UNIVERSAL SPACES FOR SONE FAMILIES OF RIM-SCATTERED SPACES

By
S. D. Iliadis

1. Introduction.

1.1. Definitions and notations. All spaces considered in this paper are separable and metrizable and the ordinals are countable.

Let F be a subset of a space X. By $B d(F), C l(F), \operatorname{Int}(F)$ and $|F|$ we denote the boundary, the closure, the interior and the cardinality of F, respectively. An open (respectively, closed) subset U of X^{\prime} is called regular iff $U=$ $\operatorname{Int}(C l(U))$ (respectively, $U=C l(\operatorname{Int}(U)))$. If X is a metric space, then the diameter of F is denoted by $\operatorname{diam}(F)$. A map f of a space X into a space Y is called closed iff the subset $f(F)$ of Y is closed for every closed subset F of X.

A compactum is a compact metrizable space; a continuum is a connected compactum. A space is said to be scattered iff every non-empty subset has an isolated point.

A space Y is said to be an extension of X iff X is a dense subset of Y. A space Y is said to be a compactification of X iff Y is a compact extension of X. Let Y and Z be extensions of X. A map π of Y into Z is called a natural projection iff $\pi(x)=x$ for every $x \in X$. Obviously, if there exist a natural projection of Y into Z, then it is uniquely determined.

A space T is said to be universal for a family A of spaces iff both the following conditions are satisfied: (α) $T \in A,(\beta)$ for every $X \in A$, there exists an embedding of X in T. If ony condition (β) is satisfied, then T is called a containing space for a family A.

A partition of a space X is a set D of closed subsets of X such that (α) if $F_{1}, F_{2} \in D$ and $F_{1} \neq F_{2}$, then $F_{1} \cap F_{2}=\emptyset$, and (β) the union of all elements of D is X. The natural projection of X onto D is the map π defined as follows, if $x \in X$, then $\pi(x)=F$, where F is the uniquely determined element of D containing x. The quotient space of the partition D is the set D with a topology which is the maximal on D for which the map π is continuous. (We observe that we use the same notation for a partition of aspace and for the correspond-

[^0]ing quotient space). The partition D is called upper semi-continuous iff for every $F \in D$ and for every open subset U of X containing F there exists an open subset V of X which is union of elements of D such that $F \cong V \subseteq U$.

Obviously, in order to define a vartition D of a space X it is sufficient to define the non-degenerate elements of D. Let D^{\prime} be a subset of D (generally, let D^{\prime} be a set of subsets of a space X). We denote by $\left(D^{\prime}\right)^{*}$ the union of all elements of D^{\prime}.

An ordinal α is called isolated iff it has the form $\beta+1$, where β is an ordinal. A non-isolated ordinal is called a limit ordinal (hence, the ordinal zero is a limit ordinal).

Every ordinal α is uniquely represented as the union of a limit ordinal β and of a non-negative integer m. In what follows, the ordinal β is denoted by $\beta(\alpha)$ and the integer m is denoted by $m(\alpha)$. Also, by $\gamma(\alpha)$ we denote the ordinal $\beta+2 m+\min \{\beta, 1\}$ and by $m^{+}(\alpha)$ we denote the integer $m+\min \{\beta, 1\}$. The set $\{0,1, \cdots\}$ is denoted by N.

Let M be a subset of a space X. For every ordinal α we define, by induction, a subset $M^{(\alpha)}$ of M as follows: $M^{(0)}=M, M^{(1)}$ is the set of all limit points of M in $M . \quad M^{(\alpha)}=\left(M^{(\alpha-1)}\right)^{(1)}$ if $\alpha>1$ is an isolated ordinal and $M^{(\alpha)}=\bigcap_{\beta<\alpha} M^{(\beta)}$ if $\alpha>1$ is a limit ordinal. The set $M^{(\alpha)}$ is called α-derivative of M (See [K_{2}], v.I, § 24. IV).

We say that M has type $\leqq \alpha$, and we write $\operatorname{type}(M) \leqq \alpha$ iff $M^{(\alpha)}=\varnothing$. If α is the least such ordinal, we say that M has type α, and we write $\operatorname{type}(M)=\alpha$. Obviously, type $(M)=0$ iff $M=\emptyset$.

We say that a scattered subset M has type α (respectively, $\leqq \alpha$) at the point $a \in M$ and we write type $(a, M)=\alpha$ (respectively, type $(a, M) \leqq \alpha$) iff $a \notin M^{(\alpha)}$ and $a \in M^{(\beta)}$ for every $\beta<\alpha$ (respectively, $a \notin M^{(\alpha)}$). (See [$\left.I_{3}\right]$).

We denote by com-type (a, M) (compact type of M at the point a) the minimal ordinal γ for which there exists a compactification K of M such that type $(a, K)=\gamma$. (See [I-Z]). By $\max (M)$ we denote the set of all points a of M for which com-type $(x, M) \leqq$ com-type (a, M) for every $x \in M$.

We say that M has locally compact type γ (respectively, compact type γ) which is denoted by loc-com-type (M) (respectively, by com-type (M)) iff γ is the minimal ordinal for which there exists a locally compact extension of M (respectively, a compactification of M) having type γ. (See [I-Z]).

We observe that:
(1) A subset M of a space X is scattered iff there exists an ordinal α such that type $(M) \leqq \alpha$.
(2) Every scattered space is countable.
(3) A compactum is scattered iff it is countable.
(4) The type of a non-empty countable compactum is an isolated ordinal.
(5) There exist compacta having type α for every isolated ordinal α. (See [M-S]).
(6) The number of compacta having type α, where α is an ordinal, is countable. (See [M-S]).

We denote by $L_{n}, n=1,2, \cdots$, the set of all ordered n-tuples $i_{1} \cdots i_{n}$, where $i_{t}=0$ or $1, t=1, \cdots, n$. Also, we set $L_{0}=\{0\}$ and $L=\cup_{n=0}^{\infty} L_{n}$. For $n=0$, by $i_{1} \cdots i_{n}$ we denote the element \emptyset of L. We say that the element $i_{1} \cdots i_{n}$ of L is a part of the element $j_{1} \cdots j_{m}$ and we write $i_{1} \cdots i_{n} \leqq j_{1} \cdots j_{m}$ if either $n=0$, or $n \leqq m$ and $i_{t}=j_{t}$ for every $t \leqq n$. The elements of L are also denoted by $\bar{i}, \bar{j}, \bar{i}_{1}$, etc. If $\bar{i}=i_{1} \cdots i_{n}$ then by $\bar{i} 0$ (respectively, $\bar{i} 1$) we denote the element $i_{1} \cdots i_{n} 0$ (respectively, $i_{1} \cdots i_{n} 1$) of L.

We denote by $\Lambda_{n}, n=1,2, \cdots$, the set of all ordered n-tuples $i_{1} \cdots i_{n}$, where $i_{t}, t=1, \cdots, n$, is a positive integer. We set $\Lambda=\cup_{n=1}^{\infty} \Lambda_{n}$. The elements of Λ are denoted by $\bar{\alpha}, \bar{\beta}$, etc. Let $\bar{\alpha}=i_{1} \cdots i_{n}$ and $\bar{\beta}=j_{1} \cdots j_{m}$. We say that $\bar{\alpha}$ is a part of $\bar{\beta}$ and we write $\bar{\alpha} \leqq \bar{\beta}$ iff $1 \leqq n \leqq m$ and $i_{t}=j_{t}$ for every $t \leqq n$. Obviously, if $\bar{\alpha}, \bar{\beta} \in \Lambda_{n}$ and $\bar{\alpha} \leqq \bar{\beta}$ then $\bar{\alpha}=\bar{\beta}$. Also, for every $\bar{\alpha} \in \Lambda_{n}$ the set of all elements $\bar{\beta} \in \Lambda_{n+1}$ such that $\bar{\alpha} \leqq \bar{\beta}$, is a countable non-finite set.

We denote by C the Cantor ternary set. By C_{i}, where $\bar{i}=i_{1} \cdots i_{n} \in L, n \geqq 1$, we denote the set of all points of C for which the $t^{t h}$ digit in the ternary expansion, $t=1, \cdots, n$, coincides with 0 if $i_{t}=0$ and with 2 if $i_{t}=1$. Also, we set $C_{s}=C$. For every subset s of $L_{n}, n=0,1, \cdots$, we set $C_{s}=\bigcup_{i \in s} C_{\bar{i}}$. For every point a of C and for every integer $n \geqq 0$, by $\bar{i}(a, n)$ we denote the uniquely determined element $\bar{i} \in L_{n}$ for which $a \in C_{\bar{i}}$. For every subset F of C and for every integer $n \geqq 0$, we denote by $\operatorname{st}(F, n)$ the union of all sets C_{i}, $\bar{i} \in L_{n}$, such that $C_{\bar{i}} \cap F \neq \emptyset$. If $F=\{a\}$ we set $s t(F, n)=\operatorname{st}(a, n)$. Obviously, $s t(a, n)=C_{i(a, n)}$. If S is a subset of C, then the set $S \cap C_{i}$ is denoted by S_{i}.

Let D be a partition of a subset S of C, i an element of $L_{n}, n=0,1, \cdots$. We set $D(1)=\{d \in D: d$ is not singletion $\}, D_{i}=\left\{d \in D: d \cap C_{i_{0}} \neq \emptyset, d \cap C_{i_{1}} \neq \emptyset\right.$ and $\left.d \subseteq C_{\bar{i} 0} \cup C_{\bar{i}\}}\right\}, D_{n}=\cup_{i \in L_{n}} D_{\bar{i}}$. It is easy to see that: (α) $D(1)=\cup_{n=0}^{\infty} D_{n},(\beta)$ $D_{i} \cap D_{j}=\emptyset$ if $\bar{i}, \bar{j} \in L$ and $\bar{i} \neq \bar{j}$ and (γ) $D_{m} \cap D_{n}=\emptyset$ if $m \neq n$.

A space X is called rim-finite (respectively, rational) iff X has a basis B of open sets such that the set $B d(U)$ is finite (respectively, countable) for every $U \in B$.

We say that a space X has rim-type $\leqq \alpha$, where α is an ordinal and we write $\operatorname{rim-type}(X) \leqq \alpha$ iff X has a basis B of open sets such that type $(B a(U))$
$\leqq \alpha$, for every $U \in B$. If α is the least such ordinal, then we say that X has rim-type α, and we write rim-type $(X)=\alpha$.

In [G-I] (respectively, in [I_{2}] and [I_{3}]) the following definition is given: a space K has the property of α-intersections (respectively, the property of finite intersections) with respect to a family $S p$ of spaces iff the every $X \in S p$ there exists a homeomorphism i_{X} of X in K such that if Y and Z are distinct elements of $S p$, then the set $i_{Y}(Y) \cap i_{Z}(Z)$ has type $\leqq \alpha$ (respectively, the set $i_{Y}(Y) \cap i_{Z}(Z)$ is finite) (For the corresponding definitions of the present paper see Section 5.1).
1.2. Some known results. Let $\alpha>0$ be an ordinal. We denote by $R(\alpha)$ the family of all spaces having rim-type $\leqq \alpha$. Natural subfamilies of $R(\alpha)$ are the family $R^{c o m}(\alpha)$ of all compact elements of $R(\alpha)$ and the family $R^{c o n t}(\alpha)$ of all elements of $R(\alpha)$ which are continua.

Another subfamily of $R(\alpha)$ is the family $R^{r i m-\operatorname{com}}(\alpha)$ defined as follows an element X of $R(\alpha)$ belongs to $R^{r i m-c o m}(\alpha)$ iff X has a basis B of open sets such that for every $U \in B$, the set $B d(U)$ is a compactum having type $\leqq \alpha$.

We denote by $R F$ the family of all rim-finite spaces and by R the family of all rational spaces.

In [I-Z] some new subfamilies of $R(\alpha)$ are given. These families are denoted by $R_{c}^{k}(\alpha)$ and $R_{l c}^{k}(\alpha), \alpha>0, k=0,1, \cdots$. A space X belongs to $R_{l c}^{k}(\alpha)$ (respectively, to $\left.R_{c}^{k}(\alpha)\right)$ iff X has a basis $B=\left\{U_{0}, U_{1}, \cdots\right\}$ of open sets such that type $\left(B d\left(U_{i}\right)\right) \leqq \alpha$ and loc-com-type $\left(B d\left(U_{i}\right)\right) \leqq \alpha$ (respectively, com-type $\left.\left(B d\left(U_{i}\right)\right) \leqq \alpha\right)$, for every $i=0,1, \cdots$.

It is easy to see that $R^{c o n t}(\alpha) \subseteq R^{c o m}(\alpha) \subseteq R^{r i m-c o m}(\alpha) \subseteq R_{c}^{0}(\alpha) \subseteq \cdots \subseteq R_{c}^{k}(\alpha) \subseteq$ $R_{l c}^{k}(\alpha) \cong R_{c}^{k+1}(\alpha) \cong \cdots \subseteq R(\alpha)$.

We observe that if $\operatorname{type}(M)=\alpha$, then by Lemma 1 of [I-T] it follows that M admits a compactification K having type $\leqq \gamma(\alpha)$. By the proof of this lemma it follows that if $\alpha>0$ and type $(K)=\gamma(\alpha)$, theu K is the one-point compactification of some locally compact əxtension of M having type $\leqq \gamma(\alpha)-1$.

From the above it follows that $R_{i c}^{m+(\alpha)-1}(\alpha)=R(\alpha)$ and hence, $R_{l c}^{k}(\alpha)=R_{c}^{k-1}(\alpha)$ $=R(\alpha)$ if $k \geqq m^{+}(\alpha)-1$.

We recall some known results concerning the above mentioned families of spaces.
(1) Every element of $R F$ has a compactification belonging to $R F$. (See $\left.[K],\left[R_{1}\right]\right)$.
(2) In the family $R F$ there is no universal element. (See [N]).
(3) In the family $R(\alpha)$ there exists a universal element having the property
of finite intersections with respect to any subfamily of $R(\boldsymbol{\alpha})$ whose power is less than or equal to the continuum. (See $\left[I_{3}\right]$).
(4) Every element of $R^{r i m-c o m}(\alpha)$ has a compactification belonging to $R^{c o m}(\alpha)$, (See [$\left.I_{1}\right]$). Moreover, every element of $R^{r i m-c o m}(\alpha)$ is topologically contained in an element of $R^{c o n t}(\alpha)$. (See [$\left.I_{1}\right]$).
(5) In the family $R^{r i m-c o m}(\alpha)$ there does not exist a universal element (See [$\left.I_{4}\right]$). Hence, by (4), in the families $R^{\text {cont }}(\alpha)$ and $R^{c o m}(\alpha)$ there do not exist universal spaces.
(6) For the family $R^{c o m}(\alpha)$ there exists a containing space belong to the family $R^{\text {cont }}(\alpha+1)$. (This is a result of J.C. Mayer and E.D. Tymchatyn).
(7) For the family of all planar compacta having rim-type $\leqq \alpha$ there exists a containing planar locally connected continuum having rim-type $\leqq \alpha+1$. (See [M-T]).
(8) In the family $R_{c}^{k}(\alpha)$, where α is an isolated ordinal and $k=0, \cdots, m^{+}(\alpha)$ -1 , there is no universal element. (See [I-Z]).
(9) For a family $S p$ of rim-finite spaces there exists a containing rim-finite space (heving the property of finite intersections with respect to any subfamily of $S p$ whose the power is less than or equel to the continuum) if and only if $S p$ is a uniform family. (A family $S p$ of rim-finite spaces is called uniform iff for every $X \in S p$ there exists an ordered basis $B(X)=\left\{U_{0}(X), U_{1}(X), \cdots\right\}$ having the properties: $(\alpha) B d\left(U_{i}(X)\right) \cap B d\left(U_{j}(X)\right)=\emptyset$ if $i \neq j$ and (β) for every integer $k \geqq 0$ there exists an integer $n(k) \geqq 0$ (which is independent from the elements of $S p$) such that for every $x, y \in \cup_{i=0}^{k}\left(B d\left(U_{i}(X)\right)\right), x \neq y$, there exists an integer $j(x, y), 0 \leqq j(x, y) \leqq n(k)$, for which either $x \in U_{j(x, y)}(X)$ and $y \in X \backslash C l\left(U_{j(x, y)}(X)\right)$, or $y \in U_{j(x, y)}(X)$ and $x \in X \backslash C l\left(U_{j(x, y)}(X)\right)$ (See [$\left.I_{2}\right]$).
(10) In [G-I], for a given subfamily $S p$ of $R^{c o m}(\alpha)$, necessary and sufficient conditions are given for the existence of a containing space (having the property of α-intersections with respect to any subfamily of $S p$ whose power is less than or equal to the continuum) belonging to the family $R^{\text {rim-com }}(\alpha)$.
(11) In the family R of all rational spaces there exists a universal element having the property of finite intersections with respect to the subfamily of all rational continua. (See $\left[I_{5}\right]$).
1.3. Results. In the present paper we study the family $R_{l c}^{k}(\alpha)$, where $\alpha>0$ and $k=0, \cdots, m^{+}(\alpha)-1$. We construct a universal element K of this family as a subset of another space T. For the construction of these spaces we need in two "kinds" of countability.

In Section 2 starting with some properties of scattered spaces we prove
the following theorem: every element of $R_{i c}^{k}(\alpha)$ admits a compactification having rim-type $\leqq \alpha+k+1$. For the proof of this theorem, we construct for every $X \in R_{l c}^{k}(\alpha)$ (See Lemma 2.4) an extension \tilde{X} with a basis $B(\tilde{X})$ whose elements have boundaries with some special properties. These properties also provide us with the above mentioned two "kinds" of countability.

In Section 3 we consider a family A of pairs (S, D), where S is a subset of C and D is an upper semi-continuous partition of S such that $D_{i}, i \in L$, is homeomorphic to an element of a given family M of scattered compacta. The elements of A are called M-representations. Using the M-representations we construct a space T which will be used in Section 5 . An important fact is the countability of the family M (this is the first "kind" of countability).

In $\left[I_{3}\right]$ we have considered a set of some specific subsets of a given scattered compactum M : a subset X of M is such a subset iff $M \backslash M^{(\beta(\alpha))} \subseteq X$. We have proved that if in the above set we consider the equivalence relation: $X_{1} \sim X_{2}$ iff there exists a homeomorphism f of X_{1} onto X_{2}, then the number of equivalence classes is countable. In Section 4 of the present paper we improve this result by proving that if in the set of all pairs (X, M), where M is a compactum, $\operatorname{type}(M)=\alpha$ and $M \backslash M^{(\beta(\alpha))} \subseteq X$, we consider the equivalence relation $\left(X_{1}, M_{1}\right) \sim\left(X_{2}, M_{2}\right)$ iff there exists a homeomorphism f of M_{1} onto M_{2} such that $f\left(X_{1}\right)=X_{2}$, then the number of equivalence classes is countable (this is the second "kind" of countability).

In Section 5 using the properties of the extension nentioned in Lemma 2.4 we give the notion of a c-extension of elements of the family $R_{l c}^{k}(\alpha)$. For every element of this family we consider a fixed c-extension. By a standdard manner, we correspond to every such extension an M-representation, where M is a countable set of scattered compacta. The space T constructed in Section 3 (for the above M-representations) has rim-type $\leqq \alpha+k+1$ and it contains topologically the fixed c-extensions. Using the result of Section 4, the construction of the space T can be done in such a manner that a subset K of T has type $\leqq \alpha$ and contains topologically every element of $R_{l c}^{k}(\alpha)$. Thus, the space T is a containing space for the family of fixed c-extensions and simultaneously the subset K is an universal element of $R_{l c}^{k}(\alpha)$. The main result of this papers is Theorem 5.3.

We note the following corollaries of the main results: In the family $R_{l c}^{k}(\alpha)$ there exists a universal element having the property of $\alpha_{i c}^{k}$-intersections (See Definitions 5.1.) with respect to any subfamily of $R_{l c}^{k}(\alpha)$ the power of which is less than or equal to the continuum.

Also, for the family $R_{c}^{k}(\alpha)$, there exists a containing space belonging to the
family $R_{l c}^{k}(\alpha)$ and, hence, there exists a containing continuum having rim-type $\leqq \alpha-k+1$. In particular, for $k=0$ (since $R^{c o m}(\alpha) \subseteq R_{c}^{0}(\alpha)$) we have: There exists a continuum having rim-type $\leqq \alpha+1$ which is containing space for all compacta having rim-type $\leqq \alpha$. (This is a result of J.C. Mayer and E.E. Tymcharyn).

2. Extensions of elements of $R_{l c}^{k}(\alpha)$.

2.1. Lemma. Let M be a scattered space having type $\alpha=\beta(\alpha)+m(\alpha)>0$. Let X be a zero-dimensional metric compactification of M. Then, there is a compactification K of M for which the natural projection π of X onto K exists and such that:
(1) type $(K)=$ com-type (M) (and, hence, by Lemma 1 of [I-T], type $(K) \leqq \gamma(\alpha)$).
(2) $\operatorname{type}\left(M \cup\left(K \backslash K^{(\beta(\alpha))}\right)\right)=\alpha$.
(3) loc-com-type $(M)=$ loc-com-type $\left(M \cup\left(K \backslash K^{(\beta(\alpha))}\right)\right)$ and
(4) if $K=\left\{z_{1}, z_{2}, \cdots\right\}$, then $\lim _{i \rightarrow+\infty}\left(\operatorname{diam}\left(\pi^{-1}\left(z_{i}\right)\right)\right)=0$.

Proof. We prove the lemma by induction on the ordinal com-type(M). The proof can be done in such a manner that besides properties (1)-(4) of the lemma the following properties will be also true:
(5) for a given $\varepsilon>0, \operatorname{diam}\left(\pi^{-1}(z)\right)<\varepsilon$ for every $z \in K$, and
(6) for every $a \in M, \operatorname{type}(a, K)=\operatorname{com-type}(a, M)$

Let com-type $(M)=1$. We set $K=M$. Then, K is a compactification of M having properties (1)-(6).

Suppose that for every space M for which $1 \leqq$ com-type $(M)<\gamma$ there exists a compactification K of M having properties (1)-(6). Since for every scattered space M, com-type (M) is an isolated ordinal, we may suppose that γ is also an isolated ordinal.

Let M be a space such that com-type $(M)=\gamma$ and $\varepsilon>0$ be a number. Suppose that $\operatorname{type}(M)=\alpha$. By Lemma 1 of $[\mathrm{I}-\mathrm{T}]$ it follows that $\beta(\alpha)=\beta(\gamma)$.

First we suppose that $\max (M)$ is infinite. By Lemma 2.4 of $[\mathrm{I}-\mathrm{Z}]$ it follows that com-type $(a, M)=\gamma-1$, for every $a \in \max (M)$.

Let $F=C l(\max (M)) \backslash \max (M)$. (The closure is considered in the space $X)$. Let F_{1}, \cdots, F_{n} be open and closed non-empty subsets of F such that (α) $F=$ $F_{1} \cup \cdots \cup F_{n},(\beta) F_{i} \cap F_{j}=\emptyset$ if $i \neq j$, and $(\gamma) \operatorname{diam}\left(F_{i}\right)<\varepsilon$ for every $i=1, \cdots, n$.

There exist open and closed subsets $U_{i j}, i=1, \cdots, n, j=1,2, \cdots$, of X such that: $(\alpha) U_{11} \cup U_{21} \cup \cdots \cup U_{n 1}=X, \quad(\beta) U_{i(j+1)} \cong U_{i j}, \quad(\gamma)\left(U_{i j} \backslash U_{i(j+1)}\right) \cap \max (M)$ $\neq \emptyset$, ($\delta) U_{i 1} \cap U_{j 1}=\emptyset$, if $i \neq j$, and $(\varepsilon) \bigcap_{j=1}^{\infty} U_{i j}=F_{i}$.

Let $M_{i j}=\left(U_{i j} \backslash U_{i(j+1)}\right) \cap M, i=1, \cdots, n, j=2,2, \cdots$. Obviously, $\max \left(M_{i j}\right)=$ $M_{i j} \cap \max (M)$ and, hence, the set $\max \left(M_{i j}\right)$ is finite and com-type $\left(a, M_{i j}\right)=\gamma-1$ for every $a \in \max \left(M_{i j}\right)$. By Lemma 2.4 of [I-Z], com-type $\left(M_{i j}\right)=\gamma-1$.

Hence, by induction, there is a compactification $K_{i j}$ of $M_{i j}, i=1, \cdots, n, j=$ $1,2, \cdots$, for which the natural projection $\pi_{i j}$ of $U_{i j} \backslash U_{i(j+1)}$ onto $K_{i j}$ exists and such that properties (1)-(6) are true, where in place of ε in property (5) we take the number ε / j.

Let $K=\left(\cup_{i, j} K_{i j}\right) \cup\left\{F_{1}, \cdots, F_{n}\right\}$. We topologize K as follows: a subset V of K is an open subset iff V has the following properties: (α) the set $V \cap K_{i j}$, $i=1, \cdots, n, j=1,2, \cdots$, is an open subset of $K_{i j}$, and (β) if $F_{i} \in V$, then V contains all but finitely many of the sets $K_{i j}, j=1,2, \cdots$.

Let π be the map of X onto K defined as follows: if $x \in U_{i j} \backslash U_{i(j+1)}$, then $\pi(x)=\pi_{i j}(x)$ and if $x \in F_{i}, i=1, \cdots, n$, then $\pi(x)=F_{i}$.

It is easy to see that K is a compactification of M and π the natural projection of X onto K.

Since $K_{i j}$ is an open and closed subset of K and $\operatorname{type}\left(K_{i j}\right) \leqq \gamma-1$ we have type $\left(F_{i}, K\right)=\gamma$ and, hence, $\operatorname{type}(K)=$ com-type $(M)=\gamma$, that is, property (1) is satisfied.

By induction, type $\left(M_{i j} \cup\left(K_{i j} \backslash K_{i j}^{(\beta(\alpha))}\right)\right) \leqq \alpha$. Hence, since $M \cup\left(K \backslash K^{(\beta(\alpha))}\right)=$ $\bigcup_{i, j}\left(M_{i j} \cup\left(K_{i j} \backslash K_{i j}^{(\beta(\alpha))}\right)\right)$ we have $\operatorname{type}\left(M \cup\left(K \backslash K^{(\beta(\alpha))}\right)\right)=\alpha$, that is, property (2) is satisfied.

Since the subset $K \backslash\left\{F_{1}, \cdots, F_{n}\right\}$ is a locally compact extension of $M \cup\left(K \backslash K^{(\beta(\alpha))}\right)$ and $\operatorname{type}\left(K \backslash\left\{F_{1}, \cdots, F_{n}\right\}\right)=\gamma-1$ we have loc-com-type $\left(M \cup\left(K \backslash K^{(\beta(\alpha))}\right)\right) \leqq \gamma-1$. Since the set $\max (M)$ is infinite and com-type $(M)=\gamma$, by Lemma 2.4 of [I-Z] it follows that loc-com-type $(M)=\gamma-1$, that is, property (3) is true.

Properties (4) and (5) follow by the construction of K.
For every $x \in M_{i j}$ we have type $\left(x, K_{i j}\right)=\operatorname{type}(x, K)=\operatorname{com}-t y p e(x, M)$. Hence, property (6) is also true.

Now, we suppose that $\max (M)$ is finite. Then, by Lemma 2.4 of [l-Z], com-type $(a, M)=\gamma$, for every $a \in \max (M)$. Let $\max (M)=\left\{a_{1}, \cdots, a_{n}\right\}$ and let $U_{i j}, i=1, \cdots, n, j=1,2, \cdots$, be open and closed subsets of X such that: (α) $U_{11} \cup \cdots \cup U_{n 1}=X,(\beta) U_{i(j+1)} \cong U_{i j},(\gamma) U_{i j} \backslash U_{i(j+1)} \neq \emptyset$, ($\left.\delta\right) U_{i 1} \cap U_{j 1}=\emptyset$, if $i \neq j$, and $(\varepsilon) \cap_{j=1}^{\infty} U_{i j}=\left\{a_{i}\right\}$.

Let $M_{i j}=\left(U_{i j} \backslash U_{i(j+1)}\right) \cap M$. Then, either com-type $\left(M_{i j}\right) \leqq \gamma-1$, or com$\operatorname{type}\left(M_{i j}\right)=\gamma$ and the set $\max \left(M_{i j}\right)$ is infinite. Hence, by induction, there is a compactification $K_{i j}$ of $M_{i j}$ (for which the natural projection $\pi_{i j}$ of $U_{i j} \backslash U_{i(j+1)}$
onto $K_{i j}$ exists) having properties (1)-(6).
Let K and π be the compactification of M and the natural projection of X onto K, respectively, constructed from $K_{i j}$ in the same manner as in case, where the set $\max (M)$ is infinite (replacing the set $\left\{F_{1}, \cdots, F_{n}\right\}$ by the set $\max (M)=\left\{a_{1}, \cdots, a_{n}\right\}$ and the subset F_{i}, in the definition of π, by the subset $\left\{a_{i}\right\}$ of $\left.X\right)$.

By construction, type $\left(K_{i j}\right) \leqq \gamma$. On the other hand, for a given i, there exists an integer j_{0} such that $\operatorname{type}\left(K_{i j}\right) \leqq \gamma-1$ for every $j \geqq j_{0}$. (See Section 2.2.4 of $[\mathrm{I}-\mathrm{Z}]$). Hence, type $\left(a_{i}, K\right)=\gamma$. Thus, type $(K)=$ com-type $(M)=\gamma$. Hence, property (1) is satisfied.

Since the subset $K_{i j}$ of K is an open subset and since type $\left(a_{i}, K\right)=\gamma$, property (6) is also satisfied.

For the proof of property (2) it is sufficient to prove that $\left(M \cup\left(K \backslash K^{(\beta(\alpha))}\right)\right)^{(\beta(\alpha))}$ $=M^{(\beta(\alpha))}$. Obviously, $M^{(\beta(\alpha))} \cong\left(M \cup\left(K \backslash K^{(\beta(\alpha))}\right)\right)$. Let $x \in\left(M \cup\left(K \backslash K^{(\beta(\alpha))}\right)\right)^{(\beta(\alpha))}$. Then, it is clear that $x \notin K \backslash K^{(\beta(\alpha))}$. Hence, $x \in M$. If $x \in M \backslash M^{(\beta(\alpha))}$, then com-type $(x, M)<\beta(\alpha)$ and, therefore, type $(x, K)<\beta(\alpha)$, that is, $x \in K \backslash K^{(\beta(\alpha))}$ which is impossible. Hence, $x \in M^{(\beta(\alpha))}$ and property (2) is satisfied.

Since the set $\max (M)$ is finite, by Lemma 2.4 of [I-Z] it follows that loc-$\operatorname{com-type}(M)=\operatorname{com-type}(M)=\operatorname{type}(K)$. Hence, loc-com-type $\left.(M) \cup\left(K \backslash K^{(\beta(\alpha))}\right)\right)=$ type (K) and property (3) is satisfied.

Since for a fixed $i, \lim _{j \rightarrow 0}\left(\operatorname{diam}\left(U_{i j} \backslash U_{i(j+1)}\right)\right)=0$, properties (4) and (5) follow by the construction of K.
2.2. Lemma. Let M be a locally finite union of closed subset M_{1}, M_{2}, \ldots such that loc-com-type $\left(M_{i}\right) \leqq \alpha, i=1,2, \cdots$. Then, loc-com-type $(M) \leqq \alpha$.

Proof. Let $a \in M$. There exist an open neighbourhood U of a in M and a set $\left\{n_{1}, \cdots, n_{t}\right\}$ of integers such that $U=\left(U \cap M_{n_{1}}\right) \cup \cdots \cup\left(U \cap M_{n_{i}}\right)$. Since, loc-com-type $\left(M_{n_{i}}\right) \leqq \alpha$ we have loc-com-type $\left(U \cap M_{n_{i}}\right) \leqq \alpha, i=1, \cdots, t$.

By Theorem 2.5 of [l-Z] it follows that loc-com-type $(U) \leqq \alpha$. Hence, by Lemma 2.4 of [I-Z], com-type $(a, U)=\operatorname{com-type}(a, M) \leqq \alpha$. By the same lemma we have loc-com-type $(M) \leqq \alpha$.
2.2.1. Corollary. Let $X \in R_{i c}^{k}(\alpha)$ (See the Introduction). Then, every pair of disjoint closed subsets of X can be separated by a subset M such that type(M) $\leqq \alpha$ and loc-com-type $(M) \leqq \alpha+k$.

The proof follows by Lemma 2.2 and Lemma 4 of [I-T]. This corollary is used in the proof of the following Lemma 2.3.
2.3. Lemma. Let $X \in R_{l c}^{k}(\alpha)$ and $B=\left\{U_{0}, U_{1}, \cdots\right\}$ be a basis of open sets of X such that for every i, type $\left(B d\left(U_{i}\right)\right) \leqq \alpha$ and loc-com-type $\left(B d\left(U_{i}\right)\right) \leqq \alpha+k$. Let F be the family of all pairs $A_{m}=\left(U_{i_{m}}, U_{j_{m}}\right)$ such that $C l\left(U_{i_{m}}\right) \subseteq U_{j_{m}}$ and $U_{i_{m}}$, $U_{j_{m}} \in B$. Let D denote the set of triadic rationals in the open interval $(0,1)$. Then, there exists a sequence (f_{m}) of continus functions $f_{m}: X \rightarrow[0,1]$ such that for integers $m, r, m \neq r$ and $d \in D$:
(1) $f_{m}\left(C l\left(U_{i_{m}}\right)\right)=\{0\}$,
(2) $f_{m}\left(X \backslash U_{j_{m}}\right)=\{1\}$,
(3) $\operatorname{type}\left(f_{m}^{-1}(d)\right) \leqq \alpha$ and loc-com-type $\left(f_{m}^{-1}(d)\right) \leqq \alpha+k$,
(4) $B d\left(f_{m}^{-1}([0, d))\right)=B d\left(f_{m}^{-1}((d, 1])\right)=f_{m}^{-1}(d)$,
(5) $f_{r}\left(f_{m}^{-1}(d)\right) \cap D=0$, and
(6) $f_{r}\left(f_{m}^{-1}(d)\right)$ is a closed subset of $[0,1]$ of dimension $\leqq 0$.

This lemma, except condition 3, is the same as Lemma 7 of [I-T] and it is proven similarly.
2.4. Lemma. Let $X \in R_{l c}^{k}(\alpha)$. There exist an extension \tilde{X} of X and a basis $B(\tilde{X})=\left\{V_{0}, V_{1}, \cdots\right\}$ of open sets of \tilde{X} such that:
(1) the set $B d\left(V_{i}\right), i=0,1, \cdots$, is a compactum,
(2) $V_{i}=\operatorname{Int}\left(C l\left(V_{i}\right)\right), i=0,1, \cdots$,
(3) $B d\left(V_{i}\right) \cap B d\left(V_{j}\right)=\emptyset$ if $i \neq j$,
(4) $\operatorname{type}\left(B d\left(V_{i}\right)\right) \leqq \alpha+k+1$,
(5) type $\left(\left(B d\left(V_{i}\right) \cap X\right) \cup\left(B d\left(V_{i}\right) \backslash\left(B d\left(V_{i}\right)\right)^{(\beta(\alpha))}\right)\right) \leqq \alpha$ and
(6) loc-com-type $\left(\left(B d\left(V_{i}\right) \cap X\right) \cup\left(B d\left(V_{i}\right) \backslash\left(B d\left(V_{i}\right)\right)^{(\beta(\alpha))}\right)\right) \leqq \alpha+k$.

The proof is similar to the proof of theorem 8 of [I-T]. The extension \tilde{X} is constructed in the same manner as the space Z is constructed in the proof of Theorem 8 of [I-T]. Instead of Theorem 3 of [I-T] which was used in the proof of Theorem 8 of $[\mathrm{I}-\mathrm{T}]$ we have use Lemma 2.1.
2.5. Theorem. Let $X \in R_{i c}^{k}(\alpha)$. Then, X admits a compacification having rim-type $\leqq \alpha+k+1$.

This theorem is proved using properties (1)-(4) of extension \tilde{X} of X of Lemma 2.4 and Theorem 2 of $\left[I_{1}\right]$.

3. Construction of specific spaces.

3.1. Definitions and notations. Let M be a scattered space. A finite cover ω of M is called a decomposition iff every element of ω is an open and
closed subset of M and the intersection of any two distinct elements of ω is empty.

A decomposition ω is a subdivision of a decomposition ω^{\prime} of M iff every element of ω is contained in an element of ω^{\prime}.

A sequence $\omega^{n}, n \in N$, of decompositions of M is called a decreasing sequence of decompositions iff (α) the decomposition $\omega^{n+1}, n \in N$, is a subdivision of the decomposition ω^{n} and (β) the set of all elements of all $\omega^{n}, n \in N$, is a basis of open sets of M.

In what follows by M we denote a countable set of scattered compacta. We suppose that two distinct elements of M are not homeomorphic.

Also, we suppose that for every $M \in M$ there exists a fixed decreasing sequence of decompositions of M. The $n^{t h}$ decomposition of this sequence is denoted by $M^{n}, n \in N$.

Let $x \in M \in M$ and $n \in N$. We denote by $F(n, x)$ the element F of M^{n} for which $x \in F$.

A pair $g=(S, D)$ is called an M-representation iff : $(\alpha) S$ is a subset of C, (β) D is an upper semi-continuous partition of $S,(\gamma)$ every element of $D(1)$ consists of exactly two points, and (δ) for every $q \in N, D_{q}$ is homeomorphic to an element of M.

In Section 3, we denote by A a family of M-representations the power of which is less than or equal to the continuum. We suppose that for distinct elements $g=(S, D)$ and $f=\left(S^{\prime}, D^{\prime}\right)$ of A it may happen that $S=S^{\prime}$ and $D=D^{\prime}$.

For every element $g=(S, D)$ of A and for every $q \in N$ by $M_{q}(g)$ we denote the element of M which is homeomorphic to D_{q} and by $\psi_{q}(g)$ a fixed homeomorphism of $M_{q}(g)$ onto D_{q}.

Let A^{\prime} be a subfamilly of A such that for some $q \in N, M_{q}(g)=M_{q}(f)$ for any elements g, f of A^{\prime}. In this case the element $M_{q}(g)$ of M is also denoted by $M_{q}\left(A^{\prime}\right)$ and we shall say that the element $M_{q}\left(A^{\prime}\right)$ of M is then determined.

For any subfamilly A^{\prime} of A and for any subset C^{\prime} of C we denoted by $C^{\prime} \times A^{\prime}$ the subset of $C^{\prime} \times A^{\prime}$ consisting of all elements (a, g) of $C^{\prime} \times A^{\prime}$ such that if $g=(S, D)$, then $a \in S$.

A decomposition Ω of A is a countable set of subfamilies of A such that: (α) the intersection of any two distinct elements of Ω is empty and (β) the union of all elements of Ω is A.

A decomposition Ω is a subaivision of a decomposition Ω^{\prime} of A iff every element of Ω is contained in an element of Ω^{\prime}.

A sequence $\Omega^{n}, n \in N$, of decompositions of A is called a decreasing sequence af decompositions iff : $(\alpha) \Omega^{n+1}$ is a subdivision of $\Omega^{n}, n \in N$, and (β) if g and
f are distinct elements of A, then there exists an integer n such that g and f belong to distinct elements of Ω^{n}.

Since the power of A is less than or equal to the continuum, the existence of decreasing sequence of decompositions of A is easily proved.

In what follows, we suppose that there exists a fixed such sequence of A denoted by $\Omega^{n}, n \in N$. Moreover, without loss of generality, we may suppose that for every $E \in \Omega^{n}$ and for every $q, 0 \leqq q \leqq n$, the element $M_{q}(E)$ is determined.
3.2. Lemma. For every integer $m \in N$ there exist:
(1) A decomposition $A^{m}=\left\{A_{r}^{m}: r \in I(m)\right\}$ of A which is a subdivision of Ω^{m} (hence, for every $r \in I(m)$ and for every integer $q, 0 \leqq q \leqq m$, the element $M_{q}\left(A_{r}^{m}\right)$ of M is determined). In what follows, we denote by r an arbitrary element of $I(m)$ and by q an integer such that $0 \leqq q \leqq m$.
(2) An integer $n\left(q, A_{r}^{m}\right) \geqq m$ (denoted also by $n(q, m, r)$).
(3) An integer $n\left(A_{r}^{m}\right)>m$ (denoted also by $n(m, r)$).
(4) A subset $s(F)$ of $L_{n(m, r)}$ for every $F \in\left(M_{q}\left(A_{r}^{m}\right)\right)^{n(q, m, r)}$ (denoted also by $s(q, m, r, F))$.
(5) A subset $U(F)$ of C 又 A for every $F \in\left(M_{q}\left(A_{r}^{m}\right)\right)^{n(q, m, r)}$ (denoted also by $U(q, m, r, F))$ such that:
(6) If $m \geqq 1$, then A^{m} is a subdivision of A^{m-1} (hence, the sequence A^{0}, A^{1}, \ldots is a decreasing sequence of decompositions of A).
(7) If $m \geqq 1, t \in I(m-1)$ and $A_{r}^{m} \cong A_{t}^{m-1}$, then $n(m, r)>n(m-1, t)$.
(8) If $t \in I(q)$ and $A_{\tau}^{m} \subseteq A_{t}^{q}$, then $n(q, m, r)=n(q, q, t)+m-q$.
(9) If $m \geqq 1, t \in I(m-1), f, g \in A_{r}^{m} \leqq A_{t}^{m-1}$ and $x \subseteq F \in\left(M_{m}\left(A_{r}^{m}\right)\right)^{n(m, m, r)}$, then $s t\left(\psi_{m}(g)(x), n(m-1, t)\right)=\operatorname{st}\left(\left(\psi_{m}(f)(F)\right)^{*}, n(m-1, t)\right)$.
(10) If $m \geqq 1, \quad q<m, \quad t \in I(m-1), \quad g=(S, D) \in A_{r}^{m} \subseteq A_{i}^{m-1}, \quad d \in D, \quad F \in$ $\left(M_{q}(g)\right)^{n(q, m, r)}, \quad Q \in\left(M_{q}(g)\right)^{n(q, m, r)-1}, \quad F \subseteq Q$ and $d \cap s t\left(\left(\psi_{q}(g)(F)\right)^{*}, \quad n(m, r)\right) \neq \emptyset$, then $d \subseteq s t\left(\left(\psi_{q}(g)(Q)\right)^{*}, n(m-1, t)\right)$.
(11) If $g \in A_{r}^{m}$ and $F \in\left(M_{q}\left(A_{r}^{m}\right)\right)^{n(q, m, r)}$, then $\operatorname{st}\left(\left(\psi_{q}(g)(F)\right)^{*}, n(m, r)\right)=C_{s(F)}$.
(12) $U(F)=C_{s(F)} \times A_{r}^{m}$ for every $F \in\left(M_{q}\left(A_{r}^{m}\right)\right)^{n(q, m, r)}$.
(13) If $F \in\left(M_{k}\left(A_{r}^{m}\right)\right)^{n(k, m, r)}$ and $Q \in\left(M_{q}\left(A_{r}^{m}\right)\right)^{n(q, m, r)}$, where $0 \leqq k<q$, then $U(F) \cap U(Q)=\emptyset$.
(14) If $F, Q \in\left(M_{q}\left(A_{r}^{m}\right)\right)^{n(q, m, r)}$ and $F \neq Q$, then $U(F) \cap U(Q)=\emptyset$.

Proof. We prove the lemma by induction on integer m.
Let $m=0$. Let $E \in \Omega^{0}$. For every $g \in E$ there exists an integer $n(g)>0$ such that if $F, Q \in\left(M_{0}(g)\right)^{0}$, then $\operatorname{st}\left(\left(\psi_{0}(g)(F)\right)^{*}, n(g)\left(\cap s t\left(\left(\psi_{0}(g)(Q)\right)^{*}, n(g)\right)=0\right.\right.$.

We observe that if $f, g \in Q$, then $M_{0}(f)=M_{0}(g)$.
Now, we define the decomposition A^{0} of A as follows: two elements g and f of A belong to the same element of A^{0} iff there exists an element $E \in \Omega^{\circ}$ such that: $(\alpha) g, f \in E,(\beta) n\left(g^{\prime}\right)=n(f)$ and $(\gamma) \operatorname{st}\left(\left(\psi_{0}(g)(F)\right)^{*}, n(g)\right)=s t\left(\left(\psi_{0}(f)(F)\right)^{*}\right.$, $n(f))$ for every $F \in\left(M_{0}(g)\right)^{0}=\left(M_{0}(f)\right)^{0}$.

Obviously, A^{0} is a countable set and by the construction, A^{0} is a subdivision of Ω^{0}. Let $A^{0}=\left\{A_{r}^{0}: r \in I(0)\right\}$.

For every $r \in I(0)$ we set $n\left(0, A_{r}^{0}\right)=0$ and $n\left(A_{r}^{0}\right)=n(g)$, where $g \in A_{r}^{0}$. Obviously, the integer $n\left(A_{r}^{0}\right)$ is independent from $g \in A_{r}^{0}$.

For every $F \in\left(M_{0}\left(A_{r}^{0}\right)\right)^{0}$ we denote by $s(F)$ the set of all elements \bar{i} of $L_{n(0, r)}$ for which $C_{\bar{i}} \subseteq s t\left(\left(\psi_{0}(g)(F)\right)^{*}, n(g)\right)$, where $g \in A_{r}^{0}$. Obviously, the set $s(F)$ is independent from $g \in A_{r}^{\varrho}$.

Finally, we set $U(F)=C_{s(F)} 又 A_{r}^{0}$ for every $F \in\left(M_{0}\left(A_{r}^{0}\right)\right)^{0}$. It is easy to see that properties (8), (11), (12) and (14) of the lemma are satisfied.

Suppose that the lemma is proved for every $m, 0 \leqq m<p$. We prove the lemma for $m=p$.

Let $E \in \Omega^{p}, t \in I(p-1)$ and $g=(S, D) \in E \cap A_{t}^{p-1}$. Since the map $\psi_{p}(g)$ is continuous, for every $x \in M_{p}(g)$ there exists an open neighbourhood $O(x)$ of x in $M_{p}(g)$ such that for every $y \in O(x)$ we have $\operatorname{st}\left(\psi_{p}(g)(x), n(p-1, t)\right)=$ $s t\left(\psi_{p}(g)(y), n(p-1, t)\right)$. (For example, we can suppose that $O(x)=$ $\left(\psi_{p}(g)\right)^{-1}\left(O\left(\psi_{p}(g)(x)\right)\right)$, where $O\left(\psi_{p}(g)(x)\right)$ is the set of all elements of D_{p} which are contained in the open set $\operatorname{st}\left(\psi_{p}(g)(x)\right.$ ' $n(p-1, t)$) of $\left.C\right)$. The set of all such neighbourhoods $O(x)$ is an open cover of $M_{p}(g)$. Hence, since $M_{p}(g)$ is a compactum there exists an integer $n_{0}(g) \geqq 0$ such that every element of $\left(M_{p}(g)^{n_{0}(g)}\right.$ is contained in the neighbourhood $O(x)$ for some x.

There exists an integer $n_{1}(g) \geqq 0$ such that $s t\left(\left(\psi_{k}(g)(F)\right)^{*}, n_{1}(g)\right) \cap \operatorname{st}\left(\left(\psi_{q}(g)(Q)\right)^{*}\right.$, $\left.n_{1}(g)\right)=\emptyset$ for every $F \in\left(M_{k}(g)\right)^{n(k, p-1, t)+1}$ and for every $Q \in\left(M_{q}(g)\right)^{n(q, p-1, t)+1}$, where $0 \leqq k \leqq p-1,0 \leqq q \leqq p-1$ and either $k \neq q$ or $k=q$ and $F \neq Q$.

Also, since D is an upper semi-continuous partition of S, there exists an integer $n_{2}(g) \geqq 0$ such that if $0 \leqq q \leqq p-1, d \in D, F \in\left(M_{q}(g)\right)^{n(q, p-1, t)+1}, Q \in$ $\left(M_{q}(g)\right)^{n(q, p-1, t)+1}, F \subseteq Q$ and $d \cap s t\left(\left(\psi_{q}(g)(F)\right)^{*}, n_{2}(g)\right) \neq \emptyset$, then $d \cong s t\left(\left(\psi_{q}(g)(Q)\right)^{*}\right.$, $n(p-1, t)$).

There exists an integer $n_{3}(g) \geqq 0$ such that if F and Q are distinct elements of $\left(M_{p}(g)\right)^{n_{0}(g)}$, then $s t\left(\left(\psi_{p}(g)(F)\right)^{*}, n_{3}(g)\right) \cap s t\left(\left(\psi_{p}(g)(Q)\right)^{*}, n_{3}(g)\right)=\emptyset$.

Finally, there exists an integer $n_{4}(g) \geqq 0$ such that if $0 \leqq q \leqq p-1, F \in$ $\left(M_{q}(g)\right)^{n(q, p-1, t)+1}, Q_{0} \in\left(M_{p}(g)\right)^{n_{0}(g)}$, then $s t\left(\left(\psi_{q}(g)(F)\right)^{*}, n_{4}\left(g^{\prime}\right) \cap s t\left(\left(\psi_{p}(g)(Q)\right)^{*}\right.\right.$, $\left.n_{4}(g)\right)=0$.

Let $n(g)=\max \left\{n_{1}(g), n_{2}(g), n_{3}(g), n_{4}(g), p+1, n(p-1, t)+1\right\}$.

We now define the decomposition A^{p}. Let $g, f \in A$. The elements g and f belong to the same element of A^{p} iff there exist an element E of Ω^{p} and an element $t \in I(p-1)$ such that: $(\alpha) g, f \in E \cap A_{t}^{p-1}$ (hence, $M_{q}(g)=M_{q}(f)$ for every $q, 0 \leqq q \leqq p$), (β) $n(g)=n(f), \quad(\gamma) \quad n_{0}(g)=n_{0}(f)$, ($\left.\delta\right)$ if $0 \leqq q \leqq p-1$ and $F \in$ $\left(M_{q}(g)\right)^{n(q . p-1, t)+1}=\left(M_{q}(f)\right)^{n(q, p-1, t)+1}$, then $s t\left(\left(\psi_{q}(g)(F)\right)^{*}, n(g)\right)=s t\left(\left(\psi_{q}(f)(F)\right)^{*}\right.$, $n(f)$), and (ε) if $F \in\left(M_{p}(g)\right)^{n_{0}(g)}=\left(M_{p}(f)\right)^{n_{0}(f)}$, then $\operatorname{st}\left(\left(\psi_{p}(g)(F)\right)^{*}, n(g)\right)=$ $s t\left(\left(\psi_{p}(f)(F)\right)^{*}, n(f)\right)$.

It is easy to see that the set A^{p} is countable. Let $A^{p}=\left\{A_{r}^{p}: r \in I(p)\right\}$.
Property (6) of the lemma follows by the definition of the decomposition A^{p}.
Let $r \in I(p)$. We define the integers $n(p, r)$ and $n(q, p, r)$ for $0 \leqq q \leqq p$ setting $n(p, r)=n(g), n(p, p, r)=n_{0}(g)$, where $g \in A_{r}^{p}$ and $n(q, p, r)=n(q, p-1, t)$ +1 if $0 \leqq q \leqq p-1$, where $t \in I(p-1)$ such that $A_{r}^{p} \subseteq A_{t}^{p-1}$.

Property (7) of the lemma follows by the definition of the number $n(g)$. Also, if $t \in I(p-1), q \leqq p-1$ and $e \in I(q)$ such that $A_{r}^{m} \subseteq A_{t}^{m-1} \subseteq A_{e}^{q}$, then we have $n(q, p, r)=n(q, p-1, t)+1=n(q, q, e)+p-1-q+1=n(q, q, e)+p-q$, that is, property (8) of the lemma is satisfied.

Property (9) of the lemma follows by the definition of the integer $n_{0}(g)$ (considering that $n(p, p, r)=n_{0}(g)$) and by property (ε) of the definition of the set A^{p} (from which it follows that $\operatorname{st}\left(\left(\psi_{p}(g)(F)\right)^{*}, n(p-1, t)\right)=s t\left(\left(\psi_{p}(f)(F)\right)^{*}\right.$, $n(p-1, t))$).

Property (10) of the lemma follows by the definition of the integers $n_{2}(g)$ and $n(g)$ (considering that $n(q, p, r)=n(q, p-1, t)+1)$.

The set $s(F)$, where $F \in\left(M_{q}\left(A_{r}^{p}\right)\right)^{n(q, p, r)}$ is defined as follows: an element i of $L_{n(p, r)}$ belongs to $s(F)$ iff $C_{i} \cong s t\left(\left(\psi_{q}(g)(F)\right)^{*}, n(p, r)\right)$, where $g \in A_{r}^{p}$. By properties (δ) and (ε) of the definition \circ, the decomposition A^{p} it follows that $s(F)$ is independent from $g \in A_{r}^{p}$.

Property (11) of the lemma follows immediately from the above definition of the set $s(F)$.

The set $U(F)$, where $F \in\left(M_{q}\left(A_{r}^{p}\right)\right)^{n(q, p, r)}$, is defined setting $U(F)=C_{s(F)}$ 又 A_{r}^{p}. Then, property (12) of the lemma is clear.

Finally, properties (13) and (14) of the lemma follows by the definition of the integers $n_{1}(g), n_{3}(g), n_{4}(g)$ and $n(g)$ and the definition of the sets $s(F)$ and $U(F)$.
3.3. Notations. For every $q \in N$ and $g \in A$ we denote by $r(q, g)$ the elements $t \in I(q)$ for which $g \in A_{t}^{q}$.

Let $m \in N$ and $r \in I(m)$. We denote by $s(m, r)$ the union of all sets $s(q, m, r, F)$, where $0 \leqq q \leqq m$ and $F \in\left(M_{q}\left(A_{r}^{m}\right)\right)^{n(q, m, r)}$. Obviously, $s(m, r) \subseteq L_{n(m, r)}$.

Let $m \in N, r \in I(m)$ and $x \in M_{m}\left(A_{r}^{m}\right)$. Obviously, if $(a, g) \in C$ 又 A_{r}^{m}, then $g \in A_{r}^{m}$ and $M_{m}\left(A_{r}^{m}\right)=M_{m}(g)$. We denote by $d(x, m, r)$ the set of all elements $(a, g) \in C \times A_{r}^{m}$ for which $\psi_{m}(g)(x)=a$. We denote by $T(1)$ the set of all subsets of $C \times A$ of the form $d(x, m, r)$. By T we denote the union of the set $T(1)$ and the set of all singletons $\{(a, g)\}$, where (a, g) belongs to $C \times A$ and does not belong to any $d(x, m, r) \in T(1)$.

Let $d(x, m, r)$ be a fixed element of $T(1)$ and let $k \in N$. We denote by $U(d(x, m, r), k)$ the union of all sets of the form $U(m, m+k, t, F)$, where $t \in$ $I(m+k)$ such that $A_{t}^{m+k} \subseteq A_{r}^{m}$ and $x \in F \in\left(M_{m}\left(A_{r}^{m+k}\right)\right)^{n(m, m+k, t)}$.

Since $M_{m}\left(A_{t}^{m+k}\right)=M_{m}\left(A_{r}^{m}\right)$ and by property (8) of Lemma 3.2, $n(m, m+k, t)$ $=n(m, m, r)+k$ we have $\left(M_{m}\left(A_{t}^{m+k}\right)\right)^{n(m, m+k, t)}=\left(M_{m}\left(A_{r}^{m}\right)\right)^{n(m, m, r)+k}$. This means that F is independent from the elements t of $I(m+k)$ for which $A_{i}^{m+k} \subseteq A_{r}^{m}$.

We observe that for every $y \in F$ we have $U(d(x, m, r), k)=U(d(y, m, r), k)$.
We denote by \hat{U} the set of all sets of the form $U(d, k)$, where $d=d(x, m, r)$ $\in T(1)$ and $k \in N$.

Let $m \in N, r \in I(m)$ and $i \in L_{m(m, r)}$ such that $i \notin s(m, r)$. Then, we set $V(\bar{i}, m, r)=C_{i}$ 又 A_{r}^{m}. We denote by \hat{V} the set of all sets of the form $V(\bar{i}, m, r)$.

Remarks. It is not difficult to prove that:
(1) For every $d(x, m, r) \in T(1), d(x, m, r) \subseteq C \times A_{r}^{m}$.
(2) If $g \in A_{r}^{m}$ and $d(x, m, r) \in T(1)$, then $d(x, m, r) \cap(C \times\{g\})=\psi_{m}(g)(x) \times\{g\}$ $\neq \emptyset$.
(3) For every $d \in T(1)$ and $k \in N, d \subseteq U(d, k)$.
(4) For every $d(x, m, r) \in T(1)$ and $k \in N, U(d(x, m, r), k) \subseteq C \times A_{r}^{m}$.
(5) For every $d \in T(1)$ and $k \in N, U(d, k+1) \subseteq U(d, k)$.
(6) If $x \in F \in\left(M_{m}\left(A_{r}^{m}\right)\right)^{n(m, m, r)}$, then $U(d(x, m, r), 0)=U(m, m, r, F)$.
(7) If $t \in I(m+k), \quad A_{t}^{m+k} \subseteq A_{r}^{m}$ and $x \in F \in\left(M_{m}\left(A_{i}^{m+k}\right)\right)^{n(m, m+k, t)}$, then $U(d(x, m, r), k) \cap\left(C \times A_{i}^{m+k}\right)=U(m, m+k, t, F)$.
(8) If $V(\bar{i}, m, r) \subseteq \hat{V}$ and $d(x, q, t) \in T(1)$, where $0 \leqq q \leqq m$, then $V(\bar{i}, m, r) \cap$ $d(x, q, t)=\emptyset$.
(9) If $d_{1}, d_{2} \in T$ (1) and $d_{1} \neq d_{2}$, then $d_{1} \cap d_{2}=\emptyset$.
(10) The union of all elements of T is the set $C \times A$.
3.5. Lemma. Let $d=d(x, m, r) \in T(1)$ and $U=U\left(d_{1}, n_{1}\right) \in \hat{O}$, where $d_{1}=$ $d\left(y, m_{1}, r_{1}\right) \in T(1)$. The following are true:
(1) If $d \subseteq U$, then there exists an integer $n \geqq 0$ such that $U(d, n) \subseteq U$.
(2) If $d \cap U=\emptyset$, then there exists an integer $n \geqq 0$ such that $U(d, n) \cap U=\emptyset$.
(3) If $d \cap U \neq \emptyset$ and $d \cap((C \times A) \backslash U) \neq \emptyset$, then there exists an open and closed
neighbourhood $O(x)$ of x in $M_{m}\left(A_{r}^{m}\right)$ such that $d(z, m, r) \cap U \neq \emptyset$ and $d(z, m, r) \cap$ $((C \times A) \backslash U) \neq \emptyset$ for every $z \in O(x)$ ．

Proof．（1）By properties（1）－（4）of Remarks 3.4 it follows that $A_{r}^{m} \subseteq A_{r_{1}}^{m_{1}}$ ．
First we suppose that $m \leqq p$ ，where $p=m_{1}+n_{1}$ ．Let t be an arbitrary ele－ ment of $I(p)$ such that $A_{i}^{p} \subseteq A_{r}^{m} \cap A_{r_{1}}^{m_{1}}$ and let $F=F(n(m, p, t), x)$ and $F_{1}=$ $F\left(n\left(m_{1}, p, t\right), y\right)$ ．

Suppose that either $m \neq m_{1}$ or $m=m_{1}$ and $F \neq F_{1}$ ．By properties（13）and（14） of Lemma 3.2 we have $U(m, p, t, F) \cap U\left(m_{1}, p, t, F_{1}\right)=\emptyset$ ．

Obviously，$d \cap\left(C \times A_{i}^{p}\right) \neq \emptyset$（See property（1）of Remarks 3．4）and since $d \subseteq U$ we have $d \cap\left(C \times A_{t}^{p}\right) \subseteq U \cap\left(C \times A_{t}^{p}\right)$ ．

On the other hand，$U \cap\left(C \times A_{t}^{p}\right)=U\left(m_{1}, p, t, F_{1}\right)$（See property（7）of Remarks 3．4）and $d \cap\left(C \times A_{t}^{p}\right) \subseteq U(m, p, t, F)$（See properties（6）and（7）of Remarks 3．4）． From this follows that $\left(d \cap\left(C\right.\right.$ 又 $\left.\left.A_{t}^{p}\right)\right) \cap\left(U \cap\left(C 又 A_{t}^{p}\right)\right)=0$ which is a contradiction．

Hence，$m=m_{1}$ and $F=F_{1}$ ．Setting $n=n_{1}$ we have that $U(d, n)=U\left(d_{1}, n_{1}\right)$ ， that is，the integer $n=n_{1}$ is the required integer．

Now，let $m_{1}+n_{1}=p<m$ ．Let $e \in I(m-1)$ and $t \in I(p)$ such that $A_{r}^{m} \subseteq A_{e}^{m-1} \sqsubseteq$ $A_{t}^{p} \subseteq A_{r_{1}}^{m_{1}}$ and let $F=F(n(m, m, r), x)$ and $F_{1}=F\left(n\left(m_{1}, p, t\right), y\right)$ ．

We have $U\left(d_{1}, n_{1}\right) \cap\left(C 又 A_{i}^{p}\right)=U\left(m_{1}, p, t, F_{1}\right)$ ．Since $d \subseteq C$ 又 $A_{r}^{m} \subseteq C$ 又 A_{t}^{p} we have that $d \subseteq U\left(m_{1}, p, t, F_{1}\right)=C_{s} 又 A_{t}^{p}$ ，where $s=s\left(F_{1}\right)$ ．Hence，st $\left(\psi_{m}(g)(x), n(p, t)\right)$ $\subseteq C_{\text {s }}$ for every $g \in A_{r}^{m}$ ．

Since $n(m-1, e) \geqq n(p, t)$（See property（7）of Lemma 3．2）we have that $s t\left(\psi_{m}(g)(x), n(m-1, e)\right) \cong s t\left(\psi_{m}(g)(x), n(p, t)\right)$ ．By proyerty（9）of Lemma 3.2 it follows that $s t\left(\left(\psi_{m}(g)(F)\right)^{*}, n(m-1, e)\right) \cong C_{s}$ ．By property（11）of Lemma 3.2 we have that $C_{s(F)} \cong C_{s}$ ．Hence，by property（12）of Lemma 3．2，$U(m, m, r, F)=$ $C_{s\left(F^{\prime}\right)}$ 又 $A_{r}^{m} \subseteq C_{s}$ 又 $A_{l}^{p}=U\left(m_{1}, p, t, F_{1}\right) \subseteq U$ ．Obviously，$U(m, m, r, F)=U(d, 0)$（See property（6）of Remarks 3．4）．Hence，the integer $n=0$ is the required integer．
（2）If $A_{r}^{m} \cap A_{r_{1}}^{m_{1}}=\emptyset$ ，then by properties（1）－（4）of Remarks 3.4 it follows that for every $n \in N, U(d, n) \cap U\left(d_{1}, n_{1}\right)=\emptyset$ ．Hence，we can suppose that $A_{r}^{m} \cap A_{r_{1}}^{m_{1}} \neq \emptyset$ ．

Let $m \leqq p$ ，where $p=m_{1}+n_{1}$ and let t, F and F_{1} be the same as in the cor－ responding part of case（1）．

If $m=m_{1}$ and $F=F_{1}$ ，then $r=r_{1}$ and $d \subseteq U$ which is a contradiction．Hence， either $m \neq m_{1}$ ，or $m=m_{1}$ and $F \neq F_{1}$ ．

In both cases，by properties（13）and（14）of Lemma 3.2 we have that $U(m, p, t, F) \cap U\left(m_{1}, p, t, F_{1}\right)=\emptyset$ ．Since $U(d, p-m) \cap\left(C\right.$ 又 $\left.A_{i}^{p}\right)=U(m, p, t, F)$ and $U\left(d_{1}, n_{1}\right) \cap\left(C \times A_{i}^{p}\right)=U\left(m_{1}, p, t, F_{1}\right)$ and since t is an arbitrary element of $I(p)$ for which $A_{i}^{p} \subseteq A_{r}^{m} \cap A_{r_{1}}^{m_{1}}$ we have that $U(d, p-m) \cap U\left(d_{1}, n_{1}\right)=\emptyset$ ，that is，the
integer $n=p-m$ is the required integer．
Now，let $p<m$ ，hence，$A_{r}^{m} \subseteq A_{r_{1}}^{m_{1}}$ and let e, t, F and F_{1} be the same as in the corresponding part of case（1）．

We have $U\left(d_{1}, n_{1}\right) \cap\left(C \times A_{i}^{p}\right)=U\left(m_{1}, p, t, F_{1}\right)=C_{s}$ 又 A_{t}^{p} ，where $s=s\left(F_{1}\right)$ ．Hence， $\left(C_{s} \times A_{i}^{p}\right) \cap d=0$ ．This means that for every $g \in A_{r}^{m}, s t\left(\psi_{m}(g)(x), n(p, t)\right) \cap C_{s}=0$ ． Since $n(m-1, e) \geqq n(p, t)$（See property（7）of Lemma 3．2）we have $\operatorname{st}\left(\psi_{m}(g)(x)\right.$ ， $n(m-1, p)) \cap C_{s}=0$ ．

By property（9）of Lemma 3.2 it follows that $s t\left(\left(\psi_{m}(g)(F)\right)^{*}, n(m-1, e)\right) \cap C_{s}$ $=0$ ．Since $n(m, r)>n(m-1, e)$ we have that $\operatorname{st}\left(\left(\psi_{m}(g)(F)\right)^{*}, n(m, r)\right) \cap C_{s}=0$ ，that is，$C_{s(F)} \cap C_{s}=0$ ．

Thus，$\left(C_{s\left(F^{\prime}\right)} \times A_{r}^{m}\right) \cap\left(C_{s} 又 A_{i}^{p}\right)=\emptyset$ ，that is，$U(m, m, r, F) \cap U\left(m_{1}, p, t, F_{1}\right)=0$ ． Hence，$U(m, m, r, F) \cap U\left(d_{1}, n_{1}\right)=\emptyset$ ，that is，$U(d, 0) \cap U\left(d_{1}, n_{1}\right)=\emptyset$ and $n=0$ is the required integer．
（3）It is easy to see that $A_{r}^{m} \cap A_{r_{1}}^{m_{1}} \neq \emptyset$ ．Let $m \leqq p$ ，where $p=m_{1}+n_{1}$ and let $t \in I(p)$ such that $A_{t}^{p} \subseteq A_{r}^{m}$ and $A_{t}^{p} \subseteq A_{r_{1}}^{m_{1}}$ ．Let F and F_{1} be the same as in the corresponding part of case（1）．As in that case we prove that if $m=m_{1}$ and $F=F_{1}$ ，then $d \subseteq U$ and if either $m \neq m_{1}$ or $m=m_{1}$ and $F \neq F_{1}$ ，then $d \cap U=0$ ， which is a contradiction．

Hence $p<m$ ．Then．$A_{r}^{m} \cong A_{r_{1}}^{m_{1}}$ ．Let e, t, F and F_{1} be same as in the cor－ responding part of case（1）．

We have $U \cap\left(C \times A_{i}^{p}\right)=U\left(m_{1}, p, t, F_{1}\right)$ ．Since $d \subseteq C$ 又 $A_{r}^{m} \cong C$ 又 A_{i}^{p} we have $d \cap U\left(m_{1}, p, t, F_{1}\right) \neq \emptyset$ and $d \cap\left((C \times A) \backslash U\left(m_{1}, p, t, F_{1}\right)\right) \neq \emptyset$ ．Moreover，if $(a, g) \in$ $d \cap\left((C\right.$ 又 $\left.A) \backslash U\left(m_{1}, p, t, F_{1}\right)\right)$ ，then $(a, g) \notin U$ ．

There exist elements g_{1} and g_{2} of A_{r}^{m} such that $\psi_{m}\left(g_{1}\right)(x) \cap C_{s} \neq \emptyset$ and $\psi_{m}\left(g_{2}\right)(x) \cap\left(C \backslash C_{s}\right) \neq \emptyset$ ，where $s=s\left(F_{1}\right)$ ．Since $n(m-1, e) \geqq n(p, t)$ there exist ele－ ments i_{1} and \bar{i}_{2} of $C_{n(m-1, e)}$ such that $C_{i_{1}} \subseteq C_{s}, C_{i_{2}} \subseteq C \backslash C_{s}, \psi_{m}\left(g_{1}\right)(x) \cap C_{i_{1}} \neq 0$ and $\psi_{m}\left(g_{2}\right)(x) \cap C_{\bar{i}_{2}} \neq \emptyset$ ．

By property（9）of Lemma 3.2 it follows that for every $z \in F$ we have $\psi_{m}\left(g_{1}\right)(z) \cap C_{i_{1}} \neq \emptyset$ and $\psi_{m}\left(g_{2}\right)(z) \cap C_{i_{2}} \neq 0$ ．This means that $d(z, m, r) \cap U\left(m_{1}, p, t, F_{1}\right)$ $\neq \emptyset$ and $d(z, m, r) \cap\left((C \times A) \backslash U\left(m_{1}, p, t, F_{1}\right)\right) \neq \emptyset$ ，that is，$d(z, m, r) \cap U \neq \emptyset$ and $d(z, m, r) \cap((C \times A) \backslash U) \neq 0$ ．Hence，the neighbourhood $O(x)=F$ is the required neighbourhood of x in $M_{m}\left(A_{r}^{m}\right)$ ．

3．6．Lemma．Let $d=d(x, m, r) \in T(1)$ and $V=V(\bar{i}, p, t) \in \hat{V}$ ．The following are true：
（1）If $d \subseteq V$ ，then there exists an integer $n \geqq 0$ such that $U(d, n) \cong V$ ．
（2）If $d \cap V=\emptyset$ ，then there exists an integer $n \geqq 0$ such that $U(d, n) \cap V=\emptyset$ ．
（3）If $d \cap V \neq 0$ and $d \cap((C \times A) \backslash V) \neq \emptyset$ then there exists an open ana closed
neighbourhood $O(x)$ of x in $M_{m}\left(A_{r}^{m}\right)$ such that $d(z, m, r) \cap V \neq \emptyset$ and $d(z, m, r) \cap$ $((C$ 又 $A) \backslash V) \neq \emptyset$ for every $z \in O(x)$.

Proof. (1) By properties (1) and (8) of Remarks 3.4 it follows that $p<m$ and $A_{r}^{m} \cong A_{i}^{p}$. Hence $n(m, r)>n(p, t)$. Let $F=F(n(m, m, r), x)$.

Since $d \subseteq V$ and $n(m, r)>n(p, t)$ we have that $\psi_{m}(g)(x) \cong C_{\bar{\imath}}$ for every $g \in A_{r}^{m}$. Hence, by property (9) of Lemma 3.2 it follows that $\left(\psi_{m}(g)(F)\right)^{\subseteq} \subseteq C_{\bar{i}}$.

By property (11) of Lemma 3.2 and since $n(m, r)>n(p, t)$ we have $C_{s(F)}$ $\subseteq C_{\bar{i}}$. Since $A_{r}^{m} \subseteq A_{i}^{p}$ we have $C_{s(F)} \times A_{r}^{m} \subseteq C_{i} \times A_{i}^{p}$. Hence, $U(m, m, r, F)=$ $U(d, 0) \subseteq V(\bar{i}, p, t)$. Thus, the integer $n=0$ is the required integer.
(2) If $A_{r}^{m} \cap A_{t}^{p}=\emptyset$, then for any integer $n \in N, U(d, n) \cap V=\emptyset$. Hence, we can suppose that $A_{r}^{m} \cap A_{t}^{p} \neq \emptyset$.

Let $m \leqq p$. Then, $A_{i}^{p} \leqq A_{r}^{m}$. Let $F=F(n(m, p, t), x)$. By the definition of the elements of \hat{V} it follows that $U(m, p, t, F) \cap\left(C_{i} \times A_{i}^{p}\right)=\emptyset$. Setting $n=m_{2}-m$ we have $U(d, n) \cap\left(C \times A_{t}^{p}\right)=U(m, p, t, F)$. Hence, $U(d, n) \cap V(\bar{i}, p, t)=\emptyset$, that is, the integer $n=m_{2}-m$ is the required integer.

Now, let $p<m$. Then, $A_{r}^{m} \subseteq A_{i}^{p}$. Let $e \in I(m-1)$ such that $A_{r}^{m} \subseteq A_{e}^{m-1}$ and $F=F(n(m, m, r), x)$.

We have $U(d, 0)=U(m, m, r, F)=C_{s(F)}$ 又 A_{r}^{m} (See property (12) of Lemma 3.2). Hence, $U(d, 0) \cap V \neq \emptyset$ if and only if $C_{s(F)} \cap C_{\bar{i}} \neq \emptyset$.

If $g \in A_{r}^{m}$, then $s t\left(\left(\psi_{m}(g)(F)\right)^{*}, n(m, r)\right)=C_{s(F)}$ (See property (11) of Lemma 3.2). Since $d \cap V=\emptyset$ it follows that $s t\left(\psi_{m}(g)(x), n(p, t)\right) \cap C_{i}=\emptyset$. Since $n(m-1, e)$ $\geqq n(p, t)$, we have $s t\left(\psi_{m}(g)(x), n(m-1, e)\right) \subseteq s t\left(\psi_{m}(g)(x), n(p, t)\right)$ and, hence, $s t\left(\psi_{m}(g)(x), n(m-1, e)\right) \cap C_{i}=\emptyset$.

By property (9) of Lemma 3.2 it follows that $\operatorname{st}\left(\psi_{m}(g)(x), n(m-1, e)\right)=$ $s t\left(\left(\psi_{m}(g)(F)\right)^{*}, n(m-1, e)\right)$. Since $n(m, r)>n(m-1, e)$ we have $s t\left(\left(\psi_{m}(g)(F)\right)^{*}\right.$, $n(m, r)) \subseteq s t\left(\left(\psi_{m}(g)(F)\right)^{*}, n(m-1, e)\right)$ and, hence, $s t\left(\left(\psi_{m}(g)(F)\right)^{*}, n(m, r)\right) \cap C_{i}=\emptyset$, that is, the integer $n=0$ is the required integer.
(3) As in case (1) we have $p<m$ and $A_{r}^{m} \subseteq A_{i}^{p}$. Let $e \in I(m-1)$ such that $A_{r}^{m} \subseteq A_{e}^{m-1}$ and let $F=F(n(m, m, r), x)$.

Since $d \cap V \neq \emptyset$ there exists $g_{1} \in A_{r}^{m}$ such that $\psi_{m}\left(g_{1}\right)(x) \cap C_{\boldsymbol{i}} \neq \emptyset$. Also, since $d \cap((C \times A) \backslash V) \neq \emptyset$ there exists $g_{2} \in A_{r}^{m}$ such that $\psi_{m}\left(g_{2}\right)(x) \cap\left(C \backslash C_{i}\right) \neq \emptyset$. Since $n(m-1, e) \geqq n(p, t)$ there exist $\bar{i}_{1}, \bar{i}_{2} \in L_{n(m-1, e)}$ such that $C_{\bar{i}_{1}} \subseteq C_{\bar{i}}, C_{\bar{i}_{2}} \subseteq C \backslash C_{\bar{i}}$, $\psi_{m}\left(g_{1}\right)(x) \cap C_{\bar{i}_{1}} \neq \emptyset$ and $\psi_{m}\left(g_{2}\right)(x) \cap C_{i_{2}} \neq \emptyset$.

By property (9) of Lemma 3.2, for every $g \in A_{r}^{m}$ and for every $z \in F$ we have $\psi_{m}(g)(z) \cap C_{i_{1}} \neq \emptyset$ and $\psi_{m}(g)(z) \cap C_{i_{2}} \neq \emptyset$, and, hence, $\psi_{m}(g)(z) \cap C_{i} \neq \emptyset$ and $\psi_{m}(g)(z) \cap\left(C \backslash C_{i}\right) \neq \emptyset$, that is, $d(z, m, r) \cap V \neq \emptyset$ and $d(z, m, r) \cap((C \times A) \cap V) \neq \emptyset$. Thus, the neighbourhood $O(x)=F$ is the required neighbourhood of x in $M_{m}\left(A_{r}^{m}\right)$.
3.7. Lemma. Let $d=\{(a, g)\}$, where $g=(S, D), V, V_{1} \in \hat{V}$ and $U, U_{1} \in \hat{U}$. The following are true:
(1) If $d \subseteq C_{i} \times A_{r}^{m}$, then there exists an element W of $\hat{U} \cup \hat{V}$ such that $d \subseteq$ $W \subseteq C_{\bar{i}} \times A_{r}^{m}$.
(2) If $V \cap V_{1} \neq \emptyset$, then either $V \subseteq V_{1}$ or $V_{1} \subseteq V$.
(3) If $d \subseteq V \cap U$, then there exists an element W of $\hat{U} \cup \hat{V}$ such that $d \subseteq W$ $\cong V \cap U$.
(4) If $d \subseteq U \cap U_{1}$, then there exists an element W of $\hat{U} \cap \hat{V}$ such that $d \subseteq W$ $\sqsubseteq U \cap U_{1}$.
(5) If $d \cap V=\emptyset$, then there exists an element W of $\hat{U} \cup \hat{V}$ such that $d \subseteq W$ and $W \cap V=\emptyset$.
(6) If $d \cap U=\emptyset$, then there exists an element W of $\hat{U} \cup \hat{V}$ such that $d \subseteq W$ and $W \cap U=\emptyset$.

Proof. Let $i \in L_{n}$ and let k be an integer such that $k-1 \geqq \max \{n, m\}$.
There exists an integer $p \geqq k$ such that $\operatorname{st}(a, n(p, t)) \cap \operatorname{st}\left(\left(D_{q}\right)^{*}, n(p, t)\right)=\emptyset$ for every $q \leqq k$, where $t=r(p, g)$.

Let $j \in L_{n(p, t)}$ and $a \in C_{j}$. Suppose that $\bar{j} \notin s(p, t)$. Then, the set $W=$ C_{j} 又 A_{t}^{p} belongs to \hat{V}. Obviously, we have $\{(a, g)\} \subseteq W, C_{j} \subseteq C_{i}$ and $A_{t}^{p} \cong A_{r}^{m}$. Hence, $W \cong V$, that is, W is the required element of $\hat{U} \cup \hat{V}$. Suppose that $\bar{j} \in$ $s(p, t)$, that is, $\bar{j} \in s(q, p, t, F)$ for some $q, 0 \leqq q \leqq p$, and some $F \in\left(M_{q}\left(A_{t}^{p}\right)\right)^{n(q, p, t)}$. Hence, $C_{j} \subseteq s t\left(\left(\psi_{q}(g)(F)\right)^{*}, n(p, t)\right)$ (See property (11) of Lemma 3.2). This means that $s t(a, n(p, t)) \cap s t\left(\left(D_{q}\right)^{*}, n(p, t)\right) \neq \emptyset$ and, hence, $k<q$.

Let $x \in F$ and $\psi_{q}(g)(x) \cap C_{j} \neq \emptyset$. Since $q>n$ we have that $\psi_{q}(g)(x) \cong C_{\bar{i}}$. Let $Q=F(n(q, q, e), x)$, where $e=r(q, g)$. Since $n(q-1, r(q-1, g))>n$ we have that $s t\left(\psi_{q}(g)(x), n(q-1, r(q-1, g))\right) \cong C_{i}$ and, hence $\left.s t\left(\psi_{q}(g)(Q)\right)^{*}, n(q-1, r(q-1, g))\right)$ $\leqq C_{\bar{i}}$ (See property (9) of Lemma 3.2). Since $n(q, e)>r(p-1, g)$) we have $s t\left(\left(\psi_{q}(g)(Q)\right)^{*}, n(q, e)\right)=C_{s(q)} \cong C_{i}$.

By properties (11) and (12) of Lemma 3.2 it follows that $U(q, q, e, Q)=$ $C_{s(Q)} \times A_{\varepsilon}^{q} \subseteq C_{\bar{i}} \times A_{\varepsilon}^{q} \subseteq V$.

Since $\{(a, g)\} \subseteq U(q, q, e, Q)=U(d(x, q, e), 0) \in \hat{U}$, the set $W=U(q, q, e, Q)$ is the required element of $\hat{O} \cup \hat{V}$.
(2) Let $V=V(\bar{i}, m, r)$ and $V_{1}=V(\bar{j}, p, t)$. Since $V \cap V_{1} \neq \emptyset$ we have $A_{r}^{m} \cap A_{i}^{p}$ $\neq \emptyset$ and $C_{i} \cap C_{j} \neq \emptyset$. Let $m \leqq p$. Then, $A_{i}^{p} \subseteq A_{r}^{m}$ and since $n(p, t) \geqq n(m, r)$, $C_{\bar{j}} \subseteq C_{\bar{i}}$. Hence, $V_{1} \subseteq V$. Similarly, if $p \leqq m$, then $V \subseteq V_{1}$.
(3) Let $U=U(d(x, m, r), n)$ and $V=V(\bar{i}, p, t)$. We have $\{(a, g)\} \subseteq$ $U(m, q, e, F)=C_{s(F)}$ 又 $A_{e}^{q} \subseteq U$, where $q=m+n, e=r(q, g)$ and $F=F(n(m, q, e), x)$.

Let $k=\max \{p, q\}$ and $n_{1}=\max \{n(p, t), n(q, e)\}$. Let s be a subset of all
elements \bar{j} of $L_{n_{1}}$ for which $C_{j} \cong C_{i} \cap C_{s(F)}$. Then, $C_{s}=C_{i} \cap C_{s(F)}$. Also, we have $A_{i}^{p} \cap A_{e}^{q}=A_{r(k, g)}^{k}$. Then, $d \subseteq\left(C_{\bar{i}} \times A_{i}^{p}\right) \cap\left(C_{s(F)} \times A_{\varepsilon}^{q}\right)=C_{s} \times A_{r(k, g)}^{k} \cong V \cap U$. Hence, the proof of this case follows from case (1).
(4) Let $U=\left(U(d(x, m, r), n)\right.$ and $U_{1}=U\left(d\left(x_{1}, m_{1}, r_{1}\right), n_{1}\right) . \quad$ As in case (3) we have $d \subseteq C_{s(F)} \times A_{e}^{q} \subseteq U$, where $q=m+n, e=r(q, g)$ and $F=F(n(m, q, e), x)$. Similarly, $d \subseteq C_{s\left(F_{1}\right)} \times A_{e_{1}}^{q_{1} \subseteq U_{1}}$, where $q_{1}=m_{1}+n_{1}, \quad e_{1}=r\left(q_{1}, g\right)$ and $F_{1}=$ $F\left(n\left(m_{1}, q_{1}, e_{1}\right), x\right)$.

Let $p=\max \left\{q, q_{1}\right\}$ and $k=\max \left\{n(q, g), n\left(q_{1}, g\right)\right\}$. There exists a subset s of L_{k} such that $C_{s}=C_{s(F)} \cap C_{s\left(F_{1}\right)}$. Hence, $d \subseteq\left(C_{s(F)} \times A_{e}^{q}\right) \cap\left(C_{s\left(F_{1}\right)} \times A_{e_{1}}^{q_{1}}\right)=$ $C_{s} \times A_{i}^{p} \cong U \cap U_{1}$, where $t=r(p, g)$. The rest of the proof of this case follows from case (1).
(5) Let $V=V(\bar{i}, m, r)$ and let $a \in C_{j}$, where $\bar{j} \in L_{n(m, r)}$. Since $d \cap V=0$ we have that either $C_{i} \cap C_{j}=\emptyset$ or $A_{r}^{m} \cap A_{r(m, g)}^{m}=\emptyset$. Hence, $\left(C_{j} \times A_{r(m, g)}^{m}\right) \cap\left(C_{i} \times A_{r}^{m}\right)$ $=\emptyset$. Since $\{(a, g)\} \subseteq C_{j} \times A_{r(m, g)}^{m}$, the existence of the set W follows from case (1).
(6) Let $U=U(d(x, m, r), n)$. Let i be an element of L_{k}, where $k=$ $n(m+n, r(m+n, g))$, such that $a \in C_{\bar{i}}$. Then, it is easy to see that $\left(C_{i} \times A_{r(m+n, g)}^{m+n}\right)$ $\cap U=\emptyset$. Hence, the proof of this case also follows from case (1).
3.8. Lemma. Let $d_{1}, d_{2} \in T$ and $d_{1} \neq d_{2}$. Then, there exist elements W_{1} and W_{2} of $\hat{O} \cup \hat{V}$ such that $d_{1} \subseteq W_{1}, d_{2} \subseteq W_{2}$ and $W_{1} \cap W_{2}=\emptyset$.

Proof. We consider the cases:
(1) $d_{1}=\left\{\left(a_{1}, g_{1}\right)\right\}$ and $d_{2}=\left\{\left(a_{2}, g_{2}\right)\right\}$,
(2) $d_{1}=\{(a, g)\}$ and $d_{2}=d(x, m, r) \in T(1)$, and
(3) $d_{1}=d\left(x_{1}, m_{1}, r_{1}\right) \in T(1)$ and $d_{2}=d\left(x_{2}, m_{2}, r_{2}\right) \in T(1)$.

In the first case either $a_{1}=a_{2}$ or $a_{1}=a_{2}$ and $g_{1} \neq g_{2}$. If $a_{1} \neq a_{2}$, then there exist an integer n and distinct elements \bar{i} and \bar{j} of L_{n} such that $a_{1} \in C_{\bar{i}}$ and $a_{2} \in C_{j}$. Then, we set $V_{1}=C_{i} \times A_{r\left(0, g_{1}\right)}^{0}$ and $V_{2}=C_{i} \times A_{r\left(0, g_{2}\right)}^{0}$.

If $a_{1}=a_{2}$ and $g_{1} \neq g_{2}$, then there exists an integer m such that $r\left(m, g_{1}\right) \neq$ $r\left(m, g_{2}\right)$. Then, we set $V_{1}=C_{\xi} \times A_{r\left(m, g_{1}\right)}^{m}$ and $V_{2}=C_{g} \times A_{r\left(m, g_{2}\right)}^{m}$.

In both subcases we have $d_{1} \subseteq V_{1}, d_{2} \subseteq V_{2}$ and $V_{1} \cap V_{2}=0$. By case (1) of Lemma 3.7 there exist elements W_{1} and W_{2} of $\hat{U} \cup \hat{V}$ such that $d_{1} \subseteq W_{1} \subseteq V_{1}$ and $d_{2} \cong W_{2} \subseteq V_{2}$. Hence, $W_{1} \cap W_{2}=\emptyset$.

In the second case if $g \notin A_{r}^{m}$, then there exists an element W_{1} of $\hat{U} \cup \hat{V}$ such that $d_{1} \subseteq W_{1} \subseteq C_{g}$ 又 $A_{r(m, g)}^{m}$. Let $W_{2}=U(d(x, m, r), 0)$. Then, $W_{1} \cap W_{2}=0$.

Let $g \in A_{r}^{m}$. Then, $a \notin \psi_{m}(g)(x)$. There exists an integer $p \geqq m$ such that $s t(a, n) \cap \operatorname{st}\left(\left(D_{m}\right)^{*}, n\right)=\emptyset$, where $n=n(p, r(p, g))$. Let $\bar{i} \in L_{n}$ such that $a \in C_{\bar{i}}$.

Then, $i \notin s(m, p, e, F)=s(F)$, where $e=r(p, g)$ and $F=F(n(m, p, e), x)$ (See property (11) of Lemma 3.2).

Let $W_{2}=U(d(x, m, r), p-m)$. We have $W_{2} \cap\left(C_{8}\right.$ 又 $\left.A_{e}^{p}\right)=U(m, p, e, F)$. Since $U(m, p, e, F)=C_{s(F)} \times A_{e}^{p}$ and since $i \in s(F)$ we have of $d \notin W_{2}$.

By property (6) of Lemma 3.7 it follows that there exists an element W_{1} of $\hat{U} \cup \hat{V}$ such that $d \subseteq W_{1}$ and $W_{1} \cap W_{2}$.

Finally in the third case we consider the following subcases: $(\alpha) m_{1}=m_{2}$ and $r_{1} \neq r_{2},(\beta) m_{1}=m_{2}$ and $r_{1}=r_{2}$. and (γ) $m_{1} \neq m_{2}$.

In the first subcase we set $W_{1}=U\left(d\left(x_{1}, m_{1}, r_{1}\right), 0\right)$ and $W_{2}=U\left(d\left(x_{2}, m_{2}, r_{2}\right), 0\right)$. Obviously, $d_{1} \subseteq W_{1}, d_{2} \subseteq W_{2}$ and $W_{1} \cap W_{2}=0$.

In the second subcase let $n_{1} \geqq n\left(m_{1}, m_{1}, r_{1}\right)$ be an integer such that there exist two distinct elements F_{1} and F_{2} of $\left(M_{m_{1}}\left(A_{r_{1}}^{m_{1}}\right)^{n_{1}}\right.$ for which $x_{1} \in F_{1}$ and $x_{2} \in F_{2}$. Let $n=n_{1}-n\left(m_{1}, m_{1}, r_{1}\right)$. We set $W_{1}=U\left(d\left(x_{1}, m_{1}, r_{1}\right), n\right)$ and $W_{2}=$ $U\left(d\left(x_{2}, m_{2}, r_{2}\right), n\right)$ and we prove that $W_{1} \cap W_{2}=0$.

Indeed, if $W_{1} \cap W_{2} \neq 0$, then there exists an element $r \in I\left(m_{1}+n\right)$ such that $A_{r}^{m_{1}+n} \subseteq A_{r_{1}}^{m_{1}}$ and $\left(W_{1} \cap\left(C_{8} \times A_{r}^{m_{1}+n}\right)\right) \cap\left(W_{2} \cap\left(C_{g} \times A_{r}^{m_{1}+n}\right)\right) \neq \emptyset$. We have $W_{1} \cap$ $\left(C_{8} \times A_{r}^{m_{1}+n}\right)=U\left(m_{1}, m_{1}+n, r, F_{1}\right)$ and $W_{2} \cap\left(C_{\varnothing} \times A_{r}^{m_{1}+n}\right)=U\left(m_{2}, m_{2}+n, r, F_{2}\right)$. Hence, $U\left(m_{1}, t_{1}, m_{1}+n, F_{1}\right) \cap U\left(m_{2}, m_{2}+n, r, F_{2}\right) \neq \emptyset$. By property (14) of Lemma 3.2 this is a contradiction.

In the third subcase, without loss of generality, we can suppose that $m_{1}<m_{2}$. Then, either $A_{r_{2}}^{m_{2}} \subseteq A_{r_{1}}^{m_{1}}$, or $A_{r_{2}}^{m_{2}} \cap A_{r_{1}}^{m_{1}}=0$. If $A_{r_{2}}^{m_{2}} \subseteq A_{r_{1}}^{m_{1}}$, then we set $W_{1}=$ $U\left(d\left(x_{1}, m_{1}, r_{1}\right), m_{2}-m_{1}\right)$ and $W_{2}=U\left(d\left(x_{2}, m_{2}, r_{2}\right), 0\right)$. Obviously, we have $W_{1} \cap W_{2}$ $=U\left(m_{1}, m_{2}, r_{2}, F_{1}\right) \cap U\left(m_{2}, m_{2}, r_{2}, F_{2}\right)=\emptyset$, where $F_{1}=F\left(n\left(m_{1}, m_{2}, r_{2}\right), x_{1}\right)$ and $F_{2}=$ $F\left(n\left(m_{2}, m_{2}, r_{2}\right), x_{2}\right)$.

If $A_{r_{2}}^{m_{2}} \cap A_{r_{1}}^{m_{1}}=\emptyset$, then it is sufficient to put $W_{1}=U\left(d\left(x_{1}, m_{1}, r_{1}\right), 0\right)$ and $W_{2}=$ $U\left(d\left(x_{2}, m_{2}, r_{2}\right), 0\right)$.
3.9. Lemma. Let $d \in T$ and $d \subseteq W \in \hat{U} \cup \hat{V}$. There exists an element W_{1} of $\hat{U} \cup \hat{V}$ such that $d \subseteq W_{1} \subseteq W$ and every element of $T(1)$ intersecting W_{1}, is contained in W.

Proof. First we suppose that $d=d(x, m, r)$. By property (1) of Lemma 3.5 and property (1) of Lemma 3.6 if follows that there exists an integer $n \geqq 0$ such that $U(d(x, m, r), n) \cong W$.

We prove that the set $W_{1}=U(d(x, m, r), n+1)$ is the required element of $\hat{U} \cup \hat{V}$. Indeed, let $d_{1}=d\left(x_{1}, m_{1}, r_{1}\right) \subseteq T(1)$ and $(a, g) \in d_{1} \cap W_{1}$. We have $U(d(x, m, r), n+1) \cap\left(C_{s} \times A_{i}^{p}\right)=U(m, p, t, F)$, where $p=n+m+1, t=r(m+n+1, g)$ and $F=F(n(m, p, t), x)$.

If $m_{1}<p$, then we can consider the set $U\left(m_{1}, p, t, F_{1}\right)$, where $F_{1}=$ $F\left(n\left(m_{1}, p, t\right), x_{1}\right)$. Since $(a, g) \in U(m, p, t, F) \cap U\left(m_{1}, p, t, F_{1}\right)$ by properties (13) and (14) of Lemma 3.2 it follows that $m=m_{1}$ and $F=F_{1}$. In this case, by the definition of the elements of the set \hat{U} it follows that $d_{1} \subseteq U(d(x, m, r), n+1)$ $\cong U(d(x, m, r), n)$.

Hence, we can suppose that $m+n+1<m_{1}$. We have $(a, g) \in U(m, p, t, F)=$ $C_{s(F)} \times A_{i}^{p}$. Hence, $a \in C_{s(F)}$.

Let $a \in C_{\bar{i}}$ and $\bar{i} \in L_{k}$, where $k=n\left(m_{1}-1, r\left(m_{1}-1, g\right)\right)$. Since $a \in C_{s(F)}$ and $k \geqq n(p, t)$ we have $C_{i} \cong C_{s(F)}$.

By property (9) of Lemma 3.2 it follows that if $g_{1}=\left(S_{1}, D_{1}\right) \in A_{r(m-1, g)}^{m}$, then $\psi_{m_{1}}\left(g_{1}\right)\left(x_{1}\right) \cap C_{i} \neq \emptyset$ (we observe that $a \in \psi_{m_{1}}(g)\left(x_{1}\right)$), that is $\psi_{m_{2}}\left(g_{1}\right)\left(x_{1}\right) \cap$ $s t\left(\left(\psi_{m}\left(g_{1}\right)(F)\right)^{*}, n(p, t)\right) \neq 0 . \quad$ By property (10) of Lemma 3.2 it follows that $\psi_{m}\left(g_{1}\right)\left(x_{1}\right) \subseteq s t\left(\left(\psi_{m}\left(g_{1}\right)(Q)\right)^{*}, n(m+n, r(m+n, g))=C_{s(Q)}\right.$, where $Q=F(n(m, m+n$, $r(m+n, g)), x)$. This means that $d_{1} \subseteq C_{s(Q)} \times A_{r(m+n, g)}^{m+n}=U(m, m+n, r(m+n, g))$ $\subseteq U(d(x, m, r), n)$.

Now, we suppose that $d=\{(a, g)\}$, where $g=(S, D)$. It is easy to see that there exists an integer $m \geqq 0$ such that $(a, g) \cong C_{i} \times A_{r(m, g)}^{m} \subseteq W$, where $\bar{i} \in$ $L_{n(m, r(m, g))}$. Let q_{0} be an integer such that $q_{0}-1>n(m, r(m, g))$. Since D is an upper semi-continuous partition of S there exists an integer $p \geqq q_{0}$ such that $s t(a, n(p, t)) \cap s t\left(\left(D_{q}\right)^{*}, n(p, t)\right)=\emptyset$, for every $q \leqq q_{0}$, where $t=r(p, g)$.

Let s be the subset of $L_{n(p, t)}$ for which $a \in C$ and either $s=\{\bar{j}\}$ and $\bar{j} \neq$ $s(p, t)$ or $s=s(q, p, t, F)=s(F)$ for some $q, 0 \leqq q \leqq p, \quad$ and some $F=$ $F\left(n(q, p, t), M_{q}(g)\right)$.

We set $W_{1}=C_{s} \times A_{i}^{p} \in \hat{V}$ and we prove that $W_{1} \subseteq C_{i} \times A_{r(m, g)}^{m}$. This is clear if $s=\{\bar{j}\}$. Suppose that $s=S(F)$. Then, $s t(a, n(p, t)) \cap s t\left(\left(D_{q}\right)^{*}, n(p, t)\right) \neq \emptyset$ and, hence, $q_{0}<q$.

Let $\quad x \in F \quad$ and $\quad \psi_{q}(g)(x) \cap s t(a, n(p, t)) \neq 0$. Since $q>n(m, r(m, g))$ and $s t(a, n(p, t)) \subseteq C_{\bar{i}}$ we have that $\psi_{q}(g)(x) \cong C_{\bar{i}}$.

Let $Q=F(n(q, q, r(q, g)), x)$. Since $n(q-1, r(q-1, g))>n(m, r(m, g))$ by property (9) of Lemma 3.2 it follows that $\left(\psi_{q}(g)(Q)\right)^{*} \cong C_{\bar{i}}$ and hence, $\operatorname{st}\left(\left(\psi_{q}(g)(Q)\right)^{*}\right.$, $n(q, r(q, g)))=C_{s(Q)} \cong C_{i}$.

By properties (11) and (12) of Lemma 3.2 it follows that $U(q, q, r(q, g), Q)$ $=C_{S(Q)} \times A_{r(q, g)}^{q} \cong C_{j}$ 又 $A_{r(m, g)}^{m}$. Since $U(q, p, t, F)=U(q, q, r(q, g), Q)$ we have $W_{1} \cong C_{i} \times A_{r(m, g)}^{m}$.

Now, we prove that if $d_{1} \in T(1)$ and $d_{1} \cap W_{1} \neq \emptyset$, then $d_{1} \subseteq C_{\bar{i}} \times A_{r(m, g)}^{m}$. Indeed, let $d_{1}=d\left(x_{1}, m_{1}, t_{1}\right)$ and $\left(a_{1}, g_{1}\right) \in d_{1} \cap W_{1}$.

If $m_{1} \leqq p$, then we can consider the set $U\left(m_{1}, p, t, F_{1}\right)=U\left(F_{1}\right)$, where $F_{1}=$ $F\left(n\left(m_{1}, p, t\right), x_{1}\right)$. Obviously, $d_{1} \cap W_{1} \subseteq U\left(F_{1}\right) \cap W_{1}$. It $s=\{\bar{j}\}$ and $\bar{j} \notin s(p, t)$, then
$U\left(F_{1}\right) \cap W_{1}=0$ which is contradiction. Hence, $s=s(F)$ and since $U\left(m_{1}, p, t, F_{1}\right)$ $\cap U(q, p, t, F) \neq \emptyset$ by properties (13) and (14) of Lemma 3.2 it follows that $m_{1}=q$ and $F=F_{1}$. Hence, $d_{1} \subseteq U(F)=W_{1} \subseteq C_{\bar{i}} \times A_{r(m, g)}^{m}$.

Thus we can suppose that $p<m_{1}$. Obviously, $A_{r\left(m_{1}, g_{1}\right)}^{m_{1}} \subseteq A_{i}^{p}$. Since $a_{1} \in C_{s}$ and $\left.n\left(m_{1}-1, r\left(m_{1}-1\right), g_{1}\right)\right) \geqq n(p, t)$ by property (9) of Lemma 3.2 it follows that if g_{0} is an arbitrary element of $A_{r\left(m_{1}, g_{1}\right)}^{m_{1}}$, then $\psi_{m_{1}}\left(g_{0}\right)\left(x_{1}\right) \cap C_{s} \neq \emptyset$. Since $m_{1}>$ $n(m, r(m, g))$ we have that $\psi_{m_{1}}\left(g_{0}\right)\left(x_{1}\right) \cong C_{i}$, that is, $d_{1} \cong C_{i} \times A_{r(m, g)}^{m}$.
3.10. Definitions and notations. For every $U=U(d, n) \in \hat{U}$ (respectively, $V=V(\hat{i}, m, r) \in \hat{V})$ we denote by $O(U)$ or by $O(d, n)$ (respectively, by $O(V)$ or by $O(\bar{i}, m, r)$) the set of all elements $d \in T$ such that $d \subseteq U$ (respectively, $d \subseteq V$).

We denote by \mathcal{U} (respectivety, by \mathcal{V}) the set of all sets of the form $O(U)$, $U \in \hat{U}$ (respectively, $O(V), V \in \hat{V}$). Also, we set $\boldsymbol{B}=\mathcal{V} \cup \subset$.

Let $m \in N, r \in I(m)$ and F be a subset of $M_{m}\left(A_{r}^{m}\right)$. We denote by $d(F)$ the subset of T consisting of all elements $d(x, m, r)$, where $x \in F$.

By $d(m, r)$ we denote the map of $M_{m}\left(A_{r}^{m}\right)$ onto $d\left(M_{n}\left(A_{r}^{m}\right)\right)$ defined as follows: $d(m, r)(x)=d(x, m, r)$. Obviously, the map $d(m, r)$ is one-to-one.

We say that a pair (S, D), where S is a subset of C and D is an upper semi-continuous partition of C, has the dense property iff for every $k=0,1, \ldots$ and for every $a \in d \in D_{k}$ the point a is o limit point of the set $S \backslash\left(D_{k}\right)^{*}$.
3.11. Theorem. The set \boldsymbol{B} is a countable basis of open sets for a topology τ on the set T. The space T (that is, the set T with topology τ) is a Hausdorff regular space. The boundary of every element of \boldsymbol{B} is a countable free union of subsets of T which are homeomorphic to closed subsets of elements of M. Moreover, if every element of the family A has the dense property, then the boundary of every element of \boldsymbol{B} is a countable free union of subsets of T which are homeomorphic to simultaneously open and closed subsets of elements of \boldsymbol{M}.

Proof. If $m, n \in N, r \in I(m), F \in\left(M_{m}\left(A_{r}^{m}\right)\right)^{k}$, where $k=n(m, m, r)+n$, and $x, y \in F$, then $U(d(x, m, r), n)=U(d(y, m, r), n)$. From this and since for every $m \in N$ the set A^{m} is countable it follows that the set \hat{U}, as well as, the set \hat{V} are countable. Hence, \boldsymbol{B} is a countable set.

It is easy to see that the union of all elements of \boldsymbol{B} is the set T. Hence in order to prove that \boldsymbol{B} is a basis of open sets for a topology on the set T it is sufficient to prove that if $d \in T, W_{1}, W_{2} \in \hat{U} \hat{V}$ and $d \in O\left(W_{1}\right) \cap O\left(W_{2}\right)$, then there exists an element W of $\hat{U} \cup \hat{V}$ such that $d \in O(W) \subseteq O\left(W_{1}\right) \cap O\left(W_{2}\right)$, that is, $d \subseteq W \subseteq W_{1} \cap W_{2}$. This follows immediately from the properties (1) of Lemma
3.5, (1) of Lemma 3.6, (5) of Remarks 3.4 and from properties (2), (3) and (4) of Lemma 3.7.

Let τ be the topology on T for which \boldsymbol{B} is a basis of open sets. By Lemma 3.8 it follows that the space T is a Hausdorff space.

We observe that by properties (2) of Lemma 3.5 , (2) of Lemma 3.6 and by (5) and (6) of Lemma 3.7 it follows that in the space T the boundary of every element of \boldsymbol{B} is contained in the subset $T(1)$ of T. Hence, by Lemma 3.9 it follows that the space T is regular.

Let $m \in N$ and $r \in l(m)$. We prove that the map $d(m, r)$ of $M_{m}\left(A_{r}^{m}\right)$ onto $d\left(M_{m}\left(A_{r}^{m}\right)\right)$ is a homeomorphism. Indeed, by properties (1) of Lemma 3.5, (1) of Lemma 3.6 and (5) of Remarks 3.4 it follows that the set $\{U(d(x, m, r), n)$, $n \in N\}$ is a basis of open neighbourhoods of $d(x, m, r)$ (in the space T).

On the other hand, the set $\{F(n(m, m, r)+n, x): n \in N\}$ is a basis of open neighbourhoods of x in $M_{m}\left(A_{r}^{m}\right)$ (See Definitions and notations 3.1).

Also, by the construction of elements of \hat{U} it follows that an element $d(y, m, r)$ of $\left.d\left(M_{m}\right) A_{r}^{m}\right)$) belongs to $U(d(x, m, r), n)$ if and only if $y \in$ $F(n(m, m, r)+n, x)$. From this it follows that the map $d(m, r)$ is a homeomorphism.

Let $m \in N$ and $r \in I(m)$. Let $V=C_{s} \times A_{r}^{m}$, where s is a subset of $L_{n(m, r)}$ such that either $s=\{\bar{i}\}$ and $i \notin s(m, r)$ or $s=s(F)$ for some element F of $M_{q}\left(A_{r}^{m}\right)^{n(q, m, r)}, 0 \leqq q \leqq m$. We grove that for every $p>n(m, r)$ and $t \in I(p)$ is $y \in M_{p}\left(A_{t}^{p}\right)$ and $d(y, p, t) \cap V \neq \emptyset$ (hence, $\left.A_{t}^{p} \subseteq A_{r}^{m}\right)$, then $d(y, p, t) \subseteq V$.

Indeed, let $(a, g) \in d(y, p, t) \cap V$. Let $a \in C_{j}$, where $\bar{j} \in L_{n(p-1, r(p-1, g))}$. Since $n(p-1, r(p-1, g))>p-1 \geqq n(m, r)$ we have that $C_{j} \cong C_{s}$. By property (9) of Lemma 3.2 it follows that $\psi_{p}\left(g_{1}\right)(y) \cap C_{j} \neq \emptyset$ for every $g_{1} \in A_{i}^{p}$. Since $p>n(m, r)$ we have that $\psi_{p}\left(g_{1}\right)(y) \subseteq C_{s}$ and, hence, since $A_{t}^{p} \subseteq A_{r}^{m}$ we have that $d(y, p, t)$ $\subseteq C_{s} \times A_{r}^{m}=V$.

Now, let $s=\{i\}$ and $\bar{i} \notin s(m, r)$, that is, $V=V(\bar{i}, m, r) \in \hat{V}$. Then, by property (8) of Remarks 3.4 and by Lemma 3.6 (properties (1) and (2)) it follows that the boundary $B d(O(V))$ of the element $O(V)$ of \boldsymbol{B} is contained in the set $B(k, m, r)$, where $k=n(m, r)$, which is the union of all sets of the form $\left(M_{q}\left(A_{e}^{q}\right)\right)$, where $m<q \leqq k$ and $e \in I(q)$ such that $A_{e}^{q} \subseteq A_{r}^{m}$.

We prove that the set $B(k, m, r)$ is the free union of the corresponding sets $d\left(M_{q}\left(A_{e}^{q}\right)\right)$. For this it is sufficient to prove that for every $q, m \leqq q \leqq k$, and for every $e \in I(q)$ for which $A_{e}^{q} \subseteq A_{r}^{m}$, there exists and open subset $H(q, e, m, r)$ $H(q, e)$ of T such that $B(k, m, r) \cap H(q, e)=d\left(M_{q}\left(A_{e}^{q}\right)\right)$.

For every $F \in\left(M_{q}\left(A_{e}^{q}\right)\right)^{n(q, q, e)+k-q}$ by $x(F)$ we denote a point of F. We set $H(q, e)=\cup_{F} O(d(x(F), q, e), k-q)$. Obviously, $H(q, e)$ is an open subset of T.

Also, it is easy to see that $d\left(M_{q}\left(A_{e}^{q}\right)\right) \subseteq Q(k, m, r) \cap H(q, e)$.
Let $d\left(y, q_{1}, e_{1}\right) \in B(k, m, r) \cap H(q, e)$. We prove that $d\left(y, q_{1}, e_{1}\right) \in d\left(M_{q}\left(A_{e}^{q}\right)\right)$. Indeed since $d\left(y, q_{1}, e_{1}\right) \in B(k, m, r)$ we have $m<q_{1} \leqq k$ and $A_{\varepsilon_{1}}^{q_{1}} \subseteq A_{r}^{m}$. There exists an element F of $\left(M_{q}\left(A_{\ell}^{q}\right)\right)^{n(q, q, e)+k-q}$ such that $d\left(y, q_{1}, e_{1}\right) \cap U(d(x(F), q, e)$, $k-q) \neq 0$. Let (a, g) belongs to this intersection. Consider the sets $U\left(q_{1}, k, r(k, g), F_{1}\right)=U\left(F_{1}\right) \quad$ and $\quad U(q, k, r(k, g), F)=U(F)$, where $\quad F_{1}=$ $F\left(n\left(q_{1}, k, r(k, g)\right), y\right)$. Since $(a, g) \in U(F) \cap U\left(F_{1}\right)$ by properties (13) and (14) of Lemma 3.2 it follows that $q=q_{1}$ and $F=F_{1}$, that is, $d\left(y, q_{1}, e_{1}\right) \in d\left(M_{q}\left(A_{e}^{q}\right)\right)$.

Thus, $B(k, m, r) \cap H(q, e)=d\left(M_{q}\left(A_{e}^{q}\right)\right)$ and hence, the boundary of the set $O(\hat{i}, m, r)$ is a countable free union of subsets of T which are homeomorphic to closed subsets of elements of M.

Suppose now that $U=U\left(d\left(x_{1}, m_{1}, r_{1}\right), n_{1}\right)$ be an arbitrary element of \hat{U}. Let $m=m_{1}+n_{1}$. We prove that the boundary $B d(O(U))$ of the set $O(U)$ is contained in the union of all sets of the form $B(n(m, r), m, r)$, where $r \in I(m)$ and $A_{r}^{m} \cong A_{r_{1}}^{m_{1}}$.

Indeed, let $d(y, p, t) \in B d(O(U))$ and let $(a, g) \in d(y, p, t) \cap U$. There exist an integer $q, 0 \leqq q \leqq m$, an element $r \in I(m)$ and an element $F \in\left(M_{q}\left(A_{r}^{m}\right)\right)^{n(q, m, r)}$ such that $(a, g) \in U(q, m, r, F)=U(F)$. If $p \leqq m$, then we can consider the set $U(p, m, r, Q)=U(Q)$, where $Q=F(n(p, m, r), y)$. (We observe that $r(m, g)=r)$. Then, $(a, g) \in U(F) \cap U(Q)$ and, hence, $p=q$ and $F=Q$, that is, $d(y, p, t) \subseteq U$, which is a contradiction. Hence, $m<p$.

On the other hand, since $U(F)=C_{s(F)}$ 又 $A_{r}^{m}, d(y, p, t) \cap U \neq 0$ and $d(y, p, t)$ $\nsubseteq U$ by the preceding it follows that $p \leqq n(m, r)$. Hence, $d(y, p, t) \in$ $B(n(m, r), m, r)$.

Let $k=n(m, r)$. For a fixed $r \in I(m)$ as we already proved the set $B(k, m, r)$ is the free union of the corresponding sets $d\left(M_{q}\left(A_{\ell)}^{q}\right)\right.$. Since the union of all elements of $H(q, e, m, r)$ is contained in the set $C \times A_{r}^{m}$ we have that the union of sets $B(k, m, r)$ for all $r \in l(m)$ for which $A_{r}^{m} \cong A_{r_{1}}^{m_{1}}$ is also free.

Hence, the boundary of the set $O\left(d\left(x_{1}, m_{1}, r_{1}\right), m_{1}\right)$ is a countable free union of subsets of T which are homeomorphic to closed subset of elements of M.

Finally, suppose that every element of the family A has the dense property. In this case we prove that if $O(W) \in \boldsymbol{B}$ and $d=d(x, m, r) \in T(1)$ such that $d(x, m, r) \cap W \neq \emptyset$ and $d(x, m, r) \cap((C \times A) \backslash W) \neq \emptyset$, then $d \in B d(O(W))$.

Indeed, obviously, $d \notin O(W)$. Let $g \in A_{r}^{m}$ such that $\left(\psi_{m}(g)(x) \times\left\{g_{1}\right\}\right) \cap W \neq \emptyset$. Let $O(U)$ be an arbitrary neighbourhood of d in T. We prove that $O(U) \cap O(W)$. $\neq \emptyset$. We can suppose that $U=U(d(x, m, r), n)$ for some integer $n \in N$.

Let $\psi_{m}(g)(x)=\{a, b\} \in D(1)$. We can suppose that $(a, g) \in W$ and that there exists an integer q such that $(a, g) \in V=C_{s} \times A_{\tau(q, g)}^{q} \cong U \cap W$, where s is a sub-
set of $L_{n(q, r(q, g))}$ and either $s=\{\bar{i}\}$ and $\bar{i} \in s(q, r(q, g))$ or $s=s(F)$ for some element F of $\left(M_{k}\left(A_{r(q, g)}^{q}\right)\right)^{n_{1}}$, where $n_{1}=n(k, q, r(q, g))$ and $0 \leqq k \leqq m$. Let $V \cap$ $(C \times\{g\})=O \times\{g\}$. Then, O is an open neighbourhood of a in C.

Since g has the dense property there exists a point $c \in O \cap\left(S \backslash\left(D_{m}\right)^{*}\right)$ such that either $c \in S \backslash(D(1))^{*}$ or $c \in d_{1} \in D_{p}$ and $p>n(q, r(q, g))$. In the first case, $\{(c, g)\} \in O(V) \cong O(U) \cap O(W)$, and hence $O(U) \cap O(W) \neq \emptyset$.

In the second case, let $y \in M_{p}\left(A_{r(p, g)}^{p}\right)$ such that $c \in \psi_{p}(g)(y)$. As we proved above, $d(y, p, r(p, g)) \subseteq V$. Hence, $d(y, p, r(p, g)) \in O(V) \subseteq O(U) \cap O(W)$ and $O(U) \cap O(W) \neq \emptyset$. Thus, $d \in B d(O(W))$.

By properties (3) of Lemma 3.5 and (3) of Lemma 3.6 it follows that the boundary of every element of \boldsymbol{B} is a countable free union of subsets of T which are homeomorphic to simultaneously open and closed subsets of elements of M.

4. Some properties of scattered spaces.

Definitions and notations. Let $\alpha=\beta+m$ be an ordinal, where $\beta=\beta(\alpha)$ and $m=m(\alpha)>0$.

We denote by $\operatorname{Tr}(\alpha)$ the set of all triads $\tau=(a, X, M)$ such that: $(\alpha) M$ is α compactum having type α, $(\beta) M^{(\alpha-1)}=\{a\}$, and $(\gamma) X$ is a subset of M for which $M \backslash M^{(\beta)} \subseteq X$. We observe that if U is an open and closed neighbourhood of a in M, then the triad $(a, X \cap U, U)=\tau(U)$ is an element of $\operatorname{Tr}(\alpha)$.

Let $\tau_{1}=\left(a_{1}, X_{1}, M_{1}\right)$ and $\tau_{2}=\left(a_{2}, X_{2}, M_{2}\right)$ be two elements of $T_{r}(\alpha)$. We say that τ_{1} and τ_{2} are equivalent and we write $\tau_{1} \sim \tau_{2}$ iff there exist: (α) an open and closed neighbourhood U of a_{1} in $M_{1},(\beta)$ an open and closed neighbourhood V of a_{2} in M_{2}, and (γ) a homeomorphism f of U onto V such that $f\left(U \cap X_{1}\right)=$ $V \cap X_{2}$ (Obviously, in this case $f\left(a_{1}\right)=f\left(a_{2}\right)$).

It is easy to prove that the relation " \sim " on the set $\operatorname{Tr}(\alpha)$ is an equivalent relation. We denote by $E \operatorname{Tr}(\alpha)$ the set of all equivalence classes of this relation. For every $\tau \in T_{r}(\alpha)$ we denote by $e(\tau)$ the equivalence class of $\operatorname{ETr}(\alpha)$ which contains the element τ.

Let $\tau=(a, X, M) \in \operatorname{Tr}(\alpha)$. An open and closed neighbourhood U of a in M is called standard iff tor every $\tau_{1}=\left(a_{1}, X_{1}, M_{1}\right) \in e(\tau)$ there exists an open and closed neighbourhood V of a_{1} in M_{1} and a homeomorphism f of U onto V such that $f(U \cap X)=V \cap X_{1}$. In this case we say that the element τ has a standard neighbourhood. It is clear that it an element of an equivalence class of $E \operatorname{Tr}(\alpha)$ has a standard neighbourhood, then every element of this class has also a standard neighbourhood.

The element τ is called standara iff the neighbourhood $U=M$ of a is standard. Obviously, if U is a standard neighbourhood of a in M, then $\tau(U)$ is a standard element of $e(\tau)$.

It is easy to prove that an open and closed ueighbourhood U of a in M is standard if and only if for every neighbourhood W of a in M there exist an open and closed neighbourhood V of a in M, which is contained in W and a homeomorphism f of U onto V such that $f(U \cap X)=V \cap X$.

We denote by $P(\alpha)$ the set of all pairs $\zeta=(X, M)$ such that M is a compactum having type α and X is a subset of M for which $M \backslash M^{(\beta)} \subseteq X$.

We say that the pairs $\zeta_{1}=\left(X_{1}, M_{1}\right)$ and $\zeta_{2}=\left(X_{2}, M_{2}\right)$ of $P(\alpha)$ are equivalent and we write $\zeta_{1} \sim \zeta_{2}$ iff there exists a homeomorphism f of M_{1} onto M_{2} such that $f\left(X_{1}\right)=X_{2}$.

It is clear that the relation " \sim " on the set $P(\alpha)$ is an equivalent relation. We denote by $E P(\alpha)$ the set of all equivalent classes of this relation and for every $\zeta \in P(\alpha)$ by $e(\zeta)$ the equivalence class of $E P(\alpha)$ which contains the element ζ.
4.2. Lemma. For every isolated ordinal α the set $E \operatorname{Tr}(\alpha)$ is finite and every element of this set contains a standard element of $\operatorname{Tr}(\alpha)$.

Proof. Let $\alpha=\beta-m$, where $\beta=\beta(\alpha)$ and $m=m(\alpha)>0$. We prove the lemma by induction on integer m.

Let $m=1$. Let $\tau_{1}=\left(a_{1}, X_{1}, M_{1}\right) \in \operatorname{Tr}(\alpha)$ and $\tau_{2}=\left(a_{2}, X_{2}, M_{2}\right) \in \operatorname{Tr}(\alpha)$ such that $X_{1}=M_{1}$ and $X_{2}=M \backslash M^{(\beta)}=M \backslash\left\{a_{2}\right\}$.

Let $\tau=(a, X, M)$ be an element of $\operatorname{Tr}(\alpha)$. Then, $M^{(\beta)}=M^{(\alpha-1)}=\{a\}$ and, hence, either $X=M$ or $X=M \backslash M^{(\beta)}=M \backslash\{a\}$. By [M-S] it follows that there exist a homeomorphism f_{1} of M_{1} onto M and a homeomorphism f_{2} of M_{2} onto M. We have that if $X=M$, then $f_{1}\left(X_{1}\right)=X$ and if $X=M \backslash M^{(\beta)}$, then $f_{2}\left(X_{2}\right)$ $=X$. Hence, either $e(\tau)=e\left(\tau_{1}\right)$ or $e(\tau)=e\left(\tau_{2}\right)$, that is, $\operatorname{ETr}(\alpha)=\left\{e\left(\tau_{1}\right), e\left(\tau_{2}\right)\right\}$. Also, by the above it follows that the elements τ_{1} and τ_{2} are standard.

Now, we suppose that the lemma is proved for every m for which $1 \leqq m<n$ and we prove it for $m=n$.

Let $E \operatorname{Tr}\left(\alpha_{1}\right)=\left\{e^{1}(\alpha-1), \cdots, e^{t}(\alpha-1)\right\}$. For every $k=1, \cdots, t$ we denote by $\tau^{k}(\alpha-1)=\left(c^{k}, X^{k}, M^{k}\right)$ a fixed standard element of $e^{k}(\alpha-1)$.

Let $\tau_{j}=\left(a_{j}, X_{j}, M_{j}\right), j=1,2$, be two arbitrary elements of $\operatorname{Tr}(\alpha)$. Whithout loss of generality we can suppose that the spaces M_{1} and M_{2} are metric.

Let $M_{j}^{(\alpha-2)} \backslash M_{j}^{(\alpha-1)}=\left\{b_{j 1}, b_{j 2}, \cdots\right\}, j=1,2, \cdots$. Every element of these sets is isolated (in the corresponding relative topology). Let $W_{j i}^{0}$ be an open and
closed neighbourhood of $b_{j i}$ in M_{j} such that $W_{j i}^{0} \cap M_{j}^{(\alpha-2)}=\left\{b_{j i}\right\}$. Then the triad $\tau_{j i}=\left(b_{j i}, X_{j} \cap W_{j i}^{0}, W_{j i}^{0}\right)$ is an element of $\operatorname{Tr}(\alpha)$ and the element $e\left(\tau_{j i}\right)$ of $E \operatorname{Tr}(\alpha)$ is independent from the neighbourhood $W_{j i}^{0}$, that is, if $W_{j i}^{\prime}$ is another such neighbourhood of $b_{j i}$ in M_{j} and $\tau_{j i}^{\prime}=\left(b_{j i}, X_{j} \cap W_{j i}^{\prime}, W_{j i}^{\prime}\right)$, then $e\left(\tau_{j i}\right)=e\left(\tau_{j i}^{\prime}\right)$. We denote by $e_{j i}$ the element $e\left(\tau_{j i}\right)$.

There exists an open and closed neighbourhood $W_{j i}$ of $b_{j i}$ in $M_{j}, j=1,2$, $i=1,2, \cdots$, such that: $(\alpha) W_{j i} \cap M_{j}^{(\alpha-2)}=\left\{b_{j i}\right\}, \quad(\beta) W_{j i_{1}} \cap W_{j i_{2}}=\emptyset$ if $i_{1} \neq i_{2}, \quad(\gamma)$ $\lim _{i \rightarrow \infty}\left(\operatorname{diam}\left(W_{j i}\right)\right)=0, \quad(\delta) \quad a_{j} \in\left(M_{j} \backslash W_{j}\right)^{(\alpha-2)}$, where $W_{j}=W_{j 1} \cup W_{j_{2}} \cup \cdots$ and (ε) if $e_{j i}=e^{k(j i)}(\alpha-1)$, then there exists a homeomorphism $f_{j i}$ of $M^{k(j i)}$ onto $W_{i j}$ such that $f_{j i}\left(X^{k(j i)}\right)=X_{j} \cap W_{j i}$. We observe that by the properties of the sets $W_{j i}$ it follows that $W_{j}, j=1,2, \cdots$, is an open subset of M_{j} such that $C l\left(W_{j}\right) \backslash W_{j}$ $=\left\{a_{j}\right\}$.

Let V_{j} be an open and closed neighbourhood of a_{j} in $M_{j} \backslash W_{j}$ such that $\left(V_{j}\right)^{(\alpha-2)}=\left\{a_{j}\right\}$. Then, the triad $\tau^{j}=\left(a_{j}, X_{j} \cap V_{j}, V_{j}\right)$ is an element of $\operatorname{Tr}(\alpha-1)$. We can suppose that if $e\left(\tau^{j}\right)=e^{k(j)}(a-1)$, then there exists a homeomorphism f_{j} of $M^{k(f)}$ onto Λ_{j} such that $f_{j}\left(X^{k(j)}\right)=X_{j} \cap V_{j}$.

There exists an open and closed neighbourhood $U_{j}, j=1,2$, of a_{j} in M_{j} such that: $(\alpha) U_{j} \cap\left(M_{j} \backslash W_{j}\right)=V_{j},(\beta)$ if for some integer $i=1,2, \cdots, W_{j i} \cap U_{j} \neq 0$, then $W_{j i} \subseteq U_{j}$, and (γ) if for some integer $i, W_{j i} \subseteq U_{j}$, then there exists an increasing sequence of integers i_{1}, i_{2}, \cdots for which $W_{j i_{q}} \cong U_{j}$ and $e_{j i}=e_{j i_{q}}, q=$ $1,2, \cdots$.

Now, we prove that $\tau_{1} \sim \tau_{2}$ if the following conditions are true: $(\alpha) e\left(\tau^{1}\right)$ $=e\left(\tau^{2}\right)$ and (β) if for some integer $k \in\{1, \cdots, t\}$ there exists an integer $i(1) \geqq 1$ such that $W_{1 i(1)} \cong U_{1}$ and $e_{1 i(1)}=e^{k}(\alpha-1)$, then there exists an integer $i(2) \geqq 1$ such that $W_{2 i(2)} \cong U_{2}$ and $e_{2 i(2)}=e^{k}(\alpha-1)$.

Indeed, it is not difficult to prove that between the set $U_{1} \cap\left(M_{1}^{(\alpha-1)} \backslash M_{1}^{(\alpha-1)}\right.$ and the set $U_{2} \cap\left(M_{2}^{(\alpha-2)} \backslash M_{2}^{(\alpha-1)}\right)$ there exists an one-to-one correspondence such that if $b_{1 p}$ corresponds to $b_{2 q}$, then $e_{1 p}=e_{2 q}$.

We construct a homeomorphism f of U_{1} onto U_{2} as follows: on the set V_{1} we set $f=f_{2} \circ f_{1}^{-1}$. Let $W_{1 p} \subseteq U_{1}$. Then, $b_{1 p} \in U_{1}$ and if $b_{1 p}$ corresponds to $b_{2 q}$, then on the set $W_{1 p}$ we set $f=f_{2 q} \circ f_{1 p}^{-1}$. Obviously, f is a homeomorphism of U_{1} onto U_{2} such that $f\left(X_{1} \cap U_{1}\right)=X_{2} \cap U_{2}$. Hence, $\tau_{1} \sim \tau_{2}$.

From the above it follows that the number of equivalence classes of the set $\operatorname{Tr}(\alpha)$ is finite, that is, the set $E \operatorname{Tr}(\alpha)$ is finite.

In order to complete the lemma it is sufficient to prove that every element of $E \operatorname{Tr}(\alpha)$ contains a standard element of $\operatorname{Tr}(\alpha)$. For this, since τ_{1} is an abitrary element of $\operatorname{Tr}(\alpha)$, it is sufficient to prove that $\tau_{1}\left(U_{1}\right)$ is a standard
element.
Let W be an arbitrary neighbourhood of a in M_{1}. Let V be an open and closed neighbourhood of a_{1} in $M_{1} \backslash W_{1}$ such that: $(\alpha) V \subseteq W$ and (β) there exists a homeomorphism f_{V} of $M^{k(1)}$ onto V for which $f_{V}\left(X^{k(1)}\right)=X_{1} \cap V$.

There exists a neighbourhood U^{\prime} of a_{1} in M_{1} such that: $(\alpha) U^{\prime} \subseteq W,(\beta)$ $U^{\prime} \cap\left(M_{1} \backslash W_{1}\right)=V$ and (γ) if for some integer $i, W_{1 i} \cap U^{\prime} \neq \emptyset$, then $W_{1 i} \subseteq U^{\prime}$.

A homeomorphism f^{\prime} of U_{1} onto U^{\prime} for which $f^{\prime}\left(X_{1} \cap U_{1}\right)=X_{1} \cap U^{\prime}$ can be constructed in the same manner as we constructed the homeomorphism f of U_{1} onto U_{2}. Hence, $\tau\left(U_{1}\right)$ is a standard element.

4.3. Theorem. For every isolated orainal α the set $E P(\alpha)$ is countable.

Proof. Let $\alpha=\beta+m$, where $\beta=\beta(\alpha)$ and $m=m(\alpha) \geqq 1$. We prove the theorem by induction on integer m.

Let $m=1$. For every $i=1,2, \cdots$ we denote by M_{i} a compactum such that $\left|M_{i}^{(\alpha-1)}\right|=\left|M_{i}^{(\beta)}\right|=i$. Hence, if X_{1} and X_{2} are two subsets of M_{k} for which $M \backslash M^{(\beta)} \cong X_{1} \cap X_{2}$, then $X_{1}=X_{2}$ iff $X_{1} \cap M^{(\alpha-1)}=X_{2} \cap M^{(\alpha-1)}$. Therefore, the number of such set is finite. Let $X_{i 1}, \cdots, X_{i t(i)}$ be these sets and let $\zeta_{i j}=$ $\left(X_{i j}, M_{i}\right), i=1,2, \cdots, j=1, \cdots, t(i)$.

Let $\zeta=(X, M)$ be an arbitrary element of $P(\alpha)$ and let $\left|M^{(\alpha-1)}\right|=i$. Then, by [M-S] there exists a homeomorphism f of M_{i} onto M. There exists an integer $j, 1 \leqq j \leqq t(i)$, such that $X_{i j}=f^{-1}(X)$. Hence, $f\left(X_{i j}\right)=X$, that is, $\zeta \sim \zeta_{i j}$. From this it follows that the set $E P(\alpha)$ is countable.

We suppose that the theorem is proved for every m for which $1 \leqq m<n$ and we prove the theorem for $m=n$.

Let $\tau^{1}=\left(c_{1}, X^{1}, M^{1}\right), \cdots, \tau^{2}=\left(c^{p}, X^{p}, M^{p}\right)$ be standard elements of $\operatorname{Tr}(\alpha-1)$ such that $E \operatorname{Tr}(\alpha-1)=\left\{e\left(\tau^{1}\right), \cdots, e\left(\tau^{p}\right)\right\}$. Also, let $\zeta(1)=(X(1), M(1)), \zeta(2)=$ $(X(2), M(2)), \cdots$ be elements of $P(\alpha-1)$ such that $E P(\alpha-1)=\{e(\zeta(1)), e(\zeta(2)), \cdots\}$.

Now, let $\zeta_{j}=\left(X_{j}, M_{j}\right), j=1,2$, be two arbitrary elements of the set $P(\alpha)$, such that $\left|M_{j}^{(\alpha-1)}\right|=\left\{a_{j 1}, \cdots, a_{j t}\right\}$. Without loss of generality we can suppose that the spaces M_{1} and M_{2} are metric. There exists en open and closed subset $U_{j i}$ of $M_{j}, j=1,2, t=1, \cdots, i$, such that: (α) $U_{j i_{1}} \cap U_{j i_{2}}=\emptyset$ if $i_{1} \neq i_{2},(\beta) U_{j 1} \cup \cdots$ $\cup U_{j i}=M_{j}$, and (γ) $a_{j i} \in U_{j i}$.

Let $U_{j i} \cap\left(M_{j}^{(\alpha-2)} \backslash M_{j}^{(\alpha-1)}\right)=\left\{b_{j i}^{1}, b_{j i}^{2}, \cdots\right\}$. Let $\left(W_{j i}^{k}\right)^{0}$ be an arbitrary neighbourhood of $b_{j i}^{k}$ in $M_{j}, k=1,2, \cdots$, such that: $(\alpha)\left(W_{j i}^{k}\right)^{0} \subseteq U_{j i}$ and $(\beta)\left(W_{j i}^{k}\right)^{0} \cap$ $M_{j}^{(\alpha-2)}=\left\{b_{j}^{k}\right\}$. We denote by $e_{j i}^{k}$ the element $e\left(\tau_{j i}^{k}\right)$ of $\operatorname{ETr}(\alpha-1)$, where $\tau_{j i}^{k}=$ $\left(b_{j i}^{k}, X_{j} \cap\left(W_{j i}^{k}\right)^{0},\left(W_{j i}^{k}\right)^{0}\right)$. Obviously, the element $e_{j i}^{k}$ is independent from the neighbourhood ($\left.W_{j i}^{k}\right)^{0}$.

For every $j=1,2, i=1, \cdots, t, k=1,2, \cdots$, let $W_{j i}^{k}$ be an open and closed neighbourhood of $b_{j i}^{k}$ in M_{j} such that: $W_{j i}^{k} \subseteq U_{j i},(\beta) W_{j i}^{k} \cap M_{j}^{(\alpha-2)}=\left\{b_{j i}^{k}\right\}, \quad(\gamma)$ $W_{j i}^{k_{1}} \cap W_{j i}^{k_{2}}=\emptyset$, if $k_{1} \neq k_{2},(\delta) \lim _{k \rightarrow \infty}\left(\operatorname{diam}\left(W_{j i}^{k}\right)\right)=0$, (ε) the set $\left(U_{j i} \backslash W_{j i}\right)^{(\alpha-2)}$, where $W_{j i}=W_{j i}^{1} \cup W_{j i}^{2} \cup \cdots$ contains at least two distinct points and the point $a_{j i}$ belongs to this set, and (ζ) if $e_{j i}^{k}=e\left(\tau^{r(k j i)}\right)$, then there exists a homeomorphism $f_{j i}^{k}$ of $M^{r(k j i)}$ onto $W_{j i}^{k}$ such that $f_{j i}^{k}\left(X^{r(k j i)}\right)=X_{j} \cap W_{j i}^{k}$. Obviously, $W_{j i}$ is an open subset of M_{j} such that $C l\left(W_{j i}\right) \backslash W_{j i}=\left\{a_{j i}\right\}$.

Let $V_{j i}$ be an open and closed neighbourhood of $a_{j i}$ in $M_{j i} \backslash W_{j i}$ such that $V_{j i} \subseteq U_{j i}$ and $\left(V_{j i}\right)^{(\alpha-2)}=\left\{a_{j i}\right\}$. The triad $\tau_{j i}=\left(a_{j i}, X_{j} \cap V_{j i}, V_{j i}\right)$ is an element of $\operatorname{Tr}(\alpha-1)$. We suppose that if $e\left(\tau_{j i}\right)=e\left(\tau^{r(j i)}\right)$, then there exists a homeomorphism $f_{j i}$ of $M^{r(j i)}$ onto $V_{j i}$ such that $f_{j i}\left(X^{r(j i)}\right)=X_{j} \cap V_{j i}$.

We observe that the set $H_{j i}=U_{j i} \backslash\left(W_{j i} \cup V_{j i}\right)$ is an open and closed subset of M_{j} and by property (ε) of the sets $W_{j i}^{k}$ it follows that $\left(H_{j i}\right)^{(\alpha-2)} \neq \emptyset$. Hence, the pair $\zeta_{j i}=\left(X_{j} \cap H_{j i}, H_{j i}\right)$ is an element of $P(\alpha-1)$.

If $e\left(\zeta_{j i}\right)=e(\zeta(q(j i)))$, then by $g_{j i}$ we denote a homeomorphism of $M(q(j i))$ onto $H_{j i}$ such that $g_{j i}(X(q(j i)))=X_{j} \cap H_{j i}$.

Now, we prove that $\zeta_{1} \sim \zeta_{2}$ if the following conditions are true: (α) for a given element $e\left(\tau^{r}\right)$ of $E \operatorname{Tr}(\alpha-1)$ and for a fixed integer i, the number of elements $b_{1 i}^{k}$ of the set $\left\{b_{1 i}^{1}, b_{1 i}^{2}, \cdots\right\}$ for which $e\left(\tau^{r}\right)=e_{1 i}^{k}$ is the same with the number of the elements $b_{2 i}^{k}$ of the set $\left\{b_{2 i}^{1}, b_{2 i}^{2}, \cdots\right\}$ for which $e_{2 i}^{k}=e\left(\tau^{r}\right)$, (β) for every integer $i=6, \cdots, t, e\left(\tau_{1 i}\right)=e\left(\tau_{2 i}\right)$, and (γ) for every integer $i=1, \cdots, t$, $e\left(\zeta_{1 j}\right)=e\left(\zeta_{2 i}\right)$.

Indeed, by the above condition (α) it follows that for every integer i, betweed the elements of the set $\left\{b_{1 i}^{1}, b_{1 i}^{2}, \cdots\right\}$ and the elements of the set $\left\{b_{2 i}^{1}\right.$, $\left.b_{2 i}^{2}, \cdots\right\}$ there exists an one-to-one correspondence such that if $b_{1 i}^{k}$ corresponds to $b_{2 i}^{r}$, then $e_{1 i}^{k}=e_{2 i}^{r}$.

We construct a homeomorphism f of M_{1} onto M_{2} as follows: for every integer i, on the set $V_{1 i}$ we set $f=f_{2 i}{ }^{\circ} f_{1 i}^{-1}$ and on the set $H_{1 i}$ we set $f=$ $g_{2 i} \circ g_{1 i}^{-1}$. If the point $b_{1 i}^{k}$ corresponds to $b_{2 i}^{r}$, then on the set $W_{1 i}^{k}$ we set $f=$ $f_{2 i}^{r}{ }^{\circ}\left(f_{1 i}^{k}\right)^{-1}$. It is easy to prove that f is a homeomorphism of M_{1} onto M_{2} such that $f\left(X_{1}\right)=X_{2}$.

From the above it follows that the set $E P(\alpha)$ is countable.
4.3.1. Remark. From Theorem 4.3 it follows Lemma 2 of Section I. 3 of $\left[I_{3}\right]$, that is, for a given isolated ordinal α the set of all (mutually non-homeomorphic) spaces X for which there exists a compactum K having type α, such that $X \subseteq K$ and $K \backslash K^{\beta(\alpha)} \subseteq X$, is countable.

Also, from Lemma 4.2 it follows Lemma 1 of Section I. 2 of $\left[I_{3}\right]$.

5. Universal spaces.

5.1. Definitions. Let $\alpha>0$ be an ordinal and $k \in N$ such that $0 \leqq k \leqq m^{+}(\alpha)-1$. Let $X \in R_{\text {lc }}^{k}(\alpha)$. An extension \tilde{X} of X is called a c-extension (respectively, $l c$ extension) iff \tilde{X} has a basis $B(\tilde{X})=\left\{V_{0}, V_{1}, \cdots\right\}$ of open sets such that:
(1) the set $B d\left(V_{i}\right), i=0,1, \cdots$, is a compactum (respectively, a locally compact subset of \tilde{X}),
(2) type $\left.\left.(B d) V_{i}\right)\right) \leqq \alpha+k+1$,
(3) $\operatorname{type}\left(\left(B d\left(V_{i}\right) \cap X\right) \cup\left(B d\left(V_{i}\right) \backslash\left(B d\left(V_{i}\right)\right)^{(\beta(\alpha))}\right)\right) \leqq \alpha$,
(4) loc-com-type $\left(\left(B d\left(V_{i}\right) \cap X\right) \cup\left(B d\left(V_{i}\right) \backslash\left(B d\left(V_{i}\right)\right)^{(\beta(\alpha))}\right)\right) \leqq \alpha+k$.

We observe that by Lemma 2.4 for every element $X \in R_{l c}^{k}(\alpha)$ there exists a c-extension of X. Also, if \tilde{X} is a c-extension of X, then using the method of the proof of Lemma 1 of $\left[I_{1}\right]$ we can construct a basis $B(\tilde{X})=\left\{V_{0}, V_{1}, \cdots\right\}$ of open sets of \tilde{X} having properties (1)-(6) of Lemma 2.4.

Let K be a space, $S p$ be a family of spaces, $(S p)_{1}$ be a subfamily of $S p$ and let \mathscr{P} be a property of topological spaces. We say that the space K has the property of \mathscr{P}-intersections with respect to subfamily $(S p)_{1}$ of $S p$ iff for every $X \in S p$ there exists a homeomorphism i_{X} of X into K such that if Y and Z are distinct elements of $S p$ and $Y \in(S p)_{1}$, then the set $\left.i_{Y}(Y) \cap i_{Z}\right) Z$) has property \mathscr{P}.

For every $X \in S p$ let i_{X} be a homeomorphism of X into K. We say that the space K has the property of \mathscr{P}-intersections with respect to subfamily $\left\{i_{X}: X \in(S p)_{1}\right\}$ of all homeomorphisms i_{X} iff for every $Y \in(S p)_{1}$ and for every $Z \in S p$, the set $i_{Y}(Y) \cap i_{Z}(Z)$ has the property \mathscr{P}.

In particular, if \mathscr{P} means that the corresponding intersection (α) is finite, (β) has type $\leqq \alpha,(\gamma)$ is compact and has tyye $\leqq \alpha,(\delta)$ has type $\leqq \alpha$ and comfact type $\leqq \alpha+k$, and (ε) has type $\leqq \alpha$ and locally compact type $\leqq \alpha+k$, then instead of phrase " \mathscr{P}-intersections" we will use, respectively, the words: (α) "finite intersections", (β) " α-intersections", (γ) "compact α-intersections", (δ) " α_{c}^{k}-intersections", and (ε) " $\alpha_{l c}^{k}$-intersections".

We observe that the notion of "the property of finite intersections" given in $\left[I_{3}\right]$ is different from that of the present paper, because in $\left[I_{3}\right]$ we suppose that both spaces Y and Z belong to the corresponding subfamily. But, it is not difficult to see that the universal space T for the family $R(\alpha)$ constructed in $\left[I_{3}\right]$ has the property of finite intersections (in sense of the present paper) with respect to a given subfamily of $R(\alpha)$ whose cardinality is less than on equal to the continuum.

The same is true with the notion of "the property of α-intersections" (in actually, with the notion of "the property of compact α-intersections") given in [G-I].
5.2. Representations. For every $X \in R_{l c}^{k}(\alpha)$ let \tilde{X} be a c-extension of X and $B(\tilde{X})=\left\{V_{0}(\tilde{X}), V_{1}(\tilde{X}), \cdots\right\}$ be an ordered basis of open sets of \tilde{X} having properties (1)-(6) of Lemma 2.4.

We recall the contruction (with respect to the ordered basis $B(\tilde{X})$) of the subset $S(\tilde{X})$ of C, the upper semi-continuous partition $D(\tilde{X})$ of $S(\tilde{X})$, the map $q(\tilde{X})$ of $S(\tilde{X})$ onto \hat{X} and the homeomorphism $i(\tilde{X})$ of $D(\tilde{X})$ onto \tilde{X} given in Sections 1.5 and I. 8 of $\left[I_{1}\right]$.

For every $i=0,1, \cdots$, we set $V_{i}^{0}(\tilde{X})=C l\left(V_{i}(\tilde{X})\right)$ and $V_{i}^{1}(\tilde{X})=\tilde{X} \backslash V_{i}(\tilde{X})$. For every $\bar{i}=i_{1} \cdots i_{n} \in L_{n}$, we set $\tilde{X}_{s}=C$ if $n=0$ and $\tilde{X}_{i}=V_{0}^{i_{1}(\tilde{X})} \cap \cdots \cap V_{n-1}^{i_{n}}(\tilde{X})$ if $n \geqq 1$. The point $a \in C$ belongs to $S(\tilde{X})$ if and only if $\tilde{X}_{\bar{i}(a, 0)} \cap \tilde{X}_{i(a, 1)} \cap \cdots \neq \emptyset$. The last set is a singleton for every point a of $S(\tilde{X})$. We define the $q(\tilde{X})$ of $S(\tilde{X})$ onto \tilde{X} setting $q(\tilde{X})(a)=x$, where $a \in S(\tilde{X})$ and $\{x\}=\tilde{X}_{i(a, 0)} \cap \tilde{X}_{i(a, 1)} \cap \cdots$. Finally, we set $D(\tilde{X})=\left\{(q(\tilde{X}))^{-1}(x): x \in \tilde{X}\right\}$ and define $i(\tilde{X})$ setting $i(\tilde{X})\left((q(\tilde{X}))^{-1}(x)\right)$ $=x$.
5.2.1. Lemma. For every $X \in R_{l c}^{k}(\alpha)$, the pair $(S(\tilde{X}), D(\tilde{X}))$ has the dense property.

Proof. Let $n \in N$ and $a \in d \in(D(\tilde{X}))_{n}$. There exist elements $x \in B d\left(V_{n}(\tilde{X})\right.$ and $b \in C$ such that $d=\{a, b\}=(q(\tilde{X}))^{-1}(x)$. Let x_{1}, x_{2}, \cdots be a sequence of points of \tilde{X} snch that $\lim _{i \rightarrow \infty} x_{i}=x, x_{i} \in V_{n}(\tilde{X})$ if $a<b$ and $x_{i} \in \tilde{X} \backslash C l\left(V_{n}(\tilde{X})\right)$ if $b<a, i=1,2, \cdots$. If $n \geqq 1$ we can suppose that $x_{i} \notin C l\left(V_{0}(\tilde{X}) \cup \cdots \cup V_{n-1}(\tilde{X})\right)$.

By the construction of the sets $\tilde{X}_{\bar{i}}$ it follows that there exists an element \bar{i} of L_{n} such that $a \in C_{\bar{i}_{0}}$ and $b \in C_{\bar{i} 1}$ if $a<b$ and $a \in C_{\bar{i}_{1}}$ and $b \in C_{\bar{i} 0}$ if $b<a$. Also, for every $i=1,2, \cdots$, we have that the set $(q(\tilde{X}))^{-1}\left(x_{i}\right)$ is contained in that of the sets $C_{\bar{i}_{0}}$ and $C_{\bar{i}_{1}}$ which contains the point a.

Since $D(\tilde{X})$ is an upper semi-continuous pardition of $S(\tilde{X})$ we have $\lim _{i \rightarrow \infty} d_{i}=d$. where $d_{i}=(q(\tilde{X}))^{-1}\left(x_{i}\right), i=1,2, \cdots$. Hence, if $a_{i} \in d_{i}$, then $\lim _{i \rightarrow \infty} a_{i}=a$, that is, the point a is a limit point of the set $S(\tilde{X}) \backslash\left((D(\tilde{X}))_{n}\right)^{*}$. This means that the pair $(S(\tilde{X}), D(\tilde{X}))$ has the dense property.
5.2.2. The family A of representations. Let R_{1} be a subfamily of $R_{l c}^{k}(\alpha)$ the cardinality of which is less than or equal to the continuum and let $R_{2}=R_{l c}^{k}(\alpha) \backslash R_{1}$.

For every $X \in R_{2}$ we set $\hat{S}(X)=C$ and we denote by $\hat{D}(X)$ the set which is the union of the set $D(\tilde{X})$ and all singletons $\{x\}$, where $x \in C \backslash\left(\cup_{n=0}^{\infty}\left((D(\tilde{X}))_{n}\right)^{*}\right)$. It is easy to see that $\hat{D}(X)$ is an upper semi-continuous partition of $\hat{S}(X)$ and the quotient space $D(\tilde{X})$ is homeomorphic to a subset of the quotient space $\hat{D}(X)$.

Let A_{2} be the family of all pair $(\hat{S}(X), \hat{D}(X)), X \in R_{2}$. It is easy to see that the cardinality of A_{2} is less than or equal to the continuum.

For every $X \in R_{1}$ we set $\hat{S}(X)=S(\tilde{X})$ and $\hat{D}(X)=D(\tilde{X})$. Let A_{1} be the set of all pairs $(\hat{S}(X), \hat{D}(X)), X \in R_{1}$. If X and Y are distinct elements of R_{1}, then $(\hat{S}(X), \hat{D}(X))$ and $(\hat{S}(Y), \hat{D}(Y))$ are considered as distinct elements of A_{1}, while it is possible $\hat{S}(X)=\hat{S}(Y)$ and $\hat{D}(X)=\hat{D}(Y)$.

Let A be the free union of A_{1} and A_{2}. (Hence, if $g_{1} \in A_{1}$ and $g_{2} \in A_{2}$, then g_{1} and g_{2} are distinct elements of A). Obviously, the cardinality of A is less than or equall to the continuum.

By Lemma 5.2 .1 it follows that every element of A has the dense property.
In the present section we denote by M the set of all scattered compacta M such that either type $(M) \leqq \beta(\alpha)$ or type $(M)=\beta(\alpha)+n$, where $n=1,2, \cdots$. We suppose that distinct elements of M are not homeomorphic.

Let $E P(\beta(\alpha))=E P(\beta(\alpha)+1) \cup E P(\beta(\alpha)+2) \cup \cdots$. By Theorem 4.3 the set $E P(\beta(\alpha))$ is countable. Let $e \in E P(\beta(\alpha))$. We denote by $M(e)$ the element M of M (if there exists such element) for which for some subset F of $M,(F, M)$ $\in e$. Obviously, if there exists the element $M(e)$, then it is uniquely determined, while the subset F of $M(e)$ for whch $(F, M(e)) \in e$, in general, is not unique. We denote by $F(e)$ a fixed subset of M such that $(F(e), M(e)) \in e$.

For every $X \in R_{l c}^{k}(\alpha)$ and $q \in N$ by the construction of the pair $(\hat{S}(X), \hat{D}(X))$ it follows that $(\hat{D}(X))_{q}=(D(\tilde{X}))_{q}$. Since $(D(\tilde{X}))_{q}$ is homeomorphic to $B d\left(V_{q}(\tilde{X})\right)$ (See the proof of Lemma 11 of $\left[I_{3}\right]$) by properties (1) and (4) of Lemma 2.4 it follows that the pair $g(X)=(\hat{S}(X), \hat{D}(X))$ is an M-representation. By $M_{q}(g(X))$ we denote the element of M which is homeomorphic to $(\hat{D}(X))_{q}$. If type $\left((\hat{D}(X))_{q}\right)$ $\leqq \beta(\alpha)$, then by $\psi_{q}(g(X))$ we denote a fixed homeomorphism of $M_{q}(g(X))$ onto $(\hat{D}(X))_{q}$.

Suppose that $\operatorname{type}\left((\hat{D}(X))_{q}\right)=\beta(\alpha)+n$. Let $F_{q}(\tilde{X})=\left(B d\left(V_{q}(\tilde{X})\right) \cap X\right) \cup\left(B d\left(V_{q}(\tilde{X})\right)\right.$ $\backslash\left(B d\left(V_{q}(\tilde{X})\right)^{(\beta(\alpha)\rangle}\right)$. Then, the pair $\left(F_{q}(\tilde{X}), B d\left(V_{q}(\tilde{X})\right)\right)$ belongs to an element e of $E P(\beta(\alpha))$ and, hence, there exists the pair $(F(e), M(e))$. By $\psi_{q}(g(X))$ we denote a fixed homeomorphism of $M_{q}(g(X))=M(e)$ onto $(\hat{D}(X))_{q}$ for which $\psi_{q}(g(X))(F(e))=(i(\tilde{X}))^{-1}\left(F_{q}(\tilde{X})\right)$. (We observe that by the construction of the homeomorphism $i(\tilde{X})$ it follows that $\left.i(\tilde{X})(D(\tilde{X}))_{q}\right)=B d\left(V_{q}(\tilde{X})\right)$).

We suppose that for every $M \in M$ there exists a fixed decreasing sequence
of decompositions of M.
Also we suppose that there exists a fied decreasing sequence of decompositions of A such that if E is an element of $q^{t h}$ decompositions, then the element $M_{q}(E)$ of M is determined (for notations see Section 3.1). Moreover, since the set $E P(\beta(\alpha))$ is countable, we can suppose that if $\operatorname{type}\left(M_{q}(E)\right)=\beta(\alpha)+n$ and $(\hat{S}(X), \hat{D}(X))$ and $(\hat{S}(Y), \hat{D}(Y))$ are two elements of E, then the pairs $\left(F_{q}(\tilde{X}), B d\left(V_{q}(\tilde{X})\right)\right.$) and ($\left.F_{q}(\tilde{Y}), B d\left(V_{q}(\tilde{Y})\right)\right)$ belong to the same element of $E P(\beta(\alpha))$.
5.3. Theorem. Let R_{1} be a subfamily of $R_{k c}^{k}(\alpha)$ the cardinality of which is less than or equal to the continuum. For every element $X \in R_{\text {lc }}^{k}(\alpha)$ let \tilde{X} be a c-extension of X. Then, there exist:
(1) an element $K \in R_{k c}^{k}(\alpha)$,
(2) a space T which is an lc-extension of K,
(3) a homeomorphism i_{X} of X into K for every $X \in R_{i c}^{k}(\alpha)$, and
(4) a homeomorphism $j_{\tilde{X}}$ of \tilde{X} into T, for every $X \in R_{l c}^{k}(\alpha)$, which is an extension of i_{X}, that is, $\left.j_{\tilde{X}}\right|_{X}=i_{X}$, such that:
(5) the space K has the property of $\alpha_{l c-}^{k}$-intersections with respect to the subfamily $\left\{i_{X}: X \in R_{1}\right\}$ of all homeomorphisms $i_{X}, X \in R_{l c}^{k}(\alpha)$.
(6) the space T has the property of compact ($\alpha+k+1$)-intersections with respect to subfamily $\left\{j_{\tilde{x}}: X \in R_{1}\right\}$ of all homeomorphisms $j_{\tilde{x}}, X \in R_{l c}^{k}(\alpha)$. Moreover,
(7) the set $j_{\tilde{X}}(\tilde{X})$ is a closed subset of T, for every $X \in R_{1}$.

Proof. We use all notions and notations of Sections 5.2 and 5.2.2. Let T be a space of Theorem 3.11 constructed for the family A of M-representations of Section 5.2.2.

Now we define the subspace K of T as follows: every element d of T of the form $\{(a, g)\}$, where $(a, g) \in C \times C$, belongs to K. Let $d \in T(1)$. Then, there exist an integer $m \in N$, an element r of $I(m)$ and an element x of $M_{m}\left(A_{r}^{m}\right)$ such that $d=d(x, m, r)$. If $\operatorname{type}\left(M_{m}\left(A_{r}^{m}\right)\right)<\beta(\alpha)$, then we consider that $d \in K$. Let $\operatorname{type}\left(M_{m}\left(A_{r}^{m}\right)\right)=\beta(\alpha)+n$. By the properties of the fixed decreasing sequence of decompositions of A it follows that there exists an element e of $E P(\beta(\alpha))$ such that for every $X \in R_{l c}^{k}(\alpha)$ for which $g(X)=(\hat{S}(X), \hat{D}(X)) \in A_{r}^{m}$ we have $\left(F_{m}(\tilde{X}), B d\left(V_{m}(\tilde{X})\right)\right) \subseteq e . \quad$ Hence, $\quad M_{m}\left(A_{r}^{m}\right)=M_{m}(g(X))=M(e) \quad$ and $\quad F(e)=$ $\left(\psi_{m}(g(X))\right)^{-1}\left(F_{m}(\tilde{X})\right)$. We consider that $d \in K$ iff $x \in F(e)$.

By the definition of the set $F_{m}(\tilde{X})$ and properties of a c-extension of X (see Section 5.1) it follows that: $(\boldsymbol{\alpha})\left(d\left(M_{m}\left(A_{r}^{m}\right)\right) \backslash\left(d\left(M_{m}\left(A_{r}^{m}\right)\right)\right)^{(\beta(\alpha)}\right) \cong d\left(M_{m}\left(A_{r}^{m}\right)\right)$
$\cap K, \quad(\beta) \operatorname{type}\left(d\left(M_{m}\left(A_{r}^{m}\right)\right) \cap K\right) \leqq \alpha, \quad(\gamma)$ type $\left(d\left(M_{m}\left(A_{r}^{m}\right)\right)\right) \leqq \alpha+k+1, \quad(\delta)$ loc-comtype $\left(d\left(M_{m}\left(A_{r}^{m}\right)\right) \cap K\right) \leqq \alpha+k$.

We observe that the above properties $(\alpha)-(\delta)$ are true if we replace the set $d\left(M_{m}\left(A_{r}^{m}\right)\right)$ by an open and closed subset of it. Hence, these properties are also true if we replace the set $\left.d\left(M_{m}\right) A_{r}^{m}\right)$) by a set which is a free union of simultaneously open and closets of sets $d\left(M_{m}\left(A_{r}^{m}\right)\right), m \in N, r \in I(m)$.

Consider the basis \boldsymbol{B} of the space T. Let $O(W) \in \boldsymbol{B}$. By Theorem 5.3 the set $B d(O(W))$ is a free union of simultaneously open and closed subsets of sets $d\left(M_{m}\left(A_{r}^{m}\right)\right)$. Hence, properties $(\alpha)-(\delta)$ are true if we replace the set $d\left(M_{m}\left(A_{r}^{m}\right)\right)$ by the set $B d(O(W))$. From the it follows that $K \in R_{l c}^{k}(\alpha)$. Since the set $B d(O(W))$ is a locally compact subset of T we also have that the space T is an $l c$-extension of the space K.

Let $T(\tilde{X})$ be the subset of T consisting of all elements z of T for which $z \cap(C \times\{g(X)\}) \neq \emptyset$. We observe that for every $z \in T(\tilde{X})$ there exists an element $d \in \hat{D}(X)$ such that $z \cap(C \times\{g(X)\})=d 又\{g(X)\}$. Also, for every $d \in \hat{D}(X)$ there exists an element $z \in T(\tilde{X})$ such that the above relation is true. Hence, setting $j_{\hat{X}}(d)=z$ we have an one-to-one map of $\hat{D}(X)$ onto $T(\tilde{X})$. It is easy to verify, that $\bar{j}_{\hat{x}}\left((\hat{D}(X))_{q}\right)=d\left(M_{q}\left(A_{r(q, g(X))}^{q}\right)\right)$, for every $q \in N$.

We prove that $j_{\hat{X}}$ is a homeomorphism. Let $j_{\hat{X}}(d)=z$. Let $z \in O(W) \in \mathbb{B}$. Since the space T is regular there exists an element $O\left(W_{1}\right)$ of B such that $z \in O\left(W_{1}\right) \subseteq C l\left(O\left(W_{1}\right)\right) \subseteq O(W)$. By the construction of the element of the set $\hat{U} \cup \hat{V}$, there exists an open subset V of $\hat{S}(X)$ such that $d \subseteq V$ and $V \times\{g(X)\}$ $\subseteq W_{1}$. Let U be the set of all elements d^{\prime} of $\hat{D}(X)$ for which $d^{\prime} \subseteq V$. Then, U is an open subset of $\hat{D}(X)$ containing d. If $d^{\prime} \in U$, then $j_{\hat{x}}\left(d^{\prime}\right) \cap W_{1} \neq \emptyset$ and, hence, $j_{\hat{X}}\left(d^{\prime}\right) \in O(W)$, that is, $j_{\hat{X}}(U) \cong O(W)$. Thus, $\zeta_{\hat{X}}$ is a continuous map. Let U be an open subset of $\hat{D}(X)$ containing d. Let $V=(\hat{p}(X))^{-1}(U)$, where $\hat{p}(X)$ is the natural projection of $\hat{S}(X)$ onto $\hat{D}(X)$. There exists an element W of $\hat{U} \cap \hat{V}$ such that $W \cap C \times\{g(X)\}) \subseteq V \times\{g(X)\}$ and $z \subseteq W$. Hence, $z \in O) W)$. If $z^{\prime} \in O(W) \cap T(\tilde{X})$, then $z \subseteq W$ and therefore $z^{\prime} \cap(C \times\{g(X)\}) \subseteq V$ 又 $\{g(X)\}$, that is, if $d^{\prime}=\left(j_{\hat{X}}\right)^{-1}\left(z^{\prime}\right)$, then $d^{\prime} \subseteq V$. This means that $d^{\prime} \in U$. Hence, $\left(j_{\hat{X}}\right)^{-1}(O(W)$ $\cap T(\tilde{X})) \subseteq U$ and the $\operatorname{map}\left(j_{\hat{X}}\right)^{-1}$ is continuous. Thus, $\left(j_{\hat{X}}\right)^{-1}$ is a homeomorphism of $\hat{D}(X)$ onto $T(\tilde{X})$.

Since $D(\tilde{X})$ is a subset of $\hat{D}(X)$ we can consider the restriction $\left.j_{\hat{X}}\right|_{D(\hat{X})}$ of $j_{\hat{X}}$ onto $D(\tilde{X})$. We set $j_{\hat{X}}=\left(\left.j_{\hat{X}}\right|_{D(\hat{X})}\right) \circ(i(\tilde{X}))^{-1}$. Obviously, the map $j_{\hat{X}}$ is a homeomorphism of \tilde{X} into a subset of $T(\tilde{X})$.

If $X \in R_{1}$, then $D(\tilde{X})=\hat{D}(X)$ and, hence, $j_{\hat{X}}=j_{\hat{X}^{\circ}}(i(\tilde{X}))^{-1}$, that is, the map $j_{\hat{X}}$ is a homeomorphism of \tilde{X} onto $T(\tilde{X})$.

Set $i_{X}=\left.j_{\hat{X}}\right|_{X}$. Hence, the map i_{X} is a homeomorphism of X into $T(\tilde{X})$.

Let X and Y be distinct elements $R_{l c}^{k}(\alpha)$ such that $X \in R_{1}$. There exists an integer $m \in N$ such that $r(q, g(X))=r(q, g(Y))$ for every $0 \leqq q<m$ and $r(m, g(X)) \neq r(m, g(Y))$. It is clear that an element z of T belongs to $T(\tilde{X})$ $\cap T(\tilde{Y})$ if and only if $\left.d \in d\left(M_{q}\left(A_{T(q, g(X)}^{q}\right)\right)\right)$ for some $q, 0 \leqq q<m$. Hence, the subset $T(X) \cap T(Y)$ of T is a compact subset having type $\leqq \alpha+k+1$.

Since $(D) \tilde{Y}))_{q}=(\hat{D}(Y))_{q}$ for every $q \in N$, we have $j_{\hat{Y}}\left((\hat{D}(Y))_{q}\right) \leqq j_{\hat{Y}}(\tilde{Y})$. Hence $T(\tilde{X}) \cap T(\tilde{Y})=j_{\hat{X}}(\tilde{X}) \cap j_{\hat{Y}}(\tilde{Y})$, that is, property (6) of the theorem is true.

Since for every $q, 0 \leqq q<m$, there exists an element $e \in E P(\beta(\alpha))$ such that $\left.K \cap d\left(M_{q}\left(A_{\tau(q . g(X)}^{q}\right)\right)\right)=d(F(e))$ it follows that the set $i_{X}(X) \cap i_{Y}(Y)$ has $t y p e \leqq \alpha$, and locally compact type $\leqq \alpha+k$, that is, property (5) of the theorem is true.

Hence, in order to complete the proof of the theorem it is sufficient to prove property (7). For this, since $j_{\hat{X}}(\tilde{X})=T(\tilde{X})$ if $X \in R_{1}$, it is sufficient to prove that the set $T(\tilde{X})$ is a closed subset of T.

Let $z \in T \backslash T(\tilde{X})$. If z has the ferm $d(y, m, r)$ for some $m \in N, r \in I(m)$ and $y \in M_{m}\left(A_{r}^{m}\right)$, then $g(X) \notin A_{r}^{m}$. Hence, $z \in O(U)$ and $O(U) \cap T(\hat{X})=\emptyset$, where $U=$ $U(d(y, m, r), 0)$.

Let $z=\{(a, g)\}$. There exists an integer $m \in N$ and distinct elements τ and τ_{1} of $I(m)$ such that $g \in A_{r}^{m}$ and $g(X) \in A_{r}^{m}$. Then, $z \cong C_{s}$ 又 A_{r}^{m}. By Lemma 3.7 case (1), there exists an element W of the set $\hat{U} \cup \hat{V}$ such that $z \cong W \cong C_{g}$ 又 A_{r}^{m}. Hence, $z \in O(W)$ and $O(W) \cap T(\tilde{X})=\emptyset$.

Thus, in both cases, the element z has an open neighbourhood which do not intersect the subspace $T(\tilde{X})$. Hence, $T(\tilde{X})$ is closed.
5.4. Corollaries. (1) In the family $R_{l c}^{k}(\alpha)$ there exists a universal element having the property of $\alpha_{1 c}^{k}$-intersections with respect to any subfamily of $R_{l c}^{k}(\alpha)$ the cardinality of which is less than or equal to the continuum.
(2) For the family $R_{c}^{k}(\alpha)$ there exists a containing space belaining to $R_{l c}^{k}(\alpha)$.
(3) For the family $R_{c}^{k}(\alpha)$ there exists a containing continuum having type $\leqq \alpha+k+1$ and the property of α_{c}^{k+1}-intersections with respect to a fixed subfamily of $R_{c}^{k}(\alpha)$ the cardinality of which is less than or equal to the continuum.

This corollary follows from Theorem 5.3 (See property (6)), Theorem 2.5 and Theorem 3 of $\left[I_{1}\right]$.

In particular, if $k=0$ and since $R^{\text {com }}(\alpha) \subseteq R_{c}^{0}(\alpha)$ we have:
There exists a continuum having rim-type $\leqq \alpha+1$ which is a containing space for all compacta having rim-type $\leqq \alpha$.
(4) In the family $R(\alpha)$ (that is, in the family $R_{i c}^{k}(\alpha)$, where $\left.k=m^{+}(\alpha)-1\right)$ there exists a universal element (See $\left[I_{3}\right]$).
5.5. Some problems. (1) Does there exist a universal element of the family $R_{l c}^{k}(\alpha)$, where $\alpha>0$ and $k=0, \cdots, m^{+}(\alpha)-1$, having the property of \mathscr{P}_{-} intersections with respect to a given subfamily of $R_{c c}^{k}(\alpha)$ the cardinality of which is less than or equal to the continuum if " \mathscr{P}-intersections" means (α) finite intersections, (β) compact α-intersections, $(\gamma) \alpha_{l c}^{n}$-intersections, where $n=$ $0, \cdots, k-1$ and (δ) α_{c}^{n}-intersections, where $n=0, \cdots, k$?
(2) Let K be a universal element of the family $R_{l c}^{k}(\alpha)$, where $\alpha=0, \cdots, m^{+}(\alpha)$, and let R_{1} be a fixed subfamily of $R_{l c}^{k}(\alpha)$ the cardinality of which is less than or equal to the continuum. Does the space K have the property of (α) finite intersections, (β) compact α-intersections, $(\gamma) \alpha$-intersections, $(\delta) \alpha_{l c}^{n}$-intersections, where $n=0, \cdots$, and (ε) α_{c}^{n}-intersections, where $n=0, \cdots$, with respect to the subfamily R_{1} ?
(3) Are the results and problems of the present paper true if we replace all corresponding famillies of spaces by their plant part? (Plane part of a family A is the subfamily consisting of all elements of A admitting an embedding in the plane).

References

[G-I] D. N. Georgiou and S.D. Iliadis, Containing spaces and a-uniformities Topology, theory and applications II, Colloq. Math. Soc. J. Bolyai 55, North-Holland, Amsterdam, (1992).
$\left[I_{1}\right\rfloor$ S. D. Iliadis, On the rim-type of spaces, Lecture Notes in Mathematics 1060 (1984), pp. 45-54, (Procending of the International Topological Conference, Leningrad, 1982).
[I2] S. D. Iliadis, Rim-finite spaces and the property of universality, Houston J. of Math., 12-1 (1986), 55-78.
[$\left.I_{3}\right]$ S. D. Iliadis, Rational spaces of a given rim-type and the property of universality, Topology Proceedings, 11 (1986), 65-113.
[$\left.I_{4}\right]$ S.D. Hiadis, The rim-type of spaces and the property of universality, Houston J. of Math. 13 (1987), 373-388.
[I_{5}] S.D. Iliadis, Rational spaces and the property of universality, Fund. Math. 131 (1988), 167-184.
[I-T] S.D. Iliadis and E.D. Tymcharyn, Compactifications of rational spaces of minimum rim-type, Houston J. of Math. Vol. 17, No. 3, (1991), pp. 311-323.
[I-Z] S.D. Iliadis and S.S• Zafiridon, Rim-scattered spaces and the property of universality, Topology, theory and applications II, Colloq. Math. Soc. J. Bolyai 55, North-Holland, Amsterdam, (1992).
[K1] K. Kuratowski, Quelques theoremes sur le plongement topologique des espaces. Fund. Math., 30 (1938), 8-13.
[K_{2}] K. Kuratowski, Topology, Vol. I, New York, 1966.
[M-S] S. Mazurkiewicz and W. Sierpinski, Contribution a la topologie des ensembles demombrables, Fund. Math., 1 (1920), 17-27.
[M-T] J.C. Mayer and E.D. Tymchatyn, Containing spaces for planar rational compacta, Dissertationes Mathematicae, CCC, Warszawa, 1990.
[N] G. Nöbeling, Über regular-eindimensionale Räume, Math. Ann. 104(1) (1931), 81-91.

Department of Mathematics
University of Patras
Patras, Greece

[^0]: Received May 8, 1991.

