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GENERATORS AND RELATIONS FOR COMPACT
LIE ALGEBRAS

By

S. BERMAN®

1. Introduction.

The main purpose of this paper is to provide a system of generators and
relations for each of the nine types of compact simple Lie algebras. Indeed, we
are able to give a presentation of each such algebra which depends only on the
finite Cartan matrix (A;;) which is attached to the complexification of our com-
pact algebra. One of the main results that lies behind our work is the Theorem
of Serre which gives a presentation of the simple Lie algebras over the complex
field attached to (Aj;)).

Although our main interest is with the compact Lie algebras, we work in
the generality of Kac-Moody Lie algebras (see [1], [4], [7], [8]). In this setting
we will be able to provide a generalization of the compact simple Lie algebras.
We realize these algebras as certain forms of the Kac-Moody algebra. More
specifically, if (A4;;) is any indecomposable Cartan matrix which is non-Euclidean
we let ¢ (resp. .L¢) be the reduced (resp. standard) Kac-Moody Lie algebra
over the complex field C, (see Section 1 for more details). We define a real
form L (resp. L¢) of L¢ (resp. L¢), and show that £, is the only simple
homomorphic image of ;. We then give generators and relations for L. The
question of when [L,=._C, is equivalent to the question of when L=, and is
a major unsolved question about Kac-Moody algebras. However, thanks to Serre’s
Theorem, we know L¢=_TL¢, and hence .Lo=TL¢, when (A;;) is of finite type.
This yields a presentation of L in this case.

The content of the paper is as follows. In Section 1 we recall the notation
and a few facts about Kac-Moody algebras. In Section 2, the final section, we
begin by making a study of the algebras £ and L,. We then go on to obtain
a presentation of ., and then use this in dealing with the compact simple Lie
algebras. We think it is interesting that analogues of the compact Lie algebras
exist in the Kac-Moody setting. Moreover, just as the compact algebras are
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important in studying all real forms of the simple Lie algebras over C (e.g.
Cartan and Iwasawa decompositions), no doubt the generalizations studied here
will play a similar role. Throughout, we let R denote the real field and C the

complex field.

Section 1: We use similar notation to [1] and [2] where the reader may
find all the necessary facts. Also, one may consult [4], [7], [8]. Thus, (A4;;)
will denote an [X! indecomposable Cartan matrix which is not Euclidean. I
denotes the universal Kac-Moody algebra of type (A.;) over R, so that T is
generated by 3/ elements e;, hj, f; 1=7=/, subject to the relations

(1) [Les hj]:Ajkek,

(it) [fer hid=—AuSe

(iii) L[hj hel=0,

@iv) [ek,fj:lzakjhk; 1=j, k<L

The reduced Kac-Moody algebra is defined to be L/® where ® is the
radical of L. We let this be denoted by .£ and recall that ® is the unique
maximal ideal of . The standard Kac-Moody algebra is denoted £ and is £
factored by the ideal &, where we recall that £ is generated by the elements
efad e,) kit fiad fp)"**i*Y, 1=<j+ k<[, and the elements {heﬁ[a,»(h):O,
1< =<!}. Here, as usual, H is the linear span of hy, --- h, in L. V; denotes the
free abelian group with basis a4, -, a; and V; acts on A by ajhy)=A;; for
1=/, k=(. I denotes the roots of L and [, will denote the roots of £ and T,
(they have the same roots). Thus, we have the decomposition L=HP > L,;

ael"z

similarly for £ and L. As usual, n denotes the automorphism of £ (or [ or
L) which satisfies n(e;)=f;, n(f;)=e;, 1=j=</. Here, we are of course using the
convention of letting e;, hj, f;, 1=j=/, denote the image in .£ or [ of the
corresponding elements of 7. Note that . has a unique maximal ideal which
is the kernel of the natural map of [ onto .L.

If S denotes any one of the algebras £, L, I we let S; denote the com-
plexification of S. Thus, S¢=C®zrS, and we let z be the map —®n of S,
where the “over bar” denotes complex conjugation. Thus, z is a semi-linear
automorphism of S¢ of period 2. We define S; to be the fixed points of S¢
under r. Clearly S; is real form of S,. We let S,={s&S|n(s)=s} and S_.=
{s&S|n(s)=—s}. Then we have the decompositions

(L.1) S=S.PS., Se=S:PiS..

Of course, £, is our generalization of the simple compact Lie algebras.
Indeed, we will see in the next section that L, is a finite dimensional simple
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compact Lie algebra when (A;;) is of finite type. For the present we remark,
since L¢ is simple, and L is a real form of ¢, that L is simple. Moreover,
it is clear, and follows from the corresponding fact for L¢ (or L¢), that L (or
T.) has a unique maximal ideal which is the kernel of the obvious natural
homomorphism onto L.

Section 2: As in the previous section we let S denote any one of the
algebras ., T, or I. Letting Hs denote the image of H in S we have the
decomposition S=HsP Z‘_,FSC,, where I is the root system of S. Let n,=dim S,,

and for a<=I'* we let x4, **, Xa,n, be @ basis of the space S, chosen from
among the elements [e;,, -+, ¢;,] where a;,+ - +a;,=a. It's worth noting that
the n.’s are known when S=.£ or S=_._, (see [3]). Thus, for example, Xa;17=€;
for 1< <0, Let x_n ;=n(x4, ;) for acl™, 1=j<n,, so that x_4, =, X-a,n, IS
a basis of S_,. Then we have

LEMMA 2.1. {xa jtx_ajlasl™, 1<j=<n,} is a basis of S..

Na
ProOOF. Let x=h-+ ZF}+(Zaa,]-xa,,-+ba,jx_a.j) be an element in S, where
= Jj=1

heHs. Then n(x)=x implies that £=0 and a,. j=b,,; for all acl™, 1<j<n,.
Thus, x is in the linear span of the set {x. ;jtx_q;lacsl*, 1<j<n,. The
rest is clear. O]

We now define some elements of interest to us. Let x;=e;+f; y;=ile;~f)),
and z;=ih; for 1=j=<!(. Clearly x;, y;, 2;€S¢ for 1=5=10

LEMMA 2.2. Sy is generated by the elements xi, -+, xi.

PrROOF. Let M be the subalgebra of S, generated by the elements x,, -+, x;.
By Lemma 2.1 it is enough to show that for all al™ and je {1, :--, n,} that
Xa j+X oM. We do this by induction on /(«), where [(a) is defined to be
>C;, when a=2X.C;a;; the case when /(a)=1 being clear because dim S,,=1 for
1<k=!, so that X,, 1+ %-a,1=x; for 1Sk=[l. Assume acl™* and [(@)=n+1
where n=1 and that if fel'* and {B)<n that x, ;+x_p;€EM for 1=j=n,.
Now, since l(a)=2 then for any j={l, -, n,} we may assume that there exists
some Bel™, ke{l, -, [} such that [(8)=n, and x. ;=[x e:], for some
te{l, -+, n.}. (This is because x.,;=[e;, -, e;,, ex] for some & and x.,,1=¢.)-
Thus, ta j+%-a =Xa jtn(xa )=0[xp 0, ex]+Lx g0 Frl

Next, note that xg ,+x_5,.€M and e,+f. €M, so that [xpc+x-per extSi]
=Xg ;X0 (%0 fx1+0x-5:, exJEM. But the element [xp, fe]+0x-5.00 €r]
is in S+N\(Sg-a,DS-cs-ap), and hence by Lemma 2.1 is an R-linear combination
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of the elements x; +x.,, for s€{l, .-, n,} and y=p—a,. Thus, by induction
[xg.0 f[xl+Lx_p¢ erlisin M. It now follows that x, ;+x_4 ;EM, as desired. []

LEMMA 2.3. The elements th;, 1 <j=<l, together with the elements i(Xo. p—X-n. 1)
for acl, ke {l, -+, n.} from a baszs of 1S.

ProOOF. It is enough to show that the elements h,; 1=<;=I/, together with
the elements Xa, 1—X-a.z for acl™, ke{l, -, n,, span S.. Let M be the
subspace spanned by these elements and note that hj; 1=j=!, x,r+X-as
Xap—X_ap, for acl™, k{1, -, n,} form a basis of S, so that S=S,PM.
Since we also have S=S.BS_ and MSS._, it follows that M=S_. O

PROPOSITION 2.4. S¢ is generated by the 3l elements x;, v;, z;, 1=7=I.

ProoF. 1/2[xj, zi]=1/2[e;+f;, ih;j1=(1/2)2e;—2f)=v;, 1=j=l. Thus, letting
M be the subalgebra of S; generated by x; z;, 1<j=[, we have that y,eM,
1<j<!. By Lemma 2.1 and Lemma 2.3 we know that S, has basis ih;, 1<j=</,
Kzt %ean), e s—X-ayr), for asl™ kell, -, ng}; hence it is enough to
show that these elements are in M. By Lemma 2.2 we have that (x, s+ X-a 1)
eM for aclt, E={l, -, n,}. It is clear that (HsS M. Next, let a<=l+,
ke {l, -+, no and choose he Hg such that a(h)+0, (this is possible since (A;;)
is not FEuclidean). Then we get theEM and x4, :+x-.:.SM so that
[Xa st X g thl=a(h)(i(Xa e—X-a, ) EM. It follows that (x4, ,—x-0 r)EM. ]

DEFINITION 2.5. Let j, k= {l, -, I}, j#k and let s, t=Z.

We define the integer CY;? as follows:
b =1, CP =0 if either s<0, t<0, or if t>>s. Otherwise C¥;? is defined

inductively by CHP=CZP,_+(s—1[Ar;+(s—2)JCEP,. Note that CIP=1 for
all s=0, and that CZP=0 if (—1)*#(—1)%

PROPOSITION 2.6. The elements x;, vi, z; for 1=j=! satisfy the following
relations:
Fo y=1/20x; 2], 152l
Foo [xs zel=Arsys 15), k=S,
Fs [yj ze]l=—Arix; 1=j, RS,
Fi [z, 2:]=0, 1=], k<,

Fs I:XJ'; xk]'WL"[yj’ yel=0, 1=j, k=,
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Fo [x5 y21+0xe y/]=—4052; 1=j, RE,

n

F.  efad ep)’+fad f1)"= 2 (—D"'Cihfixfad x)*,

t=0

for n=0, 1<), k<L, j#k,
Fs ejad ex)™ ' +filad fp)4= é(—l)""céﬁ‘fi.zmxj(ad X)),

for n=0, 1=j, k<L, j#E,

n

Fy ilejad e,)"—fiad f)M)= 2 (—D""”Céiz,kz’;yj(ad x)%,

t=0

for n=0, 1=, k=L, j+k,
Fio ilejad er)* " —fiad fp)*"*)= é}(—l)n_tcéjn'f)l,zrﬂyj(ad x)"*,

for n=0, 1=j, k<!, j#k.
In particular, these relations are a consequence of the definitions and the relations

(1)-(iv) of Section 1.

Proor. The relations F, through F, are easy to establish so we do F, and
F, together, by induction on n. In doing this we write C,,, for CZ,®. Also, we
will use the following well known formulas.

efad ep)(ad fr)=QCAr+tt—1)efad ex)t™* for t=1,
fj(ad fk)t<(1d ek)=(tAk,+t(t——l))f,(ad fﬁ)t—l for le.
When n=0, ¢;(ad e,)**+fad fp)*"=e;+f;=x; while

;‘6 (=1)"*Cyp, sex ad x4 =Co,0x;=x;,

so F, holds when n=0. By definition, [ej, e,]+L[f;, frl=Lx; x.] for j+k, so
Fs"holds when n=0. Also F, holds when n=1, since we have

ejfad ex)*+fad f2)?

=[ej(ad e,)+fad fo), extfe]l—Lfad fb), exl—[ead en), fi]
=xad xp)*—Ar;f;i—Arse;

=Cyaxad x,)"—Cyox;.

Next, assume that m=1 and that F, holds when n=m, and that F; holds when
n<m—1. We show F; holds when n=m. We have that
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e]<ad ek)2m+1+fj(ad fk)2m+1
=[ejad ex)™+fad fr)*™, e+l
—[ejad ex)’™, frl—[fad f£)*™, e:]

=L 3 (—D™ Comuxsad x)", 1]

—(2mAy+-2m2m—1)ead 2, ) —(2mA - 2mCm—1)f (ad f)*™

I
Mz

B~ Com uxad 5!

0
—(2mAk,-+2m(2m—1))?201(—1>m-1—tc2m_l,2t+1x,-<ad X)L
This equals
T;g: (=)™ tCom, oo —(@m A ;4+2m2m—D)—1)" " Comr 2041t x (ad xp)PHt

+Com,omxad xp)™*.

Now
Com, e +2m(Ag;+Q2m—1)Con-1,50-1= Coms1, 2041

and
(=)™t Com. se— (2m A j+2m2m—1)(—1)™ " *Com-1 2241
=(—=1)™ YCom, s +(@m A ;+2m2m—1)Com-1,2041)
=(—1)™ " YCom, 2t +2m(Ap;+2m—1)Com-1 2141)
=(=D"""Com+1,2t+1+

Thus, we have that

efad ey tffad fO = B (=D Comry snntad 1),

as desired.

Next, one lets m=1 and assumes F; holds when n=<m and that F, holds
when n<m and shows that F, holds when n=m-+1. This is similar to the
above and so is ommitted. In the same way F, and F,, can be shown to hold. []

DEFINITION 2.7. Let FL=F.r(X; Y, Z;]1<j=<l) be the free Lie algebra
over R generated by the 3[-symbols X, Y; Z;, 1< =l Recall that (A;;) is a
fixed [x! indecomposable Cartan matrix which is not of Euclidean type. Let J
denote the ideal of F£ generated by the following elements: (R;—Rjo)
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Ri: Y,;—1/2[X, Z;], 1=j=l,
R.: [X,, Z,]—AkY;, 155,k
Re: LY, Zd+ Ak X; 125, k=L
Ri: [Z;, Z,], 1=j, k<,

Ry: [X;, Xel+LY,, Yl 1=j, kZ,

Re: [X), Xpl+0[Xs, Y1440;:2Z;, 155, RZL

Next, let j, k{1, ---, !}, j#k. Let m=—A,;,+1. If m is even we put
n=m/2. Then

R;: ;0(—1)"“@%,%)(]-(&(1 X¢)¥, and
Ro: 3 (—D"'CHRY(ad Xo)™

If m is odd we put n:—m~2——1— Then

Re: 33 (D" CHB sniX(ad X+, and
Ri: 3 (=D"ChRaenYiad Xo¥H.

Finally, we let EC:%L— and let L¢ be the complexification of Ly Let
E,, F;, H;e L be defined by
E;=1/2(X;—1Y,), F;=1/2(X;+1iY}),
and
Hj:_iZj, 1é] /[.

1A

PROPOSITION 2.8. The algebras L, and L_g are isomorphic. In particular,
R,-Ryy provides a presentation of L. Moreover, L has a unique maximal ideal
and the corresponding simple factor is isomorphic to L.

PrRooOF. We first note that formulas (i)-(iv) of section 1 hold in L¢. Indeed,
R, implies that [H;, H,]=0 for 1=<j, k</. Now

[Es, H=1/20Xs—iY s, —iZ;]
=—1/2[ X, Z;1—1/2[Y,, Z;]
——i/2 A Ye+1/2 A X, (by R, and R)
=A;(1/2 X —1Y)=AnEs,
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as desired. Similarly, one finds that [F;, HJ=—A;,F; and that [E,, F,]=0;,H,.

By Proposition 2.6 we obtain a Lie algebra homomorphism ¢ from L, onto
the subalgebra of [ generated by the elements x;, vj, z;, 1=j=</; and by Pro-
position 2.4 this is the algebra ;. Thus, ¢ is a surjective homomorphism of
L, onto 7.

Since the relations (i)-(iv) of Section 1 hold in L, we get a Lie algebra
homomorphism ¥ from the universal Kac-Moody algebra T to L¢ such that
V(e)=E;, ¥(f))=F;, and ¥(h;)=H;, 1=j=<l. Now formulas F,-F,, hold in L¢
thanks to Proposition 2.6. Thus, since R,-R,, hold in [, we see that
Ejfad E,)4ri"'=0=Fjad F,) 4%+, It follows that ¥ induces a homomorphism
¥ of Lc to Le. Clearly, ¥(x)=X,, ¥(y)=Y, and ¥(z;)=Z; 1<j<l, so that
U(T,)=L. Finally, it is clear that ¢ ¥=idz, and ¥-¢=idz,, so that . and
L are isomorphic. As in Section 1 it is clear that Lc has a unique maximal
ideal with the corresponding simple factor being isomorphic to L. ]

Assume now that (A;;) is one of the 9 types of /X! indecomposable finite
Cartan matrices. Then by Serre’s Theorem _Lo=_T is the split simple Lie
algebra of type (A4;;) over C. Let (-, -) denote the Killing form £¢ and let » be
as in Section 1. As in [6 pg. 147-1497] a compact subalgebra C of ¢ has basis
ihj, 1=j=!l, eate o (ex—e.a); for acd, (the root system of £¢) and e, .0,
is chosen such that n(e,)=e_, and (e,, e_.)=—1, for all ac= 4.

We are going to show that x; y;€C, 1<7=[. As usual, A, denotes the
element in H satisfying a(h)=(ha, h) for all heH, acd. Then [e;, f;]=h; and
aih;)=2 imply that

-9 '
(ej; fj):GjTj), 1=;=],
since
2:(}1]': haj):([ej: fj]r haj):(ej) [fj» hai])
=—aj(ha)e; [)=(—a;, a;)e;, f;).
Let

zjz(ﬁ’z—“fl)”zek, 1=j=L

Then (2;¢;, 2;7;)=—1 so that, as part of our basis of C, we can take e,,jzljej,
e_ajzl,-fj. Then eaj+e_,,j:2,(e,«+fj)ec, hence x,-zl;‘(enjﬁ—e_aj)ec, and similar-
ly y;€C for 1=j=I/. It follows that £ SC. But (L¢)e=-Lc=C¢ so that L£,=C.
This completes the proof of the following result.
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THEOREM 2.9. Let (Ayy) be an X! indecomposable Cartan matrix of finite
type. Then the Lie algebra genevated by the 3! elements X;, Y, Z; 1=j=|,
satisfying the relations Ri~Ryo is the compact simple Lie algebra of type (Aj).

One consequence of this result is the following Corollary.

COROLLARY 2.10. Let (Ay;) be an (X! indecomposable Cartan matrix of finite
type. Then there is one and only one simple Lie algebra generated by 3| elements
X5 Y Z, 1=j7=I, satisfying the relations R,-R,. Moreover, this algebra is
compact.

PrOOF. The algebra I satisfies R;-R,, and has a unique simple factor.
This factor is compact. ]
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