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PROXIMITY ON FUNCTION SPACES

By
Fu Pei-Ren

Introduction

It has been 30 years since V. A. Efremovi¢ [1] introduced the concept of
proximity in 1951. A lot of works have been done and the theory is being
perfected. But it is a pity that there is no paper on various proximity on
function space.

In this paper we first consider the proximity characterizing the point-wise
convergence on function space. Then we investigate the proximity characteriz-
ing the uniform convergence on a function space and a condition under which
the proximity becomes joint proximally continuous. Last, we study the proximity
characterizing the uniform convergence of the function space on a family of
subsets and its related properties.

1. Proximity of point-wise convergence

For the definitions and notations used in this section are see to [2]. Let X
be a set, (Y, 9) be a proximity space, and FCY*. Let

AX)={f(x): fe A} for each ACF, xX.
DEFINITION 1.1. The relative proximity XXJ$|F with respect to F is called
ZE.

proximity of point-wise convergence on F, denote by p-proximity on F or IX|F for
short, where 2<XJ, is the product proximity of the family of proximity spaces
- T

(Y, 92): x€X}, and Y,=Y, 9,=d, for each x X.
By Definition 1.1, we have the following:

PROPOSITION 1.1. Let A, BCF. Then AJX|FBiff for any finite decomposi-
tion of A and B:

A: O Ai’ B= O Bj,
i=1 =1
there are i and j such that A x)9Bj(x) for each x<X.

PROPOSITION 1.2. Suppose that the evaluation map e,: F—Y is defined by
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er([)=f(x)(fEF) for each x&€X, then proximity IX|F on F is the coarsest pro-
ximity on F, which makes every evaluation map e, proximally continuous for each
x€ X, in other words, 9% | F=Sup{e;'(9): x= X}.

It is known that the topology of a product proximity space is equal to the
product of the topology of each coordinate space, and the product topology is
the topology of point-wise convergence. Besides, the convergence with respect
to the proximity is the convergence with of the topology induced by the same
proximity. Thus we have:

THEOREM 1.1. The net {f.: a=D}I*|F-converges to f<F in a proximity
space (F, 9%\ F) iff the net {f.(x): a=D} I-converges to f(x)in Y for each x=X.

It is known that a proximity space (Y, ) is compact iff the topological
space (Y, 94) induced by it is compact. By Tychonoff’s Theorem, we have the
following immediately.

THEOREM 1.2. Let (Y, 9) be a compact proximity space, then (F, 9%|F)isa
compact proximity space iff
(@) fEYX\F implies {f}IXF.

If (Y, 49) is separated, then the condition (a) is also a necessary condition
under which (F, 9% |F) is a compact proximity space.

Proor. The fact that (Y, ) is a compact proximity space implies that
(Y, 94) is a compact topological space. By Tychonoff’s Theorem (Y¥, 9¥)isa
compact topological space. The condition (a) shows that F is a T sx-closed set
of V¥, and 9¥=qg,x, thus (F, 7%|F) is a compact topological space and so is
(F, 94x,p), which means that (F, 9%|F) is a compact proximity space.

If (Y, 9) is separated, then (Y¥, 4%) is separated, and hence the topology
Tsx is T, Thus the condition (a) is the necessary condition under which
(F, 9% |F) is a compact space.

The condition under which (Y, ) is a compact space may be weakened.

THEOREM 1.3. Let (Y, 9) be a proximity space, then the sufficient condition
under which (F, 9%|F) is a compact proximity space is

(@) feY*\F implies {f}IXF.

(b) F(x) has a compact closure for each x<X in the topology T4 in Y.

Furthermore if (Y, J9) is separated, then (a) and (b) are necessary conditions
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under which (F, 9¥|F) is a compact proximity space.

PROOF. Suppose that g is a 4%|F-compressed filter base in F. Then e.(x)
is a Jd-compressed filter base in ¥ for each x&X. By (b), F(x)~ (the closure of
the set F(x) in the T4 in Y) is 9 s-compact, and hence J-compact. Thus e,(x)
is a J-compressed filter base in F(x)~, so there is a y&F(x)~ such that e.(r) J-
converges to v denoted by f(x). Thus we get an f& Y¥, and p point-wisely
converges to f, and hence ¢ J¥-converges to f. By condition (a), feF, and
hence ¢ J%|F-converges to f<g, thatis (F, 9¥|F)is a compact proximity space.

For each x<X, since (F, 9¥|F) is a compact proximity space, F(x)=e,(F)
is o 4-compact. Furthermore, since (Y, J) is separated, (Y, 94) is a T.-space.
Thus F(x) is g g-closed, that is F(x)"=F(x) is T s-compact.

2. Joint proximal continuity

DeFINITION 2.1. Let (X, @) and (Y, J) be proximity spaces, FCY¥*, and R
be a proximity on F. If ® makes a function P: FxX X—Y, defined by P(f, x)
=f(x), (R X P, J)-proximally continuous, then we call R a joint proximally con-
tinuous proximity on F, denoted by J.P.C.-proximity for short. And we denote
the family of all (®, 4)-proximally continuous functions by C(X, Y).

PROPOSITION 2.1. If there is a J. P. C.-proximity on F, then FCC(X, Y).

ProOF. Suppose that @ is a J.P.C.-proximity on F. For each feF, ACX,

BCc X if A®B, then
(fXA)RXP(fXB) (2.1)

In fact, for any finite decomposition of (f X A) and (fXB)
f’xA:_\njlfoi fXB-:C/lfxBj,
i= j=
accordingly, we have a finite decomposition of A4, B
A=\JA, B=\JB,.
i=1 j=1
Thus there are 7 and j such that A,#B; Furthermore we have
p{f X Ad=1{f}, P XBp={f},
and hence p,(f X A)Rp(f X By. Note that
polf X A=A, P f X By)=hB;,

thus p.(f X A)Pps(f X B;). (p, and p, represent the projections on F and on X
respectively). And by the definition of product proximity (2.1) holds.
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Furthermore we have P(fxA)=f(A), P(fxB)=f(B). With the fact that
the map Pis (R XP, J)-proximally continuous, it follows that f(A)4f(B), which
means, [ is a (£, 9)-proximally continuous map, feC(X, Y).

For further discussion of joint proximal continuity, we first obtain a sufficient
and necessary condition of proximal continuity, then give the concept of the
family of equiproximally continuous functions (The terms and notations used in
the following can be seen in [3]).

THEOREM 2.1. Suppose that (X, @) and (Y, 9) are proximity spaces. f[:X—
Y. Then f is (P, 9)-proximally continuous iff for each J-uniform cover A=
{Ag: i=1,2, -, n} on Y, there is a P-uniform cover B=1{B;: j=1, 2, -+, m}
on X such that for each Bj, there is an A; satisfying f(B;)CA..

PrROOF. Suppose that ¢V on X and &4 on Y stand for totally bounded
uniformities which are compatible with ¢ and J4, respectively.
Necessity : Suppose that A'={A;: k=1, 2, ---, I} is a star-refinement J-

L
uniform cover of A, then V’:kUA,’eXA,’eeCVJ. The fact that f is (2, 9)-
=1

proximally continuous implies that f is (Vg, &V 4)-uniformly continuous. Then
there is a @-uniform cover #={B;: j=1, 2, ---, m} on X. Suppose that f(x,)
€ A;, for a fixed x,€B;, then (f(x,), f(x))€V’ for each x&B;. Thus there is
an index % such that (f(x,), f(x))e Aix A, which means f(x,)& Af, X A, and
hence f(x)=(Ap)* and A’ is a star-refienment of A, and there is an A;=J such
that (A;)*CA;, thus f(B,)CA,.

Sufficiency : Suppose C, DC X and C®D. By the hypothesis, for any J-uniform
cover A={A;:1=1, 2, ---, n}, on Y, there is a ®-uniform cover 8={B;:j=1, 2, ---,
m} on X and there is an A; such that f(B;)CA; for each B;. Since C®D, thereisa
Bjsuch that CN\B;# @ and DN\B;+ @. Therefore, f(C)NA;# @ and f(D)NA;#D.
This means f(C)J4f(D), and hence f is a (P, J)-proximally continuous map.

DEFINITION 2.2. Suppose that (X, @) and (Y, ) are proximity spaces, FC Y?¥.
If for each J-uniform cover A={A;: i=1, 2, ---, n} on Y, there is a P-uniform
cover $={B;: j=1, 2, ---, m} on X such that for each feF, B3 there is
an A;=d such that f(B;)C A,, then F is called a family of (P, 9)-equiproximally
continuous functions.

We obtain the following from Theorem 2.1 and Definition 2.2.

PROPOSITION 2.2. If F is a family of (@, 9)-equiproximally continuous func-
tions, then FCC(X, Y).
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3. Uniformly convergent proximity
Let X be a set, (Y, <) be a uniform space, and FCY*. For Ve, let
WWV)={(f, g EFXF: (f(x), glx))eV, for each x=X}

We have known that the uniformity with {W(V): Ve’} as a base is
called the uniformity of uniform convergence, denoted by u. c.-uniformity on F.

DerFINITION 3.1. The proximity on F generated by a u.c.-uniformity on F
is called the uniformly convergent proximity, denoted by u.c.-proximity, or is
called u. c.-proximity induced by <y.

PROPOSITION 3.1. Suppose that ® is a u.c.-proximity on F, ACF and BC
F, then ARB iff for each Ve, there are f€ A and g& B such that (f(x), g(x))
eV for each x€X.

THEOREM 3.1. Let R be a u.c.-proximity on F, then the net {f,:acD} in
F®R-converges to fEF iff the net <V-uniformly converges to f on X.

PrOOF. Suppose GCF and {f} RF\G. Thus there is a V&< such that
for each g F\G there is an x& X such that

(f(x), glxNe&eV 3.1

We choose a symmetric element U<y such that U-UC V. Since the net
{fo: ae D} uniformly converges to f on X, there is an a,€D such that

(f(x), f.lx)eU for each a=a, x=X. (3.2)

If {fo: aza,, ac D} RF\G, then there is an a, aza, and a=D, and a
g F\G, such that

(faolx), glx))€U  for each x&X. (3.3)

By (3.2) and (3.3), (f(x), glx))eU-UCV for any x<=X, which contradicts
(3.1), hence {f.: azZa, acD}RF\G. Which means the net {f,: a€D}R-
converges to f.

Let G=W(V)[f] for each symmetric element V&<, then {f} RF\G. Other-
wise, there must be a g& G such that (f(x), gx))eV for each x= X, that means
geW(V)[f], a desired contradiction.

Since the net {f,: a=sD} R-converges to f, there is an a,=D such that

{fa: a=ay, ac D} RF\G.
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Hence f,=G for each a=a, which implies (f(x), f.(x))eV for each x€X.
This means {f.: a=D} <V-uniformly converges to an f on X.

THEOREM 3.2. Let (X, ®) and (Y, 9) be proximity spaces and F be a family
of (@, 9)-equiproximally continuous functions. Then the u.c.-proximity R on F
induced by Vg4, a totally bounded umiformity and is compaiible with 9, is J. P. C.-

proximity.

Proor. Take arbitrary CCFx X, DCFx X, such that CRx®D, and a 4-
uniform cover A={A4;: i=1,2, ---, n} on Y, we have a J-uniform cover A'=
{A}: i=1,2, ---,n’} on Y, which is a star-refinement of 4. By equicontinuity
of F, there is a ®-uniform cover 8={B;: j=1, 2, ---, m} on X such that for
each f€F, B, @, there is an AjeJ’ such that f(B,)CA;. We take another

@-uniform cover @’ on X, as a star-refinement of 4.
Let Fy={feF: f(BHCAi,
Ciy=CN\(Fy; x BY),
Di;=DN\(F;;X BY).

We obtain finite decompositions of C and D: C=\UC;;, D=\UD;;. There are
(Z, 7) and (¢/, j), such that py(C;;))Rpy(Dyi ) and po(Ci))Ppo(Dy 5). Hence there
are fep,(C;;) and gepy(D;r ). For each x=X there is an e such that (f(x),
glx)e A, x A., and there is a Bj, such that p,(Cy;) X po(Ds j)NBj X Bj #@. Also,
PCi)TB), po(Dy ) B}, and hence BjXBjNBj X Bj,+?.

And becaus of fep,(C;;), there is an x= B} such that (f, x)eC;;.  Similarly
g€p(Dy ), there is an x’<Bj such that (g, x)D; », and hence x, x’€(Bj))*C
B;.  Thus (f(x), f(x")eAiX Al (gx), glx)e Aix Ay and (f(x), glx))€ ALX A,
and hence (f(x), g(x"))E(AD*X(AD*. Note that (A,)*C A;. Which means both
f(x) and g(x’) belong to A;. We have known that (f, x)eC, (g, x'Y€D, so
P(ONA#@ and P(D)NA;# @, which implies that P(C)4P(D).

THEOREM 3.3. Let (X, @) be a proximity space, (Y, V) be a uniform space,
Y¥ possess u. c.-proximity R induced by &V and I be a proximity on Y generated
by <v. If a net of (P, do)-proximally continuous maps {f.: a€D} R-converges
to f in YX, then f is a (9, Jo)-proximally continuous map.

PROOF. If f is not a (&, Jo)-proximally continuous map, there is ACKX,
BC X, A®B, but f(A)Jwf(B). Thus there is a symmetric element Ve such
that
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(f(x), fyn«EV for each x<A, yeB (3.4)

Choose a symmetric element U</ such that U-U-UCV, since the net
{fa: a=D} R-converges to f there is an a,=D such that

(f(x), falx)EU for each a=a,, x=X. 3.5)

From the (@, Jo)-proximal continuity of f,, we know f,(A)Iaf«(B), imply-
ing there are a= A and b= B such that

(fala), falb))EU. (3.6)
By (3.5), we obtain
(f(a@), fala)EU. 3.7
(f), folb)EU. (3.8)
By (3.6), (3.7) and (3.8), we have
(f(a), fYeU-U-UCV. (3.9

where a€ A, b= B, which contradicts (3.4).

COROLLARY. Under the hypothesis of the theorem, the family C(X,Y) of
all (L, Iy)-proximally continuous functions is a I g-closed set in YZX.

4. Uniformly convergent proximity on a family of subsets

Let X be a set, (Y, V) be a uniform space, FCY¥ and X be a family of
subsets of X closed for finite union, in other words, if K= X, K,€ X, then
K\ UK, KA.

THEOREM 4.1. Suppose that S is a binary relation on the family of all
subsets of F. If for each ACF, BCF, ASB iff for each Ve, K€ X, there
are feA and g€B such that (f(x), gx))€V for each x=K, then S is a proxi-
mity on F.

PROOF. It is obvious that & satisfies (P,)-(P,)(cf. [2]). If ASC, and BSC,
then there are V,e< and K,= X such that for each f€ 4, geC, there is an
x; €K, such that (f(xy), gx))&V, and there are V,ecv and K,= X such that
for each ¢ B, g=C, there is an x,€ K, such that (p(x2), glx))E V.

Thus there are V=V ,N\V,eV and K=K,\UK,= X such that there is an
x€ K\UK, satisfying (¢(x), g(x))e& V for each ¢= AUB, g=C. So it satisfies (FP;).

If ASB, then there are Vecy and K< X, for each f€ A, g B, there is an
xe K such that
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(f(x), gxNeV. 4.1)

Take a symmetric element Uy, such that U-UCV. Let
P={feF: there is a g€ A, (f(x), glx))eU for each x€K},
Q={f<F: there is a g B, (f(x), gx))eU for each xc K},

If PNQ=+@, then there is fePN\Q, g4, g’€B such that (f(x), gkx)eU
and (f(x), g’(x))e U for each x=K, thus (g(x), g’(x))eV for each x€K. It is
contrary to (4.1). So PNQR=9Q.

In addition, there are Us<V and K< X such that there must be an x&X
such that (g(x), f(x))eU for each geA, feF\P. Hence ASF\P. Similarly,
B3F\Q. Which means that (P;) is satisfied and S is a proximity on F.

DEFINITION 4.1. The proximity on F defined by Theorem 4.1 is called the
uniformly convergent proximity on X induced by <V, denoted by (X) u.c.-proximity.

In view of Definition 4.1, we obtain the following proposition immediately :

PROPOSITION 4.1. If the (X)) u. c.-proximity on F induced by <V is S, and
(Ks) u. c.-proximity is S,, then:

(a) If :,chch, then $§1<S,
(b) If there is a K,=IX, such that KODKEJ}/ K, then 8,<S,,
Ky

(€) . c.-proximity is more refined than any other (X) u.c.-proximity,
(d) If K, consists of all finite subsets of X, then (K,) u.c.-proximity is the
coarsest one of all (X) u. c.-proximity satisfying KUJ( K=X. (K, u. c.-proximity
&

is called a point-wise convergent u. c.-proximity).

THEOREM 4.2. Suppose that the (X) u. c.-proximity on F induced by <V is
S, then a net {fq.: asD} in F S-converges to f&F iff the net V-uniformly
converges to f on K for each Ke X.

The concept of joint proximally continuous proximity may be generalized to
the family X of subsets of X.

DEFINITION 4.2. Let (X, @) and (Y, J) be proximity spaces, FCY* and X
be a family of subsets of X which is closed for finite join operation. If there
is a proximity @R such that P: FxK—Y (P(f, x)=f(x)) is a (R X P|K, J)-proxi-
mally continuous map for each K& X, then R is called a jornt proximally con-
tinuous proximity on X on F, denoted by (X) J. P.C.-proximity for short.
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Theorem 3.2 can be generalized as follows:

THEOREM 4.3. Let (X, @) and (Y, 9) be proximity spaces, F be a family of
(P, S)-equiproximally continous functions and X be a family of subsets which is
closed for finite join operation. Then the (X) w. c.-proximity R on F induced by
Wy is a (K) J. P. C.-proximity.

The proofs of above two theorems are omitted.
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