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Introduction.

On a complete oriented Riemannian manifold M, a closed 2-form B is called
a magnetic field. Let Q denote the skew symmetric operator Q:TM — TM
defined by (u,Q(v)) =B(u,v) for every u, ve TM . We call a smooth curve ¥y a
trajectory for B if it satisfies the equation V,y=Q(y). Since Q is skew
symmetric, we find that every trajectory has constant speed and is defined for
—o<t<oo. We shall call a trajectory normal if it is parametrized by its arc
length. When ¥ is a trajectory for B, the curve O defined by o(t)=7y(At) with
some constant A is a trajectory for AB. We call the norm ||B, || of the operator
B :TMxTM— R the strength of the magnetic field at the point x. For the
trivial magnetic field B = 0, the case without the force of a magnetic field,
trajectories are nothing but geodesics. In term of physics it is a trajectory of a
charged particle under the action of the magnetic field. For a classical treatment

and physical meaning of magnetic fields see [8].
On a Riemann surface M we can write down B = f-Vol,, with a smooth

function f and the volum form Vol,, on M. When fis a constant function, the case
of constant strength, the magnetic field is called uniform. On surfaces of constant

curvature the feature of trajectories are well-known for every uniform magnetic
field k-Vol,. On a Euclidean plane R’ they are circles (in usual sense of

Euclidean geometry) of radius 1/]k|. On a sphere S°(c) they are small circles
with prime period 27 /vVk® +c . In these cases all trajectories are closed. On a
hyperbolic plane H?(-c) of constant curvature —c, the situation is different. In

his paper [4] Comtet showed that the feature of trajectories changes according to
the strength of a uniform magnetic field k- Vol,, . When the strength |k| is greater

than ¢ , normal trajectories are still closed, hence bounded, but if |k|< Ve they
are unbounded simple curves, in particular, if |k|= Ve they are horocycles. In the
preceeding paper [2] we studied trajectories for Kéhler magnetic fields k-B,,
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which are scalar multiples of the Kéhler form B,, on a manifold of complex
space form. On a complex projective plane all trajectories for Kdhler magnetic
fields are closed. But on a complex hyperbolic space CH"(—c) of constant
holomorphic sectional curvature —c, normal trajectories for Kihler magnetic
fields have similar properties as of trajectories for uniform magnetic fields on a
hyperbolic plane. Their feature depend on the strength of a Kédhler magnetic field;
trajectories are bounded, horocyclic, or unbounded according to the strength is
greater, equal to, or smaller than Ve . In this context it is quite natural to pose the

following problem. Consider a Hadamard manifold, which is a simply connected
complete Riemannian manifold of nonpositive curvature —f? <Riem, <-o?,

B=Z a=0. Are they true that all trajectories are unbounded if the strength is

smaller than @ and that all trajectories are bounded if the strength is greater than
B7 In this note we shall concerned with this problem on a Hadamard surface.

THEOREM 1. Let B=f-Vol,, be a magnetic field with |f|<a on a
Hadamard surface M of curvature Riem,, < —a®. Then every normal trajectory
for B is unbounded for both directions.

For Hadamard manifolds we have an important notion of ideal boundary. We
denote by M = M|JM(e) the compactification of a Hadamard surface M with its
ideal boundary M(e). For a two-sides unbounded curve y on M, if lim,_,_y(?)
and lim,__y(¢) exist in M we denote these points by 7¥(ee) and y(—o0)
respectively, and call that y has points of infinity. If we review the Comtet’s
result from this point of view, it assures the following. On H’(—c) every
trajectory y for a uniform magnetic field k-Vole(vc) with |k|Sx/; has points of

infinity y(e0),y(—o0). When |k|=*+c they coincide y(w)=y(—o), and they are
distinct when |k|<+c. We show that a similar property holds for general

Hadamard surfaces.

THEOREM 2. Let B=f-Vol,, be a magnetic field with |f|<a on a
Hadamard surface M of curvature Riem,, <-q’ <0. Suppose either f<0 or
f 20 except on a compact subset of M. We then have the following.

(1) Every normal trajectory for B has points of infinity.

(2) If |fl< o except on a compact subset of M, every normal trajectory has
two distinct points at infinity.
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§1. A note on y-Jacobi fields.

We shall show our theorems by applying the Rauch’s comparison theorem.
Let B= f-Vol,, be a magnetic field on a oriented surface M. We denote by €,

the skew symmetric operator associated with the uniform magnetic field Vol,,.
Clearly the skew symmetric operator associated with B is of the form Q= f-Q,.
For a normal trajectory y for B, we denote by V,(s) the y -Jacobi field along the
geodesic s — o(t,s5)=exp,,, sQy(y) with V,(0)=y(t). This Jacobi field V, is
perpendicular to o(t,) and is obtained by the variation {o(r+€,-)}, of geodesics;

V,(s)=%0(t,s).

For the sake of reader’s convenience, we recall the explicit formula for
normal trajectories and ¥ -Jacobi fields for uniform magnetic fields on surfaces of
constant curvature.

EXAMPLE 1. On a Euclidean plane R’, trajectories for the uniform magnetic
fields of strength k satisfy the following equation:

Y@= (%cos(kt -90), %sin(kt - G)) +(&.6,).
, The variation of geodesics is given by
ot s)= (% (1 - ks)cos(kt — 0), %(1 — ks)sin(kt - 9)] +(&.&,)
and the 7y -Jacobi field is

V, () =(1-ks)} (1),

hence it vanishes at s, =1/k. The point o(z,1/k)=(&,&,) is usually called the
center of ¥ .

EXAMPLE 2. On a sphere S%(c)={x={(x,%,,x;) e R x,x)=x"+x,"+
x,> =1} of sectional curvature c, the trajectory ¥ for the uniform magnetic field
of strength k satisfies the following equation when y(0)=xe S*(c), y(0)=
uel, S*(c)={5e R (x,5)=0, (£,5)=c} :

7’(t)=7(%(k2 +c-cosVk? +c_t)~x
C

1 : 2 ) k _ Jr2 .
m551n k* +ct u+k2+c(1 cosVk? +ct)-Q(u).

+
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Since the variation of geodesics is given by

o(t,5) = y(t)cosVes +Q ((1)) - I ——sinVecs
hence

V.(s) = 7(r)(cosves — < sin +es).

Je
Therefore it vanishes at s, =%tan“«/'c_ /k. The point o(t,s,) and the trajectory
c

¥ can be regard as a pole and a latitude line of this sphere.

EXAMPLE 3. On the hyperbolic plane H?(—c) = {x = (xy, x,, X, ) € RI({(x, x)) =
—x,2 +x2 +x,° =-1x, 21} of constant sectional curvature —c, the trajectory of
the uniform magnetic field of strength k satisfies the following equation if

¥(0)=x and 7(0) = € U,H*(~c) = (£ € RY(x.E) = 0,(£.EN = c):
y(t)zc_lkz (=k?+c-coshvc—k%t)-x+ 1 sinhvc—-k%t-u

ve-k?
+ kk2 (—1+cosh~e—k2t)-Q,(u), when 0<k<Ac,

Jer?

2
7(t)=(1+%)x+tu+ Q,(u), when k=+/c,

Y(0)=

—c-cosvk? —ct)-x+ sinvk®—ct-u

1
Vk? -c
4 (= cosVk? —ct)- Qo (), when k>e.
The variation of geodesics is given by

o (1, 5) = y(r)coshVes + Q, (7(1))- 71_—sinh Jes
C

hence

V,(s)=7(t)(cosh Ves — K inh Jes).
Je
Therefore if |k|>+c the y-Jacobi field vanishes at s, = L tanh Ve k=

e
L k+«fE If |k|<+c it does not vanish. When k =+/c, the case that ¥ is a
e Bk

horocycle, the point y(e0)=7y(—e<) on the ideal boundary can be regard as the
vanishing point of the 7y -Jacobi field; lim_, V,(s)=0.
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§2. Proofs.

We are now in the position to prove theorems. Let ¥ be a trajectory for the
magnetic field f-Vol, with |f|<a on a Hadamard surface M of curvature
Riem,, < -a’. We compare the norm of the 7y -Jacobi field V, with the norm of
v -Jacobi fields for uniform magnetic fields on a hyperbolic space. Since we have

_d9 =90 (v = -
V%%UD-QS&GOJ%w 5 L) ==fy )y (@),

we get the following estimate by the Rauch’s comparison theorem;

[V,(s) |2 coshers - é F(y(2)) sinhas .

This gaurantees that if |f(y(¢))|<o then V, does not vanish anywhere and
liminf_, exp(-as)-| V()| 2+(1~| f(yt)|/a) for every ¢ Since M is
diffeomorphic to an Euclidean plane, we find that the geodesic o(t,,) and o©(t,,")

do not intersect each other if 7, #1¢,.
Let S,(p) denote the geodesic circle {x e M|d(x, p)=r} of radius r centered

at p. If we suppose 7[[0,50) is tangent to a geodesic circle S (y(0)) at y(z,), then
o(t,,") passes ¥(0), which is a contradiction. We therefore have

PROPOSITION. The trajectory rays ¥| ., and Y| _., cross only once to
every geodesic circle S (y(0)).

This proposition leads us to Theorem 1. In order to see Theorem 2, we denote
by u, for t+#0 the unit tangent vector at p=7y(0) such that the geodesic
emanating from p with the initial speed u, joins p and y(r). We set u, =7(0).
Since y is unbounded in both directions, we may treat the case that f is
nonpositive (or nonnegative) on M. We then find the smooth curve (x, )ief0.0) ON
UM =~ S' rotates counterclockwisely if f>0 and rotates clockwisely if f<0.If
we suppose u, =+0 (u,) for some ?,, then 6(0,") passes y(t,). Hence we find
that {u,}, cU, M\ {£Q(«,)} and the limit u_ =lim,_,_ u, exists. Similarly, we find

that the limit u__, =lim,_, _ u, exists. We therefore get that y has points at infinity;
Y(2)=p, () and y(-eo)=p, (o),

where p, denote the geodesic with p(0)=v. Now we suppose that ¥ has a single
point at infinity: y(ee) =7y(~e0). This means u_=u__, hence y(wo)=0(t,o0) for
every t. This can not occur when f < a. We get the conclusion of Theorem 2.

In view of our proof, we can conclude the following.
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REMARK. Consider a magnetic field B=f-Vol,.|fl<a, on a Hadamard
surface M of curvature Riem, <-a’ <0.

(1) A trajectory y for B has a single point at infinity ¥(co) =7y (~o°) if and
only if all the geodesic o (¢,") converges to that point O(t,00) =Y(e0).

(2) If a trajectory ¥ has a single point at infinity, then the magnetic angle at

that point is 7/2. Here the magnetic angle means the angle between the outer
tangent vector of y and the outer tangent vector of geodesics p with

p(eo) =y (o) (c.£.[2]).

REMARK. Let B=k-Vol,,lk|<a be a uniform magnetic field on a
Hadamard surface M of bounded negative curvature —f? <Riem,, <-a’<0. We
have a positive € such that the angle X (y(0),p(0)) between a trajectory ¥ for B
and a geodesic p with y(0) =p(0) and y(e)=p(e) is always not greater than
T-€.
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