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CURVATURE BOUND AND TRAJECTORIES FOR

MAGNETIC FIELDS ON A HADAMARD SURFACE

Introduction.

By

Toshiaki Adachi

On a complete oriented Riemannian manifold M, a closed 2-form B is called

a magnetic field. Let Q denote the skew symmetric operator Q,: TM ―>TM

defined by (u,Q(v)) = B(u, v) for every u, veTM. We call a smooth curve- 7 a

trajectory for J? if it satisfies the equation V^7 = Q(y). Since O is skew

symmetric, we find that every trajectory has constant speed and is defined for

―00< t< 00. We shall call a trajectory normal if it is parametrized by its arc

length. When y is a trajectory for B, the curve G defined by R(t) = y(Xt) with

some constant A is a trajectory for AB. We call the norm ＼＼BX＼＼of the operator

Bx:TxMxTxM ―>R the strength of the magnetic field at the point x. For the

trivialmagnetic field B = 0, the case without the force of a magnetic field,

trajectories are nothing but geodesies. In term of physics it is a trajectory of a

charged particleunder the action of the magnetic field.For a classical treatment

and physical meaning of magnetic fieldssee [8].

On a Riemann surface M we can write down B = f -Vo＼M with a smooth

function/and the volum form VolM on M. When/is a constant function, the case

of constant strength, the magnetic fieldis called uniform. On surfaces of constant

curvature the feature of trajectories are well-known for every uniform magnetic

field k ■VolM. On a Euclidean plane R2 they are circles (in usual sense of

Euclidean geometry) of radius ＼l＼k＼.On a sphere S2(c) they are small circles

with prime period 2k14k1 +c .In these cases all trajectories are closed. On a

hyperbolic plane H2(-c) of constant curvature -c, the situationis different.In

his paper [4] Comtet showed that the feature of trajectories changes according to

the strength of a uniform magnetic field k- VolM . When the strength ＼k＼is greater

than 4c ,normal trajectoriesare stillclosed, hence bounded, but if ＼k＼< 4c they

are unbounded simple curves, in particular,if ＼k＼= 4c they are horocycles. In the

preceeding paper [2] we studied trajectories for Kahler magnetic fields k-B,,
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which are scalar multiples of the Kahler form Bj, on a manifold of complex

space form. On a complex projective plane all trajectories for Kahler magnetic

fields are closed. But on a complex hyperbolic space CH"(-c) of constant

holomorphic sectional curvature ―c, normal trajectories for Kahler magnetic

fields have similar properties as of trajectories for uniform magnetic fields on a

hyperbolic plane. Their feature depend on the strength of a Kahler magnetic field;

trajectories are bounded, horocyclic, or unbounded according to the strength is

greater, equal to, or smaller than Vc .In this context it is quite natural to pose the

following problem. Consider a Hadamard manifold, which is a simply connected

complete Riemannian manifold of nonpositive curvature -ji2 <RiemM <-a2,

P ^ a ^ 0. Are they true that all trajectories are unbounded if the strength is

smaller than (X and that all trajectories are bounded if the strength is greater than

Bl In this note we shall concerned with this problem on a Hadamard surface."

THEOREM 1. Let B = f-VolM be a magnetic field with ＼f＼<a on a

Hadamard surface M of curvature RiemM < -a2. Then every normal trajectory

for B is unbounded for both directions.

For Hadamard manifolds we have an important notion of ideal boundary. We

denote by M = MljM(<≫) the compactification of a Hadamard surface M with its

ideal boundary M(°°). For a two-sides unbounded curve 7 on M, if lim^^yit)

and lim,^ooy(f) exist in M we denote these points by 7(00) and y(-°°)

respectively, and call that 7 has points of infinity. If we review the Comtet's

result from this point of view, it assures the following. On H2(-c) every

trajectory 7 for a uniform magnetic field k-Vol
2 _c
with |&|<Vc has points of

infinity y(°°),y(-°°).When |&| = ±Vc they coincide y(°°)= y(-°°), and they are

distinct when |jfc|<Vc. We show that a similar property holds for general

Hadamard surfaces.

THEOREM 2. Let B = f-VolM be a magnetic field with ＼f＼<a on a

Hadamard surface M of curvature RiemM < -a2 < 0 . Suppose either / < 0 or

/ > 0 except on a compact subset of M. We then have thefollowing.

(1) Every normal trajectoryfor B has points ofinfinity.

(2) // |/|<≪ except on a compact subset of M, every normal trajectoryhas

two distinctpoints atinfinity.
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§1. A note on 7-JacobI fields.

We shall show our theorems by applying the Rauch's comparison theorem.

Let B = f-＼olM be a magnetic field on a oriented surface M. We denote by Q^

the skew symmetric operator associated with the uniform magnetic field VolM.

Clearly the skew symmetric operator associated with B is of the form Q = f-Q0.

For a normal trajectory 7 for B, we denote by Vt(s) the y-Jacobi field along the

geodesic s―≫(7(f,s) = expr(0 sQ0(y) with Vt(0) = y(t). This Jacobi field V, is

perpendicular to <?(t,-)and is obtained by the variation {<y(t + £,-)}£of geodesies;

Vl(s)= ^a(t,s).

For the sake of reader's convenience, we recall the explicit formula for

normal trajectoriesand y -Jacobi fieldsfor uniform magnetic fieldson surfaces of

rnmsfflntnirvatnrp

Example 1. On a Euclidean plane R2, trajectoriesfor the uniform magnetic

fieldsof strengthk satisfythe followingequation:

y(0 =
fj-cos(fa-e),i-sin(fa-e)j

+ (^,^).

The variationof geodesiesis given by

<j(t,s) =

(±-(l

ks)cos(kt-Q), -
k
(l-fcs)sin(to-6)1+ (£,&)

and the 7 -Jacobi fieldis

Vt(s)= (l-ks)f(t),

hence it vanishes at so=l/k. The point a(t,l/k) = (^l,^2) is usually called the

center of y.

Example 2. On a sphere S2(c) = [x = [(xl,x2,x3)eR*＼(x,x) = xl2+x22 +

x2 = 1} of sectional curvature c, the trajectory y for the uniform magnetic field

of strength k satisfies the following equation when 7(0) = x e S2(c), y(0) =

ueUxS2(c)=={?;eR3＼(x,Z) = 0, (£,$)= c] :

y(t) = ―J"―(k2 + c ■cos V k2 +ct)-x
k + r

+

1

in V&2 +ct ■u + ―P-, sm

V&2 +c k2+c
(1-cosa/A;2+ct)-QJu)
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Since the variation of geodesies is given by

o{t, s) = 7(?)cosVcs + Qq (f(t)) ■―f= sin ^Fcs
Vc

hence

/―
k

VAs) = 7(r)(cosVcs ―7-t= sin Vcs)
Vc

Therefore it vanishes at s0 =-^=tan*1Vc Ik. The point o(t,s0) and the trajectory
Vc

r can be regard as a pole and a latitude line of this sphere.

EXAMPLE3. On the hyperbolic plane H2(-c) = {x = (x0,xl,x2)eR3＼((x,x)) =

-V + x. 2 + x22 = -1, xQ > 1} of constant sectional curvature -c, the trajectory of

the uniform magnetic field of strength k satisfies the following equation if

7(0) = x and y(0) = ≪e UH2(-c)- {£e R'＼((x,§≫= 0,≪§,<^≫= c}:

7(0 =

7(0 =

(~k2 +c-cosfaVc-fc2r)-.t-f , = sinhVc-k2t-u

(-1 + coshVc-k21)■ Q0(u), when 0<k<-Jc

Q0(w), when k = 4c ,

1

c-k2

k2

l_

+

c

k

c-k2

r(t)= (i+^-)x+tu+

+

4cf_

2

(k2 -c■cos4k2 -ct)-x+ , sinV&2 -ct-u
■vk2―c

(l-cosV&2 - ct)■QJu), when k>4c

f(t) (cosh
4c
s ―t= sinfa -＼fcs)
Vc

k

!c2-c

The variation of geodesies is given by

a (t,s) = /(O cosh 4c s + Q0(y (0) ･ -7=-sinh 4cs

hence

V(s) =

Therefore if ＼k＼>4c the 7 -Jacobi field vanishes at s0 = ―r= tanh ' 4clk =
Vc

―7^log k
+ ^£_
.if ＼k＼< 4c it does not vanish. When k = 4c , the case that 7 is a

2Vc k-Nc

horocycle, the point 7(OO) = 7(-°O) on the ideal boundary can be regard as the

vanishing point of the 7 -Jacobi field; lim._.,,VAs) = 0.
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§2. Proofs.

We are now in the position to prove theorems. Let 7 be a trajectory for the

magnetic field /-VoIM with |/|<a on a Hadamard surface M of curvature

RiemM < -a2. We compare the norm of the y -Jacobi field Vt with the norm of

y-Jacobi fieldsfor uniform magnetic fieldson a hyperbolic space. Since we have

3s

s=0 dt
n0(r(O) = -/(r(O)r(O

we get the following estimate by the Rauch's comparison theorem;

||Vt(s)||> coshas -―f(y(t)) sinhas .

This gaurantees that if |f{j(t)) ＼< a then Vt does not vanish anywhere and

liminfs^±!x>exp(-as)■＼＼Vt(s)＼＼>-5(1-＼f(y(t))＼/a) for every t. Since M is

diffeomorphic to an Euclidean plane, we find that the geodesic <J{tj,-)and R(t2,-)

do not intersect each other if t1 +12.

Let Sr(p) denote the geodesic circle {x e M＼ d(x,p) = r] of radius r centered

at/?.If we suppose y|
[0oo)
is tangent to a geodesic circle Sr(y(0)) at y(to), then

a(tn,-)passes r(0), which is a contradiction. We therefore have

PROPOSITION. The trajectory rays 7|[0<>o)and /l^oj cross only once to

every geodesic circle 5,(7(0)).

This proposition leads us to Theorem 1. In order to see Theorem 2, we denote

by ut for t ^ 0 the unit tangent vector at p = 7(0) such that the geodesic

emanating from p with the initial speed ut joins p and y(t). We set u0 = 7(0).

Since 7 is unbounded in both directions, we may treat the case that / is

nonpositive (or nonnegative) on M. We then find the smooth curve (M,)re[0oo) on

UpM ― Sl rotates counterclockwisely if / > 0 and rotates clockwisely if / < 0. If

we suppose ut =±Qq{u0) for some t0, then <r(0,-) passes y(t0). Hence we find

that {ut}t c UpM ＼{±Qq(u0)} and the limit ux = lim^^M, exists. Similarly, we find

that the limit u_^ = limt_^ ut exists. We therefore get that 7 has points at infinity;

y(°°)= pu^ (°°) and 7(-°°)= p≪._(°°)'

where p^ denote the geodesic with p(0) = v. Now we suppose that 7 has a single

point at infinity: 7(°°)= 7(-°°). This means uoa=u^x>, hence y(oo) = or(r,oo) for

every r. This can not occur when / <a. We get the conclusion of Theorem 2.

In view of our proof, we can conclude the following.
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Remark. Consider a magnetic fieldB

surface M of curvature RiemM < -a2 < 0.

= /-VolM,|/| < a , on a Hadamard

(1) A trajectory y for B has a single point at infinity y(oo) = y(-oo) if and

only if allthe geodesic a(t,-) converges to that point a(t,°°)= y(°°).

(2) If a trajectory y has a single point at infinity,then the magnetic angle at

that point is nil. Here the magnetic angle means the angle between the

tangent vector of y and the outer tangent vector of geodesies p

P(oo) = 7(oo) (C.f.[2]).

outer

with

Remark. Let B = k-VolM,＼k＼<a be a uniform magnetic field on a

Hadamard surface M of bounded negative curvature -/32 < Riemw < -a2 < 0. We

have a positive £ such that the angle < (7(0),p(0)) between a trajectory 7 for B

and a geodesic p with 7(0) =p(0) and 7(00)= p(<≫)is always not greater than

7T-£.
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