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A CHARACTERIZATION OF THE J2-ELEMENTARY

GROUPS AT 2 WITH CHARACTERS OF

SCHUR INDEX 2 OVER R

By

Michitaka Hikari

Let H be a group. We call H an 12-elementary group at 2 if

(i) H is a serai-directproduct t＼d} of a 2-group P and a cyclic 2'-group <≪),

and

(ii) For each x&P, xax~l=a or a~l.

In order to study the representations of finite groups over R, there are some

approachs. Our approach is based on the Brauer-Witt theorem ([4],p. 31). By

the Brauer-Witt theorem, if % is an irreducible complex character of Schur index

2 over R for a finitegroup G, then there exist a subgroup H of G which is R-

elementary at 2, and an irreducible complex character p. of H of Schur index 2

over R such that (XH,j")=£0(mod 2). Therefore it is important to study the re-

presentations of ^-elementary groups at 2 over jR. The purpose of this paper is

to give necessary and sufficient conditions in group theoretical terms for the

existence of the characters of Schur index 2 over R in the case where groups are

iS-elementary groups at 2.

First, using the Witt-Roquette theorem for />-groups, we will determine the

2-groups with characters of Schur index 2. Secondly, we will study the represen-

tations of an JR-elementary group // with non-trivial2'-group <a>. In the case

where Cl{(a) has an abelian Sylow 2-group, the representations of such group over

R were studied by Gow in [3]. Let G be a finitegroup and let a be an element

of G. Assume that CG(a) has an abelian Sylow 2-subgroup P and that there exists

an element x in G satisfying xax~1= a~1,but yayl-^a~l for any involution y in G.

Gow showed that in this case G has a complex irreducible character of Schur

index 2 over jR. To prove thistheorem Gow used essentially the fact that complex

irreducible characters of P(.a} are linear. So we can not use Gow's method in the

case where Cg{o) has a non-abelian Sylow 2-subgroup. However for J2-elementary

groups at 2 we can characterize the groups with real-valued complex irreducible

characters of Schur index 2 over R and the groups with non-trivial real-valued
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complex irreduciblecharactersof Schur index 1 over R.

In this paper we mean by an irreduciblecharacter a complex irreducible

character. As usual Q, R, C denote the rationalnumber field,the real number

fieldand the complex number fieldrespectively.

§1. Preliminary lemmas

Let G be a finitegroup and let i be an irreducible character of G, and let

mp(x) denote the Schur index of % over a fieldF. We let F(y) denote the field

generated over F by the algebraic numbers %(g),geG. Let % denote the complex

conjugate character of x- Let H be a subgroup of G. We denote by In the

restriction of ^ to H. For a character ft of // we denote the character of G

induced from pt by pp. Frobenius and Schur ([2],p. 21) studied the number v(-/)

= ＼G＼~12 lid2) and showed the following remarkable result.

(1.1.)(Frobenius-Schur) Let G be a finite group and let j he an irreducible

character of G. Then we have

(i) v(z)=l if and on^y if R(z)~R an(l mR(yJ ―~L>

(ii) y(%)=―1 if and only if R(%) = R and mn(j)=2,

(iii) v(y)=0 if and only if R(j)~C.

The character i Is called the character of the first kind (respectively, the

second kind, the third kind), if v(x)= l (respectively,y(z)= ―1> v(x)= R)>

The following well known theorem ([2],p. 73) plays an essential part in the

studv of renresentations of ^-ffrouos.

(1.2)(Witt-Roquette) Let P be a p-group. Let F be a field of characteristic0.

Suppose that one of the following hypotheses is satisfied

(i) p^-2

(il) p = 2 and i^V^leF

(ill) p=2 and P does not contain a cyclicsubgroup of index 2.

Then if % is a nonlinear irreducible faithful character of P there exist P0<]P

and a character C of Po such that ＼P:P0＼=p, y=CF and F(y)=F(Q.

Remark. In the case (iii),if F{%)$i, the character C is nonlinear.

Let G be a group, let H be a subgroup of G and let C be a character of //.

Even if C is an irreducible character of H, the character 'Cais not always irre-

ducible. However in the case where C is a linear character, using the Mackey

decomposition theorem ([21 p. 51),we have following
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Lemma 1.3. Let G be a finite group, let II be a subgroup of G, and let C be

a linear character of II. Put x^C0- Then % is not an irreducible character of G

if and only if there exists an element x of G ―H such that xhx~1h~1YLe.vl,for all

h£llxn H, where Ker C= {h III C(h)= C(l)l.

Proof. Let HxJI{x1 = l), Hx-JI, ■･■JlxJIbe all the (H,H) double cosets in G

By the Mackey decomposition theorem,

=1 + S((C**)

8=2

inHXHXinH)nXinH

HXinH,CllXinM)HXinH

Therefore % is not irreducible if and only if for some Xi (2^ki^n) ((C,Xi)nXinH,

CHxtnH)HXinH^0. Since C is a linear character, {(QXi)HXinH,Cff^n/zk^ns^Q if and

only if C(ariAa?i-1)=Cs*(A)=C(A)for all hsH^nH. And the condition C(a,'iAari-1)= C(A)

means Xihxi~1h~1£KerC, because C is a linear character. Hence % is not irreducible

if and only if there exists an element x of G―H such that xhx^h*1 eKer C for all

MHxnH.

Lemma 1.4. Let G he a finite group, let II be a subgroup of G and let C be

a character of II. Put y= CG. Then Kerv^n (KerC)'.

Proof. Let x be an element of n (Ker Q9. Since g^xgeKer C for ailgeG, we
(KG

have x(-^)=:C6r(*')~C';?(l)-Therefore xzKer %. Conversely, we assume that ^eKer^.

Let {gx,■･■,gn}be a set of(left)representatives of G＼H in G. We may assume that

x£llgifor i^s and x$HQi for i>s. Let m be the order of x. As is well known,

CgKx) is a sum of w-th roots of unity sif(l^j^CCi)) if i^ks and C9i(x)=0 if i>s.

Thus z(aO=
i]
,･=1

s
sij. Since z(l) = S

.7=1

£ijif and only if C(l)s = %(l) and e^ = l for

all (i,j), we have that C"i(^)=C(l)=C^(l) for all i, and this means that x£ n (Ker Qg.
aca

§2. 2-groups

Let G be the quaternion group of order 8. It is well known that the ordinary

quaternion algebra A over Q appears in QG as a simple component. Let F be a

fieldof characteristic0. The 2-groups with characters of Schur index 2 over F

can be determined in the following

Theorem 2.1. Let F be a field of characteristic0. Let P be a finite 2-group.

Then there is a faithfulirreducible character of P of Schur index 2 over F if and
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only if P and F satisfy the following conditions:

(i) There exist subgroups QzdA'dK of P such that K is a normal subgroup of

Q and that AjK is a cyclic subgroup of QjK of index 2.

(ii) QjK is a generalized quaternion group of order 2rafl^8.

(iii) If x is an element of P―A, there exists an element a in Axf]A such

that xax~la~l$K.

(iv) n k*=＼.

(v) F{szn+sznl) RqA is a division ring, where e2n is a primitive 2n-th root of

unity.

Proof. We assume that there exists a faithful irreducible character % of P

of Schur index 2 over F. Since mF{y) ―2, % is not linear. If P does not contain

a cyclic subgroup of index 2, by (1.2) there exist P<s<]P and a character Co of Po

such that |.P: Pol =2, x=Cop and F(z) = F(Co). If Co is realizable in F(£o),then z = Cop

is realizable in F(x)=F(C0), which contradicts the assumption mP{x) ―2. Therefore

w^(Co)^l and Co is not linear. So we can define inductively a subgroup Pi of P

and a character G of Pi (i= 0,1,2, ･･･,/) such that |P≫:Pi+1|=2, £i=C<+iPi, F(d) =

F(Ci+i), wXQ^l and P≪/Ker C≪contains a cyclic subgroup of index 2. We denote

Pj, Ker G, Ct by 0, if, C, respectively. And if we denote by A the inverse image of

the cyclic subgroup of QjK of index 2 in Q, then Q, A, K satisfy the condition (i).

As is well known, Q is a splitting field of Q/K if QjK is not a generalized quater-

nion group. In the case where QjK is a generalized quaternion group of order

2n+1i^8, the faithful irreducible character C of QjK corresponds to the simple com-

ponent F{QR0A of F{Q[QjK] and m7,(C)^l if and only if F(Q<g>QA is a division

algebra. Thus we have (ii) and (v), because F(Q=F(ezn+e2n1). The faithful

irreducible character C of QjK is induced by a faithful linear character X of AjK,

and x=Cp ―/ip. Therefore by Lemma 1.3 the condition (iii)is satisfied. Moreover

since % is a faithful irreducible character of G, from Lemma 1.4 the condition (iv}

is satisfied.

Conversely we assume that the conditions (i),(ii),(iii),(iv) and (v) are satisfied,

Let 1 be a faithful linear character of AjK. We denote AQ,Xp by C> x respectively,

Then by Lemmas 1.3 and 1.4 % is a faithful irreducible character of P. The as-

sumptions (ii) and (v) mean m/?(C)= 2. If % is realizable in F(%)c:F(Q, we have

mF{Q＼(C, z)q = 1> which contradicts the fact mF{C) = 2. Using the fact that mF{y)＼2

we have mv(y) = 2.

Remark. In the case where F is an algebraic number field,the necessary and

sufficient conditions for F(e,,n+e.znl)<g)QA to be a division ring were given [1] by
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When F―R, we have following

Theorem 2.2. Let P be a finite 2-group. Then there is a nonlinear faithful

irreducible character of P of the first kind {respectively,the second kind) if and

only if P satisfiesthe following conditions (i),(ii),(iii)and (iv).

(i) There exist subgroups Q~dAz)K of P such that K is a normal subgroup of

Q and that A/K is a cyclicsubgroup of QjK of index 2.

(ii) Q/K is a dihedral group (respectively,a generalized quaternion group) of

order 2a^'^.

(iii) If x is an element of P―A, there exists an element a in AXC＼A such

that xa.x~1a~1^K.

(iv) n Kx=-l

Proof. Let | be a faithful Irreducible character of P. We assume that

R(x) = R. By (1.2) there are a subgroup Pi of P and a character G of Pi (z=0,1,

2,---,t)such that ＼Pt:Pi+1＼=2,Ci=CuiPi, i?(C*)= -K(C<+i)and Pt/Ker G contains a

cyclic subgroup of index 2. In the case where x *s°fthe second kind, the theorem

holds by Theorem 2.1,because Eie^i+e^^gA ―R^Q^ is the Hamilton's quaternion

field. Hence we can assume that x is of the first kind. We denote Pt, Ker G, G

by Q, K, C respectively. Let A be the inverse image of the cyclicsubgroup of QjK

of index 2 in Q. Then the conditions (i) and (iv) are satisfied. Since R(Q = R(x)

=R, QjK is a dihedral group or a generalized quaternion group. If QjK is a

generalized quaternion group, x is °f the second kind. Hence QjK is a dihedral

group. Since the faithfulirreducible character C of QjK is induced by a faithful

linear character of AjK, by Lemma 1.3 the condition (iii)is satisfied. Conversely

we assume that the conditions (i),(ii),(iii)and (iv) are satisfied. Further assume

that Q/K is a dihedral group. Let X be a faithful linear character of AjK. We

denote Xp by %. By Lemmas 1.3 and 1.4 ^ is a faithfulirreducible character of P.

Since a faithful irreducible character XQ of QjK is realizable as a character of a

R[QjK] ―module, x is realizableas a character of a J?P-module. Hence x is of the

fir^tIrinrl

Now we will prove some lemmas used in the following section.

Lemma 2.3. Let P be a finite 2-group, let Q be a subgroup of P of index 2,

let {1, g} be a set of representativesof PjQ, and let ft be an irreducible character of

Q with R(np)―R, Further we assume that ＼P＼~l2 (≪+//)((g^)2)= l {respectively,

-1).

// np is irreducible,then
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(1) ft is of the third kind and fip is of the first kind {respectively, the second

kind).

If ij.fis not irreducible, the following conditions are satisfied

(2) There exist characters j and ■/,x^zl''>°f P such that fip= x+x' an(l ^m^

ft,i and %' satisfy one of the following conditions

(i) ft,i and %' are of the first kind {respectively, the second kind).

(ii) ft is of the second kind {respectively, the first kind), and % and %f are of

the third kind.

Conversely if one of the conditions (1) and (2) is satisfied, then we have

|iT] S(A'+/X(^)2) = 1 {respectively, -1).

heQ

Proof. Since |P:Q|=2, we obtain h2£Q for all IigP, which implies

hep

=＼p＼

h£P

= ＼P＼~'S (J≪+//)(/22)+ iP|-1 E (ft+^Xighf).

Now we assume that fip is an irreducible character of P and R(ft) = R. We will

show that this assumption induces a contradiction. Remarking that p. is of the

first kind (respectively, the second kind) if and only if // is of the first kind

(respectively, the second kind), we have IQ^1 £ p(h2)= ＼Q＼-12 /(A2) by (1.1). Thus

l^h1 E (/i+/)(A2)= + l. By the assumption R(ap)==R we obtain |P|-X E j≪p(A2)=±l.

This contradicts the assumption that jP]"1 2 (fi+fig)((gh)2)=±1. Therefore we have

that ≪ is of the third kind if up is irreducible. Moreover by (1.1) IPI""1£(≪+

fi≪Xha)= O, and so |P|-J S ^P(A2)= |P|"1 S (i"+ /XW2). Therefore in the case

where /<p is irreducible, /ipis of the first kind (respectively, the second kind) if

and only if ＼P＼ Ẑ(f*+fia)((gh)*)= l (respectively, -1).

Next we assume that ＼tpis not irreducible. We may decompose pF into a sum

of irreducible characters of P, /ip= z+Z/- Using the fact l=(ig,j≪)(3=(zlj≪p)i>we

obtain (%,%')=0. Since 2/i=^+/Q=(//%=/<+//, we have n―n9. Hence

l^h1 S z(A8)
hep

= |P|-1Sz'(A')
hep

= |P|-JE/KA") + |P|-1S/i((i/A)').

On the other hand by the assumption

＼P＼~lS fK(gh)a)=2-＼＼P＼-i S (/i+/X(gA)'))=±2-1.

h Q h£Q
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If ft is of the third kind, we have ＼P＼~l£ i{h2) = ±2-＼ which contradicts the

Frobenius- Schur theorem (1.1). Therefore a is of the firstkind or of the second

kind. In the case where a is of the first kind, ＼P＼' £ 1(h2) = ＼P[~lZ tf(h*)= l

(respectively, 0) if and only if ＼P＼~1'EUt+fig)((ghY)= l (respectively, ―1). In the

case where a is of the second kind, ＼P＼~lE x(h2) = ＼FJ＼~l2 /(A2)=0 (respectively,

ftP hZP
―1) if and only if IPI"1 2 (a + fig)((ghf)= l (respectively, ―1). Hence the lemma

was proved.

Lemma 2.4. Let ek be a primitive 2n*-th root of unity (k = l, ･･-,m). Assume
･m m

that nk:^2 and 1] e&eQ. Then we have 2 £/£=Q.

Proof. This Is easy, therefore we omit it.

Lemma 2.5. Let P be a finite2-group, let Q be a subgroup of P of index 2,

let {1,g} be a set of representatives of PjQ and let /< be a character of Q. Let T

be a subgroup of Q, let A be a linear character of T and let X={hu ■■･,hm]be a

set of (left)representatives of QjT. We put

A = {(hi,h)eXxQ |higKfhc^T-Kerl, htighyhr1 eKer X},

B={(hi, h)eXxQ |hlghfhf1 eKer X),

a = ＼A＼and p = ＼B＼.

Assume that IP]-1 E(u + uaX(gh)*)sQ.

(1) // u = u9 and 2.Q=/-t,then we have

|i>|-1S(A£+ ^X(gA)-)=|Q|-1(i8-a).
ft6Q

(2) // jQ = (fip)Q)then we have

＼P＼'Ẑ (!J-+^X(ghf)=＼P＼-1^-a).
titQ

Proof. First we assume that //=// and X<*=ft. Then [P^1 Z (i≪+/X({/A)2)=

m
[Qh1 2 M(^)a) = |Q|-1 2 ^((gA)2)= |Q|-1 2 2 l{hlgKfh^＼ where ^(Ai(flfA)2^-1)=Oif

A Q ft£Q ftQ f=l
hlghfhi-^T. If hlqhfhi-^T and the order of hlghfhf1 Ker /?In T/Ker ^ is 2",

then Xihiighfhf1) is a primitive 2 ~throot of unity. Thus by the assumption that

I-PI"1S (/≪+/X(fi'A)2)eQand by Lemma 2.4 it holds that

= IQ|"1 2 ^(gA^Ar^ + IQI-1 2 Khiighyhc1)

= IQ|-1(/3-≪).
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Secondly we assume lQ~{np)o. Then along the same line as above we obtain

|/T1S(/i + /'-9X(f//*)2)

m

= ＼P＼~l(B-a)

§3. JR-elementary groups at 2

Let H be an j?-elementary group at 2, L e.

(i) H is a semi-direct product P(a} of a 2-group P and a cyclic 2'-group <≪>,

and

(ii) For each xgP, xax^―a or a"1.

We denote (a), Cp(a) by A,Q respectively. If // is a direct product PxA of P

and A, an irreducible character x of H is decomposed into a product of an irre-

ducible character /.iof P and an irreducible character r of A, x~flT- ^n this case

^ is of the first kind (respectively, the second kind) if and only if p.is of the first

kind (respectively, the second kind) and r = l4. But in § 2 we already studied when

P has irreducible characters of the first kind (respectively, the second kind). So

in this section we assume that Ai=A and ＼P:Q＼=2, and we only study the irre-

ducible characters of H which are faithful on A. We denote by {1, g] a set of

representatives of P/Q.

Let x be an irreducible character of //. We assume that R(x)=R and Ker^fl

A = l. Let Xi be an irreducible character of QA satisfying (1Oa, *i)=£0. Then we

can decompose X＼into a product of an irreducible character n of Q and an irre-

ducible character r of A, Xi~!lT- We assume that Kerr^-1. If x is an element

of Ker r, then we have

Zlff(.T)=/<l)r(x)+//(l)r(yxg-1) = /<l)r(x) + /i(l)r(x-1)

=MlMl)+MlMl)=z,ir(l).

Therefore (xi11)^ is not faithful, which contradicts the fact that 1A is faithful.

Hence r is faithful. Since A is not trivial, R(t) ―C, which means R(ftr) ―C. Since

t^t ―t0,(fiT,({iz)°)~l. By the Frobenius reciprocity theorem (X^T)H,(fiz)H)ri= (iJT +

(fiz)°,fi^QA ―l, and so ^ = (//r)ff. Moreover we have fig―fi, because R{%) = R.

In this section, for an irreducible character x °f //satisfying Ker%n^4 = l and

R(x) = R, we mean by /≪,r above /i,r respectively.
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Lemma 3.1. (1) i is of the firstkind if and only if

(2) i is of the second kind if and only if

|P|-1E(i≪ + /X(0A)2)=-l.
ftG

Proof. Since R(fiT)=-R((fit)9)=-C,by (1.1) we have

Thus

＼QA＼-iE /;r(/*2)= |£Mr S (/≪-)W=0

hZQA KQA

IHI-'SzCA8)

Kill

Htfl-'EGHr+Guryx*')

/i£ff

=＼h＼-1z {p-rH^rw)+＼m-12 (f+(f)')((^)2)

=i//|-iz: EO^+wxcflrA)2)

= |P|-1S(/≪-+W)((j//08)

=＼p＼ £(/' + /'WO'),
/tee
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Therefore by (1.1) Lemma 3.1 holds.

Now we will characterize i?-elementary groups at 2 with characters of the

firstkind and J?~elementary groups at 2 with characters of the second kind.

First we study in the case where R(u) = R and a is a linear character of Q.

Proposition 3.2. // has an irreducible character % of the first kind (respec-

tively,the second kind) such that Ker #nA = l, R{pi)―R and jiis linear, if and only

if H satisfiesthe following condition(A).

(A) There exists a subgroup K of Q such that K<]P and PjK is an elementary

abelian group of order ^|4 {respectively,a cyclic group of order 4).

Proof. If R(p.)~R, then we have n9―pL=fx. We denote Ker/i by K. For

x&K fi(gxg-1)= fig(x)= /i(x)=/i(l),which implies geNP(K). Since Np(K)zdQ, we

obtain that P＼>K. Because p is linear and R(/jl)= R, it holds that ＼QIK＼^2. Thus

＼PIK＼^L From the assumption R(x)=R we have ＼P＼~lH (fi+fig)((gh)2)= ±l by
h.£Q

Lemma 3.1. Since R{u) = R, by Lemma 2.3 there exist characters f and f, £=£?',
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of P such that /j/>=c+c'. Moreover by Lemma 2.3 $ and £' are of the first kind

(respectively, the third kind) if x '1Sof the first kind (respectively, the second kind),

because p. is of the first kind. First we will show that Ker qC＼Ker^'=K. In fact

(£+£/)g=(jmp)0 = 2j≪>and so Ker f flKer $'Z)K. Let .zeKerf nKer ?'. If xeP-Q, we

have 0=ftp(x) = ^(x)+$f(x) = £(l)+^'(l), which is impossible. Therefore x$Q, and

2^(l) = f(l)+f'(l)=£(tf) + £'(jtO= 2/*(j;),which implies p.(x)=fi(l). Hence we have xeK,

and it holds that Ker fflKer $' = K. Therefore we may assume that P/K is a

subgroup of PI Ker fxP/Ker $'. In the case where % is of the first kind, we have

R(£)= R( ')= R. Thus |P/Ker£|, |F/Ker|'|^2, and P/K is an elementary abelian

group of order ^4. In the case where % is of the second kind, we have /?(£)=

R(£')= C. Since A = Ker c n Ker £'cKer f, we obtain 4^ ＼PfK＼̂ jP/Ker f|§4. Hence

|P//f|=4 and A"=Kerf. Further R($) = C means that P/A' is a cyclic group of

order 4.

Conversely suppose that // satisfies the condition (A). Let ft be a faithful

linear character of Q/K and let r be a faithful linear character of A. We will

prove that {f.t~)His an irreducible character of H of the firstkind (respectively, the

second kind). First we assume that Q = K. Then fj= lQ, and ((1qt)pa)qA~1qt + 1qt,

which implies that (1qt)pa is an irreducible character of II. We define the char-

acters £ and £' of P by £(j;)=£'(jp)= l for x$Q and ^(a?)= l, f'(a;)=-l for xeP-Q.

Then l<37'=f+f. vSInce | and £' are of the first kind, by Lemmas 2.3 and 3.1

(1qt)h is of the first kind. Secondly we assume that ＼QjK＼=2. In this case

((ftr)l')QA=f£T+ [.tT,and {;.iT)nis an irreducible character of //. Since R{{{tr)n) ―R

and R(ft) = R, by Lemma 2.3 there exist characters $ and f, f^-f, of P such that

fip=£+$'. In the case where P/A' is an elementary abelian group of order 4 both

f and fr are of the first kind. So in this case, using Lemmas 2.3 and 3.1, we

obtain that {px)H is of the first kind. Next we assume that P/K is a cyclic group

of order 4. We put P/A'=<?/>. We define the linear characters $ and f of P/A"

by £(y)= i and £'(#)=-i. Then we have ^=£+£'. Since K(f)=JR(f/) = CJ by

Lemmas 2.3 and 3.1 we conclude that (/≪r);/is of the second kind.

Secondly we study in the case where. R(ji)= R and /.≪is a nonlinear character

of Q.

Proposition 3.3. // has an irreduciblecharacter % of the firstkind {respectively,

the second kind) such that Ker^nA = l, R(/j.)=R and p.is nonlinear, if and only

if II satisfiesthe following condition (B).

(B) There exist subgroups T, K of Q which satisfy the following conditions

(i) T{:>K and TjK is a cyclicgroup.

(ii) For xgQ―T there exists an element a of TXC＼T such thai xaxrlal$K,
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There exists an element y of P―Q which satisfiesyby~~lb~leKfor all beTvf]T,

(iii) Let X={hi, ■■･,hm}be a set of representatives of QjT. We put

C={(Ai, h)£XxQ |hlghfhc^T-K, highyhc^K],

D = {(hi,h)£XxQ |hlghfhf^K),

r=＼C＼ and d=＼D＼.

Then we have IQh1^ ―r)= l (respectively,―1).
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Proof. Since /tis nonlinear, by Theorem 2.2 there exist a subgroup S of Q

and a character C of S such that R(Q=R and £y= /i. Moreover in the case where

[i is of the first kind (respectively, the
second kind) S/Ker £is a dihedral group

(respectively, a generalized quaternion group). Therefore S/Ker C contains a cyclic

group T/Ker C of index 2 and C is induced by a faithful linear character X of

T/Ker C- We denote Ker C by iT. Since ^y = /i is irreducible but lp^=fip is not

irreducible, by Lemma 1.3 the condition (ii) is satisfied. From Lemma 2.5 we

obtain (iii). So the condition (B) is satisfied.

Conversely we assume that the condition (B) is satisfied. Let X be a faithful

linear character of TjK and let r be a faithful linear character of A. By Lemma

1.3 the condition (ii) means that X(-'is irreducible but Xp is not irreducible. We

denote XQ by a. Then (up)q = u + u°and /≪= //, because a1' is not irreducible. Since

(fiT)°= ftT+fir, (fiv)11is irreducible. On the other hand by (1,1) IP^1

= ＼P＼~XE ptp(h%)-＼P＼ 'ZK/J + z/WeQ. Therefore the assumption Of

(/i+/X(^)2)

Lemma 2.5

is satisfied, and the condition (iii) means ＼P＼"12 ([.i+ f/J)((gh)2)―l (respectively, ―1).

Using Lemma 3.1 we conclude that (fir)11is of the firstkind (respectively,the

second kind).

Thirdly we study in the case where R('i)= C.

Proposition 3.4. // has an irreducible character x of the first kind {respec-

tively,the second kind) such thai Ker^ 0^4 = 1 and R(/i)= C, if and only if II

satisfiesthe following condition (C).

(C) There exist subgroups SzdT'dK of P which satisfythe following conditions

(i) Sl>K, SjK is a dihedral group (respectively,a generalized quaternion group)

and TjK is a cyclicsubgroup of SjK of index 2.

(ii) For x£P―T there exists an element a of Txf＼T such that xax^a'^K.

(iii) One of the following conditions is satisfied

(a) KczTOQ and (Sf}Q)jK is a cyclicsubgroup of SjK of index 2.

(b) KczTdQ and (SnQ)jK is not abelian, or K<tTf}Q, Let X=iku ■■■Jim)be
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a set of representativesof Ql(Tf)Q). We put

C=[(ht, h)£XxQ !hiighyhr1 T-K, hi(ghyht-l K},

D = {(hu h)sXxQ |hiighfhi-'cK},

y= ＼C＼and d=＼D＼.

Then we have ＼P＼-＼d-r)= l {respectively,-1) and IT: (TnQ)l =2.

Proof. Since R(f/) = C and. /?9= /i,/ipis a nonlinear irreducible character of P.

Thus by Theorem. 2.2 there exist a subgroup S and an irreducible character £ of

S such that Cp = /≪p,R(Q = R and S/Ker £ is a dihedral group (respectively, a gen-

eralized quaternion group) if f/p is of the first kind (respectively, the second kind).

Further applying Lemmas 2.3 and 3,1 we have that S/Ker £is a dihedral group

(respectively, a generalized quaternion group). Let T be the inverse image of the

cyclic subgroup of S/Ker £ of index 2 in S. Then there exists a faithful linear

character I of T/Ker £ such that >v=£. Since lp-£p=/ip is irreducible, by Lemma

1.3 the condition (ii) is satisfied for K=Ker £. Thus if we put ii = Ker£, then the

conditions (i) and (ii) are satisfied.

To prove the condition (iii) first we assume that KcTnQ and (Sr＼Q)/K is

an abelian group. Under this assumption we will show that (Sf]Q)!K is a cyclic

subgroup of index 2. In the case where % is of the first kind SjK is a dihedral

group. We put SIK―(x,y＼x2n = l,y2 = l,y"lxy = x"i}, and we assume that (SnQ)/K

r＼(x)= {x2'). Since (yxi)2 = l and (?/,r?;)~1.r(?/.ri)= ,3?~1,we may assume that y£(Sf)G)jK.

Since (SnQ)IK=(y,x2} is abelian, we have n=2. We define characters f and fr

of <?/,^> by £(1)= 1, f(a;2)=-l, £(?/)= l, ^xiy)=-l, r(l) = l, rU2)=-l, ?'(!/)=-1,

f'(a;ay)= l. Then £SnG=f+r and fs=£. This means £p = (Ss)p = Cp=jmp. Therefore

fQ+^≫ = (^)(3 = (/^)Q=/H-/I. Since $P = (£Q)P is irreducible, f≪ is also irreducible

and ^Q = fi or /I. However R(^Q) = R, which contradicts the assumption R(f.t)―C.

Hence (SnQ)/ATl<*>^<x2>. Since ＼<x):(SnQ)IK[)<.x>＼^＼S:(SnQ)＼^＼P:Q＼=2, we

have (SnQ)/#n<a;> = <#>. We recall that (Sf)Q)/K is abelian, and we conclude

that (SnQ)/A"=<a?>. Thus (Sr＼Q)/K is a cyclic subgroup of S//T of index 2. Jn

the case where % is of the second kind SjK is a generalized quaternion group. We

yu＼.SIK=(x,y＼x*n = l,y* = x*i-＼y-xxy=x-ly). Since ＼<x):(SnQ)IKnix}＼^2, (SnQ)IK

n<.r>^<^2> or <x>. When (SflQ)//in<^> = <.r2>, we mayass time ye(Sf]Q)IK, and

(Sf]Q)IK=(x2, y}. Since (x2, y')is abelian, we have ≫= 2 and (SnQ)/A"=<j/>, which

implies that (Sf]Q)IK is a cyclic subgroup of S//T of index 2. Thus, in any case,

(SoQ)IK is a cyclic subgroup of S/7i of index 2.

Next we assume that KczTnQ and (SnQ)IK is not abelian or that /fctTnQ.

First we show that |T:TnQ|=2. Suppose that T=Tf)Q- Since K<zT=TnQ,
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(SnQ)IK is not abelian. Since S=>SnQ=>r and T/K is cyclic, we obtain that

S=Sf]Q. Thus Ci>= (CQ)p=/Jp, which implies Ce=J≪ or /I,because C,Qis irreducible.

But R{C,Q)~R, which contradicts the assumption R(fi) = C. Therefore it holds that

＼T:TnQ＼=-2. We put t)=XTnQ. Since |T1:3nnQ|=2, we may assume gcT. Let

{xi = l, ･･-,#≪} be a set of representatives of P/T. Since ＼P:T＼= ＼Q: Tf)Q＼, we may

n n
assume xtzQ, For hzQ we can easily see that Xp(h) ―J]Xxk{h) ―J]y]xKh) = y]Q{h).

Therefore (^)q = (xp)q = vq, and so IPh1 2 (^+/)((i7A)2)=|iJ|-1 E fdghf). By

Lemma 2,5 ＼P＼-'2 (/;+ /)((g^)2)=|JP|-1(5-r). Further using Lemma 3.1 we have

|P|-1(5-r) = l (respectively, -1).

Conversely we assume that the conditions (i), (ii),(iii)-(a) are satisfied. Let $

be a faithful linear character of (SnQ)IK and let r be a faithful linear character

of A. Since fs is a faithful irreducible character of S/K, there exists a faithful

irreducible character X of T/iT such that Xs―$s. By Lemma 1.3 the condition (ii)

means that Xp is an irreducible character. We denote f"3 by ft. Then //is irre-

ducible, because (f≪)p=fp = ^p is irreducible. Therefore fiv is irreducible, and

fXTi=fj.of―(f>.r)ameans (jit)h is irreducible. We will prove that ($z)SA is an irreducible

character of SA of the first kind (respectively, the second kind). If it is true,

(fr)//= ((fr)e'i)//―{fjtv)H means that (//r)ffis of the firstkind (respectively, the second

kind). In fact, under the condition i2((£t)S4)=J2(((fr)^)fl) = J2 it is easily seen that

mR({&)SA) = mR{{^T)SA)u), Since ＼S:Sf]Q＼=2, we may assume that geS. Since

(SnQ)/K is a cyclic subgroup of SjK of index 2 and SjK is a dihedral group

(respectively, a generalized quaternion group), R(£)= C and £"= 1. Therefore (fr)ff

=fr, which implies that i2((fr)'s'4)=JK and (fr)54 is irreducible. Since S/K is a

dihedral group (respectively, a generalized quaternion group), Is is an irreducible

character of S of the first kind (respectively, the second kind). Hence by Lemma

2.3 we have

IS I"1 £ (£+£')((0A)2)= l (respectively, -1).
h£SnQ

Further by Lemma 3.1 we conclude that (£t)sa is of the first kind (respectively,

the second kind). So under the assumption that KaTnQ and (Sf]Q)IK is abelian

the proof of the proposition is completed.

Finally we assume that the conditions (i),(ii),(iii)-(b) are satisfied, and we

will prove that H has an irreducible character of the first kind (respectively, the

second kind). Let X be a faithful linear character of TjK. We denote ATr)Q by -q.

Then ;? is a faithful linear character of (TnQ)l(Tf]Qf]K). By Lemma 1.3 the

condition (ii) means that Ap is an irreducible character of P. Since ＼P＼T＼= ＼Q: Tf]Q＼,

we have (Zp)q = ?jq, and by Lemma 2.5 we obtain that |P|-I(5-r) = |P|"1 HvQ(ighf).

h£Q
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By Theorem 2.2 lv is of the firstkind (respectively,the second kind). Therefore

R(VQ)=R. On the other hand

＼P＼AZnh'z)=＼Pll *LrfW)
hSP ftP

= ＼P＼-'ZvQ(h*) + ＼P＼-1ZyQ((otin
h£Q h£Q

Using (1.1),we have {PI"1 S yQ(h2)=0, which implies that rftis of the third kind
ft<2

if 7jQis irreducible. But it contradicts R(r]Q)= R. Now we may decompose rf-into

a sum of irreducible characters //,;of Q, y;Q= /<i+/i2+ ---+/i≪.Since {^q'^yf, we

have ((XP)Q,fH)i=0, which implies Up, fttp)^O. Thus Xp(1)^imp{1), because lp is

irreducible. Hence 2F(l) = 2^≪(l)= ^(l) = /≪1p(l)+ i≪3p(l)+ -+^p(l)^≪p(l). There-

fore *= 2 and (np=Xp (2= 1,2). We put ^1=^. Then ft°= fh and ^ = /j+//. Now

we have

＼P＼~lZ(l*+l*gX(oh)i)= l (respectively, -1)

and by Lemma 2.3 we have p. is of the third kind and fig~fi.Since ((^r)//)^=

ftr+ fIf,(jiT)His irreducible and R((fir)H)= R. Finally by Lemma 3.1 we have that

(fir)His of the firstkind (respectively,the second kind).

From Propositions 3.2,3.3 and 3.4 we get

Theorem 3.5. Let II be an R-elementary group at 2. Let P be a Sylow 2-

subgroup of II and A ―(a} a cyclicnormal 2''-groupsuch that PA ―H. We denote

Cp{a) by Q. We assume that Ai=l and P-i^Q. Then there exists an irreducible

character j of II of the first kind {respectively,the second kind) satisfying Ker j f]

A = l if and only if one of the conditions (A), (B) and (C) in Proposition 3.2,3.3 or

3.4 is satisfied.
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