: R X(G) \rightarrow R X(G)$ is the map defined by $\chi \rightarrow(\chi(u) / \chi(1)) \chi$ where $\chi \in \operatorname{Irr}(G)$ and 1 is the identity element of G, then τ_{u} is an R-automorphism of $R X(G)$. Furthermore the map $u \rightarrow \tau_{u}$ is a group isomorphism of $Z(G)$ onto a subgroup $T=\left\{\tau_{u} \mid u \in Z(G)\right\}$ of $\operatorname{Aut}(R X(G))$.
(ii) Every R-isomorphism $\phi: R X(G) \rightarrow R X(H)$ is the composition of an R isomorphism θ that maps $\operatorname{Irr}(G)$ onto $\operatorname{Irr}(H)$ with an automorphism of $R X(H)$ of the form τ_{u} for some element u in $Z(H)$.
(iii) The full group $A=\operatorname{Aut}(R X(G))$ is the product of the subgroup T of part (i) above, which is normal, with the subgroup P consisting of those automorphisms that map $\operatorname{Irr}(G)$ onto $\operatorname{Irr}(G)$.

2. Proof of Theorem 1.2

In order to prove Theorem 1.2 we prove a basic lemma concerning the roots of unity which appear in Saksonov's Theorem.

Lemma 2.1. Suppose for each character χ in $\operatorname{Irr}(G)$, there is a root of unity $\varepsilon(\chi)$ such that each product $\varepsilon(\chi) \chi \varepsilon(\psi) \psi$ for χ, ψ in $\operatorname{Irr}(G)$ is a nonnegative integer linear combination of $\varepsilon(\xi) \xi$, as ξ runs over $\operatorname{Irr}(G)$. Then there exists u in $Z(G)$ such that $\varepsilon(\chi)=\chi(u) / \chi(1)$ for every character χ in $\operatorname{Irr}(G)$.

Proof. If we are given χ and ψ in $\operatorname{Irr}(G)$, then we assume that

$$
\chi \psi=\sum_{\xi \in I r r(G)} m_{\xi} \xi \text { and } \varepsilon(\chi) \chi \varepsilon(\psi) \psi=\sum_{\xi \in \operatorname{lr}(G)} n_{\xi} \varepsilon(\xi) \xi
$$

where the coefficients m_{ξ} and n_{ξ} are non-negative integers. Then it follows easily that $m_{\xi}=n_{\xi}$ for all characters ξ in $\operatorname{Irr}(G)$ and thus the map $\phi: \chi \rightarrow \varepsilon(\chi) \chi$ defines an automorphism of the algebra $C X(G)$. In particular the $\operatorname{map} \phi$ permutes the primitive idempotents of this C-algebra (See the proof of Lemma 2.3 in [3]) and so it carries the characteristic class function of the identity to the characteristic class function of some other conjugacy class, say the class K. Therefore we have

$$
(1 /|G|) \Sigma_{\chi \in \operatorname{lr}(G)} \varepsilon(\chi) \chi(1) \chi=\left(1 /\left|C_{G}(v)\right|\right) \Sigma_{\chi \in \operatorname{Irr}(G)} \overline{\chi(v)} \chi
$$

where v is an element in K. It follows that for each irreducible character χ in $\operatorname{Irr}(G)$ we have $\chi(1) \varepsilon(\chi)=|K| \chi(u)$ where $u=v^{-1}$. Applying this where χ is the principal character yields that $|K|$ is a root of unity and so u is a central element in G. Thus for every character χ in $\operatorname{Irr}(G), \varepsilon(\chi)=\chi(u) / \chi(1)$ for some element u in $Z(G)$, as claimed.
Q.E.D.

Proof of Theorem 1.2. (i) Suppose u is a central element in G. Then for each character χ in $\operatorname{Irr}(G)$ we denote by $\varepsilon(\chi)$ and $T(\chi)$ the root of unity given by $\chi(u) / \chi(1)$ and the irreducible matrix representation of G which affords χ respectively. We assume further that for χ, ψ in $\operatorname{Irr}(G), \chi \psi=\sum_{\xi \in \operatorname{lrr}(G)} m_{\xi} \xi$ where
the m_{ξ} are non-negative integers. Then we show $\varepsilon(\xi)=\varepsilon(\chi) \varepsilon(\psi)$ for $m_{\xi} \neq 0$.
Indeed $T(\chi)(u)=\operatorname{diag}(\varepsilon(\chi), \cdots, \varepsilon(\chi))$ and $T(\psi)(u)=\operatorname{diag}(\varepsilon(\psi), \cdots, \varepsilon(\psi))$ which have diagonals of lengths $\chi(1)$ and $\psi(1)$ respectively. Hence

$$
T(\chi)(u) \otimes T(\psi)(u)=\operatorname{diag}(\varepsilon(\chi) \varepsilon(\psi), \cdots, \varepsilon(\chi) \varepsilon(\psi))
$$

where $T(\chi) \otimes T(\psi)$ is the Kronecker product of $T(\chi)$ and $T(\psi)$. Since $T(\chi) \otimes T(\psi)$ is the representation of G which affords $\chi \psi$, we have $\varepsilon(\xi)=\varepsilon(\chi)$ $\varepsilon(\psi)$ for $m_{\xi} \neq 0$, as claimed. Therefore we have $\varepsilon(\chi) \chi \varepsilon(\psi) \psi=\sum_{\xi \in \operatorname{lr}(G)} m_{\xi} \varepsilon(\xi) \xi$.

Thus the map τ_{u} defined by $\chi \rightarrow \varepsilon(\chi) \chi$ is an R-automorphism of $R X(G)$.
The fact that $Z(G) \cong T$ is easy to prove and so we omit its proof.
(ii) Now we can easily observe that Saksonov's result guarantees that the image of $\operatorname{Irr}(G)$ under ϕ satisfies the hypotheses of Lemma 2.1 for H. Hence we may write $\phi\left(\chi_{i}\right)=\varepsilon\left(\psi_{i^{\prime}}\right) \psi_{i^{\prime}}, \varepsilon\left(\psi_{i^{\prime}}\right)=\psi_{i^{\prime}}(u) / \psi_{i^{\prime}}(1)$ for some element u in $Z(H)$, $(i=1, \cdots, h)$ where $\operatorname{Irr}(G)=\left\{\chi_{1}, \cdots, \chi_{h}\right\}, \operatorname{Irr}(H)=\left\{\psi_{1}, \cdots, \psi_{h}\right\}$ and $i \rightarrow i^{\prime}$ is a permutation.

Therefore the map τ_{u} defined by $\psi \rightarrow \varepsilon(\psi) \psi$ is an R-automorphism of $R X(H)$ from fact (i) above. If we put $\theta=\tau_{u}^{-1} \phi$, then $\theta\left(\chi_{i}\right)=\tau_{u}^{-1}\left(\phi\left(\chi_{i}\right)\right)=\psi_{i^{\prime}}$, $(i=1, \cdots, h)$ and so θ maps $\operatorname{Irr}(G)$ onto $\operatorname{Irr}(H)$. Hence we have $\phi=\tau_{u} \theta$, as required.
(iii) Fact (iii) follows since fact (ii) tells us that $A=T P$ and it is clear from fact (ii) that A induces a permutation action on $\operatorname{Irr}(G)$ and T is the kernel of this action. This completes the proof of the theorem.
Q.E.D.

Acknowledgement.

The author would like to thank the referee for his valuable comments, especially about the proof of Lemma 2.1 of the paper.

References

[1] A.I. Saksonov, The integral ring of characters of a finite group, (Russian) Vesci Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk 1966, No. 3, 69-76.
[2] D. R. Weidman, The character ring of a finite group, Illinois J. Math. 9 (1965), 462-467.
[3] K. Yamauchi, On isomorphisms of a Brauer character ring onto another. Tsukuba J. Math. Vol. 20 No.1(1996), 207-212.

Department of Mathematics
Faculty of Education
Chiba University
Chiba, 263
Japan

