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UNIVERSAL SPACES FOR SONE FAMILIES
OF RIM-SCATTERED SPACES

By

S.D. ILiapis

1. Introduction.

1.1. Definitions and notations. All spaces considered in this paper are
separable and metrizable and the ordinals are countable.

Let F be a subset of a space X. By Bd(F), CUF), Int(F) and |F| we de-
note the boundary, the closure, the interior and the cardinality of F, respec-
tively. An open (respectively, closed) subset U of X' is called regular iff U=
Int(CI(U)) (respectively, U=Ci(Int(U))). If X is a metric space, then the dia-
meter of F is denoted by diam(F). A map f of a space X into a space Y is
called closed iff the subset f(F) of ¥ is closed for every closed subset F of X.

A compactum is a compact metrizable space; a continuum is a connected
compactum. A space is said to be scattered iff every non-empty subset has an
isolated point.

A space Y is said to be an extension of X iff X is a dense subset of Y.
A space YV is said to be a compactification of X iff Y is a compact extension
of X. Let Y and Z be extensions of X. A map = of ¥ into Z is called a
natural projection iff n(x)=x for every x=X. Obviously, if there exist a
natural projection of Y into Z, then it is uniquely determined.

A space T is said to be universal for a family A of spaces iff both the
following conditions are satisfied: (a) T< A, (B) for every XE A, there exists
an embedding of X in 7. If ony condition (B) is satisfied, then T is called a
containing space for a family A. .

A partition of a space X is a set D of closed subsets of X such that (a) if
F,, F,€D and F,#F,, then F;N\F,=0, and (B) the union of all elements of D
is X. The natural projection of X onto D is the map = defined as follows, if
x€ X, then n(x)=F, where F is the uniquely determined element of D contain-
ing x. The gquotient space of the partition D is the set D with a topology
which is the maximal on D for which the map = is continuous. (We observe
that we use the same notation for a partition of aspace and for the correspond-
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ing quotient space). The partition D is called upper semi—continuous iff for
every FeD and for every open subset U of X containing F there exists an
open subset V of X which is union of elements of D such that FEV CU.

Obviously, in order to define a vartition D of a space X it is sufficient to
define the non-degenerate elements of D. Let D’ be a subset of D (generally,
let D’ be a set of subsets of a space X). We denote by (D')* the union of all
elements of D’.

An ordinal a is called isolated iff it has the form B+1, where B is an
ordinal. A non-isolated ordinal is called a limit ordinal (hence, the ordinal zero
is a limit ordinal).

Every ordinal « is uniquely represented as the union of a limit ordinal 8
and of a non-negative integer m. In what follows, the ordinal 8 is denoted by
B(a) and the integer m is denoted by m(a). Also, by 7(a) we denote the
ordinal B+2m+min{B, 1} and by m*(a) we denote the integer m-+min{B, 1}.
The set {0, 1, ---} is denoted by N.

Let M be a subset of a space X. For every ordinal @ we define, by induc-
tion, a subset M<® of M as follows: M®@=M, M® is the set of all limit points

of Min M. M@®=(M)D if ¢>1 is an isolated ordinal and M(‘“:BQ M

if @a>1 is a limit ordinal. The set M(® is called a—derivative of M (See [K,],
v.l, §24. IV).

We say that M has type <a, and we write (ype(M)Za iff M@=@. If a
is the least such ordinal, we say that M has {ype a, and we write type(M)=a.
Obviously, type(M)=0 iff M=0.

We say that a scattered subset M has type a (respectively, <a) at the point
acsM and we write type(a, M)=a (respectively, type(a, M)<a) iff ag M
and e MP for every B<a (respectively, aM®). (See [I,]).

We denote by com-type(a, M) (compact type of M at the point a) the mini-
mal ordinal 7y for which there exists a compactification K of M such that
type(a, K)=r. (See [I-Z]). By max(M) we denote the set of all points a of M
for which com—type(x, M)<com—type(a, M) for every x& M.

We say that M has locally compact type v (respectively, compact type 7)
which is denoted by loc-com-type(M) (respectively, by com-type(M)) iff v is the
minimal ordinal for which there exists a locally compact extension of M (re-
spectively, a compactification of M) having type 7. (See [I-Z]).

We observe that:

(1) A subset M of a space X is scattered iff there exists an ordinal a such
that type(M)<Za.
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(2) Every scattered space is countable.

(3) A compactum is scattered iff it is countable.

(4) The type of a non-empty countable compactum is an isolated ordinal.

(5) There exist compacta having type a for every isolated ordinal a. (See
[M-SD).

(6) The number of compacta having type a, where a is an ordinal, is
countable. (See [M-S]).

We denote by L,, n=1, 2, ---, the set of all ordered n-tuples 7, ---i,, wWhere
;=0 or 1,¢=1,--,n. Also, we set L,={0} and L=\U3-sL,. For n=0, by
7,1, we denote the element § of L. We say that the element 7,---i, of L is
a part of the element j, - j, and we write ¢, -+ i,<7, -/ if either n=0, or
n<m and i,=j, for every t<n. The elements of L are also denoted by 1, J, i,
etc. If i=4, -7, then by i0 (respectively, i1) we denote the element 7, -- 7,0
(respectively, 7, - 7,1) of L.

We denote by A4,, n=1, 2, ---, the set of all ordered n-tuples 7, ---7,, where
i, t=1, .-, n, is a positive integer. We set A=\U3-;4,. The elements of A
are denoted by a, §, etc. Let &=i, -4, and f=j, - jn. We say that @ is a
part of § and we write @< iff I<n<m and i,=J, for every t<n. Obviously,
if @ B, and @a<f then @=p5. Also, for every @< A, the set of all elements
Be A, such that @<, is a countable non-finite set.

We denote by C the Cantor ternary set. By C;, where =i, - i,&L, n=1,
we denote the set of all points of C for which the #*”* digit in the ternary ex-
pansion, t=1, ---, n, coincides with 0 if 7,—=0 and with 2 if /,=1. Also, we
set C4=C. For every subset s of L,, n=0,1, -, we set Co=\U;e;C;. For
every point a of C and for every integer n=0, by i(a, n) we denote the uni-
quely determined element i< L, for which ac=C;. For every subset F of C
and for every integer n=0, we denote by si(F, n) the union of all sets Cj,
i€L,, such that C;NF#0. If F={a) we set st(F, n)=st(a, n). Obviously,
st(a, n)=Cjiw. ny. If S is a subset of C, then the set SNC; is denoted by S;.

Let D be a partition of a subset S of C, i an element of L,, n=0, 1, ---.
We set D(1)={d<D: d is not singletion}, D;={d<€D: dN\C;#80, d"\C; %0 and
dSC:0UCxu}, Du=\ier,D;. It is easy to see that: (a) D(1)=US.eDn, (B)
DiN\D;=0 if 1, jeL and 1#; and () D.N\D,=0 if m=n.

A space X is called rim-finite (respectively, rational) iff X has a basis B of
open sets such that the set Bd(U) is finite (respectively, countable) for every
UeB.

We say that a space X has rim-type <a, where a is an ordinal and we
write rim-type(X)Za iff X has a basis B of open sets such that type(Ba(U))
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<a, for every UcB. If a is the least such ordinal, then we say that X has
rim-type «, and we write rim-type(X)=a.

In [G-17 (respectively, in [/,] and [Is]) the following definition is given: a
space K has the property of a-intersections (respectively, the properiy of finite
intersections) with respect to a family Sp of spaces iff the every X&Sp there
exists a homeomorphism 7y of X in KA such that if Y and Z are distinct ele-
ments of Sp, then the set i(Y)N\iz(Z) has type Z<a (respectively, the set
iy(Y)Nig(Z) is finite) (For the corresponding definitions of the present paper
see Section 5.1).

1.2. Some known results. Let a>0 be an ordinal. We denote by R(a)
the family of all spaces having rim-type <a. Natural subfamilies of R(a) are
the family R°°™(a) of all compact elements of R(a) and the family R°***(a) of
all elements of R(a) which are continua.

Another subfamily of R(a) is the family R7™*™-¢°"(a) defined as follows an
element X of R(a) belongs to RTi™-¢°™(q) iff X has a basis B of open sets
such that for every U< B, the set Bd(U) is a compactum having type <a.

We denote by RF the family of all rim-finite spaces and by R the family
of all rational spaces.

In [1I-Z] some new subfamilies of R(a) are given. These families are de-
noted by R%a) and Ri(a), a>0, k=0,1,.--. A space X belongs to Rf(a)
(respectively, to R¥%a)) iff X has a basis B={U,, U,, ---} of open sets such that
type(Bd(U:)<a and loc-com-type(Bd(U;))Sa (respectively, com-type(Bd(U;))<a),
for every =0, 1, ---.

It is easy to see that R™(a)S R°™a)S R™'™°™(@)S RAa)S -+ S R¥a)S
Ri(a)S R¥ a)S - S R(a).

We observe that if type(M)=a, then by Lemma 1 of [I-T] it follows that
M admits a compactification K having type <7(a). By the proof of this lemma
it follows that if a>0 and type(K)=7(a), theu K is the one-point compactifica-
tion of some locally compact axtension of M having type =7(a)—1.

From the above it follows that R1:*®-!(a)=R(a) and hence, R%.(a)=R:Ya)
=R(a) if k=m*(a)—1.

We recall some known results concerning the above mentioned families of
spaces.

(1) Every element of RF has a compactification belonging to RF. (See
[K], [R:D.

(2) In the family RF there is no universal element. (See [N]).

(3) In the family R(a) there exists a universal element having the property
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of finite intersections with respect to any subfamily of R(a) whose power is
less than or equal to the continuum. (See [/;]).

(4) Every element of R™™ °°™(q) has a compactification belonging to
Reo™a), (See [I,]). Moreover, every element of R™i™-°™(q) is topologically
contained in an element of R°°"(a). (See [I,]).

(5) In the family R™*™-¢°™(q) there does not exist a universal element (See
[1.]). Hence, by (4), in the families R°°*(a) and R°°™(a) there do not exist
universal spaces.

(6) For the family R°°™(a) there exists a containing space belong to the
family R°°"*!(a-1). (This is a result of J.C. Mayer and E.D. Tymchatyn).

(7) For the family of all planar compacta having rim-type<a there exists
a containing planar locally connected continuum having rim-type<a-1. (See
[M-TD.

(8) In the family R%a), where « is an isolated ordinal and £=0, -, m*(a)
—1, there is no universal element. (See [I-Z]).

(9) For a family Sp of rim-finite spaces there exists a containing rim-finite
space (heving the property of finite intersections with respect to any subfamily
of Sp whose the power is less than or equel to the continuum) if and only if
Sp is a uniform family. (A family Sp of rim-finite spaces is called uniform iff
for every XeSp there exists an ordered basis B(X)={UqX), Uy(X), ---} having
the properties: (a) BdU (X)NBd(U (X))=0 if i#; and (B) for every integer
k=0 there exists an integer n(k)=0 (which is independent from the elements
of Sp) such that for every x, ye\Ui o BAdWU (X)), x+y, there exists an integer
7(x, ), 0=7(x, y)=<n(k), for which either x&U ¢, ,»(X) and y& XNCU(U j¢z, (X)),
or YEU i, o(X) and € XNCUU jez, (X)) (See [1D).

(10) In [G-1], for a given subfamily Sp of R°“™(a), necessary and sufficient
conditions are given for the existence of a containing space (having the pro-
perty of a-intersections with respect to any subfamily of Sp whose power is
less than or equal to the continuum) belonging to the family R7*™-¢™(q),

(11) In the family R of all rational spaces there exists a universal ele-
men) having the property of finite intersections with respect to the subfamily
of all rational continua. (See [/;]).

1.3. Results. In the present paper we study the family R} (a), where
a>0 and £=0, -, m*(a)—1. We construct a universal element K of this
family as a subset of another space T. For the construction of these spaces
we need in two “kinds” of countability.

In Section 2 starting with some properties of scattered spaces we prove
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the following theorem: every element of R%(a) admits a compactification hav-
ing rim-type <a-+k+1. For the proof of this theorem, we construct for every
Xc Ré(a) (See Lemma 2.4) an extension X with a basis B()?) whose elements
have boundaries with some special properties. These properties also provide us
with the above mentioned two “kinds” of countability.

In Section 3 we consider a family A of pairs (S, D), where S is a subset
of C and D is an upper semi-continuous partition of S such that D; i< L, is
homeomorphic to an element of a given family M of scattered compacta. The
elements of A are called M-representations. Using the M-representations we
construct a space T which will be used in Section 5. An important fact is the
countability of the family M (this is the first “kind” of countability).

In [/;] we have considered a set of some specific subsets of a given scat-
tered compactum M: a subset X of M is such a subset iff MNMPFENC X, We
have proved that if in the above set we consider the equivalence relation:
X,~X, iff there exists a homeomorphism f of X, onto X,, then the number of
equivalence classes is countable. In Section 4 of the present paper we improve
this result by proving that if in the set of all pairs (X, M), where M is a com-
pactum, type(M)=a and M\MPFE@C X we consider the equivalence relation
(X,, M)~ (X,, M,) iff there exists a homeomorphism f of M, onto M, such that
f(X)=X,, then the number of equivalence classes is countable (this is the
second “kind” of countability).

In Section 5 using the properties of the extension nentioned in Lemma 2.4
we give the notion of a c-extension of elements of the family R%(a). For
every element of this family we consider a fixed c-extension. By a standdard
manner, we correspond to every such extension an M-representation, where M
is a countable set of scattered compacta. The space T constructed in Section
3 (for the above M-representations) has rim-type<a-+k+1 and it contains topo-
logically the fixed c-extensions. Using the result of Section 4, the construction
of the space T can be done in such a manner that a subset K of T has type
<a and contains topologically every element of R%(a). Thus, the space T is
a containing space for the family of fixed c-extensions and simultaneously the
subset K is an universal element of R%(a). The main result of this papers is
Theorem 5.3.

We note the following corollaries of the main results: In the family Rf.(a)
there exists a universal element having the property of af-intersections (See
Definitions 5.1.) with respect to any subfamily of R%.(a) the power of which is
less than or equal to the continuum.

Also, for the family R%a), there exists a containing space belonging to the



Universal spaces for some families 129

family R%(a) and, hence, there exists a containing continuum having rim-type
La—k+1. In particular, for k=0 (since R*°™(a)S R¥a)) we have: There
exists a continuum having #im-type<a-+1 which is containing space for all
compacta having rim-type<a. (This is a result of J.C. Mayer and E.E. Tym-
charyn).

2. Extensions of elements of Ri.(a).

2.1. LEMMA. Let M be a scattered space having type a=p(a)+m(a)>0. Let
X be a zero-dimensional metric compactification of M. Then, there is a com-
pactification K of M for which the natural projection © of X onto K exists and
such that :

(1) type(K)=com-type(M) (and, hence, by Lemma 1 of [1I-T], type(K)<7(a)).

(2) type(MU(KNK B =q,

(3) loc-com-type(M)=loc-com-type( M\ J(K\KF)) and

4) if K={z, 2z, -}, then ilir&(di’am(:r"(zi)))zo.

PrROOF. We prove the jemma by induction on the ordinal com-type(M).
The proof can be done in such a manner that besides properties (1)-(4) of the
lemma the following properties will be also true:

(5) for a given ¢>0, diam(z~'(z))<e for every z= K, and

(6) for every a= M, type(a, K)=com-type(a, M)

Let com-type(M)=1. We set K=M. Then, K is a compactification of M
having properties (1)-(6).

Suppose that for every space M for which 1=Zcom-type(M)<y there exists
a compactification K of M having properties (1)-(6). Since for every scattered
space M, com-type(M) is an isolated ordinal, we may suppose that 7 is also an
isolated ordinal.

Let M be a space such that com-type(M)=y and ¢>0 be a number. Suppose
that type(M)=a. By Lemma 1 of [I-T] it follows that S(a)=8().

First we suppose that max(M) is infinite. By Lemma 2.4 of [I-Z] it follows
that com-type(a, M)=y—1, for every ac=max(M).

Let F=Cl(max(M))max(M). (The closure is considered in the space X).

Let F,, -, F, be open and closed non-empty subsets of F such that (a) F=
F\ - UF,, (B) FNF;=0 if i#7, and (¥) diam(F;)<e for every i=1, -, n.
There exist open and closed subsets U;;, i=1, ---, n, =1, 2, ---, of X such

that: (a) UnUUs\U - UUn=X, B) UigsnSEUs;, 1) UiNUsgin)\max(M)
#0, (5) U“f\Uﬁ:((), if Z?k], and (6)0;‘;1[]”:};‘2’.
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Let My=U:\Uijs)\M, i=1, -, n, j=2,2, ---. Obviously, max(M;)=
M;;nmax(M) and, hence, the set max(M;;) is finite and com-type(a, M;;)=r—1
for every acmax(M;;). By Lemma 2.4 of [I-Z], com-type(M;;)=7r—1.

Hence, by induction, there is a compactification K;; of M;;, /=1, -, n, j=
1,2, .-+, for which the natural projection m;; of U;\U ;41 onto Kj; exists and
such that properties (1)-(6) are true, where in place of ¢ in property (5) we
take the number ¢/;.

Let K=(: ;K )U{F, -, F,}. We topologize K as follows: a subset V
of K is an open subset iff V has the following properties: (a) the set VNK;;,
i=1, -, n, j=1,2, -, is an open subset of K;;, and (B) if F,V, then V con-
tains all but finitely many of the sets K;;, j=1, 2, ---.

Let = be the map of X onto K defined as follows: if x€U,;\U;¢+1n, then
n(x)=n;(x) and if x&F;, i=1, ---, n, then n(x)=F;.

It is easy to see that K is a compactification of M and = the natural pro-
jection of X onto K.

Since K;; is an open and closed subset of K and type(K;;)<r—1 we have
type(F;, K)=r and, hence, type(K)=com-type(M)=y, that is, property (1) is
satisfied.

~ By induction, type(M; U(KiNK#@ ) <a. Hence, since M\U(K\KFen)=
H(MijU(Kij\Kt‘f‘“”)) we have type(M\U(KNK¥E)=q, that is, property (2)

is satisfied.

Since the subset K\{F,, .-, F,} is a locally compact extension of
MUENK$E@)  and  type(KN{Fy, -, Fo})=r—1 we have loc-com-type
(MU(K~NK ) <r—1. Since the set max(M) is infinite and com-type(M)=7,
by Lemma 2.4 of [I-Z] it follows that loc-com-type(M)=r—1, that is, property
(3) is true.

Properties (4) and (5) follow by the construction of K.

For every x< M,;; we have type(x, K;j)=type(x, K)=com-type(x, M). Hence,
property (6) is also true.

Now, we suppose that max(M) is finite. Then, by Lemma 2.4 of [I-Z],
com-type(a, M)=7, for every as=max(M). Let max(M)={a,, ---, a,} and let
Ui, i=1, -, n, j=1,2,---, be open and closed subsets of X such that: (a)
U VUu=X, B) UsigsEUss, @) Ui Uiy #90, 0) UaNU;=0, if i#7,
and (&) N&lU=1a:}.

Let M;;=U; \U;;+)\M. Then, either com-type(M;;)<y—1, or com-
type(M;;)=7 and the set max(M,;) is infinite. Hence, by induction, there is a
compactification K;; of M,; (for which the natural projection z;; of U; \U;gyin
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onto K;; exists) having properties (1)-(6).

Let K and = be the compactification of M and the natural projection of X
onto K, respectively, constructed from K;; in the same manner as in case,
where the set max(M) is infinite (replacing the set {F,, ---, F,} by the set
max(M)={a,, -+, a,} and the subset F;, in the definition of =, by the subset
{a;} of X).

By construction, #ype(K,;)<7. On the other hand, for a given 7, there exists
an integer j, such that type(K;;)<r—1 for every j=j, (See Section 2.2.4 of
[I-Z]). Hence, type(a;, K)=r. Thus, type(K)=com-type(M)=y. Hence, pro-
perty (1) is satisfied.

Since the subset K;; of K is an open subset and since type(a;, K)=r, pro-
perty (6) is also satisfied.

For the proof of property (2) it is sufficient to prove that (M\U(K\ K (Fcan)yban
=M¥ Obviously, MPF O S(MUKNK$B@)), Let x&(MU(KNKB@n))dan,
Then, it is clear that x¢&K\K¥“», Hence, x&M. If x&M\M¥B@> then
com-type(x, M)<B(a) and, therefore, type(x, K)<B(a), that is, x&K\KFw@»
which is impossible. Hence, x< M and property (2) is satisfied.

Since the set max(M) is finite, by Lemma 2.4 of [I-Z] it follows that loc-
com-type(M)=com-type(M)=1type(K). Hence, loc-com-type(MMJ(K\KEe)=
type(K) and property (3) is satisfied.

Since for a fixed i, 1,123 (diam(U ;U ;;+1))=0, properties (4) and (5) follow

by the construction of K.

2.2. LEMMA. Let M be a locally finite union of closed subset M,, M,, -
such that loc-com-type(M;)<a, i=1, 2, ---. Then, loc-com-type(M)<a.

PrROOF. Let a=M. There exist an open neighbourhood U of @ in M and
a set {ny, -, n.} of integers such that U=UNM,)U - UUNM,,). Since,
loc-com-type(M, )<a we have loc-com-type(UNM, )<a, i=1, -, t.

By Theorem 2.5 of [I-Z] it follows that loc-com-type(U)<a. Hence, by
Lemma 2.4 of [I-Z], com-type(a, U)=com-type(a, M)<a. By the same lemma
we have loc-com-type(M)<a.

2.2.1. COROLLARY. Let X& R%(a) (See the Introduction). Then, every pair
of disjoint closed subsets of X can be separated by a subset M such that type(M)
<a and loc-com-type(M)<a+Fk.

The proof follows by Lemma 2.2 and Lemma 4 of [I-T]. This corollary
is used in the proof of the following Lemma 2.3.
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2.3. LEMMA. Let X R (a) and B={U,, U,, ---} be a basis of open sets of
X such that for every i, type(Bd(U;)Za and loc-com-type(Bd(U;))<a-+k. Let
F be the family of all pairs Aw=U,,, U;,) such that CIU; )SU; and U
U; . =B. Let D denote the set of triadic rationals in the open interval (0, 1).
Then, there exists a sequence (fn) of continus functions fn: X—[0, 1] such that
for integers m, v, m#v and d=D:

1) fa(CUU,,))=10},

@) fu(XNU;,)=1{1},

(3) type(fn(dN)=a and loc-com-type(f=(d))<a+k,

(@) Bd(f#([0, DN=Bd(f={(d, 1D)=f=(d),

B [A(f#@(d)ND=0, and

(6) f.(f#(d)) is a closed subset of [0, 1] of dimension £0.

tm?

This lemma, except condition 3, is the same as Lemma 7 of [I-T] and it
is proven similarly.

2.4. LEMMA. Let X R'{a). There exist an extension X of X and a basis
B(X)={V,, Vy, -} of open sets of X such that:

(1) the set Bd(Vy), i=0,1, .-+, is a compactum,

(2) Vi=Int(CLV)), i=0,1, -,

(3) Bd(V)NBA(V)=0 if i#],

4) type(BdV))=a+k+1,

(5) type((BA(V INX)U(BA(V INBA(V )P )< and

6) loc-com-type((Bd(V YN X) I Bd(V INBd(V )N <a+k,

The proof is similar to the proof of theorem 8 of [I-T]. The extension X
is constructed in the same manner as the space Z is constructed in the proof
of Theorem 8 of [I-T]. Instead of Theorem 3 of [[-T] which was used in the
proof of Theorem 8 of [I-T] we have use Lemma 2.1.

2.5. THEOREM. Let X< Ri(a). Then, X admits a compacification having
rim-type<a-+k+1.

This theorem is proved using properties (1)-(4) of extension X of X of
Lemma 2.4 and Theorem 2 of [I,].

3. Construction of specific spaces.

3.1. DEFINITIONS AND NOTATIONS. Let M be a scattered space. A finite
cover w of M is called a decomposition iff every element of @ is an open and
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closed subset of M and the intersection of any two distinct elements of @ is
empty.

A decomposition w is a subdivision of a decomposition w’ of M iff every
element of @ is contained in an element of o’.

A sequence @", n= N, of decompositions of M is called a decreasing sequence
of decompositions iff (a) the decomposition w™*', nE N, is a subdivision of the
decomposition w® and () the set of all elements of all *, nEN, is a basis of
open sets of M.

In what follows by M we denote a countable set of scattered compacta.
We suppose that two distinct elements of M are not homeomorphic.

Also, we suppose that for every MM there exists a fixed decreasing
sequence of decompositions of M. The n‘* decomposition of this sequence is
denoted by M™, n=N.

Let xeMeM and n=N. We denote by F(n, x) the element F of M* for
which x&F.

A pair g=(S, D) is called an M-representation iff : (a) S is a subset of C,
() D is an upper semi-continuous partition of S, (y) every element of D(1)
consists of exactly two points, and () for every ¢ N, D, is homeomorphic to
an element of M.

In Section 3, we denote by A a family of M-representations the power of
which is less than or equal to the continuum. We suppose that for distinct
elements g=(S, D) and f=(S’, D’) of A it may happen that S=S’ and D=D".

For every element g=(S, D) of A and for every ¢g= N by M,g) we denote
the element of M which is homeomorphic to D, and by ¢,(g) a fixed homeo-
morphism of M,(g) onto D,.

Let A’ be a subfamilly of A such that for some ¢=N, My g)=M/f) for
any elements g, f of A’. In this case the element M,(g) of M is also denoted
by My A') and we shall say that the element M,(A’) of M is then determined.

For any subfamilly A’ of A and for any subset C’ of C we denoted by
C’x A’ the subset of C’X A’ consisting of all elements (a, g) of C’XA’ such
that if g=(S, D), then e<S.

A decomposition 2 of A is a countable set of subfamilies of A such that;:
(a) the intersection of any two distinct elements of £ is empty and (8) the
union of all elements of 2 is A.

A decomposition £ is a subdivision of a decomposition £’ of A iff every
element of £ is contained in an element of £’.

A sequence £2", nc N, of decompositions of A is called a decreasing sequence
af decompositions iff : (a) 2"*' is a subdivision of 27, nN, and (8) if g and
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f are distinct elements of A, then there exists an integer »n such that g and /
belong to distinct elements of 2.

Since the power of A is less than or equal to the continuum, the existence
of decreasing sequence of decompositions of A is easily proved.

In what follows, we suppose that there exists a fixed such sequence of A
denoted by 2*, nN. Moreover, without loss of generality, we may suppose
that for every E=Q" and for every ¢, 0<¢=<n, the element M, (E) is deter-
mined.

3.2. LEMMA. For every integer me N there exist:

(1) A decomposition A™={AT:rel(m)} of A which is a subdivision of Q™
(hence, for every r&I(m) and for every integer q, 0=q<m, the element MyAT)
of M is determined). In what follows, we denote by r an arbitrary element of
I(m) and by q an integer such that 0<g=m.

(2) An integer n(g, A™)=m (denoted also by n(g, m, r)).

(3) An integer n(AT)>m (denoted also by n(m, r)).

(4) A subset S(F) of Ly, +> for every Fe(M(AM)*@™ ™ (denoted also by
s(g, m, r, F)).

(5) A subset U(F) of CXA for every FE(MAT)" @™ ™ (denoted also by
Ulg, m, r, F)) such that:

(6) If m=1, then A™ is a subdivision of A™~' (hence, the sequence A°, A, -+
is a decreasing sequence of decompositions of A).

M If m=1, tel(im—1) and ATS AP, then n(m, r)>n(m—1, t).

®) If tel(g) and ATS AY, then n(g, m, r)=n(g, g, )+m—q.

©) If m=1, telim—1), f, g APS AP and xS Fe(Mu(AT)™™ ™", then
st(m(g)(x), n(m—1, )= st{(gn(YI)N*, n(m—1, 1)).

10) If m=l, q<m, tslm-1), g=(S, D)eArcAr-', deD, Fe
(Mg)rem™n, Qe(Mg)r @™, FSQ and dNsi(g(g)F))*, n(m, r)+0,
then d < st((Qg)Q))*, n(m—1, D).

(A1) If g AT and FE(MAT)* @™, then st((PogXF))*, n(m, r))=Cscr>.

(12) U(F)=Cgscm X A™ for every FE(MAT)* @™,

(13) If FE(M(AM)* ™™ ang QeE(MyAT)H* ™™, where 0<k<q, then
U(F)NU(Q)=0.

(14) If F, Qe(MA™) @™ and F+Q, then UF)NUQ)=0.

PROOF. We prove the lemma by induction on integer m.
Let m=0. Let E€R°’. For every g=E there exists an integer n(g)>0
such that if F, Q=(M«(g))’, then st((¢o(@)(F))*, n(@XNst((P(gNQN*, n(g)=0.
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We observe that if f, g=@Q, then My(f)=Myg).

Now, we define the decomposition A° of A as follows: two elements g and
S of A belong to the same element of A° iff there exists an element E<Q°
such that: (a) g, f€E, (8) n(g)=n(f) and () st(pul(@XF)*, n(g))=st((o( /)F)*,
n(f)) for every FE(My(8))’=(My(f)).

Obviously, A° is a countable set and by the construction, A° is a subdivi-
sion of £2°. Let A°={AY:r=I(0)}.

For every r<1(0) we set n(0, A)=0 and n(A%)=n(g), where geAY. Ob-
viously, the integer n(A?) is independent from g A?.

For every Fe(M((A?) we denote by s(F) the set of all elements i of
L ., -y for which C: S st(Po @) F))*, n(g)). where g AL, Obviously, the set
s(F) is independent from g= A2,

Finally, we set U(F)=Cyp, X A? for every Fe(My(AY)). 1t is easy to see
that properties (8), (11), (12) and (14) of the lemma are satisfied.

Suppose that the lemma is proved for every m, 0<m<p. We prove the
lemma for m=p.

Let EcQ?, t<l(p—1) and g=(S, D)e ENAP-'. Since the map ¢,(g) is
continuous, for every x<M,(g) there exists an open neighbourhood O(x) of x
in Mpy(g) such that for every y=O(x) we have st(¢,(g)(x), n(p—1, t))=
stp()y), n(p—1,1). (For example, we can suppose that O(x)=
(Dp(8) {(O(dp(g)x))), where O(¢p(gXx)) is the set of all elements of D, which
are contained in the open set st(gp(gXx) ‘n(p—1, t)) of C). The set of all such
neighbourhoods O(x) is an open cover of M,(g). Hence, since M,(g) is a com-
pactum there exists an integer no(g)=0 such that every element of (My(g)roca
is contained in the neighbourhood O(x) for some x.

There exists an integer #,(¢)=0 such that SE(PR(EXEN*, ni(@)NMst((he(g)Q))*,
n(g)=0 for every FE(My(g)"*?-"* and for every Qe (M, (g))»@r-1.6+1
where 0sk<p—1, 0=¢=<p—1 and either k+#q ork=¢ and F+0Q.

Also, since D is an upper semi-continuous partition of S, there exists an
integer ny(g)=0 such that if 0<¢<p—1, deD, Fe(Mg) wr-1v+ (Qc
(M(gnr@r=t0%, FEQ and dNst(Po(Q)F))*, ny(g))#0, then dS st(de(2)Q))*,
n(p—1, ).

There exists an integer n,(g)=0 such that if ¥ and Q are distinct elements
of (Mp(g))"®, then st((¢n(@XF)*, na(@)Nst(Pp(8XQ))*, ny(g))=0.

Finally, there exists an integer n,(g)=0 such that if 0<¢<p—1, Fe
(Mo(g)m @ P=tD¥, Qe (Mp(g)™0®, then  st(gho( @)F)*, na(g@)Nst(Po(2)Q))*,
n4(g))=0.

Let n(g)=max{ni(g), n.g), ny(g), nig), p+1, n(p—1, H+1}.
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We now define the decomposition A?. Let g, f€A. The elements g and
f belong to the same element of A” iff there exist an element E of 27 and an
element t=I(p—1) such that: (@) g, fe ENAF-' (hence, M(g)=Myf) for every
g, 0=g=p), (B) n@=n(f), @) ndg=n{f), ©@ if 0=¢sp—1 and Fe
(M) @ P-4 = (M(f)yr@ 20+, then  st((go(Q)F)*, n(g) = st FUF)¥,
a(f), and (&) if FE(My(g)e® =(Mp(f)", then st((Po(g)F)*, n(g))=
SH(@ o PF)*, n(f)-

It is easy to see that the set AP is countable. Let AP={AZ2:rel(p)}.

Property (6) of the lemma follows by the definition of the decomposition AP?.

Let r<I(p). We define the integers n(p, r) and n(q, p, r) for 0Zg=p
setting n(p, r)=n(g), n(p, p, r)=ndg), where g< A2 and n(g, p,r)=nlq, p—1,1)
+1 if 0<g<p—1, where t=l(p—1) such that ARC AP

Property (7) of the lemma follows by the definition of the number n(g).
Also, if tel(p—1), ¢<p—1 and e=(g) such that AmC AP-1C A4, then we have
n(g, p, r)=nlg, p—1, H+1=n(q, ¢, e)+p—1—g+1=n(g, q, e)+p—g, that is, pro-
perty (8) of the lemma is satisfied.

Property (9) of the lemma follows by the definition of the integer no(g)
(considering that n(p, p, r)=n«g) and by property (¢) of the definition of the
set AP (from which it follows that st((¢,(g)(F))*, n(p—1, )=st({(¢p(HFN*,
n(p—1, H)).

Property (10) of the lemma follows by the definition of the integers n,(g)
and n(g) (considering that n(q, p, r)=n(g, p—1, H-+1).

The set s(F), where FE(MAD)*@? ™ is defined as follows: an element 1
of Ly ., belongs to s(F) iff C:S st @) F)*, n(p, 7)), where g=AP. By
properties (8) and (¢) of the definition 2, the decomposition A? it follows that
s(F) is independent from ge AZ.

Property (11) of the lemma follows immediately from the above definition
of the set s(F).

The set U(F), where Fe(M/A2)"@? 7 is defined setting U(F)=Cscr X A7
Then, property (12) of the lemma is clear.

Finally, properties (13) and (14) of the lemma follows by the definition of
the integers n.(g), ns(g), ni(g) and n(g) and the definition of the sets s(F) and
U((F).

3.3. NOTATIONS. For every ¢g=N and g A we denote by r(q, g) the ele-
ments t<1(g) for which ge AL

Let me N and r< I(m). We denote by s(m, r) the union of all sets s(g, m, 7, F),
where 0<g<m and FE(MAM)» @™ ™, Obviously, s(m, r)S Lan, -
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Let meN, rel(m) and x&M,(A™). Obviously, if (a, g)€CxXA™, then
g AT and Mn(AT)=M,(g). We denote by d(x, m, ) the set of all elements
(a, g)=CxX AT for which ¢.(g)Xx)=a. We denote by 7T(1) the set of all sub-
sets of CxA of the form d(x, m, »). By T we denote the union of the set
T(1) and the set of all singletons {(a, g)}, where (a, g) belongs to CxXA and
does not belong to any d(x, m, r)eT(1).

Let d(x,m,r) be a fixed element of T(1) and let k=N. We denote by
U(d(x, m, r), k) the union of all sets of the form U(m, m=+k, t, F), where t<
I(m+k) such that AP**C AP and x& Fe(My(ATTE)nm mik.t,

Since M(AP**)=Mn,(AT) and by property (8) of Lemma 3.2, n(m, m—+£k,t)
=n(m, m, r)+k we have (Mu(APHENrommeb O (N[ (A™))nm.m.75+k  Thig means
that F is independent from the elements t of I(m-+k) for which ApteC Am,

We observe that for every y=F we have U(d(x, m, r), kR)=U(d(y, m,r), k).

We denote by U the set of all sets of the form U(d, k), where d=d(x,m,r)
eT(1) and k< N.

Let meN, r&l(m) and i€Lpcm, - such that ig¢s(m, 7). Then, we set
V@i, m, r)=C;x A?. We denote by V the set of all sets of the form V(i,m,7).

REMARKS. It is not difficult to prove that:

(1) For every d(x, m, )&T(l), d(x, m, r)SCxX A™,

(2) If geAPand d(x,m,r)eT(1), then d(x, m,r)N(C X {gh=¢nlg)x)X {g}
#0.

(3) For every d=T(1) and k=N, dSU(d, k).

(4) For every d(x, m, r)&T(1) and k=N, U(d(x, m, r), RSCxXA™,

(5) Forevery d=T(1) and k=N, Uld, k+1)SUd, k).

6) If xeFe(Ma(AT)*™ ™", then U(d(x, m, r), 0)=U(m, m, r, F).

(7) It t€limtk), AP*SAT and xEFS(Mp(Ap+e)rmm+ko  then
U(d(x, m, r), )NCXAP*)=U(m, m+k, t, F).

®) If V(i,m, r)=V and d(x, ¢, heT(1), where 0<g<m, then VG, m, r)"
d(x, q, H=0.

9 If d,, d;=T(1) and d,+#d,, then d,Nd,=0.

(10) The union of all elements of T is the set C x A.

3.5. LEMMA. Let d=d(x, m, )&T(1) and U=U(d,, n)cU, where d,—
d(y, my, r)ET(). The following are true:

(1) If dSU, then there exists an integer n=0 such that U(d, n)SU.

(2) If dNU=0, then there exists an integer n=0 such that U(d, n)N\U=0.

3) If dNU=#0 and dN(C X ANU)Y#£0, then there exists an open and closed
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neighbourhood O(x) of x in Mu(AT) such that d(z, m, r)NU %0 and d(z, m, )N
(C X ANU)Y#D for every z€0(x).

ProOOF. (1) By properties (1)-(4) of Remarks 3.4 it follows that ATS AT

First we suppose that m<p, where p=m,+n,. Let t be an arbitrary ele-
ment of I(p) such that APSATNAT: and let F=F(n(m, p, 1), x) and Fi=
F(n(mi, p, 1), ).

Suppose that either m=m, or m=m, and F#F,. By properties (13) and (14)
of Lemma 3.2 we have U(m, p, t, F)NU(m,, p, t, F1)=0.

Obviously, dN(C X AP)#0 (See property (1) of Remarks 3.4) and since dGU
we have dN\(C X APSUN(C X AP).

On the other hand, UN(C x AP)=U(m,, p, t, Fi) (See property (7) of Remarks
3.4) and dN\(C X AP)SU(m, p, t, F) (See properties (6) and (7) of Remarks 3.4).
From this follows that (dN\(C X APYN\UN(C X AP))=0 which is a contradiction.

Hence, m=m, and F=F,. Setting n=n, we have that U(d, n)=U(d,, n.),
that is, the integer n=n, is the required integer.

Now, let m,+n,=p<m. Let eel(m—1) and t€I(p) such that ATS AT
APS A% and let F=F(n(m, m, ), x) and F,=F(n(m,, p, 1), 3).

We have U(d,, n)"\(CXAP)=U(m, p, t, F1). Since dSCXATSCXA} we
have that dSU(m,, p, t, F)=C,X AP, where s=s(F,). Hence, st(¢x(g)(x), n(p,1))
cC, for every ge AT

Since n(m—1, e)=n(p, {) (See property (7) of Lemma 3.2) we have that
st(dm(g)(x), n(m—1, )= st(¢m(gXx), n(p, ). By proyerty (9) of Lemma 3.2 it
follows that st{((¢om(g)FN*, n(m—1, e)&Cs. By property (11) of Lemma 3.2 we
have that Cs s SC,. Hence, by property (12) of Lemma 3.2, U(m, m, r, F)=
Coemy RAPSCyx AP=U(my, p, t, FOEU. Obviously, U(m, m, r, F)=U(d, 0) (See
property (6) of Remarks 3.4). Hence, the integer n=0 is the required integer.

(2) If APNAT=0, then by properties (1)-(4) of Remarks 3.4 it follows
that for every neN, U(d, n)NU(d, n)=0. Hence, we can suppose that
ATNATLI#D.

Let m<p, where p=m,+n, and let ¢, F and F, be the same as in the cor-
responding part of case (1).

If m=m, and F=F,, then r=r, and dSU which is a contradiction. Hence,
either m#m,, or m=m, and F#F,.

In both cases, by properties (13) and (14) of Lemma 3.2 we have that
Ulm, p, t, FYNU@m,, p, t, F)=0. Since U(d, p—m)N(C X AD)=U(m, p, t, F) and
Uld,, n)N(C X AP)=U(m,, p, t, F\) and since ¢ is an arbitrary element of I(p)
for which APS ATNAT! we have that U(d, p—m)NU(d,, n,)=0, that is, the
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integer n=p—m is the required integer.

Now, let p<m, hence, AT AT} and let ¢, ¢, F and F, be the same as in
the corresponding part of case (1).

We have U(d,, n)"\(C X AP)=U(m,, p,t, F\)=C; X A?, where s=s(I;). Hence,
(Csx AP)Nd=0. This means that for every g€ AT, si{¢dn(g)x), n(p, HNC:=0.
Since n(m—1, e)=n(p, t) (See property (7) of Lemma 3.2) we have st(¢n(g)x),
n(m—1, pYNC:=0.

By property (9) of Lemma 3.2 it follows that st((¢m(g)(F))*, n(m—1, e))NCs
=0. Since n(m, r)>>n(m—1, e) we have that st((¢m(g)F))*, nim, rHMNCs=0, that
is, CscmMCs=0.

Thus, (Cscpy X AMN(Cs X AP)=0, that is, U(m, m, r, F)NU(m,, p, t, F1)=0.
Hence, U(m, m, r, F)NU(d,, n)=0, that is, U(d, ONU(d,, n,)=0 and n=0 is
the required integer.

(3) It is easy to see that APNMATI#0. Let m<p, where p=m,+n, and
let t=I(p) such that APS A7 and APS A7y Let F and F, be the same as in
the corresponding part of case (1). As in that case we prove that if m=m,
and F=F,, then dSU and if either m#m, or m=m, and F+F,, then dNU=0,
which is a contradiction.

Hence p<m. Then. APS AT} Let e, t, F and F, be same as in the cor-
responding part of case (1).

We have UN(C X AP)=U(m,, p, t, F;). Since dSCxXATSCxXA? we have
dNnU(my, p, t, F)#0 and dN(C X ANU(my, p, t, F1))#0. Moreover, if (a, g)E
dN(C X ANU(m;, p, t, Fy)), then (a, g)&U.

There exist elements g, and g, of AT such that ¢.(g)(x)NCs;#0 and
Gl @)X ON(CNC)#0, where s=s(F}). Since n(m—1, e)=n(p, t) there exist ele-
ments ¢, and i, 0f Cum-1,» such that C; SCs, C;, S C\Cs, ¢ulg)(x)NCi#0
and (g Xx)NC3,#0.

By property (9) of Lemma 3.2 it follows that for every z&[ we have
Dn(g)(2)NC3,#0 and Pn(g2)(2)N\Ci,#0. This means that d(z, m, )NU(m,, p, 1, )
£0 and d(z, m, I)N(C XANU(m,, p, t, F1))#0, that is, d(z, m, )NU=+p and
d(z, m, r)N(C x ANU)=#0. Hence, the neighbourhood O(x)=F is the required
neighbourhood of x in M,(A7).

3.6. LEMMA. Let d=d(x, m, r)&T() and V=V (3, p, HE V. The following
are true:

(1) If d<SV, then there exists an integer n=0 such that U(d, n)EV.

(2) If ANV =0, then there exists an integer n=0 such that U(d, n)"\V =0.

(3) If dN\V #0 and dN(C X ANV )0 then there exists an open ana closed
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neighbourhood O(x) of x in Mu(AT) such that d(z, m, )NV #0 and d(z, m, )N
(CXANV)#D for every z< O(x).

PrOOF. (1) By properties (1) and (8) of Remarks 3.4 it follows that p<<m
and ATSAP. Hence n(m, r)>n(p, t). Let F=F(n(m, m, r), x).

Since dSV and n(m, r)>n(p, t) we have that ¢.(g)Xx)SC; for every g= A™,
Hence, by property (9) of Lemma 3.2 it follows that (Pm(gXF)*SCs.

By property (11) of Lemma 3.2 and since n(m, r)>n(p, t) we have Csp
EC;. Since APS AP we have Cypm XATSC; X AP. Hence, U(m, m, r, F)=
U(d, 0)SV(, p, t). Thus, the integer n=0 is the required integer.

(2) If ATNAP=0, then for any integer n€N, U(d, )"V =0. Hence, we
can suppose that ATNAP+0.

Let m<p. Then, APSA™. Let F=F(n(m, p, t), x). By the definition of
the elements of V it follows that U(m, b, t, F)N(Ci X AF)=0. Setting n=m,—m
we have U(d, n)"\(C X AP)=U(m, p, t, F). Hence, U(d, n)N\V(, p, 1)=9, that is,
the integer n=m,—m is the required integer.

Now, let p<m. Then, APTS AP. Let ecI(m—1) such that A A™"' and
F=F(n(m, m, r), x).

We have U(d, 0)=U(m, m, r, F)=C,pyX AT (See property (12) of Lemma
3.2). Hence, U(d, 0)N\V #0 if and only if CspyN\C;0.

If g AT, then st((Pn(@)(F)*, nim, r))=Csr, (See property (11) of Lemma
3.2). Since dNV =0 it follows that st(¢n.(g)(x), n(p, ))NC;=0. Since n(m—1,e)
zn(p, t), we have sH{n(gXx), n(m—1, e))Sst{dn(g)x), n(p, 1)) and, hence,
stidm(g)x), n(m—1, e)) \C;=0.

By property (9) of Lemma 3.2 it follows that st(¢m(g)(x), n(m—1, &)=
st(Pm(@)F))*, n(m—1, ¢)). Since n(m, r)>n(m—1, ¢) we have st(Pm(g) )%,
n(m, r)S st(Pm(g)F))*, n(m—1, e)) and, hence, st m(@)IN*, n(m, r)IMNC;=0,
that is, the integer n=0 is the required integer.

(3) As in case (1) we have p<m and ATS AP. Let e=I(m—1) such that
ATCS AP and let F=F(n(m, m, r), x).

Since dN\V #0 there exists g, AT such that ¢.(g.)(x)NCi;=0. Also, since
dN(CXRANV)#0 there exists g,& AT such that ¢n(g,)(x)N\(C\C;)#0. Since
n(m—1, e)=n(p, t) there exist 1), 1€ Locm-1,» such that C; €Ci, C;,EC\Cy,
D@ )X)NC1,#0 and P(g:)X)NCi,#0.

By property (9) of Lemma 3.2, for every g A™ and for every z&F we
have ¢n(g)2)NC;,#0 and ¢n.(g)z)NC;,#0, and, hence, Pn(g)z)NC;+#0 and
On(g)N(CNC7)#0, that is, d(z, m, YNV 0 and d(z, m, ’N{(C X ANV )=0.
Thus, the neighbourhood O(x)=F is the required neighbourhood of x in M, (AT).
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3.7. LEMMA. Let d={(a, g)}, where g=(S, D), V, V.V and U, U,U.
The following are true:

(1) If dSC;xX A, then there exists an element W of OUV such that d<
WS Cix AP,

(2) If VNV .#0, then either VSV, or V,EV.

(3) If dSVNU, then there exists an element W of OUV such that d=W
cVnNu.

(4) If dSUNU,, then there exists an element W of UNYV such that d=W
cUNU,.

(5) If dNV =0, then there exists an element W of OUV such that dSW
and WNV=0.

6) If dNU=0, then there exists an element W of UUV such that dSW
and WNU=0.

PROOF. Let i= L, and let & be an integer such that k—1=max{n, m}.

There exists an integer p=k such that si(a, n(p, NN st((Dy)*, n(p, 1))=0
for every ¢<k, where t=r(p, g).

Let j& L, and a=Cj; Suppose that jé&s(p,t). Then, the set W=
C;xX A} belongs to V. Obviously, we have {(a, g)}SW, C;SC; and APSAT.
Hence, WSV, that is, W is the required element of UuUV. Suppose that j&
s(p, t), that is, jEs(g, p, t, F) for some ¢, 0<g=<p, and some Fe(MAP)r@r-b,
Hence, C;S st((¢g(g)F)*, n(p, t)) (See property (11) of Lemma 3.2). This means
that st(a, n(p, HNst(Dy*, n(p, 1))+ and, hence, k<q.

Let x=F and ¢g(g)(x)NC;#0. Since ¢>n we have that ¢(g)(x)SC;. Let
Q=F(n(g, g, ¢), x), where e=r(g, g). Since n(¢—1, r(g—1, g))>n we have that
st g)(x), nlg—1, r(g—1, g))EC; and, hence st (g)Q)*, nlg—1, r(g—1, g))
=C; (See property (9) of Lemma 3.2). Since n(q, e)>r(p—1, g)) we have
st @)X QN*, n(g, e)=CospECi.

By properties (11) and (12) of Lemma 3.2 it follows that Ulq, q, e, Q)=
Cop X AISCix AISV.

Since {(a, @)}SU(q, ¢, e, Q)=U(d(x, g, ), 0)U, the set W=U(q, ¢, ¢, Q) is
the required element of UUV.

(2) Let V=V(@, m, r) and V,=V(j, p, t). Since VNV ,#0 we have ATNA}
#0 and C;NC;#0. Let m<p. Then, APSAT and since n(p, H)Zn(m, r),
C;SC;. Hence, V,&V. Similarly, if p<m, then VEV,.

(3) Let U=U(d(x,m,7),n) and V=V(, p,t). We have {(a, @)}S
U(m, q, e, F)=Csp, X AYSU, where g=m-+n, e=r(g, g) and F=F(n(m, g, ), x).

Let k=max{p, q} and n,=max{n(p, t), n(q, ¢)}. Let s be a subset of all
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elements j of L, for which C;SCiNCypy. Then, C;=CiNCyry. Also, we
have AfNAI=A%w, 5. Then, dS(CiXADN(Cscrm XAD=Cs X Abr, nEVNU.
Hence, the proof of this case follows from case (1).

4) Let U=U(d(x, m, ), n) and U,=U(d(x,, my, r1), ny). As in case (3)
we have dS Cypy X AISU, where g=m-+n, e=r(q, g) and F=F(n(m, q, e), x).
Similarly, dSCsrpXAUCSU,, where g¢=m+n, e=r(q, g) and F=
F(n(my, q, e)), x).

Let p=max{q, ¢.} and k=max{n(q, g), n(q:, g)}. There exists a subset s
of L, such that C,=CyNCsrp. Hence, dS(Cscrmy X ADN(Ciscrp X A=
Csx APSUNU,, where t=r(p, g). The rest of the proof of this case follows
from case (1).

(5) Let V=V (i, m, ») and let a=Cj, where € Lycm. 5. Since dNV=0 we
have that either C;"\Cj=0 or ATNATn, ,»=0. Hence, (C;X ATm, ) (Ci X AT)
=0. Since {(a, @}SC;XR AT(m 4, the existence of the set W follows from
case (1).

(6) Let U=U(d(x,m, r), n). Let i be an element of L,, where k=
n(m+n, r(m+n, g)), such that a=C;. Then, it is easy to see that (C; X AT 0 55)
NU=0. Hence, the proof of this case also follows from case (1).

3.8. LEMMA. Let d,, d,&T and d,#d,. Then, there exist elements W, and
W, of OUV such that d\SW,, d,SW, and W,"\W,=0.

PrROOF. We consider the cases:

(1) di={(a\, g1)} and d,={(a,, g.)},

(2) d,={(a, g)} and d,=d(x, m, r)&T(1), and

(3) di=d(x\, my, r)ETQ) and d,=d(x,, m,, r)=T(1).

In the first case either a,=a, or a,=a, and g,+g,. If a,#a,, then there
exist an integer n and distinct elements : and j of L, such that ¢,=C; and
a,&Cj; Then, we set Vi=C;X A, and V,=CiX Abco, 4.

If a,=a, and g,#g,, then there exists an integer m such that r(m, g,)#
r(m, g,). Then, we set V,=CgX ATn ,, and V,=CsR A%m, 40

In both subcases we have d,&V,, d.&V, and V,NV,=0. By case (1) of
Lemma 3.7 there exist elements W, and W, of U\UV such that d,SW,SV, and
d,EW,EV,. Hence, W,NW,=0.

In the second case if g¢ A™, then there exists an element W, of U\UV
such that d,EW,ECyX A%m. .. Let W,=U(d(x, m, ), 0). Then, W,NW,=0.

Let g AT. Then, a&¢dn(g)x). There exists an integer p=m such that
st(a, m)Nst(Dx)*, n)=0, where n=n(p, »(p, g)). Let i=L, such that a=C;.
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Then, i&s(m, p, e, F)=s(F), where e=r(p, g)and F=F(n(m, p, ), x) (See pro-
perty (11) of Lemma 3.2).

Let W,=U(d(x, m, r), p—m). We have W,"\(CgX AP)=U(m, p, e, F). Since
U(m, p, e, F)=CycpyX A? and since i=s(F) we have of d&W,.

By property (6) of Lemma 3.7 it follows that there exists an element W,
of UUV such that dSW, and W,N\W,.

Finally in the third case we consider the following subcases: (@) m,=m,
and r,#7,, (8) my=m, and r;=r,. and (7) m,+=ms,.

In the first subcase we set W,=U(d(x,, my, 1), 0) and W,=U(d(x,, ma, s), 0).
Obviously, d,SW,, d,SW, and W, \W,=0.

In the second subcase let n,=n(m,, m,, r,) be an integer such that there
exist two distinct elements F, and F, of (M, (A7) for which x;<F, and
x.<=F,. Let n=n,—n(m, my, r1). We set W,=U(d(xy, my, 71), n) and W,=
U(d(x,, my, v,), n) and we prove that W, \W,=0.

Indeed, if W,nW,+#0, then there exists an element r<I(m,+n) such that
AP AT and (W N(Cyg X APV, N (Cyx AT1%)=0.  We have WiN
(CegX A™M™y=U(m,, my+n, r, F;) and W,N\(CgxX A™1*") = U(m,, my+n, v, Fy).
Hence, U(m,, t,, m,+n, FONU(m., me+n, v, F,)#0. By property (14) of Lemma
3.2 this is a contradiction.

In the third subcase, without loss of generality, we can suppose that m,<m,.
Then, either A72S AT or ATNA™M=0. If AT2S A7, then we set W,=
U(d(x,, my, ry), my—m,) and W,=U(d(x,, m,, r,), 0). Obviously, we have W ,NW,
=U(m,, ms, vy, FONU(m,, my, vy, F5)=0, where Fi=F(n(my, m,, 7,), x;) and F,—
F(n(msy, my, 75), xs).

If A72NA7:i=0, then it is sufficient to put W,=U(d(x,, my, r,), 0) and W,=
U(d(x,, my, 75), 0).

3.9. LEMMA. Let d=T and dSWeUOUV. There exists an element W, of
OUV such that dSW,SW and every element of T(l) intersecting W,, is con-
tained in W.

ProoF. First we suppose that d=d(x, m, r). By property (1) of Lemma
3.5 and property (1) of Lemma 3.6 if follows that there exists an integer n=0
such that U(d(x, m, r), n)SW.

We prove that the set W,=U(d(x, m, r), n+1) is the required element of
ouv. Indeed, let d,=d(x,, m;, r)=T(1) and (a, g)ed,"W,. We have
Uld(x, m, ), n+1DN(CygX AP)=U(m, p,t, F), where p=n+m+1, t=r(m+n+1, g)
and F=F(n(m, p, t), x).
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If m,<p, then we can consider the set U(m, p,t, Fi), where Fi=
F(n(my, p, 1), x1). Since (a, g)€U(m, p, t, F)NU(my, p, t, F1) by properties (13)
and (14) of Lemma 3.2 it follows that m=m, and F=F,. In this case, by the
definition of the elements of the set U it follows that d,SU(d(x, m, r), n+1)
cU(d(x, m, r), n).

Hence, we can suppose that m-+n-+1<m,. We have (a, g)€U(m, p, t, F)=
Csery X AP, Hence, a<Cicm.

Let a=C; and i< L,, where k=n(m,—1, r(m,—1, g)). Since a<Cyr> and
k=zn(p, 1) we have C;ECs(r>.

By property (9) of Lemma 3.2 it follows that if g,=(S;, D1)E AT¢n-1.0
then ¢ni(g:)(x)NCi#0 (we observe that a&¢a (g)xy), that is Pmy(g XD
st (g ) FN*, n(p, 1)#0. By property (10) of Lemma 3.2 it follows that
Gu(g)(x) S st(Pml(@ X QN*, nim~+n, rim+n, g)=Csq, where Q=F(n(m, m+n,
r(m+n, g)), x). This means that d:S Csg X AFisn, p=U(m, m+n, r(m+n, )
cU(d(x, m, r), n).

Now, we suppose that d={(a, g)}, where g=(S, D). It is easy to see that
there exists an integer m=0 such that (a, 2)=CiXAFwm »HEW, where e
Locm.rem. g+ L€t qo be an integer such that go—1>n(m, r(m, g)). Since D is
an upper semi-continuous partition of S there exists an integer p=gq. such that
si(a, n(p, ONst(DY*, n(p, t)=0, for every g=q, where t=r(p, g).

Let s be the subset of L, ., for which a=C, and either s={;} and ;&
s(p, ) or s=s(g, p,t, F)=s(F) for some ¢, 0=¢g<p, and some F=
F(n(g, p, 1), M)

We set W,=C,X APV and we prove that W,SC; X A¥m.,». This is clear
if s={j}. Suppose that s=S(F). Then, st(a, n(p, HNst(Dy)*, n(p, 1))#0 and,
hence, go<g.

Let x=F and ¢g)x)Nst(a, n(p, 1))#0. Since g¢>n(m, r(m, g)) and
st(a, n(p, DS C; we have that ¢{g)(x)ECs.

Let Q=F(n(q, ¢, (g, £)), x). Since n(g—1, r(g—1, g))>n(m, r(m, g)) by pro-
perty (9) of Lemma 3.2 it follows that (¢,(g)(@)*S C; and hence, st((¢(gX@))*,
n(g, v(g, @N)=Cs & Ci-

By properties (11) and (12) of Lemma 3.2 it follows that U(g, ¢, r(¢, g), @)
=Csp X AL S CjX Am. 5. Since U(q, p, t, F)=U(g, ¢, r(¢, £), @) we have
WS CiXR ATim, o>-

Now, we prove that if d,=7T(1) and d,"\W#0, then d,SC; X A%m.p». In-
deed, let d,=d(x,, my, ;) and (a,, gn)=d NW..

If m,<p, then we can consider the set U(m, p, t, F1)=U(F), where Fi=
F(n(my, p, 1), x1). Obviously, d, "W, SUF)INW,. 1t s={;} and jé&s(p, t), then
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U(F))NW,=0 which is contradiction. Hence, s=s(F) and since U(m,, p, t, F)
NU(g, p, t, F)+0 by properties (13) and (14) of Lemma 3.2 it follows that m,=gq
and F=F;. Hence, d,SUF)=W,SCiX A%m. o>

Thus we can suppose that p<<m,. Obviously, A7l ., SAP. Since a,€C;s
and n(m,—1, r(m,—1), g))=n(p, t) by property (9) of Lemma 3.2 it follows that
if go is an arbitrary element of A7ln, .5, then ¢n (ga)(x)NCs#0.  Since m,>
n(m, r(m, g)) we have that Om (goXx1) & Cy, that is, d;S Ci X ATm, o>

3.10. DEFINITIONS AND NOTATIONS. For every U=U(d, n)eU (respectively,
V=V, m, reV) we denote by O(U) or by O(d, n) (respectively, by O(V) or
by O@, m, r)) the set of all elements d =T such that d SU (respectively, dSV).

We denote by U (respectivety, by <V) the set of all sets of the form OU),
UeU (respectively, O(V), VeV). Also, we set B=U\Jcy.

Let m& N, rel(m) and F be a subset of M, (A7). We denote by d(F) the
subset of T consisting of all elements d(x, m, ), where x&F.

By d(m, r) we denote the map of M,(AT) onto d(M,(A?)) defined as fol-
lows: d(m, r)(x)=d(x, m, r). Obviously, the map d(m, ») is one-to-one.

We say that a pair (S, D), where S is a subset of C and D is an upper
semi-continuous partition of C, has the dense property iff for every k=0, 1, ---
and for every a=d<eD, the point a is o limit point of the set S\(D,)*.

3.11. THEOREM. The set B is a countable basis of open sets for a topology
7 on the set T. The space T (that is, the set T with topology t) is a Hausdorff
regular space. The boundary of every element of B is a countable free union
of subsets of T which are homeomorphic to closed subsets of elements of M.
Moreover, if every element of the family A has the dense property, then the
boundary of every element of B is a countable free union of subsets of T which

are homeomorphic to simultaneously open and closed subsets of elements of M.

PrROOF. If m, neN, rel(m), FE(M.(A®)*, where k=n(m, m, r)+n, and
x, yEF, then U(d(x, m, r), n)=U(d(y, m, r), n). From this and since for every
m&N the set A™ is countable it foljows that the set U, as well as, the set 7
are countable. Hence, B is a countable set.

It is easy to see that the union of all elements of B is the set 7. Hence
in order to prove that B is a basis of open sets for a topology on the set T it
is sufficient to prove that if d=7, W,, W,eUUV and d€OW,)"\O(W,), then
there exists an element W of U\UV such that d=OW)S OW )NOW,), that is,
dEWEW ,NW,. This follows immediately from the properties (1) of Lemma
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3.5, (1) of Lemma 3.6, (5) of Remarks 3.4 and from properties (2), (3) and (4)
of Lemma 3.7.

Let ¢ be the topology on T for which B is a basis of open sets. By Lemma
3.8 it follows that the space T is a Hausdorff space.

We observe that by properties (2) of Lemma 3.5, (2) of Lemma 3.6 and by
(5) and (6) of Lemma 3.7 it follows that in the space T the boundary of every
element of B is contained in the subset 7'(1) of T. Hence, by Lemma 3.9 it
follows that the space T is regular.

Let meN and rel(m). We prove that the map d(m, r) of M,(AT) onto
d(M,(A™)) is a homeomorphism. Indeed, by properties (1) of Lemma 3.5, (1)
of Lemma 3.6 and (5) of Remarks 3.4 it follows that the set {U(d(x, m, »), n),
ne N} is a basis of open neighbourhoods of d(x, m, ) (in the space T).

On the other hand, the set {F(n(m, m, r)+n, x): n N} is a basis of open
neighbourhoods of x in M,(A?) (See Definitions and notations 3.1).

Also, by the construction of elements of U it follows that an element
d(y, m, r) of d(Mn)A™) belongs to U(d(x,m,r), n) if and only if ye
F(n(m, m, r)+n, x). From this it follows that the map d(m, ») is a homeo-
morphism.

Let meN and rei(m). Let V=C;xX A%, where s is a subset of L,
such that either s={i} and i¢s(m,r) or s=s(F) for some element F of
MAT @™ (<g<m. We grove that for every p>n(m, r) and t<I(p) is
ye M,(AP) and d(y, p, H"\V #0 (hence, A?E AT), then d(y, p, HEV.

Indeed, let (a, g)=d(y, p, HNV. Let a=Cj where JE Lyp-y, rp-1,g». Since
n(p—1, r(p—1, g)>p—1=n(m, r) we have that C;&C,. By property (9) of
Lemma 3.2 it follows that ¢,(g.)(y)NC;+#0 for every gi=Af. Since p>n(m,r)
we have that ¢,(g)(¥)EC, and, hence, since A7S AT we have that d(y, p, ?)
CC;xAP=V.

Now, let s=1{i} and i¢s(m, »), that is, V=V(@, m, »V. Then, by pro-
perty (8) of Remarks 3.4 and by Lemma 3.6 (properties (1) and (2)) it follows
that the boundary Bd(O(V)) of the element O(V) of B is contained in the set
B(k, m, ¥), where k=n(m, r), which is the union of all sets of the form
(M, (AY), where m<¢g<k and ecI(q) such that AIS AT.

We prove that the set B(k, m, r) is the free union of the corresponding
sets d(M,(A®). For this it is sufficient to prove that for every ¢, m=<¢=k, and
for every e<I(g) for which AIS A%, there exists and open subset H(g, e, m, 7)
H(gq, e) of T such that B(k, m, r)NH(q, e)=d(M(AY).

For every Fe(M(AD)r@ea*tk-1 by x(F) we denote a point of F. We set
H(g, )=\Ur0O(d(x(F), g, ¢), k—q). Obviously, H(q, ¢) is an open subset of T.
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Also, it is easy to see that d(M(AD)SQ(k, m, r)N\H(g, e).

Let d(v, q1, e))E B(k, m, r)\H(q, ¢). We prove that d(y, q., e;)=d(MAY).
Indeed since d(v, ¢,, e)=B(k, m, r) we have m<g,=k and ALUS AT. There
exists an element F of (M(AY)"@ee+k-2 guch that d(y, ¢,, eDNU(d(x(F), g, e),
k—q)#0. Let (a, g) belongs to this intersection. Consider the sets
Ulgy, b, r(k, g), F)=UF,) and Ulq, k, r(k, g), F)=U(F), where F=
F(n(qq, k, v(k, g)), v). Since (a, g)€U(F)N\U(F,) by properties (13) and (14) of
Lemma 3.2 it follows that ¢=¢, and F=F,, that is, d(v, q, e;)=d(M(AY).

Thus, B(k, m, r)NH(q, e)=d(MA%?)) and hence, the boundary of the set
O(i, m, r) is a countable free union of subsets of T which are homeomorphic
to closed subsets of elements of M.

Suppose now that U=U(d(x,, m,, r1), n;) be an arbitrary element of U.
Let m=m,+n,. We prove that the boundary Bd(O(U)) of the set O(U) is con-
tained in the union of all sets of the form B(n(m, ), m, r), where r&I(m) and
ArS AT

Indeed, let d(y, p, )& Bd(OU)) and let (a, g)=d(y, p, )NU. There exist
an integer ¢, 0<¢=<m, an element »<I(m) and an element FE(M(A™)*@™ ™
such that (a, g)=U(g, m, r, F)=U(F). If p<m, then we can consider the set
Up, m, r, Q)=U(Q), where Q=F(n(p, m, r), ). (We observe that »(m, g)=r).
Then, (a, g)sU(F)NU(Q) and, hence, p=¢ and F=@, that is, d(y, p, HEU,
which is a contradiction. Hence, m<p.

On the other hand, since U(F)=C,py X A%, d(y, p, ONU#0 and d(y, p, 1)
ZU by the preceding it follows that p=n(m,r). Hence, d(v, p, HE
B(n(m, r), m, r).

Let k=n(m, ). For a fixed r&I(m) as we already proved the set B(k,m,r)
is the free union of the corresponding sets d(MyA%). Since the union of all
elements of H(q, e, m, r) is contained in the set C X A7 we have that the union
of sets B(k, m, r) for all r=1(m) for which AFS AT} is also free.

Hence, the boundary of the set O(d(x,, m, 1), m;) is a countable free union
of subsets of T which are homeomorphic to closed subset of elements of M.

Finally, suppose that every element of the family A has the dense property.
In this case we prove that if OW)e=B and d=d(x, m, r)=T(1) such that
d{x, m, »NW =0 and d(x, m, ’N{(C X ANW)=0, then d< Bd(O(W)).

Indeed, obviously, dOW). Let g€ AT such that (Pn(g)(x)X {gHhNW £0.
Let OU) be an arbitrary neighbourhood of d in 7. We prove that O(U)NOW).
+0. We can suppose that U=U(d(x, m, r), n) for some integer ne N.

Let ¢n(g)x)={a, b}<=D(1). We can suppose that (a, g)&W and that there
exists an integer ¢ such that (a, g)€V=C;xX A% »EUNW, where s is a sub-
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set of Lacg rea g and either s={i} and ics(g, »(g, g)) or s=s(F) for some ele-
ment F of (My(A%q )™, where n,=n(k, g, (g, g)) and 0<k<m. Let VN
(Cx{g})=0x{g}. Then, O is an open neighbourhood of ¢ in C.

Since g has the dense property there exists a point c= ON(SN(Dn)*) such
that either ceS\(DA)* or ced,=D, and p>nlg, (g, g)). In the first case,
{(c, 2}=0(V)SOWU)NOW), and hence OUINOW)+0.

In the second case, let y& M,(A%, ,») Such that c=¢,(g)(y). As we proved
above, d(y, p, r(p, g)EV. Hence, d(y, p, r(p, g2HeOVISOUNOW) and
oUNOW)=0. Thus, de Bd(OW)).

By properties (3) of Lemma 3.5 and (3) of Lemma 3.6 it follows that the
boundary of every element of B is a countable free union of subsets of T
which are homeomorphic to simultaneously open and closed subsets of elements
of M.

4, Some properties of scattered spaces.

Definitions and notations. Let a=f+m be an ordinal, where f=8(a) and
m=m(a)>0.

We denote by Tr(a) the set of all triads 7=(a, X, M) such that: (a) M is
a compactum having type a, (8) M‘““~“={a}, and (y) X is a subset of M for
which MN\M% S X. We observe that if U is an open and closed neighbourhood
of a in M, then the triad (a, XN\U, U)=2(UU) is an element of Tr(a).

Let 7,=(a,, Xi, M,) and 7,=(a,, X;, M,) be two elements of T.(a). We say
that 7, and ¢, are equivalent and we write r,~7, iff there exist: (a) an open
and closed neighbourhood U of @, in M,, (8) an open and closed neighbourhood
V of a, in M,, and () a homeomorphism f of U/ onto V such that f(UNX,)=
VN X, (Obviously, in this case f(a,)=f(a,)).

It is easy to prove that the relation “~” on the set 7r(a) is an equivalent
relation. We denote by ET7(a) the set of all equivalence classes of this rela-
tion. For every 7T ,(a) we denote by e(r) the equivalence class of ET#(a)
which contains the element 7.

Let 7=(a, X, M)eTr(a). An open and closed neighbourhood U of a in M
is called stanaara iff tor every r,=(a,, X,, Mj)=e(r) there exists an open and
closed neighbourhood V of g, in M, and a homeomorphism f of U onto V such
that f(UNX)=VNX,. In this case we say that the element r has a standara
neighbourhood. 1t is clear that it an element of an equivalence class of ETr(a)
has a standard neighbourhood, then every element of this class has also a
standard neighbourhood.
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The element 7 is called standare iff the neighbourhood U=M of a is
standard. Obviously, if U is a standard neighbourhood of a in M, then =)
is a standard element of e(z).

It is easy to prove that an open and closed ueighbourhood U of @ in M is
standard if and only if for every neighbourhood W of a in M there exist an
open and closed neighbourhood V of a in M, which is contained in W and a
homeomorphism f of U onto V such that f(UNX)=VNX.

We denote by P(a) the set of all pairs {=(X, M) such that M is a com-
pactum having type a« and X is a subset of M for which M\M¥® < X.

We say that the pairs {;=(X,, M,) and {,=(X,, M,) of P(a) are equivalent
and we write {~{, iff there exists a homeomorphism f of M, onto M, such
that f(X)=X,.

It is clear that the relation “~” on the set P(a) is an equivalent relation.
We denote by EP(a) the set of all equivalent classes of this relation and for
every {=P(a) by ¢({) the equivalence class of EP(a) which contains the ele-
ment .

4.2. LEMMA. For every isolated ordinal a the set ETr(a) is finite and every
element of this set contains a standard element of Tr(a).

PROOF. Let a=f—m, where B=f(a) and m=m(a)>0. We prove the
lemma by induction on integer m.

Let m=1. Let 7,=(a,, X;, M\)eTr(a) and t,=(a,, X,, Mp)eTr(a) such
that X,=M, and X,=M\MP=M\{a,}.

Let r=(a, X, M) be an element of Tr(a). Then, M®=M@-V={q} and,
hence, either X=M or X=M\MP® =M {a}. By [M-S] it follows that there
exist a homeomorphism f, of M; onto M and a homeomorphism f, of M, onto
M. We have that if X=M, then f,(X)=X and if X=M\M®, then f,(X,)
=X. Hence, either e(r)=e(r,) or e(r)=e(r,), that is, ETr(a)={e(r,), e(r,)}.
Also, by the above it follows that the elements 7, and r, are standard.

Now, we suppose that the lemma is proved for every m for which 1<m<n
and we prove it for m=n.

Let ETr(a,)={e'(a—1), ---, e(la—1)}. For every k=1, ---, t we denote by
Ha—1)=(c*, X*, M*) a fixed standard element of e*(a—1).

Let r;=(a;, X;, M;), 7=1, 2, be two arbitrary elements of 7r(a). Whithout
loss of generality we can suppose that the spaces M, and M, are metric.

Let M{*=\M{*"V={b;,, bsy, -}, j=1,2, -~-. Every element of these sets
is isolated (in the corresponding relative topology). Let W$; be an open and
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closed neighbourhood of b;; in M; such that W);\M{*»={b;;}. Then the triad
75=(b;s, X;N\W§;, W},) is an element of Tr(a) and the element e(r;;) of ET#(a)
is independent from the neighbourhood W9;, that is, if W/, is another such
neighbourhood of b;; in M; and zj;=(b;;, X;N\W};, W), then e(r;)=e(c};). We
denote by e;; the element e(r;;).

There exists an open and closed neighbourhood W;; of b;; in M;, j=1, 2,
i=1, 2, -+, such that: (a) Wun\M{*®P={by}, (B) W;,"\W;,=0 if i,#4,, )
sz (diam(W ;;))=0, (0) a;s(Mp \W)*=2, where W,=W,;\UW,,_/--- and (g) if

2;;=¢*99(a—1), then there exists a homeomorphism f;; of M*¥® onto W,; such
that f;;(X*99)=X,NW;;. We observe that by the properties of the sets W,
it follows that W, j=1, 2, ---, is an open subset of AM; such that CI(W;\W;
={a;}.

Let V; be an open and closed neighbourhood of a; in M, \W; such that
(V)e®={a;}. Then, the triad 7=(a;, X;N\V,, V;) is an element of Tr(a—1).
We can suppose that if e(z/)=e*“’(a—1), then there exists a homeomorphism
f; of M*¥> onto A; such that f{(X*P)=X;NV;.

There exists an open and closed neighbourhood U;, j=1, 2, of a; in M,
such that: (a) UN\MNW )=V, (B) if for some integer i=1, 2, ---, W;;N\U;+#0,
then W;,€U;, and (7) if for some integer i, W;;SU;, then thele exists an in-
creasing sequence of integers 7, 7,, - for which Wi, SU; and eji=e;;,, q=
1,2, .

Now, we prove that z,~7, if the following conditions are true: (a) e(z')
=e(7?) and (B) if for some integer k={1, -, ¢} there exists an integer #(1)=>1
such that W, EU, and ey;,=e*(a—1), then there exists an integer #(2)=1
such that Wy, SU, and ey;y=e*(a—1).

Indeed, it is not difficult to prove that between the set U ,N(M{*P>\M @b
and the set U,N\(M{*~P\M{*~V) there exists an one-to-one correspondence such
that if b,, corresponds to by, then e;,=e,,.

We construct a homeomorphism f of U, onto U, as follows: on the set V,
we set f=f,of7'. Let W, EU,. Then, b,=U, and if b,, corresponds to by,
then on the set W,, we set f= fy°fi3. Obviously, f is a homeomorphism of
U, onto U, such that f(X,NU,)=X,N\U,. Hence, 7,~7,.

From the above it follows that the number of equivalence classes of the set
Tr(a) is finite, that is, the set ETr(a) is finite.

In order to complete the lemma it is sufficient to prove that every element
of ETr(a) contains a standard element of Tr(a). For this, since 7, is an
abitrary element of Tr(a), it is sufficient to prove that z,(UU,) is a standard
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element.

Let W be an arbitrary neighbourhood of a in M,. LetV be an open and
closed neighbourhood of a, in M,\W, such that: (a) VEW and (B) there exists
a homeomorphism fy of M*® onto V for which fy(X*®)=X,NV.

There exists a neighbourhood U’ of a, in M, such that: (o) U'EW, (B)
UNM W)=V and (7) if for some integer i, W,;NU’+0, then WLeU'.

A homeomorphism f’ of U, onto U’ for which I XinU)=X,NU" can be
constructed in the same manner as we constructed the homeomorphism f of U,
onto U,. Hence, «(U,) is a standard element.

4.3. THEOREM. For every isolated orainal a the set EP(a) is countable.

PROOF. Let a=f+m, where pf=f(a) and m=m(a)=1. We prove the
theorem by induction on integer m.

Let m=1. For every i=1, 2, --- we denote by M; a compactum such that
|M{*D|=|M{#|=4. Hence, if X, and X, are two subsets of M, for which
M\M®CSX,NX,, then X,=X, iff X,\M@ V=X, MD, Therefore, the
number of such set is finite. Let X, ---, Xii; be these sets and let L=
(Xij, M), =1, 2, -, j=1, -, t(3).

Let {=(X, M) be an arbitrary element of P(a) and let | M2 =4, Then,
by [M-S] there exists a homeomorphism f of M; onto M. There exists an
integer j, 1=<;7<t(), such that X,;=f-'(X). Hence, f(Xi)=X, that is, {~C,;.
From this it follows that the set EP(a) is countable.

We suppose that the theorem is proved for every m for which 1<m<n and
we prove the theorem for m=n.

Let '=(c,, X', M"), ---, 2=(c?, X?, MP) be standard elements of Tria—1)
such that ETr(a—1)={e(z'), ---, e(z?)}. Also, let {(1)=(X(1), M(1)), £2)=
(X(2), M(2)), --- be elements of P(a—1) such that EP(a—1)={e(1)), e(C2)), --}.

Now, let {;=(X;, M;), j=1, 2, be two arbitrary elements of the set P(a),
such that |Mj*-?|={a;, -, a;}. Without loss of generality we can suppose
that the spaces M, and M, are metric. There exists en open and closed subset
Uji of M;, j=1, 2, t=1, ---, 4, such that: (a) Ujs NU j3,=0 if @54, (B) UjL -
VUj;i=M;, and (1) a;:€U ;.

Let Ujn(M{e2\M{* )= {b};, b%, --}. Let (W%)* be an arbitrary neigh-
bourhood of % in M, k=1,2, -, such that: (@) (W4)°SU;, and (B) a1
Mj*-2={bs}. We denote by e%; the element e(z%,) of ETr(a—1), where th=
(b5, X;NWE)°, (W5.)°).  Obviously, the element % is independent from the
neighbourhood (W%,)°.
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For every j=1, 2, i=1, -, t, k=1,2, -, let W% be an open and closed
neighbourhood of b% in M, such that: W%SU;, (B) WhnM*—>={by:}, )
WHAW =0, if ki# ks, (3) lim (diam(W}))=0, () the set (U;~\W ;) ®, where

W, =W3i,UW2\U - contains at least two distinct points and the point a;; be-
longs to this set, and ({) if ef;=e(r"¢*/¥), then there exists a homeomorphism
f% of M7 onto W% such that fE(XT#D)=X;NW*%. Obviously, W;; is an
open subset of M; such that CI(W;)\W;;={a;}.

Let V;; be an open and closed neighbourhood of a;; in M;»W;; such that
VEUj and (V)@ P={a;}. The triad 7;;=(a;s, X;N\Vj;, Vi) is an element
of Tr(a—1). We suppose that if e(r;;)=e(r”¥®), then there exists a homeo-
morphism f;; of M"Y onto V;; such that f;(X"99)=X;NV .

We observe that the set Hy;=U, W,/ \UV;;,) is an open and closed subset
of M, and by property () of the sets W#, it follows that (H,,)"®#0. Hence,
the pair {;;=(X;N\H;;, H;:) is an element of P(a—1).

If e;)=elg(j7))), then by g;; we denote a homeomorphism of M(q(j7))
onto H,; such that g;(X(q(Ui)=X;NHj;.

Now, we prove that {,~, if the following conditions are true: (a) for a
given element e(z") of ETr(a—1) and for a fixed integer ¢, the number of ele-
ments b%; of the set {bl, b}, ---} for which e(r")=e}; is the same with the
number of the elements b%; of the set {b};, b3, -} for which ef;=e(z"), (B) for
every integer i=6, -, t, e(ri)=e(ry), and (7) for every integer i=1, -, t,
e(li)=e(Cs)-

Indeed, by the above condition (a) it follows that for every integer i, be-
tweed the elements of the set {bl;, b}, ---} and the elements of the set {b,

2,, -} there exists an one-to-one correspondence such that if b%; corresponds
to by;, then ef;=ej;.

We construct a homeomorphism f of M, onto M, as follows: for every
integer 7, on the set V,; we set f=fy,;of1/ and on the set H,; we set f=
gsiogit. 1f the point b%; corresponds to bj;, then on the set Wk we set f=
fro(fi)'. It is easy to prove that f isa homeomorphism of M, onto M, such
that f(X)=X..

From the above it follows that the set EP(a) is countable.

4.3.1. REMARK. From Theorem 4.3 it follows Lemma 2 of Section 1.3 of
[1,], that is, for a given isolated ordinal a the set of all (mutually non-homeo-
morphic) spaces X for which there exists a compactum K having type a, such
that XS K and KNK#®Z X, is countable.

Also, from Lemma 4.2 it follows Lemma 1 of Section 1.2 of [I,].
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5. Universal spaces.

5.1. DEFINITIONS. Let >0 be an ordinal and & N such that 0< £ <m*(a)—1.
Let X R%.(a). An extension X of X is called a c-extension (respectively, lc-
extension) iff X has a basis BX)={V,, V,, ---} of open sets such that:

(1) the set Bd(V,), i=0, 1, -, is a compactum (respectively, a locally com-
pact subset of X ),

(@) type(Bd)V N=a+k+1,

3 type((BA(V )N X)I(BA(V )\N(Bd(V ) <a,

@) loc-com-type(( BA(V )N X)I(Bd(V IN(Bd(V ) EeON<q+ k.

We observe that by Lemma 2.4 for every element X< R}.(a) there exists a
c-extension of X. Also, if X is a c-extension of X, then using the method of
the proof of Lemma 1 of [/,] we can construct a basis B()?):{Vo, Vi, -} of
open sets of X having properties (1)-(6) of Lemma 2.4.

Let K be a space, Sp be a family of spaces, (Sp), be a subfamily of Sp
and let ¢ be a property of topological spaces. We say that the space K has
the property of P-intersections with respect to subfamily (Sp), of Sp iff for
every X&5) there exists a homeomorphism iy of X into K such that if ¥ and
Z are distinct elements of Sp and Y =(Sp),, then the set i(Y)Niz)Z) has pro-
perty 2.

For every X&Sp let ix be a homeomorphism of X into K. We say that
the space K has the property of <P-intersections with respect to subfamily
{ix: X&(Sph} of all homeomorphisms iy iff for every Y =(Sp), and for every
Z<Sp, the set ix(Y)Niz(Z) has the property .

In particular, if ¢ means that the corresponding intersection (@) is finite,
(B) has type <a, (1) is compact and has fyye <a, (6) has type <a and comfact
type Za+k, and (¢) has type <a and locally compact type <a-+k, then instead
of phrase “&-intersections” we will use, respectively, the words: (a) “finite
intersections”, (8) “a-intersections”, (7) “compact a-intersections”, (0) “at-inter-
sections”, and (¢) “a’.-intersections”.

We observe that the notion of “the property of finite intersections” given
in [I;] is different from that of the present paper, because in [I;] we suppose
that both spaces Y and Z belong to the corresponding subfamily. But, it is
not difficult to see that the universal space T for the family R(a) constructed
in [I;] has the property of finite intersections (in sense of the present paper)
with respect to a given subfamily of R(a) whose cardinality is less than on
equal to the continuum.
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The same is true with the notion of “the property of a-intersections” (in
actually, with the notion of “the property of compact a-intersections”) given
in [G-I].

5.2. REPRESENTATIONS. For every X< Ri.(a) let X be a c-extension of X
and B()Z'):{Vo()?), Vl()?), .-} be an ordered basis of open sets of X having
properties (1)-(6) of Lemma 2.4.

We recall the contruction (with respect to the ordered basis B(X)) of the
subset S(X) of C, the upper semi-continuous partition D(X) of S(X), the map
q()z') of S(X) onto X and the homeomorphism i(X) of D()?) onto X given in
Sections 1.5 and 1.8 of [I,].

For every =0, 1, ---, we set Vﬁ()?):Cl(Vi()?)) and V%()?):)?\Vi()?). For
every i1=i, - i,€L,, we set Xg=C if n=0 and X=viHn - AV (X) if
n=1. The point aeC belongs to S(X) if and only if Xice 0 Xica - #0.
The last set is a singleton for every point a of S(X). We define the q()?) of
S()?) onto X setting q()?)(a):x, where aES()?) and {x}:)?;m,m(\)?m_nf\
Finally, we set D(X)={(g(X))"'(x): x& X} and define i(X) setting i(X)((q(X))*(x))

=X.

5.2.1. LEMMA. For every Xe&Ri(a), the pair (S(X), D(X)) has the dense
property.

PROOF. Let neN and aede(D(X)),. There exist elements x& Bd(V .(X)
and b=C such that d={a, b}-——(q()?))‘l(x). Let x., x;, --- be a sequence of
points of X snch that lim x;=x, x,&V.(X) if a<b and x,eXNCUV (X)) if

orco
b<a, i=1,2, ---. If n=1 we can suppose that xieéCl(Vo()?)U an_l()?)).
By the construction of the sets )?; it follows that there exists an element
i of L, such that acCy, and b=Cy, if a<b and ¢=Cyy and bECyy if b<a.
Also, for every /=1, 2, -, we have that the set (q(f))“(xi) is contained in
that of the sets C;, and Cj;, which contains the point a.
Since D(X) is an upper semi-continuous parlition of S(X) we have zliril d;=d.

where d1-=(q()?))“(xi), i=1,2, ... Hence, if a;=d; then }im a;—a, that is,

the point a is a limit point of the set S()?)\((D()?))n)*. This means that the
pair (S()? ), D()A(J )) has the dense property.

5.2.2. THE FAMILY A OF REPRESENTATIONS. Let R, be a subfamily of
R%.(a) the cardinality of which is less than or equal to the continuum and let
R,=Ri(a)\R,.
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For every X& R, we set S(X)=C and we denote by D(X) the set which is
the union of the set D()?) and all singletons {x}, where xEC\(U‘;‘;,o((D(X))n)*).
It is easy to see that D(X) is an upper semi-continuous partition of S(X) and
the quotient space D()?) is homeomorphic to a subset of the quotient space
D(X).

Let A, be the family of all pair (S(X), D(X)), X&R,. It is easy to see
that the cardinality of A, is less than or equal to the continuum.

For every Xe R, we set S(X)=S(X) and D(X)=D(X). Let A, be the set
of all pairs (S(X), D(X)), X&R,. If X and Y are distinct elements of R,, then
(S(X), D(X)) and (S(Y), D(Y)) are considered as distinct elements of A,, while
it is possible S(X)=S(Y) and D(X)=D(Y).

Let A be the free union of 4, and A,. (Hence, if g, A, and g,< A,, then
g, and g, are distinct elements of A4). Obviously, the cardinality of A is less
than or equall to the continuum.

By Lemma 5.2.1 it follows that every element of A has the dense property.

In the present section we denote by M the set of all scattered compacta
M such that either type(M)<B(a) or type(M)=pB(a)+n, where n=1,2, ---. We
suppose that distinct elements of M are not homeomorphic.

Let EP(B(a))=EP(Bla)+ 1)\ EP(Ba)+2)\J --. By Theorem 4.3 the set
EP(B(a)) is countable. Let e EP(f(a)). We denote by M(e) the element M
of M (if there exists such element) for which for some subset F of M, (F, M)
Ze. Obviously, if there exists the element AM(e), then it is uniquely deter-
mined, while the subset F of M(e) for whch (F, M(e))<e, in general, is not
unique. We denote by F(e) a fixed subset of M such that (F(e), M(e))<e.

For every X& Rk, (a) and g=N by the construction of the pair (S(X), D(X))
it follows that (D(X)),=(D(X)),. Since (D(X)), is homeomorphic to Bd(V (X))
(See the proof of Lemma 11 of [/,]) by properties (1) and (4) of Lemma 2.4 it
follows that the pair g(X):(S(X), D(X)) is an M-representation. By My (g(X))
we denote the element of M which is homeomorphic to (D(X)),. If type((D(X))q)
<B(a), then by ¢(g(X)) we denote a fixed homeomorphism of M, (g(X)) onto
(D(X)),.

Suppose that type((D(X)))=PB(a)+n. Let F(X)=(Bd(V (XNNX)U(Bd(V (X))
N(BA(V (X)) #»).  Then, the pair (Fy(X), Bd(V (X)) belongs to an element e
of EP(B(a)) and, hence, there exists the pair (F(e), M(e)). By ¢(g(X)) we
denote a fixed homeomorphism of M (g(X))=M(e) onto (D(X))q for which
Plg(XN(F(e)=G(X))'(Fy(X)). (We observe that by the construction of the
homeomorphism #(X) it follows that i(X)D(X));)=Bd(V (X))).

We suppose that for every Mc M there exists a fixed decreasing sequence
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of decompositions of M.

Also we suppose that there exists a fied decreasing sequence of decomposi-
tions of A such that if £ is an element of ¢'* decompositions, then the ele-
ment M,(E) of M is determined (for notations see Section 3.1). Moreover, since
the set EP(B(a)) is countable, we can suppose that if type(My(E))=pB(a)-+n and
(S(X), D(X)) and (S(Y), D(Y)) are two elements of FE, then the pairs
(FX), Bd(V (X)) and (F(¥), Bd(V{Y)) belong to the same element of
EP(B(a)).

5.3. THEOREM. Let R, be a subfamily of Ri(a) the cardinality of which is
less than or equal to the continuum. For every element X< Ri(a) let Xbea
c-extension of X. Then, there exist:

(1) an element K= Ri(a),

(2) a space T which is an Ic-extension of K,

(3) a homeomorphism iy of X into K for every X< Ri.(a), and

(4) a homeomorphism jz of X into T, for every X< Ri(a), which is an
extension of iy, that is, jz|x=ix, such that:

(5) the space K has the property of af-intersections with respect to the
subfamily {ix: X&R,} of all homeomorphisms ix, X< Ri(a).

(6) the space T has the property of compact (a+k+1)-intersections with
respect to subfamily {jz: X€R,} of all homeomorphisms jz, X< Ri.(a). More-
over,

(7) the sel jj()?) is a closed subset of T, for every X=R,.

PrROOF. We use all notions and notations of Sections 5.2 and 5.2.2. Let T
be a space of Theorem 3.11 constructed for the family A of M-representations
of Section 5.2.2.

Now we define the subspace K of T as follows: every element d of T of
the form {(a, g)}, where (a, g)€CxXC, belongs to K. Let d=T(l). Then,
there exist an integer m< N, an element 7 of I(m) and an element x of M, (A7)
such that d=d(x, m, r). If type(M,(AT))<B(a), then we consider that d€ K.
Let type(Mn(AT)=pB(a)+n. By the properties of the fixed decreasing sequence
of decompositions of A it follows that there exists an element ¢ of EP(8(a))
such that for every X< R%(a) for which g(X):(S’(X), D(X)=A™ we have
(Fu(X), Bd(V n(X))=e. Hence, Mn(AT)= Mn(g(X))= M(e) and F(e)=
(gbm(g(X)))"(Fm()?)). We consider that d= K iff xeF(e).

By the definition of the set Fa(X) and properties of a c-extension of X
(see Section 5.1) it follows that: (@) (d(Ma(AT)INA(M(ATN)BF NS d(Ma(AT))
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NK, B) type(dMau(ATNNK)Za, (1) typeldMu(AT))=a+k+1, () loc-com-
type(d M (ATHNK)<a-+k.

We observe that the above properties (a)-(0) are true if we replace the set
d(M,(A™) by an open and closed subset of it. Hence, these properties are
also true if we replace the set d(M,)AT)) by a set which is a free union of
simultaneously open and closets of sets d(M,(A™)), mEN, rel(m).

Consider the basis B of the space 7. Let O(W)eB. By Theorem 5.3 the
set Bd(O(W)) is a free union of simultaneously open and closed subsets of sets
d(M,(AT)). Hence, properties (a)-(d) are true if we replace the set d(M,(AT))
by the set Bd(OW)). From the it follows that K& RY(a). Since the set
Bd(OW)) is a locally compact subset of T we also have that the space T is
an [c-extension of the space K.

Let T()?) be the subset of T consisting of all elements z of T for which
zN(C X {g(X)})+0. We observe that for every z& T(X) there exists an element
de=D(X) such that z"(C X {g(X)})=d % {g(X)}. Also, for every deD(X) there
exists an element zGT()? ) such that the above relation is true. Hence, setting
72(d)=z we have an one-to-one map of D(X) onto T(X). 1t is easy to verify,
that j2(D(X)))=d(MgALq .cx>>), for every g N.

We prove that jg is a homeomorphism. Let jz(d)=z. Let zeOW)eB.
Since the space T is regular there exists an element O(W,) of B such that
zEO0WHSCIOW)SOW). By the construction of the element of the set
I7UI7, there exists an open subset V of §(X) such that d€V and V x{g(X)}
SW,. Let U be the set of all elements d’ of D(X) for which d’SV. Then,
U is an open subset of D(X) containing d. If d’€U, then jg(d)NW,#0 and,
hence, jz(d)eOW), that is, jz(U)SOW). Thus, {s is a continuous map.
Let U be an open subset of D(X) containing d. Let V=(H(X))"'(U), where
p(X) is the natural projection of S(X) onto D(X). There exists an element W
of UNV such that WNC X {g(X)HEV % {g(X)} and zSW. Hence, z=O)W).
If z’EO(W)f\T()?), then z&EW and therefore z’N\(C X {g(X)})EV x {g(X)}, that
is, if d’=(#)"%(z’), then d’SV. This means that d’U. Hence, (7£) '(O(W)
f\T()?))QU and the map (j¢)! is continuous. Thus, (f#)™!is a homeomorphism
of D(X) onto T'(X).

Since D(X) is a subset of D(X) we can consider the restriction 7#1pcsy of
jz onto D(X). We set jz=(z|pws)(i(X))*. Obviously, the map j; is a
homeomorphism of X into a subset of T()?). ’

If XeR,, then D()?):D(X) and, hence, jg:j,zo(z'()?))‘l, that is, the map
j# is a homeomorphism of X onto 7(X). .

Set ix=sz2|x. Hence, the map 7y is a homeomorphism of X into T()?).
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Let X and Y be distinct elements R%(a) such that X< R,. There exists
an integer meN such that r(g, g(X)=r(g, g(Y)) for every 0<g<m and
r(m, g(X)y#r(m, g(Y)). It is clear that an element z of T belongs to T(X)
NT¥) if and only if de=d(My(A%q scx»)) for some ¢, 0<g<<m. Hence, the
subset T(X)NT(Y) of T is a compact subset having type<a+k-+1.

Since (D)?))qz(D(Y))q for every g= N, we have jp((D(Y))p<S 7#(¥). Hence
T()?)/\T(}N’)-——j,e()?)ﬂjp(?), that is, property (6) of the theorem is true.

Since for every ¢, 0=<g<m, there exists an element ec EP(f(a)) such that
KNd(M(A%q, g cxn))=d(F(e)) it follows that the set iy(X)N\iy(Y) has type<a,
and locally compact type <a-+*k, that is, property (5) of the theorem is true.

Hence, in order to complete the proof of the theorem it is sufficient to
prove property (7). For this, since s g()?):T ()?) if X&R,, it is sufficient to
prove that the set 7(X) is a closed subset of 7.

Let zET\T()?). If z has the ferm d(y, m, r) for some m< N, rl(m) and
YE M (AP), then g(X)& A™. Hence, zeOU) and OWU)INT(X)=0, where U=
U{d(y, m, r), 0).

Let z={(a, g)}. There exists an integer m= N and distinct elements ¢ and
7, of I(m) such that g€ A™ and g(X)c A™. Then, zSC4X A™. By Lemma 3.7
case (1), there exists an element W of the set U\UV such that zEW S Cyx AT,
Hence, z& O(W) and O(W)NT(X)=0.

Thus, in both cases, the element z has an open neighbourhood which do
not intersect the subspace T()?). Hence, T()?) is closed.

5.4. COROLLARIES. (1) In the family R:.a) there exists a universal ele-
ment having the property of af.-intersections with respect to any subfamily of
Rida) the cardinality of which is less than or equal to the continuum.

(2) For the family R¥a) there exists a containing space belaining to Ri.(a).

(3) For the family R%¥a) there exists a containing continuum having type
Sat+k+1 ana the property of ot '-intersections with respect to a fixed subfamily
of R¥a) the cardinality of which is less than or equal to the continuum.

This corollary follows from Theorem 5.3 (See property (6)), Theorem 2.5 and
Theorem 3 of [1,].

In particular, if k=0 and since R°™(a)S RYa) we have:

There exisls a continuum having rim-type <a-+1 which is a containing space
for all compacta having rim-type <a.

(4) In the family R(a) (that is, in the family R%.(a), where k=m*(a)—1)
there exists a universal element (See [1)).
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5.5. SOME PROBLEMS. (1) Does there exist a universal element of the
family Rf.(a), where a>0 and k=0, ---, m*(a)—1, having the property of @-
intersections with respect to a given subfamily of Ri(a) the cardinality of
which is less than or equal to the continuum if “&-intersections” means (@)
finite intersections, (8) compact a-intersections, (7) aji-intersections, where n=
0, -+, k—1 and (8) aP-intersections, where n=0, .-, k?

(2) Let K be a universal element of the family R%(a), where a=0, ---, m*(a),
and let R, be a fixed subfamily of R%(a) the cardinality of which is less than
or equal to the continuum. Does the space K have the property of (@) finite
intersections, (8) compact a-intersections, (7) a-intersections, (§) al-intersections,
where n=0, .-, and (e) a’-intersections, where n=0, ---, with respect to the
subfamily R,?

(3) Are the results and problems of the present paper true if we replace
all corresponding famillies of spaces by their plant part? (Plane part of a family

A is the subfamily consisting of all elements of . admitting an embedding in
the plane).
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