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AUTOMORPHISMS OF CERTAIN ROOT LATTICES

0. Introduction.

By

Zenji Kobayashi and Jim Morita

Let A be a reduced irreducible root system of type XL in a Euclidean space

V, in the sense of Bourbaki [1]. Then A generates a lattice F of rank / in V.

We fix the latticeF Let A' be another reduced irreducibleroot system in V,

generating F, of type Xt. We investigated whether A' coincided with A, and

found out that only the case of C4 is exceptional. If Xt is not C4 then A' is

equal to A. This means that (V, F, Xt) determines A uniquely unless Xt is C4.

In case Xt is C4, there are three root systems, generating F, of type C4 in V.

As we will explain afterward, these are verified by looking at the list of root

systems in Bourbaki [1].

Let W be the Weyl group of A, and 0{F) the orthogonal group of F. Then

WQO(F). Let D be the subgroup of 0{T) generated by all symmetries of the

Dynkin diagram of A. Put W― <ffl,D}, the subgroup of O(F) generated by W

and D. Notice that ―/ (minus identity)is contained in ffl(cf. [1], [5]). Then

the fact in the previous paragraph can be described as follows. The group index

[0(D: $1 is 3 if X^C,; 1 otherwise.

In this paper, we will calculate the index [0{F): W] in the case that A is

the root system of a Kac-Moody Lie algebra of Euclidean type or of low rank

hyperbolic type. Let A be a generalized Cartan matrix of Euclidean type or of

hyperbolic type, and B the associated form. Let A, F and 0{F) be the root

system of A, the root latticeof A and the orthogonal group of F associated with

B, respectively. We denote by W (resp. D) the Weyl group (resp. the diagram

automorphism group) of A. Put W―<ffl, D, ―I}. It is known that the index

Ind(A)=lO(JT): ft＼is finite(cf. [1; Chap. 5,§4, Ex. 18], [11]). If A is sym-

metric, then we get Ind(A)=l as a direct consequence of [7; Prop. 1.6] and [12;

Theorem 2]. We will compute Ind(A) explicitelywhen A is of Euclidean type,

of rank 2 hyperbolic type or of rank 3 hyperbolic type. The most interesting

case is when A
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In this case, we will observe that a certain
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subgroup of W acts on the infiniteset of all solutions(s, t,u, v) of the following

Diophantine equation:

s2-24f=l (Pell'sequation)

. u2-24v2=l (Pell'sequation)

su―24tv=―5

Furthermore thisactionis transitive. Using thisfact,we can establishInd(A)=2.

In the appendix, we display the listof hyperbolic generalized Cartan matrices

of rank ^3, which is already known but seems to be published explicitly

nowhere, (cf. [1].)

The authors wish to express their sincere gratitude to Professor E. Abe and

Professor N. Iwahori for their valuable advice.

1. Finite type.

Let A denote a reduced irreducibleroot system in V, in the sense of Bourbaki

Q]. Let U be a base of A, and F the root lattice. We denote by A a Cartan

matrix of A. Put Ind{A)=＼_O{F): ffi]. Then we can determine Tnd(A) using the

list of root systems in [11.

Theorem 1. // A is of type C4, then Ind{A)=3. Otherwise Ind(A) = l.

Proof. To show Ind(A)=l, we prove that the elements of A are character-

ized by their lengths among the elements of F. If A is symmetric {i.e. of type

An, Dn and En), A is the set of all the non-zero elements of minimal length in

F {e.g. see [7; Prop. 1.6]). The other cases are similarly proved by direct

computation.

To treat the case of type C4 and to show examples, we give the proof in

the case of type F4 and C4.

F4: A is

and II is

{±et (l^i^4), ±ei±ej(l^i</^4), -1r{±e1±ei±es±ei)^

|e2―e8, e3―e4, e4, ~2^＼―02―e3―e4)＼ in R＼

where {ej is a standard orthonormal basis. It is easy to see that all elements

of F of length 1 or 2 are contained in A. Therefore O(F) coincides with the

Weyl group W, which implies Ind(F4)―l. In particular,the order of O(F) is 27-32.
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C4: A is

{±2ei (1^*^4), ±ei±ej (l^f<;^4)}

and II Is

{e1―e2, ez―e3,e3―e4,2e4] in RK

The dual root system J(F4)V of type F4 is

{±2eu ±ei±eh ±e1±e2±ea±ei}.

Therefore the root lattice F of A is equal to that of A{Fi)w.

W(F): Wl=27-3V27-3=3.
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The Ind(C<)=

Q.E.D.

2. Euclidean type and hyperbolic type.

An Ixl integral matrix ^4= (aw) is called a generalized Cartan matrix if

au=2 (l^i^l), a.ij-^0(l^i^j^l) and ^=0 whenever a a―0. Cartan matrices

arising from root systems in the sense of Bourbaki [1] are generalized Cartan

matrices. Such generalized Cartan matrices are called of finitetype. A general-

ized Cartan matrix A is called of Euclidean type if A is singular and possesses

the property thatremoval of any row and the corresponding column leaves a Cartan

matrix (i.e. a generalized Cartan matrix of finite type). A generalized Cartan

matrix A is called indecomposable (resp. symmetrizable) if A cannot be expressed

(* 0 ＼
, j under any permutations of indices (resp.if there are positive rational

numbers qx,■･■,qt such that qittij―qjajifor any i, j=l, ･･･,I). The generalized

Cartan matrices of Euclidean type are indecomposable and symmetrizable. Of

course, Cartan matrices are symmetrizable. A generalized Cartan matrix A is

called of hyperbolic type if A isindecomposable, symmetrizable, not of finitetype,

not of Euclidean type and possesses the property that removal of any row and

the corresponding column leaves a union of Cartan matrices and the generalized

Cartan matrices of Euclidean type. The generalized Cartan matrices of Euclidean

type and the generalized Cartan matrices of hyperbolic type have been classified(cf.

Appendix, [1], [2], [6], [10], [13]).

From now on, we suppose that A is a generalized Cartan matrix of Euclidean

type or of hyperbolic type. Then the root system A=A{A) of the Kac-Moody

Lie algebra associated with A is described as follows. For Kac-Moody Lie algebras,

we refer the reader, e.g. [8]. Let F= 0 Zat be a free abelian group with

free generators au ･■■,at. We take an element Wi (l^i^l) of GL{F) defined

by Wi(aj)=aj―aijai for all /=1, ･･･,/. The Weyl group of A is defined to be

the subgroup W of GL(D generated by wi for alli=l, ■･■,I. Let B be a sym-
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metric bilinearform on F satisfying B(aif a^―qidij. This form B is W-invariant.

Then the root system A is a disjointunion of realroots, AR= {w{cti)＼ŵ .W, ISi^1}

and imaginary roots, AI={a^F＼B(a, a)^0} (cf. [12]). Let

O(r)={e&GL(r)＼B(ea. sB) = B(a, B) for all a, B^F},

and let D be the subgroup, called the diagram automorphism group of A, of

0{F) generated by allsymmetries which are induced by permutations on {alf･･-,at)

preserving the form B. Put W=<W, Df ―I}QO(F). We are interested in the

index of W in O(F); denote it by Ind(A). Let F+― {a= S a^i^Fl a<^0 for all*}

and Z=r+＼J(―F+), and 17={au ･･･,a,}.

Theorem 2. Suppose that A is of Euclidean type. Then Ind(A)=l if A=X%>

(^Ci1') or Ag> ; Ind(A)=2 if A = AiV-i (n=£4);Ind(A)=3 if A=Cl≫ or D ;

IndCA)=4 if A = EP ; Ind(A)=6 if A=A ; Ind(A)=2n'1 if A=D%L.

/ Ao * ＼
Proof. We can assume that A=[ , where Ao is of finitetype Xn

＼ * 2 /

(resp. Bn, Cn, Bn, Ft, G2) if A is of type Xil) (resp. Aft, AiV-u D(n2U,E , D ).

For the convenience, we assume that ax is a short root associated with Ao. As

is well-known, JI―{a^r＼B(a,a)=O}―Rad(B) and AT is a free Z-module of

rank 1. Take a generator £ of J7, which is called a fundamental null root. Let

7o= cZa,-, then F^R&ZE (orthogonal sum). Take an element o^OiF). Since
i=i

#(£)=+£, we can write a ―

/ a0 0

＼ * ±1
j, where

' /I

aa<=O(Fa) and 0(Fn) is embedded

/ <7o

(70>->
＼ o

0

1

Si"" Si-i

Wo (resp. W) be

* i=nw x 0
0

Therefore a = 0 1 modulo 0(ro)X<-/r>

* 1

M
. ■

0 '

1

the 1WeyS

Then we have 0(r)=(O(ro)KT)x<-/r>. Let

group of Ao (resp. A), and let DQ (resp. D) be the

diagram automorphism group of Ao (resp. A). For each element a of AR, we

define an element wa of O(T) by wa(x)=x-(2B(a, x)/B{a, a))a for all %eF.

Set mi=mm{m>O|ai+m£eJll} for i=l, ･■■,l―l. For each *= 1, ― , l―l, an

element /i^ of W is defined to be wtai+m^wai if ^=^2^ and f=l; wai+m^wa.

otherwise. Let H be the subgroup of W generated by hu ■■■, ht-i. Then
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W=W0 k H. We note that W=(W x D) X <―//-> and W^o^W^o x ^o- Hence we have

W(D:W2^ [T : //]. Furthermore [T :i/]= n m, (rfefA0)k, where
i=1

K=±- if A=A$ ; 1 otherwise. Then [/): D0]=(det A0)ic(cf.[9; p. 96]). There-

i-i
fore /nrf(i4)=/ncf(i40)nw2i. By Theorem 1 and the structure of A, we can

compute the index Ind(A).

Let A be of rank 2 hyperbolic type. That is, A = (

Q.E.D.

, na), ab>4. We put
b Z /

<7i=tt> Qz―~7y-,so the associated form B is defined by B(al7 ax)=b, B{a2, a^ ―a

I. 1
and B(au az)―――. The Weyl group W is generated by wl=( , . J and

in
u;2―( Y Let aeOCT), and choose an element i3= n1a1 + n2a2 of WVCai),

the W-orbit of a(ax), which satisfies the condition that n^+n^ is minimal in

this orbit. Since w1(^) ―(―n1+an2)ai+n2az and wz(^) = n1a1+(bn1-~ni)az, we

have n2(an2―2n1)2g0 and n1(bn1―2n2)'^0 by the condition of /3. If n2>07 n2>0

(resp. ni<0, n2<0), then ―n^tta^-r-ni (resp. ―n^n^-^nx), which means
d U d LJ

O^J3(/3, fi)―B(<Xi, <x^=b, a contradiction. Thus, n^^O. On the other hand,

b=bnl―abn1ni+anl since _B(/2,(})=B(a1, ax)=b. Then n^^O implies that

(jiu nE)=(±l, 0), or that (n1? n2)=(0, ±1) and a― b. In the latter, A is symmetric,

so we already know a^W. Therefore we can assume that there is an element

weWsatisfying wo(a1)=a1. Write wo(az) = k1a1-＼-k2a2. Then B(wa(a2), wa(az))

=bkl~abk1k2+aki=a and B(wa(a2), a1)=bk1―^-k2=―≪-. Hence (ku k2) ―

(0, 1) or (―a, ―1). This leads to wo―I or wa~{―I)wi, and a^W. Thus we

have the following.

Theorem 3. Suppose that A is of rank 2 hyperbolic type. Then Ind(A) = l.

Next we treat the case that A is of rank 3 hyperbolic type. We use here

the classification of the generalized Cartan matrices of this type (cf. Appendix,

[1], [2], [13]). Suppose that A is none of

/ 2-1

-4 2-

＼ 0 -2 2/

/ 2 -3 -

-1 2-

＼-l -3

iW-

2/ -

Then 0(D/7gZ, hencein particularWoMQZ

2 -4 -

1 2 -

2 -4

for

2＼

1 or

2/

all ffeOCT),

1^*^3. Therefore O(r)II=JR (cf.[7]). By [12 ; Theorem 2], we have O(r)=W

and Ind(A) = l. . We shall consider the remaining three cases.
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/ 2 -3 _n

(1) The case when A=＼ -1 2-1

＼-l -3 2/

Let a0 be an endomorphism of F defined by

ffo(ai)=- ≪i, ffo(a2)=ai―≪s, <To(a3)= ―≪i―≪2･

Then <70preserves the form £ and a0^O(F)―W. Take an element aeO(f)-PF.

Since the elements aef satisfying Z?(a,a)=5(a2, a2) and ≪^Z are ±(ai―as),

there is an element w^W such that wa(ai)=a1―a%. (For ffeO(r)-lf, there is

an element w'^.W such that u/a(a2)=tti―≪s or oc2. The latterinduces wfa(JR)

―AR. But thisleads to a contradiction.)

Therefore to consider W＼O(F) we can assume a(a2)=a1―as. Write ff(≪i)

13 1
= &1a'1+&2a2+&3a'3 and ff(a3)=/1a1+/2a2+/3a3. We put gi=7r> <72=-7rand gs=Tr-

Then we have:

(Et)

k＼+Zk＼ + k＼-Zkxki-k1ki-Zk2ks=l

'1Tw2t'3 0/160 /1/3 j/2'3~~J-

2 + 2^3^3 ―SkJz―kjs ―3&2^1― 3^ 2^3― kj.x ― 3^/2=―1

1

Put s-=2k1―6k2+l, t~k2, m=2/j―6/2+l and v―l2. Then the Diophantine equation

{Ei) implies the Diophantine equation

s2-24f=l

{E2) ■ u2-24v2=l

su―24tv=~5.

Notice that 5+V24 is the dominant fundamental factor of the Pell's equations

s2-24f=l and M2-24y2=l (cf. [3; P. 83], [4; P. 110]). Let

S={{m, n; elfe2, e3,s4)＼m,neZ20, ＼m―n＼=l, ef=±l, £1£s=£2ei=―1}.

Then the set of all solutions of the Diophantine equation {E2) is parametrized by

5. That is,

s= e1(C?+C?)/2, t=e2{Cf-^)/2 V24,

u = e,(C?+C=)/2, i;= e4(C?-C2)/2V24,

where C±=5±V'24. Here we will choose three elements of ffl. Let pi=wz,

p2―WiWzWi and p3={―I)d, where d ―[al'-^as, a2>->a2, az>-*a1~],a non-trivial
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diagram automorphism. Then these pt's fix ay―a&. Thus pio (i―l, 2, 3) gives

a new solution of (Ei). Since p1e(a1)= k1ai-Jr(k1-―k2+ks)azJrk3a3 and p1o(a3)=

lia1Jr(l1―l2+l3)a2Jrlsa3,we see that px produces a new solution

s'= -£l(C?+1+C +1)/2 (resp. s'^-^Cr'+C -1)/^

*'= e2(C?+1-C?+1)/2V24 (resp. f'= e2(Cra-C -1)/2V24),

u^-£3(Cr1+a+1)/2 (resp. u/ = -s3(Cr1+^-1)/2),

f'=£4(C?+1-e+1)/2V24 (resp. y'= £4(Cr1-C--1)/2V24)

of (E2) from an original solution(s, t,u, v) if £1e2>0 (resp. £1£2<0).Since

io2ot(≪i)=(6^2―/?3)ai+^2≪2+(―^i+6^2)≪3

and

^2O"(as)= (6/2―/3)≪i+/2≪2+(―/i+6/2)≪3,

the element ^2 produces a new solution (―s, t,―u, v) from (s, t,u, v). Since

p3a(a1)――kia1―k2a2―k1a3

and

JO3O'(a3)=―/3≪1―/2≪2―/l≪3,

the element ^3 produces a new solution(―s, ―t,―u, ―v) from (s, t,u, v). Hence

the subgroup G of W generated by p1} pz and ps transitivelyacts on the set of

all solutions of (E2). This means 0{F)―W=Wa0, so {1, a0} is the complete set

of representatives of W＼O(F).

(2) The case when A

(
_

In this case, we can take an element a0 of O(F) ―W defined by G0{a1)=a2-Ya3,

o0(c(2)=o!1―a3and ao(a3)=as. For each element a^O(F) ―W there exists an

element w^W such that wo{a2)=aL―a3, since the elements a^F satisfying

B(a, a) = B{a2, a2) and a&Z are ±(a1―a3). Then the elements z^O(F) ―W

with the property r{a2)=a1―az are ru x2,zs and r4, where

■z'i=C≪i'->≪3,ffz^ai-as, as1-^a2+a3],

^4=L(Xi'-^―oc1―a2,a2^≪a―oc3, a3*->―a3] .

Put d = [ar1'-*a3,ct2'―>≪2Ja31->≪i],a nontrivial diagram automorphism. Then we

have (―I)dxi=r2, (―I)dx3-=x^ w2t1=x3 and w2r2=r4. Therefore 0{F)―W―Wa0,
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so II, ff0}is the complete set of representatives of W＼O(F).

(3) The case when A-=＼

2 -1

-4 2-

0 -2 2/

In this case, the elements ae/1 satisfying B(a, a) = B(alt ax) and a&Z are

±(a2―≪s)and ±(ai+a2―a3). Let o-0(resp. r0) be the endomorphism of F definec

by <70(ai)=a2―≪s, ao(a^ = ―a2 and o-0(a8)=―≪x―a2 (resp. ro(a1)=a1+a2―az.

ro(a2)=a3 and ro(a3)=a2). Then they belong to O(F)―W. For each element

o<bO{F) ―W, there is an element w^W such that W0(a1)=a2―a* or a1Jra2--ocz.

Then the elements r of 0{F) ―W having the property T(a1)=a2―as are au a2,

<?sand a4, where

ff2=[ai^≪2―as, a2'->―a2, as1-*―≪i―≪2],

<r3=[a1'->a2―a3, aa1-^―2≪!―3a2, a3'->a1-fa23,

cT4= [a1'->a2―≪s5a2h-^2a1+2a2+a3> a3>->―aa―a2] ,

and the elements r of O(F) ―W having the property z(ai)=a1Jr<x2―-a3 are r1}

r2,r3 and r4, where

r1=[ofi'->a1+a2―as, aa^as, as^->a2],

･z"2=:[ai'-^ai+a2~a3,a21-^―≪i―a2,as1―>―a2] ,

r3=[a1^ai+a2―a3, a2>――ax―3a2, ash^o'2],

T4=nai'-*a1+a2―a3, a2'-^2a2+a3, a3>―>―a2] .

Furthermore iv1w2Wiai~a4, wxW%wxot=o$ and w;1ai=ri (1^2^4). Therefore

O(D ―^=^ff0U^r0. On the other hand, aor^1(a1)=a1+a2-aseE^i?, so aoT^^W.

This means that {1, a0, t0} is the complete set of representatives of W＼O{F).

Theorem 4. Suppose that A is of rank 3 hyperbolic type. Then Ind(A)―2

ifA=i

2 -3 -

-1 2 -

-1 -3

otherwise.

H
/ 2 -1 OV

Ind(A)=Z if A=＼-A 2 -2 ;Ind(A) = l

＼ 0 -2 2/
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Appendix

Hyperbolic generalized Cartan matrices of rank ^ 3

Oil

0

i

9

1

i

1

0

1

-i i -2

Symmetric case.

(4)
Q

I J

o o

o
(2),0

(4) (4)

dij

1

1

2

I

I

331

3

-4

2

i
3

o
(3)

(4)^

(4)

Q ―Q Q ―O Q ―Q
(4＼/4)

＼/W ＼/

＼Ol Q O c -O O c

<^ ^>■
i 1

° ° ° °

xw/ ^^
<> o

i i

A 6 6 Y

Q-~^ Î
^_^-O

O―O―O―O O―O―O―O O―O―O―0―O

/＼ o 0 6 0
A

do 6 6
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Non-symmetric case.

(1) rank 3

(2) (3)

(3) (3)

oM-o o

(3) (4)

oAAo

(2) rank 4

Zenji Kobayashi and Jun Morita

o (3),o,(3) o

o (4)>o (4) o

o<<3' o <4> o

ec<4) oc(2) o

oeW oc(3)o

o.(2>o.<2'o o

O >O< ■■> O

o o o '>o

(2)>o (4) o

o (4),o (2),o

(2) (3)

(4)
o―^--~>q o

(4) (2)

(4) (3)

(35W(3)

OX) ■>O O

O 'X) O c

o /x> o<v ' o

(4K/4)

o qJQ*q c

o- >o o ■≫o
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o^Lo cJ^Uo

OX) <X ' O

QtZ. , 0, Q^___0

o (2)>o (2>>o <2>,o

oJ*Uo <2W2> o oc(2> 0<g) o <2>,o o <2>,oc<2>o V＼o

(2) '(2) (2)
"(2)

(2) (2)
A―i A―A i- J. 6^-J> *-^*8 i-^4

t^>^u r>^u r>^-o r>^

(3) rank 5

o o ' >o o v >o

o ex― 'o ex o

cr-12)

O O '>0 (Xv ■0

c <X O O v ≫Q

333
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O O O O O Q O Q

(2l
Nv

(2)A ＼.

£ 0-
'>O

O CK O O GK D O O――-^Q

C4) ＼")

(4) rank 6

o o >o o o N '>o

Q 0-- 'X) O O O

ty-oJZU―^-^U



(5) rank 7

(6) rank 8

(7) rank 9

(8) rank 10
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Note. The rank of a hyperbolic type generalized Cartan matrix is at most 10

(cf. rm.
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