CURVATURE BOUND AND TRAJECTORIES FOR MAGNETIC FIELDS ON A HADAMARD SURFACE

By

Toshiaki ADACHI

Introduction.

On a complete oriented Riemannian manifold M, a closed 2 -form B is called a magnetic field. Let Ω denote the skew symmetric operator $\Omega: \mathrm{TM} \rightarrow \mathrm{TM}$ defined by $\langle u, \Omega(v)\rangle=\boldsymbol{B}(u, v)$ for every $u, v \in T M$. We call a smooth curve γ a trajectory for B if it satisfies the equation $\nabla_{\dot{\gamma}} \dot{\gamma}=\Omega(\dot{\gamma})$. Since Ω is skew symmetric, we find that every trajectory has constant speed and is defined for $-\infty<t<\infty$. We shall call a trajectory normal if it is parametrized by its arc length. When γ is a trajectory for \boldsymbol{B}, the curve σ defined by $\sigma(t)=\gamma(\lambda t)$ with some constant λ is a trajectory for $\lambda \boldsymbol{B}$. We call the norm $\left\|\boldsymbol{B}_{x}\right\|$ of the operator $\boldsymbol{B}_{x}: T_{x} M \times T_{x} M \rightarrow \boldsymbol{R}$ the strength of the magnetic field at the point x. For the trivial magnetic field $\boldsymbol{B}=0$, the case without the force of a magnetic field, trajectories are nothing but geodesics. In term of physics it is a trajectory of a charged particle under the action of the magnetic field. For a classical treatment and physical meaning of magnetic fields see [8].

On a Riemann surface M we can write down $\boldsymbol{B}=f \cdot \mathrm{Vol}_{M}$ with a smooth function f and the volum form Vol_{M} on M. When f is a constant function, the case of constant strength, the magnetic field is called uniform. On surfaces of constant curvature the feature of trajectories are well-known for every uniform magnetic field $k \cdot \mathrm{Vol}_{M}$. On a Euclidean plane \boldsymbol{R}^{2} they are circles (in usual sense of Euclidean geometry) of radius $1 /|k|$. On a sphere $S^{2}(c)$ they are small circles with prime period $2 \pi / \sqrt{k^{2}+c}$. In these cases all trajectories are closed. On a hyperbolic plane $H^{2}(-c)$ of constant curvature $-c$, the situation is different. In his paper [4] Comtet showed that the feature of trajectories changes according to the strength of a uniform magnetic field $k \cdot \mathrm{Vol}_{M}$. When the strength $|k|$ is greater than \sqrt{c}, normal trajectories are still closed, hence bounded, but if $|k| \leq \sqrt{c}$ they are unbounded simple curves, in particular, if $|k|=\sqrt{c}$ they are horocycles. In the preceeding paper [2] we studied trajectories for Kähler magnetic fields $k \cdot \boldsymbol{B}_{J}$,

[^0]which are scalar multiples of the Kähler form \boldsymbol{B}_{J}, on a manifold of complex space form. On a complex projective plane all trajectories for K ähler magnetic fields are closed. But on a complex hyperbolic space $\mathrm{CH}^{n}(-c)$ of constant holomorphic sectional curvature $-c$, normal trajectories for Kähler magnetic fields have similar properties as of trajectories for uniform magnetic fields on a hyperbolic plane. Their feature depend on the strength of a Kähler magnetic field; trajectories are bounded, horocyclic, or unbounded according to the strength is greater, equal to, or smaller than \sqrt{c}. In this context it is quite natural to pose the following problem. Consider a Hadamard manifold, which is a simply connected complete Riemannian manifold of nonpositive curvature $-\beta^{2} \leq \operatorname{Riem}_{M} \leq-\alpha^{2}$, $\beta \geqq \alpha \geqq 0$. Are they true that all trajectories are unbounded if the strength is smaller than α and that all trajectories are bounded if the strength is greater than β ? In this note we shall concerned with this problem on a Hadamard surface.

THEOREM 1. Let $\mathbb{B}=f \cdot \operatorname{Vol}_{M}$ be a magnetic field with $|f| \leq \alpha$ on a Hadamard surface M of curvature $\operatorname{Riem}_{M} \leq-\alpha^{2}$. Then every normal trajectory for \mathbb{B} is unbounded for both directions.

For Hadamard manifolds we have an important notion of ideal boundary. We denote by $\bar{M}=M \cup M(\infty)$ the compactification of a Hadamard surface M with its ideal boundary $M(\infty)$. For a two-sides unbounded curve γ on M, if $\lim _{t \rightarrow \infty} \gamma(t)$ and $\lim _{t \rightarrow \infty} \gamma(t)$ exist in \bar{M} we denote these points by $\gamma(\infty)$ and $\gamma(-\infty)$ respectively, and call that γ has points of infinity. If we review the Comtet's result from this point of view, it assures the following. On $H^{2}(-\mathrm{c})$ every trajectory γ for a uniform magnetic field $k \cdot \mathrm{Vol}_{H^{2}(-c)}$ with $|k| \leq \sqrt{c}$ has points of infinity $\gamma(\infty), \gamma(-\infty)$. When $|k|= \pm \sqrt{c}$ they coincide $\gamma(\infty)=\gamma(-\infty)$, and they are distinct when $|k|<\sqrt{c}$. We show that a similar property holds for general Hadamard surfaces.

THEOREM 2. Let $B=f \cdot \operatorname{Vol}_{M}$ be a magnetic field with $|f| \leq \alpha$ on a Hadamard surface M of curvature $\operatorname{Riem}_{M} \leq-\alpha^{2} \leq 0$. Suppose either $f \leq 0$ or $f \geq 0$ except on a compact subset of M. We then have the following.
(1) Every normal trajectory for \boldsymbol{B} has points of infinity.
(2) If $|f|<\alpha$ except on a compact subset of M, every normal trajectory has two distinct points at infinity.

§1. A note on γ-Jacobi fields.

We shall show our theorems by applying the Rauch's comparison theorem. Let $B=f \cdot \operatorname{Vol}_{M}$ be a magnetic field on a oriented surface M. We denote by Ω_{0} the skew symmetric operator associated with the uniform magnetic field Vol_{M}. Clearly the skew symmetric operator associated with B is of the form $\Omega=f \cdot \Omega_{0}$. For a normal trajectory γ for \boldsymbol{B}, we denote by $V_{t}(s)$ the γ-Jacobi field along the geodesic $s \rightarrow \sigma(t, s)=\exp _{\gamma(t)} s \Omega_{0}(\dot{\gamma})$ with $V_{t}(0)=\dot{\gamma}(t)$. This Jacobi field V_{t} is perpendicular to $\sigma(t, \cdot)$ and is obtained by the variation $\{\sigma(t+\varepsilon, \cdot)\}_{\varepsilon}$ of geodesics; $V_{t}(s)=\frac{\partial}{\partial t} \sigma(t, s)$.

For the sake of reader's convenience, we recall the explicit formula for normal trajectories and γ-Jacobi fields for uniform magnetic fields on surfaces of constant curvature.

Example 1. On a Euclidean plane \boldsymbol{R}^{2}, trajectories for the uniform magnetic fields of strength k satisfy the following equation:

$$
\gamma(t)=\left(\frac{1}{k} \cos (k t-\theta), \frac{1}{k} \sin (k t-\theta)\right)+\left(\xi_{1}, \xi_{2}\right) .
$$

The variation of geodesics is given by

$$
\sigma(t, s)=\left(\frac{1}{k}(1-k s) \cos (k t-\theta), \frac{1}{k}(1-k s) \sin (k t-\theta)\right)+\left(\xi_{1}, \xi_{2}\right)
$$

and the γ-Jacobi field is

$$
V_{t}(s)=(1-k s) \dot{\gamma}(t),
$$

hence it vanishes at $s_{0}=1 / k$. The point $\sigma(t, 1 / k)=\left(\xi_{1}, \xi_{2}\right)$ is usually called the center of γ.

Example 2. On a sphere $S^{2}(c)=\left\{x=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \boldsymbol{R}^{3}\right\}\langle x, x\rangle=x_{1}^{2}+x_{2}^{2}+\right.$ $\left.x_{3}{ }^{2}=1\right\}$ of sectional curvature c, the trajectory γ for the uniform magnetic field of strength k satisfies the following equation when $\gamma(0)=x \in S^{2}(c), \dot{\gamma}(0)=$ $u \in U_{x} S^{2}(c) \simeq\left\{\xi \in \mathbb{R}^{3}\langle x, \xi\rangle=0,\langle\xi, \xi\rangle=c\right\}:$

$$
\begin{aligned}
\gamma(t)= & \frac{1}{k^{2}+c}\left(k^{2}+c \cdot \cos \sqrt{k^{2}+c t}\right) \cdot x \\
& \quad+\frac{1}{\sqrt{k^{2}+c}} \sin \sqrt{k^{2}+c t} \cdot u+\frac{k}{k^{2}+c}\left(1-\cos \sqrt{k^{2}+c t}\right) \cdot \Omega_{0}(u) .
\end{aligned}
$$

Since the variation of geodesics is given by

$$
\sigma(t, s)=\gamma(t) \cos \sqrt{c s}+\Omega_{0}(\dot{\gamma}(t)) \cdot \frac{1}{\sqrt{c}} \sin \sqrt{c s}
$$

hence

$$
V_{t}(s)=\dot{\gamma}(t)\left(\cos \sqrt{c s}-\frac{k}{\sqrt{c}} \sin \sqrt{c s}\right) .
$$

Therefore it vanishes at $s_{0}=\frac{1}{\sqrt{c}} \tan ^{-1} \sqrt{c} / k$. The point $\sigma\left(t, s_{0}\right)$ and the trajectory γ can be regard as a pole and a latitude line of this sphere.

Example 3. On the hyperbolic plane $H^{2}(-c)=\left\{x=\left(x_{0}, x_{1}, x_{2}\right) \in \mathbb{R}^{3}\right\}\langle\langle x, x\rangle\rangle=$ $\left.-x_{0}{ }^{2}+x_{1}{ }^{2}+x_{2}{ }^{2}=-1, x_{0} \geq 1\right\}$ of constant sectional curvature $-c$, the trajectory of the uniform magnetic field of strength k satisfies the following equation if $\gamma(0)=x$ and $\dot{\gamma}(0)=u \in U_{x} H^{2}(-c) \simeq\left\{\xi \in \mathbb{R}^{3}\langle\langle\langle x, \xi\rangle\rangle=0,\langle\langle\xi, \xi\rangle\rangle=c\}:\right.$

$$
\gamma(t)=\frac{1}{c-k^{2}}\left(-k^{2}+c \cdot \cosh \sqrt{c-k^{2}} t\right) \cdot x+\frac{1}{\sqrt{c-k^{2}}} \sinh \sqrt{c-k^{2}} t \cdot u
$$

$$
+\frac{k}{c-k^{2}}\left(-1+\cosh \sqrt{c-k^{2}} t\right) \cdot \Omega_{0}(u), \quad \text { when } 0 \leq k<\sqrt{c}
$$

$$
\gamma(t)=\left(1+\frac{c t^{2}}{2}\right) x+t u+\frac{\sqrt{c} t^{2}}{2} \Omega_{0}(u), \text { when } k=\sqrt{c}
$$

$$
\gamma(t)=\frac{1}{k^{2}-c}\left(k^{2}-c \cdot \cos \sqrt{k^{2}-c t}\right) \cdot x+\frac{1}{\sqrt{k^{2}-c}} \sin \sqrt{k^{2}-c t} \cdot u
$$

$$
+\frac{k}{k^{2}-c}\left(1-\cos \sqrt{k^{2}-c} t\right) \cdot \Omega_{0}(u), \quad \text { when } k>\sqrt{c} .
$$

The variation of geodesics is given by

$$
\sigma(t, s)=\gamma(t) \cosh \sqrt{c} s+\Omega_{0}(\dot{\gamma}(t)) \cdot \frac{1}{\sqrt{c}} \sinh \sqrt{c} s
$$

hence

$$
V_{t}(s)=\dot{\gamma}(t)\left(\cosh \sqrt{c} s-\frac{k}{\sqrt{c}} \sinh \sqrt{c} s\right) .
$$

Therefore if $|k|>\sqrt{c}$ the γ-Jacobi field vanishes at $s_{0}=\frac{1}{\sqrt{c}} \tanh ^{-1} \sqrt{c} / k=$ $\frac{1}{2 \sqrt{c}} \log \frac{k+\sqrt{c}}{k-\sqrt{c}}$. If $|k| \leq \sqrt{c}$ it does not vanish. When $k=\sqrt{c}$, the case that γ is a horocycle, the point $\gamma(\infty)=\gamma(-\infty)$ on the ideal boundary can be regard as the vanishing point of the γ-Jacobi field; $\lim _{s \rightarrow \infty} V_{t}(s)=0$.

§2. Proofs.

We are now in the position to prove theorems. Let γ be a trajectory for the magnetic field $f \cdot \mathrm{Vol}_{M}$ with $|f| \leq \alpha$ on a Hadamard surface M of curvature $\operatorname{Riem}_{M} \leq-\alpha^{2}$. We compare the norm of the γ-Jacobi field V_{t} with the norm of γ-Jacobi fields for uniform magnetic fields on a hyperbolic space. Since we have

$$
\nabla_{\frac{\partial \sigma}{\partial}} V_{t}(0)=\left.\frac{\partial}{\partial s} \frac{\partial}{\partial t} \sigma(t, s)\right|_{s=0}=\frac{\partial}{\partial t} \Omega_{0}(\dot{\gamma}(t))=-f(\gamma(t)) \dot{\gamma}(t),
$$

we get the following estimate by the Rauch's comparison theorem;

$$
\left\|V_{t}(s)\right\| \geq \cosh \alpha s-\frac{1}{\alpha} f(\gamma(t)) \sinh \alpha s
$$

This gaurantees that if $|f(\gamma(t))| \leq \alpha$ then V_{t} does not vanish anywhere and $\liminf _{s \rightarrow \pm \infty} \exp (-\alpha s) \cdot\left\|V_{t}(s)\right\| \geq \frac{1}{2}(1-|f(\gamma(t))| / \alpha)$ for every t. Since M is diffeomorphic to an Euclidean plane, we find that the geodesic $\sigma\left(t_{1}, \cdot\right)$ and $\sigma\left(t_{2}, \cdot\right)$ do not intersect each other if $t_{1} \neq t_{2}$.

Let $S_{r}(p)$ denote the geodesic circle $\{x \in M \mid d(x, p)=r\}$ of radius r centered at p. If we suppose $\left.\gamma\right|_{[0, \infty)}$ is tangent to a geodesic circle $S_{r}(\gamma(0))$ at $\gamma\left(t_{0}\right)$, then $\sigma\left(t_{0}, \cdot\right)$ passes $\gamma(0)$, which is a contradiction. We therefore have

Proposition. The trajectory rays $\left.\gamma\right|_{[0, \infty)}$ and $\left.\gamma\right|_{(-\infty, 0]}$ cross only once to every geodesic circle $S_{r}(\gamma(0))$.

This proposition leads us to Theorem 1. In order to see Theorem 2, we denote by u_{t} for $t \neq 0$ the unit tangent vector at $p=\gamma(0)$ such that the geodesic emanating from p with the initial speed u_{i} joins p and $\gamma(t)$. We set $u_{0}=\dot{\gamma}(0)$. Since γ is unbounded in both directions, we may treat the case that f is nonpositive (or nonnegative) on M. We then find the smooth curve $\left(u_{t}\right)_{t \in[0, \infty)}$ on $U_{p} M \simeq S^{1}$ rotates counterclockwisely if $f \geq 0$ and rotates clockwisely if $f \leq 0$. If we suppose $u_{t_{0}}= \pm \Omega_{0}\left(u_{0}\right)$ for some t_{0}, then $\sigma(0, \cdot)$ passes $\gamma\left(t_{0}\right)$. Hence we find that $\left\{u_{t}\right\}_{t} \subset U_{p} M \backslash\left\{ \pm \Omega_{0}\left(u_{0}\right)\right\}$ and the limit $u_{\infty}=\lim _{t \rightarrow \infty} u_{t}$ exists. Similarly, we find that the limit $u_{-\infty}=\lim _{t \rightarrow-\infty} u_{t}$ exists. We therefore get that γ has points at infinity;

$$
\gamma(\infty)=\rho_{u_{\infty}}(\infty) \text { and } \gamma(-\infty)=\rho_{u_{-\infty}}(\infty),
$$

where ρ_{v} denote the geodesic with $\dot{\rho}(0)=v$. Now we suppose that γ has a single point at infinity: $\gamma(\infty)=\gamma(-\infty)$. This means $u_{\infty}=u_{-\infty}$, hence $\gamma(\infty)=\sigma(t, \infty)$ for every t. This can not occur when $f<\alpha$. We get the conclusion of Theorem 2.

In view of our proof, we can conclude the following.

Remark. Consider a magnetic field $\boldsymbol{B}=f \cdot \operatorname{Vol}_{M},|f| \leq \alpha$, on a Hadamard surface M of curvature $\operatorname{Riem}_{M} \leq-\alpha^{2}<0$.
(1) A trajectory γ for \mathbb{B} has a single point at infinity $\gamma(\infty)=\gamma(-\infty)$ if and only if all the geodesic $\sigma(t, \cdot)$ converges to that point $\sigma(t, \infty)=\gamma(\infty)$.
(2) If a trajectory γ has a single point at infinity, then the magnetic angle at that point is $\pi / 2$. Here the magnetic angle means the angle between the outer tangent vector of γ and the outer tangent vector of geodesics ρ with $\rho(\infty)=\gamma(\infty)$ (c.f.[2]).

Remark. Let $B=k \cdot \operatorname{Vol}_{M},|k|<\alpha$ be a uniform magnetic field on a Hadamard surface M of bounded negative curvature $-\beta^{2} \leq \operatorname{Riem}_{M} \leq-\alpha^{2}<0$. We have a positive ε such that the angle $\Varangle(\dot{\gamma}(0), \dot{\rho}(0))$ between a trajectory γ for \mathbb{B} and a geodesic ρ with $\gamma(0)=\rho(0)$ and $\gamma(\infty)=\rho(\infty)$ is always not greater than $\pi-\varepsilon$.

References

[1] T. Adachi, Ideal boundary of a complete metric space, Kumamoto J. Math. 7 (1993), 51-59.
[2] T. Adachi, Kähler magnetic flows on a manifold of constant holomorphic sectional curvature, Tokyo J. Math. 18 (1995), 473-483.
[3] W. Ballmann, M. Gromov and V. Schroeder, Manifold of nonpositive curvature, Birkhäuser 1985.
[4] J. Cheeger and D. Ebin, Comparison theorems in Riemannian geometry, North Holland, Amsterdam 1975.
[5] A. Comtet, On the Landau levels on the hyperbolic plane, Ann of Phys. 173 (1987), 185-209.
[6] F. Ohtsuka, Rigidity of compact ideal boundaries of manifolds joined by Hausdorff approximations, Tsukuba J. Math. 18 (1994), 439-447.
[7] K. Nomizu and K. Yano, On circles and sphere in Riemannian geometry, Math. Ann. 210 (1974), 163-170.
[8] T. Sunada, Magnetic flows on a Riemann surface, Proc. KAIST Math. Warkshop, 8 (1993), Analysis and Geometry, 93-108.
[9] T. Adachi, A comparison theorem for magnetic Jacobi fields, to appear in Proc. Edinburgh Math. Soc.
[10] T. Adachi, Magnetic flows for a surface of negative curvature, Bull. Nagoya Institute of Tech. 47 (1995), 161-170

> Department of Mathematics
> Nagoya Institute of Technology
> Gokiso, Showa-ku, Nagoya 466
> Japan
> e-mail address: d43019a@nucc.cc.nagoya-u.ac.jp

[^0]: Received June 6, 1994.

