GENERATORS AND RELATIONS FOR COMPACT LIE ALGEBRAS

By

S. Berman¹⁾

1. Introduction.

The main purpose of this paper is to provide a system of generators and relations for each of the nine types of compact simple Lie algebras. Indeed, we are able to give a presentation of each such algebra which depends only on the finite Cartan matrix (A_{ij}) which is attached to the complexification of our compact algebra. One of the main results that lies behind our work is the Theorem of Serre which gives a presentation of the simple Lie algebras over the complex field attached to (A_{ij}) .

Although our main interest is with the compact Lie algebras, we work in the generality of Kac-Moody Lie algebras (see [1], [4], [7], [8]). In this setting we will be able to provide a generalization of the compact simple Lie algebras. We realize these algebras as certain forms of the Kac-Moody algebra. More specifically, if (A_{ij}) is any indecomposable Cartan matrix which is non-Euclidean we let \mathcal{L}_c (resp. $\overline{\mathcal{L}}_c$) be the reduced (resp. standard) Kac-Moody Lie algebra over the complex field C, (see Section 1 for more details). We define a real form \mathcal{L}_c (resp. $\overline{\mathcal{L}}_c$) of \mathcal{L}_c (resp. $\overline{\mathcal{L}}_c$), and show that \mathcal{L}_c is the only simple homomorphic image of $\overline{\mathcal{L}}_c$. We then give generators and relations for $\overline{\mathcal{L}}_c$. The question of when $\overline{\mathcal{L}}_c = \mathcal{L}_c$ is equivalent to the question of when $\mathcal{L}_c = \overline{\mathcal{L}}_c$, and is a major unsolved question about Kac-Moody algebras. However, thanks to Serre's Theorem, we know $\mathcal{L}_c = \overline{\mathcal{L}}_c$, and hence $\mathcal{L}_c = \overline{\mathcal{L}}_c$, when (A_{ij}) is of finite type. This yields a presentation of \mathcal{L}_c in this case.

The content of the paper is as follows. In Section 1 we recall the notation and a few facts about Kac-Moody algebras. In Section 2, the final section, we begin by making a study of the algebras \mathcal{L}_c and $\bar{\mathcal{L}}_c$. We then go on to obtain a presentation of $\bar{\mathcal{L}}_c$, and then use this in dealing with the compact simple Lie algebras. We think it is interesting that analogues of the compact Lie algebras exist in the Kac-Moody setting. Moreover, just as the compact algebras are

¹⁾ This work was supported by a National Science and Engineering Research Council of Canada grant.

Received September 8, 1980. Revised December 8, 1980.

important in studying all real forms of the simple Lie algebras over C (e.g. Cartan and Iwasawa decompositions), no doubt the generalizations studied here will play a similar role. Throughout, we let R denote the real field and C the complex field.

Section 1: We use similar notation to [1] and [2] where the reader may find all the necessary facts. Also, one may consult [4], [7], [8]. Thus, (A_{ij}) will denote an $l \times l$ indecomposable Cartan matrix which is not Euclidean. $\tilde{\mathcal{I}}$ denotes the universal Kac-Moody algebra of type (A_{ij}) over \mathbf{R} , so that $\tilde{\mathcal{I}}$ is generated by 3l elements e_j , h_j , f_j , $1 \leq j \leq l$, subject to the relations

- (i) $[e_k, h_j] = A_{jk}e_k$,
- (ii) $[f_k, h_j] = -A_{jk}f_k$,
- (iii) $[h_j, h_k] = 0$,
- (iv) $[e_k, f_j] = \delta_{kj} h_k, 1 \leq j, k \leq l.$

The reduced Kac-Moody algebra is defined to be $\tilde{\mathcal{I}}/\mathfrak{R}$ where \mathfrak{R} is the radical of $\tilde{\mathcal{I}}$. We let this be denoted by \mathcal{L} and recall that \mathfrak{R} is the unique maximal ideal of $\tilde{\mathcal{I}}$. The standard Kac-Moody algebra is denoted $\bar{\mathcal{I}}$ and is $\tilde{\mathcal{I}}$ factored by the ideal \mathcal{I} , where we recall that \mathcal{I} is generated by the elements $e_j(ad e_k)^{-A_{kj}+1}$, $f_j(ad f_k)^{-A_{kj}+1}$, $1 \leq j \neq k \leq l$, and the elements $\{h \in \tilde{H} | \alpha_j(h) = 0, 1 \leq j \leq l\}$. Here, as usual, \tilde{H} is the linear span of $h_1, \cdots h_l$ in $\tilde{\mathcal{I}}$. V_Z denotes the free abelian group with basis $\alpha_1, \cdots, \alpha_l$ and V_Z acts on \tilde{H} by $\alpha_j(h_k) = A_{kj}$ for $1 \leq j$, $k \leq l$. Γ_1 denotes the roots of $\tilde{\mathcal{I}}$ and Γ_2 will denote the roots of \mathcal{L} and $\tilde{\mathcal{I}}$, (they have the same roots). Thus, we have the decomposition $\mathcal{L} = H \bigoplus \sum_{\alpha \in \Gamma_2} \mathcal{L}_{\alpha}$; similarly for $\tilde{\mathcal{I}}$ and $\tilde{\mathcal{I}}$. As usual, n denotes the automorphism of \mathcal{L} (or $\tilde{\mathcal{I}}$ or $\tilde{\mathcal{I}}$) which satisfies $n(e_j)=f_j$, $n(f_j)=e_j$, $1 \leq j \leq l$. Here, we are of course using the convention of letting e_j , h_j , f_j , $1 \leq j \leq l$, denote the image in \mathcal{L} or $\tilde{\mathcal{I}}$ of the corresponding elements of $\tilde{\mathcal{I}}$. Note that $\tilde{\mathcal{I}}$ has a unique maximal ideal which is the kernel of the natural map of $\tilde{\mathcal{I}}$ onto \mathcal{L} .

If S denotes any one of the algebras \mathcal{L} , $\overline{\mathcal{L}}$, $\widetilde{\mathcal{L}}$ we let S_c denote the complexification of S. Thus, $S_c = \mathbb{C} \bigotimes_{\mathbb{R}} S$, and we let τ be the map $-\bigotimes_n$ of S_c , where the "over bar" denotes complex conjugation. Thus, τ is a semi-linear automorphism of S_c of period 2. We define S_c to be the fixed points of S_c under τ . Clearly S_c is real form of S_c . We let $S_+ = \{s \in S \mid n(s) = s\}$ and $S_- = \{s \in S \mid n(s) = -s\}$. Then we have the decompositions

$$S=S_+\oplus S_-, \quad S_c=S_+\oplus iS_-.$$

Of course, \mathcal{L}_c is our generalization of the simple compact Lie algebras. Indeed, we will see in the next section that \mathcal{L}_c is a finite dimensional simple

compact Lie algebra when (A_{ij}) is of finite type. For the present we remark, since \mathcal{L}_c is simple, and \mathcal{L}_c is a real form of \mathcal{L}_c , that \mathcal{L}_c is simple. Moreover, it is clear, and follows from the corresponding fact for $\tilde{\mathcal{L}}_c$ (or $\tilde{\mathcal{L}}_c$), that $\bar{\mathcal{L}}_c$ (or $\tilde{\mathcal{L}}_c$) has a unique maximal ideal which is the kernel of the obvious natural homomorphism onto \mathcal{L}_c .

Section 2: As in the previous section we let S denote any one of the algebras \mathcal{L} , $\overline{\mathcal{I}}$, or $\widetilde{\mathcal{I}}$. Letting H_S denote the image of \widetilde{H} in S we have the decomposition $S=H_S\bigoplus_{\alpha\in\Gamma}S_{\alpha}$, where Γ is the root system of S. Let $n_{\alpha}=\dim S_{\alpha}$, and for $\alpha\in\Gamma^+$ we let $x_{\alpha,1}, \cdots, x_{\alpha,n_{\alpha}}$ be a basis of the space S_{α} chosen from among the elements $[e_{j_1}, \cdots, e_{j_{\ell}}]$ where $\alpha_{j_1}+\cdots+\alpha_{j_{\ell}}=\alpha$. It's worth noting that the n_{α} 's are known when $S=\mathcal{L}$ or $S=\widetilde{\mathcal{I}}$, (see [3]). Thus, for example, $x_{\alpha,j,1}=e_j$ for $1\leq j\leq l$. Let $x_{-\alpha,j}=n(x_{\alpha,j})$ for $\alpha\in\Gamma^+$, $1\leq j\leq n_{\alpha}$, so that $x_{-\alpha,1}, \cdots, x_{-\alpha,n_{\alpha}}$ is a basis of $S_{-\alpha}$. Then we have

LEMMA 2.1.
$$\{x_{\alpha,j}+x_{-\alpha,j} | \alpha \in \Gamma^+, 1 \leq j \leq n_{\alpha}\}$$
 is a basis of S_+ .

PROOF. Let $x=h+\sum_{\alpha\in\Gamma+}(\sum_{j=1}^{n\alpha}a_{\alpha,j}x_{\alpha,j}+b_{\alpha,j}x_{-\alpha,j})$ be an element in S_+ where $h\in H_S$. Then n(x)=x implies that h=0 and $a_{\alpha,j}=b_{\alpha,j}$ for all $\alpha\in\Gamma^+$, $1\leq j\leq n_\alpha$. Thus, x is in the linear span of the set $\{x_{\alpha,j}+x_{-\alpha,j} \mid \alpha\in\Gamma^+, 1\leq j\leq n_\alpha\}$. The rest is clear.

We now define some elements of interest to us. Let $x_j = e_j + f_j$, $y_j = i(e_j - f_j)$, and $z_j = ih_j$ for $1 \le j \le l$. Clearly x_j , y_j , $z_j \in S_c$ for $1 \le j \le l$.

LEMMA 2.2. S_+ is generated by the elements x_1, \dots, x_l .

PROOF. Let M be the subalgebra of S_+ generated by the elements x_1, \dots, x_l . By Lemma 2.1 it is enough to show that for all $\alpha \in \Gamma^+$ and $j \in \{1, \dots, n_a\}$ that $x_{\alpha,j}+x_{-\alpha,i} \in M$. We do this by induction on $l(\alpha)$, where $l(\alpha)$ is defined to be $\sum C_j$, when $\alpha = \sum C_j \alpha_j$; the case when $l(\alpha)=1$ being clear because dim $S_{\alpha_k}=1$ for $1 \leq k \leq l$, so that $x_{\alpha_k,1}+x_{-\alpha_k,1}=x_k$ for $1 \leq k \leq l$. Assume $\alpha \in \Gamma^+$ and $l(\alpha)=n+1$ where $n \geq 1$ and that if $\beta \in \Gamma^+$ and $l(\beta) \leq n$ that $x_{\alpha,j}+x_{-\beta,j} \in M$ for $1 \leq j \leq n_\beta$. Now, since $l(\alpha) \geq 2$ then for any $j \in \{1, \dots, n_a\}$ we may assume that there exists some $\beta \in \Gamma^+$, $k \in \{1, \dots, l\}$ such that $l(\beta)=n$, and $x_{\alpha,j}=[x_{\beta,t}, e_k]$, for some $t \in \{1, \dots, n_\alpha\}$. (This is because $x_{\alpha,j}=[e_{j_1}, \dots, e_{j_n}, e_k]$ for some k and $x_{\alpha_k,1}=e_k$). Thus, $x_{\alpha,j}+x_{-\alpha,j}=x_{\alpha,j}+n(x_{\alpha,j})=[x_{\beta,t}, e_k]+[x_{-\beta,t}, f_k]$.

Next, note that $x_{\beta,t}+x_{-\beta,t} \in M$ and $e_k+f_k \in M$, so that $[x_{\beta,t}+x_{-\beta,t}, e_k+f_k] = x_{\alpha,j}+x_{-\alpha,j}+[x_{\beta,t}, f_k]+[x_{-\beta,t}, e_k] \in M$. But the element $[x_{\beta,t}, f_k]+[x_{-\beta,t}, e_k]$ is in $S_{+} \cap (S_{\beta-\alpha_k} \oplus S_{-(\beta-\alpha_k)})$, and hence by Lemma 2.1 is an **R**-linear combination

S. Berman

of the elements $x_{\gamma,s}+x_{-\gamma,s}$ for $s \in \{1, \dots, n_{\gamma}\}$ and $\gamma = \beta - \alpha_k$. Thus, by induction $[x_{\beta,t}, f_k] + [x_{-\beta,t}, e_k]$ is in M. It now follows that $x_{\alpha,j} + x_{-\alpha,j} \in M$, as desired. \square

LEMMA 2.3. The elements ih_j , $1 \le j \le l$, together with the elements $i(x_{\alpha, k} - x_{-\alpha, k})$ for $\alpha \in \Gamma^+$, $k \in \{1, \dots, n_{\alpha}\}$ from a basis of iS.

PROOF. It is enough to show that the elements h_j , $1 \le j \le l$, together with the elements $x_{\alpha, k} - x_{-\alpha, k}$, for $\alpha \in \Gamma^+$, $k \in \{1, \dots, n_{\alpha}\}$, span S_- . Let M be the subspace spanned by these elements and note that h_j , $1 \le j \le l$, $x_{\alpha, k} + x_{-\alpha, k}$, $x_{\alpha, k} - x_{-\alpha, k}$, for $\alpha \in \Gamma^+$, $k \in \{1, \dots, n_{\alpha}\}$ form a basis of S, so that $S = S_+ \bigoplus M_-$ Since we also have $S = S_+ \oplus S_-$ and $M \subseteq S_-$, it follows that $M = S_-$.

PROPOSITION 2.4. S_c is generated by the 3l elements x_j , y_j , z_j , $1 \le j \le l$.

PROOF. $1/2[x_j, z_j]=1/2[e_j+f_j, ih_j]=(i/2)(2e_j-2f_j)=y_j, 1\leq j\leq l$. Thus, letting M be the subalgebra of S_C generated by $x_j, z_j, 1\leq j\leq l$, we have that $y_j\in M$, $1\leq j\leq l$. By Lemma 2.1 and Lemma 2.3 we know that S_C has basis $ih_j, 1\leq j\leq l$, $(x_{\alpha,k}+x_{-\alpha,k}), i(x_{\alpha,k}-x_{-\alpha,k}), \text{ for } \alpha\in\Gamma^+, k\in\{1,\cdots,n_a\}$; hence it is enough to show that these elements are in M. By Lemma 2.2 we have that $(x_{\alpha,k}+x_{-\alpha,k})$ $\in M$ for $\alpha\in\Gamma^+, k\in\{1,\cdots,n_a\}$. It is clear that $iH_S\subseteq M$. Next, let $\alpha\in I^+, k\in\{1,\cdots,n_a\}$ and choose $h\in H_S$ such that $\alpha(h)\neq 0$, (this is possible since (A_{ij}) is not Euclidean). Then we get $ih\in M$ and $x_{\alpha,k}+x_{-\alpha,k}\in M$ so that $[x_{\alpha,k}+x_{-\alpha,k},ih]=\alpha(h)(i(x_{\alpha,k}-x_{-\alpha,k}))\in M$. It follows that $i(x_{\alpha,k}-x_{-\alpha,k})\in M$. \Box

DEFINITION 2.5. Let $j, k \in \{1, \dots, l\}, j \neq k$ and let $s, t \in \mathbb{Z}$.

We define the integer $C_{s,t}^{(j,k)}$ as follows:

 $C_{0,0}^{(j,k)} = 1$, $C_{s,t}^{(j,k)} = 0$ if either s < 0, t < 0, or if t > s. Otherwise $C_{s,t}^{(j,k)}$ is defined inductively by $C_{s,t}^{(j,k)} = C_{s-1,t-1}^{(j,k)} + (s-1)[A_{kj} + (s-2)]C_{s-2,t}^{(j,k)}$. Note that $C_{s,s}^{(j,k)} = 1$ for all $s \ge 0$, and that $C_{s,t}^{(j,k)} = 0$ if $(-1)^s \neq (-1)^t$.

PROPOSITION 2.6. The elements x_j , y_i , z_j for $1 \le j \le l$ satisfy the following relations:

- $\mathbf{F}_1 \quad y_j = 1/2[x_j, z_j], \quad 1 \leq j \leq l,$
- $\mathbf{F}_2 \quad [x_j, z_k] = A_{kj} y_j, \quad 1 \leq j, \ k \leq l,$
- $\mathbf{F}_{\mathbf{3}} \quad [y_{j}, z_{k}] = -A_{kj} x_{j}, \quad 1 \leq j, \ k \leq l,$
- $F_4 \quad [z_j, z_k] = 0, \ 1 \leq j, \ k \leq l,$
- F_{5} [x_{j}, x_{k}]+[y_{j}, y_{k}]=0, $1 \le j, k \le l$,

Generators and relations for compact Lie algebras

$$\begin{split} F_{6} & [x_{j}, y_{k}] + [x_{k}, y_{j}] = -4\delta_{jk}z_{j}, \quad 1 \leq j, \ k \leq l, \\ F_{7} & e_{j}(ad \ e_{k})^{2n} + f_{j}(ad \ f_{k})^{2n} = \sum_{t=0}^{n} (-1)^{n-t} C_{2n,2t}^{(j,k)} x_{j}(ad \ x_{k})^{2t}, \\ & \text{for } n \geq 0, \ 1 \leq j, \ k \leq l, \ j \neq k, \\ F_{8} & e_{j}(ad \ e_{k})^{2n+1} + f_{j}(ad \ f_{k})^{2n+1} = \sum_{t=0}^{n} (-1)^{n-t} C_{2n+1,2t+1}^{(j,k)} x_{j}(ad \ x_{k})^{2t+1}, \\ & \text{for } n \geq 0, \ 1 \leq j, \ k \leq l, \ j \neq k, \\ F_{9} & i(e_{j}(ad \ e_{k})^{2n} - f_{j}(ad \ f_{k})^{2n}) = \sum_{t=0}^{n} (-1)^{n-t} C_{2n,2t}^{(j,k)} y_{j}(ad \ x_{k})^{2t}, \\ & \text{for } n \geq 0, \ 1 \leq j, \ k \leq l, \ j \neq k, \\ F_{10} & i(e_{j}(ad \ e_{k})^{2n+1} - f_{j}(ad \ f_{k})^{2n+1}) = \sum_{t=0}^{n} (-1)^{n-t} C_{2n+1,2t+1}^{(j,k)} y_{j}(ad \ x_{k})^{2t+1}, \\ & \text{for } n \geq 0, \ 1 \leq j, \ k \leq l, \ j \neq k. \end{split}$$

In particular, these relations are a consequence of the definitions and the relations (i)-(iv) of Section 1.

PROOF. The relations F_1 through F_6 are easy to establish so we do F_7 and F_8 together, by induction on *n*. In doing this we write $C_{s,t}$ for $C_{s,t}^{(j,k)}$. Also, we will use the following well known formulas.

$$e_{j}(ad \ e_{k})^{t}(ad \ f_{k}) = (tA_{kj} + t(t-1))e_{j}(ad \ e_{k})^{t-1} \text{ for } t \ge 1,$$

$$f_{j}(ad \ f_{k})^{t}(ad \ e_{k}) = (tA_{kj} + t(t-1))f_{j}(ad \ f_{k})^{t-1} \text{ for } t \ge 1.$$

When n=0, $e_j(ad e_k)^{2n}+f_j(ad f_k)^{2n}=e_j+f_j=x_j$ while

$$\sum_{t=0}^{n} (-1)^{n-t} C_{2n, 2t} x_j (ad x_k)^{2t} = C_{0, 0} x_j = x_j,$$

so F_{τ} holds when n=0. By definition, $[e_j, e_k]+[f_j, f_k]=[x_j, x_k]$ for $j \neq k$, so F_s holds when n=0. Also F_{τ} holds when n=1, since we have

$$e_{j}(ad \ e_{k})^{2} + f_{j}(ad \ f_{k})^{2}$$

$$= [e_{j}(ad \ e_{k}) + f_{j}(ad \ f_{k}), \ e_{k} + f_{k}] - [f_{j}(ad \ f_{k}), \ e_{k}] - [e_{j}(ad \ e_{k}), \ f_{k}]$$

$$= x_{j}(ad \ x_{k})^{2} - A_{kj}f_{j} - A_{kj}e_{j}$$

$$= C_{2,2}x_{j}(ad \ x_{k})^{2} - C_{2,0}x_{j}.$$

Next, assume that $m \ge 1$ and that F_{τ} holds when $n \le m$, and that F_s holds when $n \le m-1$. We show F_s holds when n=m. We have that

S. BERMAN

$$\begin{split} e_{j}(ad \ e_{k})^{2m+1} + f_{j}(ad \ f_{k})^{2m+1} \\ = & [e_{j}(ad \ e_{k})^{2m} + f_{j}(ad \ f_{k})^{2m}, \ e_{k} + f_{k}] \\ & - [e_{j}(ad \ e_{k})^{2m}, \ f_{k}] - [f_{j}(ad \ f_{k})^{2m}, \ e_{k}] \\ = & [\sum_{t=0}^{m} (-1)^{m-t} C_{2m, 2t} x_{j}(ad \ x_{k})^{2t}, \ x_{k}] \\ & - (2mA_{kj} + 2m(2m-1))e_{j}(ad \ e_{k})^{2m-1} - (2mA_{kj} + 2m(2m-1))f_{j}(ad \ f_{k})^{2m-1} \\ = & \sum_{t=0}^{m} (-1)^{m-t} C_{2m, 2t} x_{j}(ad \ x_{k})^{2t+1} \\ & - (2mA_{kj} + 2m(2m-1))\sum_{t=0}^{m-1} (-1)^{m-1-t} C_{2m-1, 2t+1} x_{j}(ad \ x_{k})^{2t+1}. \end{split}$$

This equals

$$\begin{split} &\sum_{t=0}^{m-1} \left\{ (-1)^{m-t} C_{2m,2t} - (2mA_{kj} + 2m(2m-1))(-1)^{m-1-t} C_{2m-1,2t+1} \right\} x_j (ad x_k)^{2t+1} \\ &+ C_{2m,2m} x_j (ad x_k)^{2m+1} \,. \end{split}$$

Now

$$C_{2m,2t} + 2m(A_{kj} + (2m-1))C_{2m-1,2t-1} = C_{2m+1,2t+1}$$

and

$$\begin{split} &(-1)^{m-t}C_{2m,2t} - (2mA_{kj} + 2m(2m-1))(-1)^{m-1-t}C_{2m-1,2t+1} \\ &= (-1)^{m-t}(C_{2m,2t} + (2mA_{kj} + 2m(2m-1))C_{2m-1,2t+1}) \\ &= (-1)^{m-t}(C_{2m,2t} + 2m(A_{kj} + (2m-1))C_{2m-1,2t+1}) \\ &= (-1)^{m-t}C_{2m+1,2t+1} \,. \end{split}$$

Thus, we have that

$$e_j(ad e_k)^{2m+1} + f_j(ad f_k)^{2m+1} = \sum_{t=0}^m (-1)^{m-t} C_{2m+1, 2t+1} x_j(ad x_k)^{2t+1},$$

as desired.

Next, one lets $m \ge 1$ and assumes F_8 holds when $n \le m$ and that F_7 holds when $n \le m$ and shows that F_7 holds when n=m+1. This is similar to the above and so is ommitted. In the same way F_9 and F_{10} can be shown to hold. \Box

DEFINITION 2.7. Let $F\mathcal{L}=F\mathcal{L}(X_j, Y_j, Z_j|1 \le j \le l)$ be the free Lie algebra over \mathbf{R} generated by the 3*l*-symbols $X_j, Y_j, Z_j, 1 \le j \le l$. Recall that (A_{ij}) is a fixed $l \times l$ indecomposable Cartan matrix which is not of Euclidean type. Let Jdenote the ideal of $F\mathcal{L}$ generated by the following elements: $(\mathbf{R}_1 - \mathbf{R}_{10})$

$$\begin{aligned} R_{1}: & Y_{j} - 1/2[X_{j}, Z_{j}], \ 1 \leq j \leq l, \\ R_{2}: & [X_{j}, Z_{k}] - A_{kj}Y_{j}, \ 1 \leq j, \ k \leq l, \\ R_{3}: & [Y_{j}, Z_{k}] + A_{kj}X_{j}, \ 1 \leq j, \ k \leq l, \\ R_{4}: & [Z_{j}, Z_{k}], \ 1 \leq j, \ k \leq l, \\ R_{5}: & [X_{j}, X_{k}] + [Y_{j}, Y_{k}], \ 1 \leq j, \ k \leq l, \\ R_{6}: & [X_{j}, X_{k}] + [X_{k}, Y_{j}] + 4\delta_{jk}Z_{j}, \ 1 \leq j, \ k \leq l. \\ \end{aligned}$$
Next, let $j, \ k \in \{1, \dots, l\}, \ j \neq k$. Let $m = -A_{kj} + 1$. If $m = -A_{kj} + 1$.

Next, let $j, k \in \{1, \dots, l\}, j \neq k$. Let $m = -A_{kj} + 1$. If m is even we put n = m/2. Then

$$\begin{aligned} & \mathbf{R}_{7}: \quad \sum_{t=0}^{n} (-1)^{n-t} C_{2n,2t}^{(j,k)} X_{j} (ad \ X_{k})^{2t}, \text{ and} \\ & \mathbf{R}_{9}: \quad \sum_{t=0}^{n} (-1)^{n-t} C_{2n,2t}^{(j,k)} Y_{j} (ad \ X_{k})^{2t}. \end{aligned}$$
If *m* is odd we put $n = \frac{m-1}{2}$. Then
 $\mathbf{R}_{8}: \quad \sum_{t=0}^{n} (-1)^{n-t} C_{2n+1,2t+1}^{(j,k)} X_{j} (ad \ X_{k})^{2t+1}, \text{ and} \end{aligned}$
 $\mathbf{R}_{10}: \quad \sum_{t=0}^{n} (-1)^{n-t} C_{2n+1,2t+1}^{(j,k)} Y_{j} (ad \ X_{k})^{2t+1}. \end{aligned}$

Finally, we let $\bar{L}_c = \frac{F\mathcal{L}}{J}$ and let \bar{L}_c be the complexification of \bar{L}_c . Let E_j , F_j , $H_j \in \bar{L}_c$ be defined by

 $E_j = 1/2(X_j - iY_j), \quad F_j = 1/2(X_j + iY_j),$

and

$$H_j = -iZ_j, \quad 1 \leq j \leq l.$$

PROPOSITION 2.8. The algebras $\bar{\mathcal{L}}_c$ and $\bar{\mathcal{L}}_c$ are isomorphic. In particular, R_1-R_{10} provides a presentation of $\bar{\mathcal{L}}_c$. Moreover, $\bar{\mathcal{L}}_c$ has a unique maximal ideal and the corresponding simple factor is isomorphic to \mathcal{L}_c .

PROOF. We first note that formulas (i)-(iv) of section 1 hold in \overline{L}_c . Indeed, R_4 implies that $[H_j, H_k]=0$ for $1 \leq j, k \leq l$. Now

$$\begin{split} [E_k, H_j] &= 1/2 [X_k - iY_k, -iZ_j] \\ &= -i/2 [X_k, Z_j] - 1/2 [Y_k, Z_j] \\ &= -i/2 A_{jk} Y_k + 1/2 A_{jk} X_k \text{ (by } \mathbb{R}_2 \text{ and } \mathbb{R}_3) \\ &= A_{jk} (1/2 (X_k - iY_k)) = A_{jk} E_k \text{,} \end{split}$$

as desired. Similarly, one finds that $[F_k, H_j] = -A_{jk}F_k$ and that $[E_j, F_k] = \delta_{jk}H_j$.

By Proposition 2.6 we obtain a Lie algebra homomorphism ϕ from \bar{L}_c onto the subalgebra of $\bar{\mathcal{L}}_c$ generated by the elements x_j , y_j , z_j , $1 \leq j \leq l$; and by Proposition 2.4 this is the algebra $\bar{\mathcal{L}}_c$. Thus, ϕ is a surjective homomorphism of $\bar{\mathcal{L}}_c$ onto $\bar{\mathcal{L}}_c$.

Since the relations (i)-(iv) of Section 1 hold in \overline{L}_c we get a Lie algebra homomorphism $\tilde{\Psi}$ from the universal Kac-Moody algebra $\tilde{\mathcal{L}}_c$ to \tilde{L}_c such that $\tilde{\Psi}(e_j)=E_j$, $\tilde{\Psi}(f_j)=F_j$, and $\tilde{\Psi}(h_j)=H_j$, $1\leq j\leq l$. Now formulas F_1 - F_{10} hold in \overline{L}_c thanks to Proposition 2.6. Thus, since R_7 - R_{10} hold in \overline{L}_c we see that $E_j(ad E_k)^{-A_kj+1}=0=F_j(ad F_k)^{-A_kj+1}$. It follows that $\tilde{\Psi}$ induces a homomorphism Ψ of $\bar{\mathcal{L}}_c$ to $\bar{\mathcal{L}}_c$. Clearly, $\Psi(x_j)=X_j$, $\Psi(y_j)=Y_j$, and $\Psi(z_j)=Z_j$, $1\leq j\leq l$, so that $\Psi(\bar{\mathcal{L}}_c)=\bar{\mathcal{L}}_c$. Finally, it is clear that $\phi \circ \Psi=id_{\bar{\mathcal{L}}_c}$ and $\Psi \circ \phi=id_{\bar{\mathcal{L}}_c}$, so that $\bar{\mathcal{L}}_c$ and $\bar{\mathcal{L}}_c$ are isomorphic. As in Section 1 it is clear that $\bar{\mathcal{L}}_c$ has a unique maximal ideal with the corresponding simple factor being isomorphic to \mathcal{L}_c .

Assume now that (A_{ij}) is one of the 9 types of $l \times l$ indecomposable finite Cartan matrices. Then by Serre's Theorem $\mathcal{L}_C = \overline{\mathcal{L}}_C$ is the split simple Lie algebra of type (A_{ij}) over C. Let (\cdot, \cdot) denote the Killing form \mathcal{L}_C and let n be as in Section 1. As in [6 pg. 147-149] a compact subalgebra C of \mathcal{L}_C has basis ih_j , $1 \leq j \leq l$, $e_{\alpha} + e_{-\alpha}$, $i(e_{\alpha} - e_{-\alpha})$; for $\alpha \in \mathcal{A}$, (the root system of \mathcal{L}_C) and $e_{\alpha} \in \mathcal{L}_{\alpha}$ is chosen such that $n(e_{\alpha}) = e_{-\alpha}$ and $(e_{\alpha}, e_{-\alpha}) = -1$, for all $\alpha \in \mathcal{A}$.

We are going to show that $x_j, y_j \in C$, $1 \leq j \leq l$. As usual, h_{α} denotes the element in *H* satisfying $\alpha(h) = (h_{\alpha}, h)$ for all $h \in H$, $\alpha \in \Delta$. Then $[e_j, f_j] = h_j$ and $\alpha_j(h_j) = 2$ imply that

$$(e_j, f_j) = \frac{-2}{(\alpha_j, \alpha_j)}, \quad 1 \leq j \leq l,$$

since

$$2 = (h_j, h_{\alpha_j}) = ([e_j, f_j], h_{\alpha_j}) = (e_j, [f_j, h_{\alpha_j}])$$
$$= -\alpha_j(h_{\alpha_j})(e_j, f_j) = (-\alpha_j, \alpha_j)(e_j, f_j).$$

Let

$$\lambda_j = \left(\frac{(\alpha_j, \alpha_j)}{2}\right)^{1/2} \in \mathbf{R}, \quad 1 \leq j \leq l.$$

Then $(\lambda_j e_j, \lambda_j f_j) = -1$ so that, as part of our basis of C, we can take $e_{\alpha_j} = \lambda_j e_j$, $e_{-\alpha_j} = \lambda_j f_j$. Then $e_{\alpha_j} + e_{-\alpha_j} = \lambda_j (e_j + f_j) \in C$, hence $x_j = \lambda_j^{-1} (e_{\alpha_j} + e_{-\alpha_j}) \in C$, and similarly $y_j \in C$ for $1 \leq j \leq l$. It follows that $\mathcal{L}_c \subseteq C$. But $(\mathcal{L}_c)_c = \mathcal{L}_c = C_c$ so that $\mathcal{L}_c = C$. This completes the proof of the following result.

THEOREM 2.9. Let (A_{ij}) be an $l \times l$ indecomposable Cartan matrix of finite type. Then the Lie algebra generated by the 3l elements X_j , Y_j , Z_j , $1 \le j \le l$, satisfying the relations R_1 - R_{10} is the compact simple Lie algebra of type (A_{ij}) .

One consequence of this result is the following Corollary.

COROLLARY 2.10. Let (A_{ij}) be an $l \times l$ indecomposable Cartan matrix of finite type. Then there is one and only one simple Lie algebra generated by 3l elements $X_j, Y_j, Z_j, 1 \leq j \leq l$, satisfying the relations R_1 - R_6 . Moreover, this algebra is compact.

PROOF. The algebra $\tilde{\mathcal{I}}_{C}$ satisfies R_1-R_6 , and has a unique simple factor. This factor is compact.

References

- [1] Berman, S., On the construction of simple Lie algebras, J. Algebra, **27** (1973), 158-183.
- Berman, S., Isomorphisms and Automorphisms of universal Heffalump Lie algebras, Proc. A. M. S., 65 (1977), 29-34.
- [3] Berman, S. and Moody, R. V., Lie algebra multiplicities, Proc. A. M. S., **76** (1979), 223-228.
- [4] Garland, H. and Lepowsky, J., Lie algebra homology and the Macdonald-Kac formulas, Invent. Math., 34 (1976), 37-76.
- [5] Humphreys, J. E., Introduction to Lie Algebras and Representation Theory, Springer-Verlag, (1972), New York.
- [6] Jacobson, N., Lie Algebras, Wiley Interscience, (1962), New York.
- Kac, V.G., Simple irreducible graded Lie algebras of finte growth, Math. U.S.S.R.
 —Izv., 2 (1968), 1271-1311.
- [8] Moody, R.V., A new class of Lie algebras, J. Algebra, 10 (1968), 211-230.
- [9] Serre, J. P., Algébres de Lie semi-simples complexes, W. A. Benjamin, (1966), New York.

Department of Mathematics University of Saskatchewan Saskatoon, Saskatchewan CANADA S7N 0W0