AUTOMORPHISMS OF CERTAIN ROOT LATTICES

By
Zenji Kobayashi and Jun Morita

0. Introduction.

Let Δ be a reduced irreducible root system of type X_{l} in a Euclidean space V, in the sense of Bourbaki [1]. Then Δ generates a lattice Γ of rank l in V. We fix the lattice Γ. Let Δ^{\prime} be another reduced irreducible root system in V, generating Γ, of type X_{l}. We investigated whether Δ^{\prime} coincided with Δ, and found out that only the case of C_{4} is exceptional. If X_{l} is not C_{4} then Δ^{\prime} is equal to Δ. This means that $\left(V, \Gamma, X_{l}\right)$ determines Δ uniquely unless X_{l} is C_{4}. In case X_{l} is C_{4}, there are three root systems, generating Γ, of type C_{4} in V. As we will explain afterward, these are verified by looking at the list of root systems in Bourbaki [1].

Let W be the Weyl group of Δ, and $O(\Gamma)$ the orthogonal group of Γ. Then $W \subseteq O(\Gamma)$. Let D be the subgroup of $O(\Gamma)$ generated by all symmetries of the Dynkin diagram of Δ. Put $\widetilde{W}=\langle W, D\rangle$, the subgroup of $O(\Gamma)$ generated by W and D. Notice that $-I$ (minus identity) is contained in \widetilde{W} (cf. [1], [5]). Then the fact in the previous paragraph can be described as follows. The group index $[O(I): \widetilde{W}]$ is 3 if $X_{l}=C_{4} ; 1$ otherwise.

In this paper, we will calculate the index $[O(\Gamma): \widetilde{W}]$ in the case that Δ is the root system of a Kac-Moody Lie algebra of Euclidean type or of low rank hyperbolic type. Let A be a generalized Cartan matrix of Euclidean type or of hyperbolic type, and B the associated form. Let Δ, Γ and $O(\Gamma)$ be the root system of A, the root lattice of Δ and the orthogonal group of Γ associated with B, respectively. We denote by W (resp. D) the Weyl group (resp. the diagram automorphism group) of A. Put $\widetilde{W}=\langle W, D,-I\rangle$. It is known that the index $\operatorname{Ind}(A)=[O(\Gamma): \widetilde{W}]$ is finite (cf. [1; Chap. $5, \S 4$, Ex. 18], [11]). If A is symmetric, then we get $\operatorname{Ind}(A)=1$ as a direct consequence of [7; Prop. 1.6] and [12; Theorem 2]. We will compute $\operatorname{Ind}(A)$ explicitely when A is of Euclidean type, of rank 2 hyperbolic type or of rank 3 hyperbolic type. The most interesting case is when $A=\left(\begin{array}{rrr}2 & -3 & -1 \\ -1 & 2 & -1 \\ -1 & -3 & 2\end{array}\right)$. In this case, we will observe that a certain
subgroup of \widetilde{W} acts on the infinite set of all solutions (s, t, u, v) of the following Diophantine equation:

$$
\begin{cases}s^{2}-24 t^{2}=1 & \text { (Pell's equation) } \\ u^{2}-24 v^{2}=1 & \text { (Pell's equation) } \\ s u-24 t v=-5 & \end{cases}
$$

Furthermore this action is transitive. Using this fact, we can establish $\operatorname{Ind}(A)=2$.
In the appendix, we display the list of hyperbolic generalized Cartan matrices of rank $\geqq 3$, which is already known but seems to be published explicitly nowhere. (cf. [1].)

The authors wish to express their sincere gratitude to Professor E. Abe and Professor N. Iwahori for their valuable advice.

1. Finite type.

Let Δ denote a reduced irreducible root system in V, in the sense of Bourbaki [1]. Let Π be a base of Δ, and Γ the root lattice. We denote by A a Cartan matrix of Δ. Put $\operatorname{Ind}(A)=[O(\Gamma): \widetilde{W}]$. Then we can determine $\operatorname{Ind}(A)$ using the list of root systems in [1].

Theorem 1. If A is of type C_{4}, then $\operatorname{Ind}(A)=3$. Otherwise $\operatorname{Ind}(A)=1$.
Proof. To show $\operatorname{Ind}(A)=1$, we prove that the elements of Δ are characterized by their lengths among the elements of Γ. If A is symmetric (i.e. of type A_{n}, D_{n} and E_{n}), Δ is the set of all the non-zero elements of minimal length in Γ (e.g. see [7; Prop. 1.6]). The other cases are similarly proved by direct computation.

To treat the case of type C_{4} and to show examples, we give the proof in the case of type F_{4} and C_{4}.
$F_{4}: \quad \Delta$ is

$$
\left\{ \pm e_{i}(1 \leqq i \leqq 4), \pm e_{i} \pm e_{j}(1 \leqq i<j \leqq 4), \frac{1}{2}\left(\pm e_{1} \pm e_{2} \pm e_{3} \pm e_{4}\right)\right\}
$$

and Π is

$$
\left\{e_{2}-e_{3}, e_{3}-e_{4}, e_{4}, \frac{1}{2}\left(e_{1}-e_{2}-e_{3}-e_{4}\right)\right\} \text { in } \boldsymbol{R}^{4},
$$

where $\left\{e_{i}\right\}$ is a standard orthonormal basis. It is easy to see that all elements of Γ of length 1 or 2 are contained in Δ. Therefore $O(\Gamma)$ coincides with the Weyl group W, which implies $\operatorname{Ind}\left(F_{4}\right)=1$. In particular, the order of $O(\Gamma)$ is $2^{7} \cdot 3^{2}$.
$C_{4}: \Delta$ is

$$
\left\{ \pm 2 e_{i}(1 \leqq i \leqq 4), \pm e_{i} \pm e_{j}(1 \leqq i<j \leqq 4)\right\}
$$

and Π is

$$
\left\{e_{1}-e_{2}, e_{2}-e_{3}, e_{3}-e_{4}, 2 e_{4}\right\} \quad \text { in } \boldsymbol{R}^{4} .
$$

The dual root system $\Delta\left(F_{4}\right)^{\vee}$ of type F_{4} is

$$
\left\{ \pm 2 e_{i}, \pm e_{i} \pm e_{j}, \pm e_{1} \pm e_{2} \pm e_{3} \pm e_{4}\right\}
$$

Therefore the root lattice Γ of Δ is equal to that of $\Delta\left(F_{4}\right)^{v}$. The $\operatorname{Ind}\left(C_{4}\right)=$ $[O(\Gamma): \widetilde{W}]=2^{7} \cdot 3^{2} / 2^{7} \cdot 3=3$.
Q.E.D.

2. Euclidean type and hyperbolic type.

An $l \times l$ integral matrix $A=\left(a_{i j}\right)$ is called a generalized Cartan matrix if $a_{i i}=2(1 \leqq i \leqq l), a_{i j} \leqq 0(1 \leqq i \neq j \leqq l)$ and $a_{i j}=0$ whenever $a_{j i}=0$. Cartan matrices arising from root systems in the sense of Bourbaki [1] are generalized Cartan matrices. Such generalized Cartan matrices are called of finite type. A generalized Cartan matrix A is called of Euclidean type if A is singular and possesses the property that removal of any row and the corresponding column leaves a Cartan matrix (i.e. a generalized Cartan matrix of finite type). A generalized Cartan matrix A is called indecomposable (resp. symmetrizable) if A cannot be expressed as $\left(\begin{array}{ll}* & 0 \\ 0 & *\end{array}\right)$ under any permutations of indices (resp. if there are positive rational numbers $q_{1}, \cdots, q_{\imath}$ such that $q_{i} a_{i j}=q_{j} a_{j i}$ for any $\left.i, j=1, \cdots, l\right)$. The generalized Cartan matrices of Euclidean type are indecomposable and symmetrizable. Of course, Cartan matrices are symmetrizable. A generalized Cartan matrix A is called of hyperbolic type if A is indecomposable, symmetrizable, not of finite type, not of Euclidean type and possesses the property that removal of any row and the corresponding column leaves a union of Cartan matrices and the generalized Cartan matrices of Euclidean type. The generalized Cartan matrices of Euclidean type and the generalized Cartan matrices of hyperbolic type have been classified (cf. Appendix, [1], [2], [6], [10], [13]).

From now on, we suppose that A is a generalized Cartan matrix of Euclidean type or of hyperbolic type. Then the root system $\Delta=\Delta(A)$ of the Kac-Moody Lie algebra associated with A is described as follows. For Kac-Moody Lie algebras, we refer the reader, e.g. [8]. Let $\Gamma=\underset{i=1}{\oplus} \boldsymbol{Z} \alpha_{i}$ be a free abelian group with free generators $\alpha_{1}, \cdots, \alpha_{i}$. We take an element $w_{i}(1 \leqq i \leqq l)$ of $G L(\Gamma)$ defined by $w_{i}\left(\alpha_{j}\right)=\alpha_{j}-a_{i j} \alpha_{i}$ for all $j=1, \cdots, l$. The Weyl group of A is defined to be the subgroup W of $G L(\Gamma)$ generated by w_{i} for all $i=1, \cdots, l$. Let B be a sym-
metric bilinear form on Γ satisfying $B\left(\alpha_{i}, \alpha_{j}\right)=q_{i} a_{i j}$. This form B is W-invariant. Then the root system Δ is a disjoint union of real roots, $\Delta_{R}=\left\{w\left(\alpha_{i}\right) \mid w \in W, 1 \leqq i \leqq l\right\}$ and imaginary roots, $\Delta_{I}=\{\alpha \in \Gamma \mid B(\alpha, \alpha) \leqq 0\}$ (cf. [12]). Let

$$
O(\Gamma)=\{g \in G L(\Gamma) \mid B(g \alpha, g \beta)=B(\alpha, \beta) \text { for all } \alpha, \beta \in \Gamma\},
$$

and let D be the subgroup, called the diagram automorphism group of A, of $O(\Gamma)$ generated by all symmetries which are induced by permutations on $\left\{\alpha_{1}, \cdots, \alpha_{l}\right\}$ preserving the form B. Put $\widetilde{W}=\langle W, D,-I\rangle \subseteq O(\Gamma)$. We are interested in the index of \widetilde{W} in $O(\Gamma)$; denote it by $\operatorname{Ind}(A)$. Let $\Gamma_{+}=\left\{\alpha=\sum_{i=1}^{l} a_{i} \alpha_{i} \in \Gamma \mid a_{i} \geqq 0\right.$ for all $\left.i\right\}$ and $Z=\Gamma_{+} \cup\left(-\Gamma_{+}\right)$, and $\Pi=\left\{\alpha_{1}, \cdots, \alpha_{l}\right\}$.

Theorem 2. Suppose that A is of Euclidean type. Then Ind $(A)=1$ if $A=X_{n}^{(1)}$ $\left(\neq C_{4}^{(1)}\right)$ or $A_{2 n}^{(2)} ; \operatorname{Ind}(A)=2$ if $A=A_{2 n-1}^{(2)}(n \neq 4) ; \operatorname{Ind}(A)=3$ if $A=C_{4}^{(1)}$ or $D_{4}^{(3)}$; $\operatorname{Ind}(A)=4$ if $A=E_{6}^{(2)} ; \operatorname{Ind}(A)=6$ if $A=A_{i}^{(2)} ; \operatorname{Ind}(A)=2^{n-1}$ if $A=D_{n+1}^{(2)}$.

Proof. We can assume that $A=\left(\begin{array}{c|c}A_{0} & * \\ \hline * & 2\end{array}\right)$, where A_{0} is of finite type X_{n} (resp. $B_{n}, C_{n}, B_{n}, F_{4}, G_{2}$) if A is of type $X_{n}^{(1)}$ (resp. $A_{2 n}^{(2)}, A_{2 n-1}^{(2)}, D_{n+1}^{(2)}, E_{6}^{(2)}, D_{4}^{(3)}$). For the convenience, we assume that α_{1} is a short root associated with A_{0}. As is well-known, $\Delta_{I}=\{\alpha \in \Gamma \mid B(\alpha, \alpha)=0\}=\operatorname{Rad}(B)$ and Δ_{I} is a free Z-module of rank 1. Take a generator ξ of Δ_{1}, which is called a fundamental null root. Let $\Gamma_{0}=\bigoplus_{i=1}^{l-1} Z \alpha_{i}$, then $\Gamma=\Gamma_{0} \oplus \boldsymbol{Z} \xi$ (orthogonal sum). Take an element $\sigma \in O(\Gamma)$. Since $\sigma(\bar{\xi})= \pm \hat{\xi}$, we can write $\sigma=\left(\begin{array}{c|c}\sigma_{0} & 0 \\ \hline * & \pm 1\end{array}\right)$, where $\sigma_{0} \in O\left(\Gamma_{0}\right)$ and $O\left(\Gamma_{0}\right)$ is embedded in $O(\Gamma)$ by $\sigma_{0} \mapsto\left(\begin{array}{c|c}\sigma_{0} & 0 \\ \hline 0 & 1\end{array}\right)$. Therefore $\sigma \equiv\left(\begin{array}{cc|c}* & & 0 \\ 0 & \ddots & 0 \\ \hline & & \pm 1\end{array}\right)$ modulo $O\left(I_{0}\right) \times\left\langle-I_{\Gamma}\right\rangle$. Set $T=\left\{\left.\left(\begin{array}{lll|l}1 & & 0 & 0 \\ 0 & & 1 & 0 \\ \hline s_{1} \cdots & s_{l-1} & 1\end{array}\right) \right\rvert\, s_{i} \in \boldsymbol{Z}\right\}$. Then we have $O(\Gamma)=\left(O\left(I_{0}\right) \ltimes T\right) \times\left\langle-I_{\Gamma}\right\rangle$. Let W_{0} (resp. W) be the Weyl group of A_{0} (resp. A), and let D_{0} (resp. D) be the diagram automorphism group of A_{0} (resp. A). For each element α of Δ_{R}, we define an element w_{α} of $O\left(\Gamma^{\prime}\right)$ by $w_{\alpha}(x)=x-(2 B(\alpha, x) / B(\alpha, \alpha)) \alpha$ for all $x \in \Gamma$. Set $m_{i}=\min \left\{m>0 \mid \alpha_{i}+m \xi \in \Delta_{R}\right\}$ for $i=1, \cdots, l-1$. For each $i=1, \cdots, l-1$, an element h_{i} of W is defined to be $w_{2 \alpha_{i}+m_{i} \xi} w_{\alpha_{i}}$ if $A=A_{2 n}^{(2)}$ and $i=1 ; w_{\alpha_{i}+m_{i} \xi} w_{\alpha_{i}}$ otherwise. Let H be the subgroup of W generated by h_{1}, \cdots, h_{l-1}. Then
$W=W_{0} \ltimes H$. We note that $\widetilde{W}=(W \rtimes D) \times\left\langle-I_{\Gamma}\right\rangle$ and $\widetilde{W}_{0}=W_{0} \rtimes D_{0}$. Hence we have $[O(\Gamma): \widetilde{W}]=\frac{\left[O\left(\Gamma_{0}\right): \widetilde{W}_{0}\right]}{\left[D: D_{0}\right]}[T: H]$. Furthermore $[T: H]=\prod_{i=1}^{l-1} m_{i}\left(\operatorname{det} A_{0}\right) \kappa$, where $\kappa=\frac{1}{2}$ if $A=A_{2 n}^{(2)} ; 1$ otherwise. Then $\left[D: D_{0}\right]=\left(\operatorname{det} A_{0}\right) \kappa$ (cf. $[9 ;$ p. 96]). Therefore $\operatorname{Ind}(A)=\operatorname{Ind}\left(A_{0}\right) \prod_{i=1}^{l-1} m_{i}$. By Theorem 1 and the structure of Δ, we can compute the index $\operatorname{Ind}(A)$.
Q.E.D.

Let A be of rank 2 hyperbolic type. That is, $A=\left(\begin{array}{cc}2 & -a \\ -b & 2\end{array}\right), a b>4$. We put $q_{1}=\frac{b}{2}, q_{2}=\frac{a}{2}$, so the associated form B is defined by $B\left(\alpha_{1}, \alpha_{1}\right)=b, B\left(\alpha_{2}, \alpha_{2}\right)=a$ and $B\left(\alpha_{1}, \alpha_{2}\right)=-\frac{a b}{2}$. The Weyl group W is generated by $w_{1}=\left(\begin{array}{cc}-1 & a \\ 0 & 1\end{array}\right)$ and $w_{2}=\left(\begin{array}{cc}1 & 0 \\ b & -1\end{array}\right)$. Let $\sigma \in O(\Gamma)$, and choose an element $\beta=n_{1} \alpha_{1}+n_{2} \alpha_{2}$ of $W \sigma\left(\alpha_{1}\right)$, the W-orbit of $\sigma\left(\alpha_{1}\right)$, which satisfies the condition that $n_{1}{ }^{2}+n_{2}{ }^{2}$ is minimal in this orbit. Since $w_{1}(\beta)=\left(-n_{1}+a n_{2}\right) \alpha_{1}+n_{2} \alpha_{2}$ and $w_{2}(\beta)=n_{1} \alpha_{1}+\left(b n_{1}-n_{2}\right) \alpha_{2}$, we have $n_{2}\left(a n_{2}-2 n_{1}\right) \geqq 0$ and $n_{1}\left(b n_{1}-2 n_{2}\right) \geqq 0$ by the condition of β. If $n_{1}>0, n_{2}>0$ (resp. $n_{1}<0, \quad n_{2}<0$), then $\frac{2}{a} n_{1} \leqq n_{2} \leqq \frac{b}{2} n_{1}$ (resp. $\frac{2}{a} n_{1} \geqq n_{2} \geqq \frac{b}{2} n_{1}$), which means $0 \geqq B(\beta, \beta)=B\left(\alpha_{1}, \alpha_{1}\right)=b$, a contradiction. Thus, $n_{1} n_{2} \leqq 0$. On the other hand, $b=b n_{1}^{2}-a b n_{1} n_{2}+a n_{2}^{2}$ since $B(\beta, \beta)=B\left(\alpha_{1}, \alpha_{1}\right)=b$. Then $n_{1} n_{2} \leqq 0$ implies that $\left(n_{1}, n_{2}\right)=(\pm 1,0)$, or that $\left(n_{1}, n_{2}\right)=(0, \pm 1)$ and $a=b$. In the latter, A is symmetric, so we already know $\sigma \in \widetilde{W}$. Therefore we can assume that there is an element $w \in \widetilde{W}$ satisfying $w \sigma\left(\alpha_{1}\right)=\alpha_{1}$. Write $w \sigma\left(\alpha_{2}\right)=k_{1} \alpha_{1}+k_{2} \alpha_{2}$. Then $B\left(w \sigma\left(\alpha_{2}\right), w \sigma\left(\alpha_{2}\right)\right)$ $=b k_{1}^{2}-a b k_{1} k_{2}+a k_{2}^{2}=a$ and $B\left(w \sigma\left(\alpha_{2}\right), \alpha_{1}\right)=b k_{1}-\frac{a b}{2} k_{2}=-\frac{a b}{2}$. Hence $\left(k_{1}, k_{2}\right)=$ $(0,1)$ or $(-a,-1)$. This leads to $w \sigma=I$ or $w \sigma=(-I) w_{1}$, and $\sigma \in \widetilde{W}$. Thus we have the following.

Theorem 3. Suppose that A is of rank 2 hyperbolic type. Then $\operatorname{Ind}(A)=1$.
Next we treat the case that A is of rank 3 hyperbolic type. We use here the classification of the generalized Cartan matrices of this type (cf. Appendix, [1], [2], [13]). Suppose that A is none of $\left(\begin{array}{rrr}2 & -3 & -1 \\ -1 & 2 & -1 \\ -1 & -3 & 2\end{array}\right),\left(\begin{array}{rrr}2 & -4 & -2 \\ -1 & 2 & -1 \\ -2 & -4 & 2\end{array}\right)$ or $\left(\begin{array}{rrr}2 & -1 & 0 \\ -4 & 2 & -2 \\ 0 & -2 & 2\end{array}\right)$. Then $O(\Gamma) \Pi \subseteq Z$, hence in particular $W \sigma\left(\alpha_{i}\right) \cong Z$ for all $\sigma \in O(\Gamma)$,
$1 \leqq i \leqq 3$. Therefore $O(\Gamma) \Pi=\Delta_{R}$ (cf. [7]). By [12; Theorem 2], we have $O(\Gamma)=\widetilde{W}$ and $\operatorname{Ind}(A)=1$. We shall consider the remaining three cases.
(1) The case when $A=\left(\begin{array}{rrr}2 & -3 & -1 \\ -1 & 2 & -1 \\ -1 & -3 & 2\end{array}\right)$.

Let σ_{0} be an endomorphism of Γ defined by

$$
\sigma_{0}\left(\alpha_{1}\right)=-\alpha_{1}, \quad \sigma_{0}\left(\alpha_{2}\right)=\alpha_{1}-\alpha_{3}, \quad \sigma_{0}\left(\alpha_{3}\right)=-\alpha_{1}-\alpha_{2} .
$$

Then σ_{0} preserves the form B and $\sigma_{0} \in O(\Gamma)-\widetilde{W}$. Take an element $\sigma \in O(\Gamma)-\widetilde{W}$. Since the elements $\alpha \in \Gamma$ satisfying $B(\alpha, \alpha)=B\left(\alpha_{2}, \alpha_{2}\right)$ and $\alpha \notin Z$ are $\pm\left(\alpha_{1}-\alpha_{3}\right)$, there is an element $w \in \widetilde{W}$ such that $w \sigma\left(\alpha_{2}\right)=\alpha_{1}-\alpha_{3}$. (For $\sigma \in O(\Gamma)-\widetilde{W}$, there is an element $w^{\prime} \in \widetilde{W}$ such that $w^{\prime} \sigma\left(\alpha_{2}\right)=\alpha_{1}-\alpha_{3}$ or α_{2}. The latter induces $w^{\prime} \sigma\left(\Delta_{R}\right)$ $=\Delta_{R}$. But this leads to a contradiction.)

Therefore to consider $\widetilde{W} \backslash(\Gamma)$ we can assume $\sigma\left(\alpha_{2}\right)=\alpha_{1}-\alpha_{3}$. Write $\sigma\left(\alpha_{1}\right)$ $=k_{1} \alpha_{1}+k_{2} \alpha_{2}+k_{3} \alpha_{3}$ and $\sigma\left(\alpha_{3}\right)=l_{1} \alpha_{1}+l_{2} \alpha_{2}+l_{3} \alpha_{3}$. We put $q_{1}=\frac{1}{2}, q_{2}=\frac{3}{2}$ and $q_{3}=\frac{1}{2}$. Then we have:
$\left(\boldsymbol{E}_{1}\right) \quad\left\{\begin{array}{l}k_{1}^{2}+3 k_{2}^{2}+k_{3}^{2}-3 k_{1} k_{2}-k_{1} k_{3}-3 k_{2} k_{3}=1 \\ l_{1}^{2}+3 l_{2}^{2}+l_{3}^{2}-3 l_{1} l_{2}-l_{1} l_{3}-3 l_{2} l_{3}=1 \\ 2 k_{1} l_{1}+6 k_{2} l_{2}+2 k_{3} l_{3}-3 k_{1} l_{2}-k_{1} l_{3}-3 k_{2} l_{1}-3 k_{2} l_{3}-k_{3} l_{1}-3 k l_{2}=-1 \\ k_{1}-k_{3}=-1 \\ l_{1}-l_{3}=-1 .\end{array}\right.$
Put $s=2 k_{1}-6 k_{2}+1, t=k_{2}, u=2 l_{1}-6 l_{2}+1$ and $v=l_{2}$. Then the Diophantine equation $\left(\boldsymbol{E}_{1}\right)$ implies the Diophantine equation
(\boldsymbol{E}_{2})

$$
\left\{\begin{array}{l}
s^{2}-24 t^{2}=1 \\
u^{2}-24 v^{2}=1 \\
s u-24 t v=-5
\end{array}\right.
$$

Notice that $5+\sqrt{24}$ is the dominant fundamental factor of the Pell's equations $s^{2}-24 t^{2}=1$ and $u^{2}-24 v^{2}=1$ (cf. [3; P. 83], [4; P. 110]). Let

$$
S=\left\{\left(m, n ; \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}\right)\left|m, n \in \boldsymbol{Z}_{\geq 0},|m-n|=1, \varepsilon_{i}= \pm 1, \varepsilon_{1} \varepsilon_{3}=\varepsilon_{2} \varepsilon_{4}=-1\right\} .\right.
$$

Then the set of all solutions of the Diophantine equation $\left(\boldsymbol{E}_{2}\right)$ is parametrized by S. That is,

$$
\begin{array}{ll}
s=\varepsilon_{1}\left(\zeta_{+}^{m}+\zeta_{-}^{m}\right) / 2, & t=\varepsilon_{2}\left(\zeta_{+}^{m}-\zeta_{-}^{m}\right) / 2 \sqrt{24}, \\
u=\varepsilon_{3}\left(\zeta_{+}^{n}+\zeta_{-}^{n}\right) / 2, & v=\varepsilon_{4}\left(\zeta_{+}^{n}-\zeta_{-}^{n}\right) / 2 \sqrt{24},
\end{array}
$$

where $\zeta_{ \pm}=5 \pm \sqrt{24}$. Here we will choose three elements of \widetilde{W}. Let $\rho_{1}=w_{2}$, $\rho_{2}=w_{1} w_{3} w_{1}$ and $\rho_{3}=(-I) d$, where $d=\left[\alpha_{1} \mapsto \alpha_{3}, \alpha_{2} \mapsto \alpha_{2}, \alpha_{3} \mapsto \alpha_{1}\right]$, a non-trivial
diagram automorphism. Then these ρ_{i} 's fix $\alpha_{1}-\alpha_{3}$. Thus $\rho_{i} \sigma(i=1,2,3)$ gives a new solution of $\left(\boldsymbol{E}_{1}\right)$. Since $\rho_{1} \sigma\left(\alpha_{1}\right)=k_{1} \alpha_{1}+\left(k_{1}-k_{2}+k_{3}\right) \alpha_{2}+k_{3} \alpha_{3}$ and $\rho_{1} \sigma\left(\alpha_{3}\right)=$ $l_{1} \alpha_{1}+\left(l_{1}-l_{2}+l_{3}\right) \alpha_{2}+l_{3} \alpha_{3}$, we see that ρ_{1} produces a new solution

$$
\begin{array}{ll}
s^{\prime}=-\varepsilon_{1}\left(\zeta_{+}^{m+1}+\zeta_{-}^{m+1}\right) / 2 & \text { (resp. } \left.s^{\prime}=-\varepsilon_{1}\left(\zeta_{+}^{m-1}+\zeta_{-}^{m-1}\right) / 2\right), \\
t^{\prime}=\varepsilon_{2}\left(\zeta_{+}^{m+1}-\zeta_{-}^{m+1}\right) / 2 \sqrt{24} & \text { (resp. } \left.t^{\prime}=\varepsilon_{2}\left(\zeta_{+}^{m-1}-\zeta_{-}^{m-1}\right) / 2 \sqrt{24}\right), \\
u^{\prime}=-\varepsilon_{3}\left(\zeta_{+}^{n+1}+\zeta_{-}^{n+1}\right) / 2 & \text { (resp. } \left.u^{\prime}=-\varepsilon_{3}\left(\zeta_{+}^{n-1}+\zeta_{-}^{n-1}\right) / 2\right), \\
v^{\prime}=\varepsilon_{4}\left(\zeta_{+}^{n+1}-\zeta_{-}^{n+1}\right) / 2 \sqrt{24} & \text { (resp. } \left.v^{\prime}=\varepsilon_{4}\left(\zeta_{+}^{n-1}-\zeta_{-}^{n-1}\right) / 2 \sqrt{24}\right)
\end{array}
$$

of (\boldsymbol{E}_{2}) from an original solution (s, t, u, v) if $\varepsilon_{1} \varepsilon_{2}>0$ (resp. $\varepsilon_{1} \varepsilon_{2}<0$). Since

$$
\rho_{2} \sigma\left(\alpha_{1}\right)=\left(6 k_{2}-k_{3}\right) \alpha_{1}+k_{2} \alpha_{2}+\left(-k_{1}+6 k_{2}\right) \alpha_{3}
$$

and

$$
\rho_{2} \sigma\left(\alpha_{3}\right)=\left(6 l_{2}-l_{3}\right) \alpha_{1}+l_{2} \alpha_{2}+\left(-l_{1}+6 l_{2}\right) \alpha_{3}
$$

the element ρ_{2} produces a new solution $(-s, t,-u, v)$ from (s, t, u, v). Since

$$
\rho_{3} \sigma\left(\alpha_{1}\right)=-k_{3} \alpha_{1}-k_{2} \alpha_{2}-k_{1} \alpha_{3}
$$

and

$$
\rho_{3} \sigma\left(\alpha_{3}\right)=-l_{3} \alpha_{1}-l_{2} \alpha_{2}-l_{1} \alpha_{3},
$$

the element ρ_{3} produces a new solution $(-s,-t,-u,-v)$ from (s, t, u, v). Hence the subgroup G of \widetilde{W} generated by ρ_{1}, ρ_{2} and ρ_{3} transitively acts on the set of all solutions of $\left(\boldsymbol{E}_{2}\right)$. This means $O(\Gamma)-\widetilde{W}=\widetilde{W} \sigma_{0}$, so $\left\{1, \sigma_{0}\right\}$ is the complete set of representatives of $\widetilde{W} \backslash O(\Gamma)$.
(2) The case when $A=\left(\begin{array}{rrr}2 & -4 & -2 \\ -1 & 2 & -1 \\ -2 & -4 & 2\end{array}\right)$.

In this case, we can take an element σ_{0} of $O(\Gamma)-\widetilde{W}$ defined by $\sigma_{0}\left(\alpha_{1}\right)=\alpha_{2}+\alpha_{3}$, $\sigma_{0}\left(\alpha_{2}\right)=\alpha_{1}-\alpha_{3}$ and $\sigma_{0}\left(\alpha_{3}\right)=\alpha_{3}$. For each element $\sigma \in O(\Gamma)-\widetilde{W}$ there exists an element $w \in \widetilde{W}$ such that $w \sigma\left(\alpha_{2}\right)=\alpha_{1}-\alpha_{3}$, since the elements $\alpha \in \Gamma$ satisfying $B(\alpha, \alpha)=B\left(\alpha_{2}, \alpha_{2}\right)$ and $\alpha \notin Z$ are $\pm\left(\alpha_{1}-\alpha_{3}\right)$. Then the elements $\tau \in O(\Gamma)-\widetilde{W}$ with the property $\tau\left(\alpha_{2}\right)=\alpha_{1}-\alpha_{3}$ are $\tau_{1}, \tau_{2}, \tau_{3}$ and τ_{4}, where

$$
\begin{aligned}
& \tau_{1}=\left[\alpha_{1} \mapsto \alpha_{3}, \alpha_{2} \mapsto \alpha_{1}-\alpha_{3}, \alpha_{3} \mapsto \alpha_{2}+\alpha_{3}\right], \\
& \tau_{2}=\left[\alpha_{1} \mapsto-\alpha_{1}, \alpha_{2} \mapsto \alpha_{1}-\alpha_{3}, \alpha_{3} \mapsto-\alpha_{1}-\alpha_{2}\right], \\
& \tau_{3}=\left[\alpha_{1} \mapsto \alpha_{2}+\alpha_{3}, \alpha_{2} \mapsto \alpha_{1}-\alpha_{3}, \alpha_{3} \mapsto \alpha_{3}\right], \\
& \tau_{4}=\left[\alpha_{1} \mapsto-\alpha_{1}-\alpha_{2}, \alpha_{2} \mapsto \alpha_{1}-\alpha_{3}, \alpha_{3} \mapsto-\alpha_{3}\right] .
\end{aligned}
$$

Put $d=\left[\alpha_{1} \mapsto \alpha_{3}, \alpha_{2} \mapsto \alpha_{2}, \alpha_{3} \mapsto \alpha_{1}\right]$, a nontrivial diagram automorphism. Then we have $(-I) d \tau_{1}=\tau_{2},(-I) d \tau_{3}=\tau_{4}, w_{2} \tau_{1}=\tau_{3}$ and $w_{2} \tau_{2}=\tau_{4}$. Therefore $O(\Gamma)-\widetilde{W}=\widetilde{W} \sigma_{0}$,
so $\left\{1, \sigma_{0}\right\}$ is the complete set of representatives of $\widetilde{W} \backslash O(\Gamma)$.
(3) The case when $A=\left(\begin{array}{rrr}2 & -1 & 0 \\ -4 & 2 & -2 \\ 0 & -2 & 2\end{array}\right)$.

In this case, the elements $\alpha \in \Gamma$ satisfying $B(\alpha, \alpha)=B\left(\alpha_{1}, \alpha_{1}\right)$ and $\alpha \notin Z$ are $\pm\left(\alpha_{2}-\alpha_{3}\right)$ and $\pm\left(\alpha_{1}+\alpha_{2}-\alpha_{3}\right)$. Let σ_{0} (resp. τ_{0}) be the endomorphism of Γ defined by $\sigma_{0}\left(\alpha_{1}\right)=\alpha_{2}-\alpha_{3}, \quad \sigma_{0}\left(\alpha_{2}\right)=-\alpha_{2}$ and $\sigma_{0}\left(\alpha_{3}\right)=-\alpha_{1}-\alpha_{2} \quad$ (resp. $\tau_{0}\left(\alpha_{1}\right)=\alpha_{1}+\alpha_{2}-\alpha_{3}$, $\tau_{0}\left(\alpha_{2}\right)=\alpha_{3}$ and $\left.\tau_{0}\left(\alpha_{3}\right)=\alpha_{2}\right)$. Then they belong to $O(\Gamma)-\widetilde{W}$. For each element $\sigma \in O(\Gamma)-\widetilde{W}$, there is an element $w \in \widetilde{W}$ such that $w \sigma\left(\alpha_{1}\right)=\alpha_{2}-\alpha_{2}$ or $\alpha_{1}+\alpha_{2}-\alpha_{3}$. Then the elements τ of $O(\Gamma)-\widetilde{W}$ having the property $\tau\left(\alpha_{1}\right)=\alpha_{2}-\alpha_{3}$ are σ_{1}, σ_{2}, σ_{3} and σ_{4}, where

$$
\begin{aligned}
& \sigma_{1}=\left[\alpha_{1} \mapsto \alpha_{2}-\alpha_{3}, \alpha_{2} \mapsto \alpha_{3}, \alpha_{3} \mapsto \alpha_{1}+\alpha_{2}\right], \\
& \sigma_{2}=\left[\alpha_{1} \mapsto \alpha_{2}-\alpha_{3}, \alpha_{2} \mapsto-\alpha_{2}, \alpha_{3} \mapsto-\alpha_{1}-\alpha_{2}\right], \\
& \sigma_{3}=\left[\alpha_{1} \mapsto \alpha_{2}-\alpha_{3}, \alpha_{2} \mapsto-2 \alpha_{1}-3 \alpha_{2}, \alpha_{3} \mapsto \alpha_{1}+\alpha_{2}\right], \\
& \sigma_{4}=\left[\alpha_{1} \mapsto \alpha_{2}-\alpha_{3}, \alpha_{2} \mapsto 2 \alpha_{1}+2 \alpha_{2}+\alpha_{3}, \alpha_{3} \mapsto-\alpha_{1}-\alpha_{2}\right],
\end{aligned}
$$

and the elements τ of $O(\Gamma)-\widetilde{W}$ having the property $\tau\left(\alpha_{1}\right)=\alpha_{1}+\alpha_{2}-\alpha_{3}$ are τ_{1}, τ_{2}, τ_{3} and τ_{4}, where

$$
\begin{aligned}
& \tau_{1}=\left[\alpha_{1} \mapsto \alpha_{1}+\alpha_{2}-\alpha_{3}, \alpha_{2} \mapsto \alpha_{3}, \alpha_{3} \mapsto \alpha_{2}\right], \\
& \tau_{2}=\left[\alpha_{1} \mapsto \alpha_{1}+\alpha_{2}-\alpha_{3}, \alpha_{2} \mapsto-\alpha_{1}-\alpha_{2}, \alpha_{5} \mapsto-\alpha_{2}\right], \\
& \tau_{3}=\left[\alpha_{1} \mapsto \alpha_{1}+\alpha_{2}-\alpha_{3}, \alpha_{2} \mapsto-\alpha_{1}-3 \alpha_{2}, \alpha_{3} \mapsto \alpha_{2}\right], \\
& \tau_{4}=\left[\alpha_{1} \mapsto \alpha_{1}+\alpha_{2}-\alpha_{3}, \alpha_{2} \mapsto 2 \alpha_{2}+\alpha_{3}, \alpha_{3} \mapsto-\alpha_{2}\right] .
\end{aligned}
$$

Furthermore $w_{1} w_{2} w_{1} \sigma_{1}=\sigma_{4}, \quad w_{1} w_{2} w_{1} \sigma_{2}=\sigma_{3}$ and $w_{1} \sigma_{i}=\tau_{i}$ ($1 \leqq i \leqq 4$). Therefore $O(\Gamma)-\widetilde{W}=\widetilde{W} \sigma_{0} \cup \widetilde{W} \tau_{0}$. On the other hand, $\sigma_{0} \tau_{0}^{-1}\left(\alpha_{1}\right)=\alpha_{1}+\alpha_{2}-\alpha_{3} \notin \Delta_{R}$, so $\sigma_{0} \tau_{0}^{-1} \oplus W$. This means that $\left\{1, \sigma_{0}, \tau_{0}\right\}$ is the complete set of representatives of $\widetilde{W} \backslash O(\Gamma)$.

Theorem 4. Suppose that A is of rank 3 hyperbolic type. Then $\operatorname{Ind}(A)=2$ if $A=\left(\begin{array}{rrr}2 & -3 & -1 \\ -1 & 2 & -1 \\ -1 & -3 & 2\end{array}\right)$ or $\left(\begin{array}{rrr}2 & -4 & -2 \\ -1 & 2 & -1 \\ -2 & -4 & 2\end{array}\right)$; $\operatorname{Ind}(A)=3$ if $A=\left(\begin{array}{rrr}2 & -1 & 0 \\ -4 & 2 & -2 \\ 0 & -2 & 2\end{array}\right) ; \operatorname{Ind}(A)=1$ otherwise.

Appendix

Hyperbolic generalized Cartan matrices of rank $\geqq 3$

$a_{i j}$	$a_{j i}$	j	$a_{i j}$	$a_{j i}$	j
0	0	00	-1	-3	$\underset{0}{ }{ }^{(3)} \times$
-1	-1	$\bigcirc \longrightarrow$	-1	-4	$\xrightarrow{-(4)} 0$
-1	-2	$\xrightarrow{-(2)} 0$	-2	-2	$\bigcirc{ }^{(4)} 0$

Symmetric case.

Non-symmetric case.
(1) rank 3

$$
\begin{aligned}
& 0 \xrightarrow{(3)} 0 \xrightarrow{(3)} 0 \quad 0 \xrightarrow{(3)} 0 \stackrel{(3)}{\longrightarrow} 0 \quad \alpha^{(3)} 0 \stackrel{(3)}{\longrightarrow} 0 \quad{ }^{(4)} 0
\end{aligned}
$$

$$
\begin{aligned}
& \alpha^{(4)} 0 \stackrel{(2)}{\longrightarrow} 0 \quad \stackrel{(4)}{(4)}_{\circ}^{\circ} \stackrel{(2)}{\circ} \stackrel{(4)}{\longrightarrow} 0 \xrightarrow{(3)} 0 \quad{ }^{(4)} 0{ }^{(3)} 0
\end{aligned}
$$

$\stackrel{(4)}{8}$
$\xrightarrow[0]{(2)}$
(3)
(3) $\underset{\sim}{(4)}$

(4)
$\xrightarrow[(2)]{(4)} \underset{\sim}{(2)}$
(2) rank 4

(2)
(3) rank 5

$0-0<{ }^{(2)} 0$

(4) rank 6

(5) rank 7

(6) rank 8

(7)
rank 9

(8) rank 10

Note. The rank of a hyperbolic type generalized Cartan matrix is at most 10 (cf. [1]).

References

[1] Bourbaki, N., Groupes et algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968.
[2] Chein, M., Recherche des graphes des matrices de Coxeter hyperboliques d'ordre $\leqq 10$, Revue. Fr. Info. Rech. Oper. no. R-3 (1969), 3-16.
[3] Dickson, L.E., Modern elementary theory of Numbers, Univ. of Chicago, Chicago, 1939.
[4] Gioia, A. A., The theory of numbers, Markham, Chicago, 1970.
[5] Humphreys, J.E., Introduction to Lie algebras and representation theory, Springer. Verlag, New York, 1972.
[6] Kac, V. G., Simple irreducible graded Lie algebras of finite growth, Math. USSR-Izv. 2 (1968), 1271-1311.
[7] Kac, V.G., Infinite root systems, representations of graphs and invariant theory, Invent. Math. 56 (1980), 57-92.
[8] Lepowsky, J., Lectures on Kac-Moody Lie algebras, Paris, 1978.
[9] Loos, O., Symmetric spaces (vol. 2), Benjamin, New York, 1969.
[10] Moody, R. V., A new class of Lie algebra, J. Algebra, 10 (1968), 211-230.
[11] Moody, R. V., Euclidean Lie algebras, Canad. J. Math. 21 (1969), 1432-1454.
[12] Moody, R.V., Root systems of hyperbolic type, Adv. Math. 33 (1979), 144-160.
[13] Yoshida, M., Discrete reflection group in a parabolic subgroup of $\operatorname{Sp}(2, \boldsymbol{R})$ and symmetrizable hyperbolic generalized Cartan matrices of rank 3 , to appear.

Institute of Mathematics
University of Tsukuba
Sakura-mura, Niihari-gun
Ibaraki, 305 JAPAN

