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ON HELICES AND PSEUDO-RIEMANNIAN SUBMANIFOLDS

By

Yasuo Nakanishi

§0. Introduction.

In a Riemannian manifold, a regular curve is called a helix if its first and

second curvature is constant and the third curvature is zero. As for helices in

a Riemannian submanifold, there is a research of T. Ikawa, who investigated

the condition that every helix with curvatures k, Hna Riemannian submani-

fold is a helix in the ambient space [3]. In a pseudo-Riemannian manifold,

helices are defined by almost the same way as the Riemannian case. Recently,

T. Ikawa proved the following theorem about helices in a Lorentzian submani-

fold [4]:

Theorem A. Let Mx (dimMj^S) be a Lorentzian submanifold of a pseudo-

Riemannian manifold Mb. For any positiveconstant k, I, the following conditions

are equivalent:

(a) every helix in Mx with (X, X> = -1, <7XX, VxX)=k2 and <1X1XX, lxlxXy

=―kiJrk2l2 is a helix in Mp,

(b) Mi is totallygeodesic.

In this paper, we generalize thistheorem to the case of a pseudo-Riemannian

submanifold.

The author would like to express his hearty thanks to Professor S. Yama-

guchi for his constant encouragement and various advices. He also wish to

thank Professor N. Abe for his hebful suggestions.

§1. Preliminaries.

Let Vtt be an n-dimensional real vector space equipped with an inner product

<, > of index a. A non-zero vector x of Va is said to be null if (x, x>=0 and

unit if <x, x>= + l or ―1. Concerning multilinear mappings on Va, we have

the following lemmas [1]:

Lemma 1.1. For any r-linear mapping T on Va to a real vector space W

and So^ + l or ―1 (―a^so<?i―a), the following conditions are equivalent:
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x)=0 for any x^Va such that <x, x> = £0,

x)=0 for any xeFa.

Lemma 1.2. For any 2r-linear mapping T on V a to a real vector space W

and £0= + l or ―1, sx= + l, ―1 or 0 (2―2a^eo+Si^2n―2a―2), the following

conditions are equivalent:

(a) Hl＼=＼T{x,■･･,x, u, x, ■■■,x)=0 for any orthogonal vectors x, u^Va such

that (x, x> = £0 and (u, u> = £i,

(b) there exists w^W such that T(x, ■■･, x)=(x, x)rw for any xg79.

Now let Ma be an n-dimensional pseudo-Riemannian manifold of index a

(O^a^n) isometrically immersed into an 7n-dimensional pseudo-Riemannian

manifold Mp of index /3. Then Ma is called a pseudo-Riemannian submanifold

of Mp. We denote the metrics of Ma and Mp by the symbol <, > and the

covariant differentiationof Ma (resp. Mp) by 1 (resp. 7). Gauss' formula is

1XY=1XY+B{X, Y),

where X and Y are tangent vector fields of Ma and B is the second funda-

mental form of Ma. Weingarten's formula is

lx^-A^X+1^,

where X (resp. |) is a tangent (resp. normal) vector field of Ma, 7X is the

covariant differentiation with respect to the induced connection in the normal

bundle N(Ma) and A$ is the shape operator of Ma. We have the following

relation:

<ASX, Y>=<B(X, r),f).

For the second fundamental form and the shape operator, we define their

covariant derivatives by

1B(X, Y, Z)=1"Z{B{X, Y))-BCJZX, Y)-B{X,1ZY),

12B(X, Y, Z, WO=VjV(7£(X, Y, Z))-1B{1WX, Y, Z)

-1B{X, 1WY, Z)-1B{X, Y, 1WZ),

{1YA)SX=7Y(A^X) - A^X- AilyX,

where X, Y, Z, W are tangent vector fieldsof Ma and £ is a normal vector

fieldof Ma. The mean curvature vector field H of Ma is defined by

#:=(l/n)2?=1<0i, edB{eu ed,

where {eu ･･･, en) is an orthonormal frame of Ma. H is said to be parallel
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when 7±//=0 holds. If the second fundamental form B satisfies

B(X, Y)=(X, Y>H

for any tangent vector fields X, Y of Ma, then Ma is said to be totallyumbilic.

A totally umbilical submanifold with the parallel mean curvature vector fieldis

called an extrinsicsphere. If the second fundamental form vanishes identically

on Ma, then Ma is said to be totallygeodesic.

§2. Helices in a pseudo-Riemannian manifold.

Let c―c{t) be a regular curve in a pseudo-Riemannian manifold Ma. We

denote the tangent vector field c'(t) by the letter X. When (X, X} = + 1 or

―1, c is called a um7 s^eerfcurve. In this paper, a unit speed curve c in Ma

is said to be a /ze/zxif and only if there exist constants a, /3 and vector

fieldsU, V of constant length along c such that X, U, V are orthogonal and the

following equations hold:

(2.1) 1XX=U, ixU^aX+V, 1XV=$U.

Especially,if V―Q in this equation, the curve is called a circlein [1]. More-

over, if U=V=0 in this equation, the curve is a geodesic.

LEMMA 2.1. A unit speed curve c in Ma is a helix if and only if there

exists a constant X such that

(2.2) 1X1X1XX=X1XX.

Proof. If c is a helix,by means of (2.1)we get

lxlxlxX=lxlxU=lx{aX+V)=alxX+lxV={a + B)U=(a + B)lxX

Conversely, we assume the existence of X which satisfies (2.2). Since

{X, Z> = + 1 or ―1, we obtain the following equations:

(2.3) <1XX, X>=0,

(2.4) {lxl'XX, X)+<1XX, 1XX)=O,

(2.5) <ixixixX, xy+3(ixixX, ixxy=o.

Substituting (2.2) into (2.5) and using (2.3), we have

(2.6) X((1XX, 1XX≫=O.

Differentiating this equation by X and using (2.2), we get
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o=<7xVxVzz, vxx>+<yxvxx, ixixXy

=x<yxx, ixxy+(ixixx, ixixXy.

(2.4), (2.6) and (2.7), we can see that <1XX, !xXy, (lxlxX, X} and

x^xX, 1'xl'xXy are constant. We put as follows:

U:=1XX, a:=<X,Xy<lrU,Xy, V:=lxU-aX

Note that X, U, V are orthogonal and a, <JJ,U) are constant. <F, V} is also

<rinofcir>(-hpranop

<V, Vy=(lxlxX, lxlxX")-2a{lxlxX, X}+a＼X, X}

At least,we have

lxV=lxlxlxX-alxX={X-a)lxX=tt-a)U.

Thus we can see that c is a helix.

§3. Helices and pseudo-Riemannian submanifolds.

In this section, we prove the following theorems:

Q.E.D

Theorem 3.1. Let Ma be a pseudo-Riemannian submanifold in a pseudo-

Riemannian manijold Mp and e0,eu £2= + l or ―1 (―2a+3^£0+£i + £2^2n―2a

―3). For any positiveconstants k,I, the following conditions are equivalent:

(a) every helixin Ma with (X, X}-e0, <1XX, lxX^ = exkzand Hx^xX, VXVX^>

= s0ki+s2k2l2 is a helix in Mp,

(b) Ma is a totallygeodesic submanifold.

Theorem 3.2. Let Ma be a pseudo-Riemannian submanifold in a pseudo-

Riemannian manifold Mp and e0> ex= + l or ―1 (―2≪+4^so+£i^2n―2a―4).

For any positiveconstant k, the following conditionsare equivalent:

(a) every helixin Ma with <X, X)=£o, <VxX, VXA'> = £!^2and <VXVX^, 1x1 xX}

―Bok4'is a helix in M^,

(b) Ma is an extrinsic sphere.

Proof. In order to prove these theorems simultaneously, we suppose e2=

+ 1, ―1 or 0 and put the following assumption at first:

every helix in Ma with (X, X> = e0, <1XX, 7xZ> = £lF and <7X7XZ, VXVX^>

―eQkiJrs2k2l2is a helix in Mp.

Note that this condition is reduced to the condition(a) of Theorem 3.2 when

£2=0. Let x, u, v be any mutually orthogonal vectors of Ma at p such that
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(x, x} = s0, <w, u} = Si, and <v, v>= £2.

There exists a helix c of Ma such that

(3.1) c(0)=/>, X(p) = x, (lxX)(p)=ku

and {1 xlxXXp^-e^tfx + klv,

where X:=t'(t). By Lemma 2.1, there exists a constant i such that

Since (2.7) holds in this situation, X is calculated as

X^e.k-'XHxX, 1XXXP)

= -e1k-2<^xlxX, lx!xXy(p)

■=―z0Eikz―el£2l'1-

Thus we obtain

(3.2) VxV^VxZ-(-£0£1^2-£1£2/2)V^X.

Since c is a helix in Mp by the assumption, there exists a constant 1 such that

^x^x^xX=llxX

because of Lemma 2.1. Since the constant 1 depends on the initial vectors

x, u, v, we rewrite the above equation as

(3.3) VxVx^xX=X(x, u, v)lxX.

On the other hand, by Gauss' formula we have

(3.4) ^xX=!xX+B(X, X),

Differentiating with respect to X and using Gauss' formula and Weingarten's

formula, we get

lxlxX=lx^xX-ABtx,x,X+W{X, 1XX)+1B{X, X, X).

Differentiating again and using Gauss' formula and Weingarten's formula, we

obtain

(3.5) ^x^xlxX=lzlxlxX-2Ar,B,x.x.x,X-^AB,x.VxX,X

(y xA)B(x, xiX― AB(x, xJ^xX

-B(X, AB,x,x,X)+AB{X, lxlxX)+W{lxX, 1XX)

+51B{X, 1XX, X)+1B{X, X, 1XX)+12B{X, X, X, X).

Substituting (3.2) and (3.3) into (3.5), we have
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(x, u, v)C7xX+B(X, X))

=(-So£ik2-£1s2li)lxX-2A^BiX,x,x^X-5ABCX,vxx^X

―C^xA.)Bcx,x)X― ABiX, x^' xX

-B(X, AmXtJnX)+4B(X, VXVXX)+3BCJXX, 1XX)

+51B(X, 1XX, X)+1B{X, X, 1XX)+12B{X, X, X, X).

Taking tangent and normal parts at p and making use of (3.1),we get

(3.6) X(x, u, v)ku=(―£0e1k'i―£i£2kl2)u―2AyBCx,x,X)X

5kAB(X,U)X C3xA)B(XiX)X kAB(X, X~)U,

(3.7) Ax, u, v)B(x, x)= ―B(x, ABix,^x)-i£oeik2B(x, x)

+4klB(x, v)+3k2B(u, u)+5k^B(x, u, x)

+ klB(x, x, u)+!2B(x, x, x, x).

Note that these equations hold for any mutually orthogonal vectors x, u, v

(^Tp(Ma) such that <x, x)=e0> <.u,u)=s1 and <y, v}=£2. If we add (3.6) to

the equation obtained by changing u into ―u in (3.6), we have

(3.8) {―l{x, ―u, v)+Z(x, u, v)}ku = ―4A^BCx.x,X^x―2{^XA)BU,x^x.

Subtracting (3.6) from the equation obtained by changing v into ―v in (3.6), we

find

(3.9) l(x, u, ―v)―l{x, u, v).

By subtracting (3.7) from the equation obtained by changing u into ―u in (3.7),

we have

(3.10) {l{x, -u, v)-X(x, u, v))B(x, x)=-＼QklB{x, u, x)-2klB{x, x, u).

If we subtract (3.7) from the equation obtained by changing v into ―v in (3.7),

we get

(3.11) {l{x, u, -v)-X(x, u, v)}B{x, x)=-8klB(x, v).

It follows from (3.9) and (3.11) that

B(x, v)=Q.

Since this equation holds for any mutually orthogonal vectors x, v<^Tp{Ma) such

that <*, x} = s0 and <y, v>=s2, by means of Lemma 1.2, there exists a normal

vector w such that

B{x, x)―{x, x}w

for any x^Tp(Ma). Thus Ma is totally umbilic and w is the mean curvature
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vector H at each point of Ma. Now we have

(3.12) B(x,y)=<x,y)H, Asx = <H, £>x,

for any x, yGTp(Ma) and £(ENp(Ma). By these equations, (3.8)is reduced to

{-l(x, -u, v)+ I{x, u, v)}ku = -6so(H, lxxH~)x.

Taking the inner product with u, we find that

l{x, ―u, v)=X(x, u, v).

By this equation and (3.12),(3.10) is reduced to

Vi#=0.

Since this equation holds for any u^Tp(Ma) such that (u, u} = su making use

of Lemma 1.1, we get

(3.13) Vx//=0.

Thus we have proved that (a) implies (b) in Theorem 3.2. Moreover, by (3.12),

(3.13) and (3.6), we have

l{x, u, v)= ―eo£i^2―£!£2/2―eo{H, H) .

On the other hand, by (3.12),(3.13) and (3.7), we obtain

eol(x, u, v)H=-<H, H}H-s1k2H.

Thus we get

s2i7=0,

which means that Ma is totallygeodesic if s2 is not zero. Now we have seen

that (a) implies (b) in Theorem 3.1.

Since it is clear that (b) implies (a) in Theorem 3.1,all we have to do next

is to derive (a) from (b) in Theorem 3.2. Let c be any helix in Ma such that

(3.14) (X, Z> = £0, (ixX, lxXy = e,k2 and (1X1XX, 1'xl'xX> = eok＼

where X:=c'(t). By Lemma 3.1, there exists a constant X such that

1x1x^xX=X1xX.

By means of (2.7), X is calculated as

X=Slk-*XC7xX, !xXy = -elk-＼lxlxX, 7^Vx^> = -£o£i^2.

Consequently, we have

(3.15) 7xVA-VxZ=-£o£l/e27xZ.

By the condition (b), we have
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B{x, y)=<x, y>H, A^x=<H, £>x

for any x, y^Tp(Ma), $^Np(Ma) and

V＼B=0, 7,4=0.

Since (3.5) holds for any curve, by making use of the above equations and

(3.14),we have

VxVxVx^=Vx7xVjrZ-£0<//, HyixX-iH, HyH-Srk'H.

Substituting (3.15) into this equation, we find

7x7x7xX=(-£o£i£2-£o<#, H≫(lxX+e0H)

=(-e0Si*2-e.<ff, m)lxX,

which means that c is a helix in Mr by Lemma 2.1. Q. E. D.
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