GENERATORS AND RELATIONS FOR COMPACT
 LIE ALGEBRAS

By

S. Berman ${ }^{1)}$

1. Introduction.

The main purpose of this paper is to provide a system of generators and relations for each of the nine types of compact simple Lie algebras. Indeed, we are able to give a presentation of each such algebra which depends only on the finite Cartan matrix $\left(A_{i j}\right)$ which is attached to the complexification of our compact algebra. One of the main results that lies behind our work is the Theorem of Serre which gives a presentation of the simple Lie algebras over the complex field attached to ($A_{i j}$).

Although our main interest is with the compact Lie algebras, we work in the generality of Kac-Moody Lie algebras (see [1], [4], [7], [8]). In this setting we will be able to provide a generalization of the compact simple Lie algebras. We realize these algebras as certain forms of the Kac-Moody algebra. More specifically, if ($A_{i j}$) is any indecomposable Cartan matrix which is non-Euclidean we let \mathcal{L}_{c} (resp. \bar{I}_{c}) be the reduced (resp. standard) Kac-Moody Lie algebra over the complex field \boldsymbol{C}, (see Section 1 for more details). We define a real form \mathcal{L}_{C} (resp. $\overline{\mathcal{L}}_{c}$) of \mathcal{L}_{C} (resp. $\overline{\mathcal{L}}_{c}$), and show that \mathcal{L}_{C} is the only simple homomorphic image of $\overline{\mathcal{L}}_{c}$. We then give generators and relations for $\overline{\mathcal{I}}_{c}$. The question of when $\overline{\mathcal{L}}_{C}=\mathcal{L}_{C}$ is equivalent to the question of when $\mathcal{L}_{c}=\overline{\mathcal{L}}_{c}$, and is a major unsolved question about Kac-Moody algebras. However, thanks to Serre's Theorem, we know $\mathcal{L}_{c}=\overline{\mathcal{I}}_{c}$, and hence $\mathcal{L}_{C}=\overline{\mathcal{L}}_{C}$, when $\left(A_{i j}\right)$ is of finite type. This yields a presentation of \mathcal{L}_{C} in this case.

The content of the paper is as follows. In Section 1 we recall the notation and a few facts about Kac-Moody algebras. In Section 2, the final section, we begin by making a study of the algebras \mathcal{L}_{C} and $\overline{\mathcal{L}}_{C}$. We then go on to obtain a presentation of $\overline{\mathcal{L}}_{c}$, and then use this in dealing with the compact simple Lie algebras. We think it is interesting that analogues of the compact Lie algebras exist in the Kac-Moody setting. Moreover, just as the compact algebras are

[^0]important in studying all real forms of the simple Lie algebras over \boldsymbol{C} (e.g. Cartan and Iwasawa decompositions), no doubt the generalizations studied here will play a similar role. Throughout, we let \boldsymbol{R} denote the real field and \boldsymbol{C} the complex field.

Section 1: We use similar notation to [1] and [2] where the reader may find all the necessary facts. Also, one may consult [4], [7], [8]. Thus, $\left(A_{i j}\right)$ will denote an $l \times l$ indecomposable Cartan matrix which is not Euclidean. $\tilde{\mathcal{L}}$ denotes the universal Kac-Moody algebra of type $\left(A_{i j}\right)$ over \boldsymbol{R}, so that $\tilde{\mathcal{L}}$ is generated by $3 l$ elements $e_{j}, h_{j}, f_{j}, 1 \leqq j \leqq l$, subject to the relations
(i) $\left[e_{k}, h_{j}\right]=A_{j k} e_{k}$,
(ii) $\left[f_{k}, h_{j}\right]=-A_{j k} f_{k}$,
(iii) $\left[h_{j}, h_{k}\right]=0$,
(iv) $\left[e_{k}, f_{j}\right]=\delta_{k j} h_{k}, 1 \leqq j, k \leqq l$.

The reduced Kac-Moody algebra is defined to be $\tilde{\mathscr{L}} / \mathcal{R}$ where \mathscr{R} is the radical of $\tilde{\mathcal{L}}$. We let this be denoted by \mathcal{L} and recall that \mathcal{R} is the unique maximal ideal of $\tilde{\mathcal{L}}$. The standard Kac-Moody algebra is denoted $\overline{\mathcal{L}}$ and is $\tilde{\mathcal{L}}$ factored by the ideal Ξ, where we recall that Ξ is generated by the elements $e_{j}\left(a d e_{k}\right)^{-A_{k j}{ }^{+1}}, f_{j}\left(\operatorname{ad} f_{k}\right)^{-A_{k j+1}}, 1 \leqq j \neq k \leqq l$, and the elements $\left\{h \in \tilde{H} \mid \alpha_{j}(h)=0\right.$, $1 \leqq j \leqq l\}$. Here, as usual, \tilde{H} is the linear span of $h_{1}, \cdots h_{l}$ in $\tilde{\mathscr{I}} . V_{Z}$ denotes the free abelian group with basis $\alpha_{1}, \cdots, \alpha_{l}$ and V_{Z} acts on \tilde{H} by $\alpha_{j}\left(h_{k}\right)=A_{k j}$ for $1 \leqq j, k \leqq l . \Gamma_{1}$ denotes the roots of $\widetilde{\mathcal{L}}$ and Γ_{2} will denote the roots of \mathcal{L} and $\overline{\mathcal{L}}$, (they have the same roots). Thus, we have the decomposition $\mathcal{L}=H \oplus \sum_{\alpha \in \Gamma_{2}} \mathcal{L}_{\alpha}$; similarly for $\tilde{\mathscr{L}}$ and $\overline{\mathcal{L}}$. As usual, n denotes the automorphism of \mathcal{L} (or $\overline{\mathcal{L}}$ or $\widetilde{\mathcal{L}})$ which satisfies $n\left(e_{j}\right)=f_{j}, n\left(f_{j}\right)=e_{j}, 1 \leqq j \leqq l$. Here, we are of course using the convention of letting $e_{j}, h_{j}, f_{j}, l \leqq j \leqq l$, denote the image in \mathcal{L} or $\overline{\mathcal{L}}$ of the corresponding elements of $\widetilde{\mathcal{L}}$. Note that $\overline{\mathcal{I}}$ has a unique maximal ideal which is the kernel of the natural map of $\overline{\mathcal{L}}$ onto \mathcal{L}.

If S denotes any one of the algebras $\mathcal{L}, \overline{\mathcal{L}}, \widetilde{\mathscr{L}}$ we let S_{c} denote the complexification of S. Thus, $S_{C}=\boldsymbol{C} \otimes_{R} S$, and we let τ be the map $-\otimes_{n}$ of S_{C}, where the "over bar" denotes complex conjugation. Thus, τ is a semi-linear automorphism of S_{C} of period 2. We define S_{C} to be the fixed points of S_{c} under τ. Clearly S_{C} is real form of S_{c}. We let $S_{+}=\{s \in S \mid n(s)=s\}$ and $S_{-}=$ $\{s \in S \mid n(s)=-s\}$. Then we have the decompositions

$$
\begin{equation*}
S=S_{+} \oplus S_{-}, \quad S_{C}=S_{+} \oplus i S_{-} . \tag{1.1}
\end{equation*}
$$

Of course, \mathcal{L}_{C} is our generalization of the simple compact Lie algebras. Indeed, we will see in the next section that \mathcal{L}_{C} is a finite dimensional simple
compact Lie algebra when ($A_{i j}$) is of finite type. For the present we remark, since \mathcal{L}_{c} is simple, and \mathcal{L}_{C} is a real form of \mathcal{L}_{c}, that \mathcal{L}_{C} is simple. Moreover, it is clear, and follows from the corresponding fact for $\tilde{\mathcal{L}}_{C}$ (or $\tilde{\mathcal{L}}_{C}$), that $\overline{\mathcal{L}}_{C}$ (or $\tilde{\mathcal{L}}_{C}$) has a unique maximal ideal which is the kernel of the obvious natural homomorphism onto \mathcal{L}_{C}.

Section 2: As in the previous section we let S denote any one of the algebras $\mathcal{L}, \overline{\mathcal{L}}$, or $\tilde{\mathcal{L}}$. Letting H_{S} denote the image of \tilde{H} in S we have the decomposition $S=H_{S} \oplus \sum_{\alpha \in \Gamma} S_{\alpha}$, where Γ is the root system of S. Let $n_{\alpha}=\operatorname{dim} S_{\alpha}$, and for $\alpha \in \Gamma^{+}$we let $x_{\alpha, 1}, \cdots, x_{\alpha, n_{\alpha}}$ be a basis of the space S_{α} chosen from among the elements $\left[e_{j_{1}}, \cdots, e_{j_{t}}\right]$ where $\alpha_{j_{1}}+\cdots+\alpha_{j_{t}}=\alpha$. It's worth noting that the n_{α} 's are known when $S=\mathcal{L}$ or $S=\tilde{\mathcal{L}}$, (see [3]). Thus, for example, $x_{\alpha_{j, 1}}=e_{j}$ for $1 \leqq j \leqq l$. Let $x_{-\alpha, j}=n\left(x_{\alpha, j}\right)$ for $\alpha \in \Gamma^{+}, 1 \leqq j \leqq n_{\alpha}$, so that $x_{-\alpha, 1}, \cdots, x_{-\alpha, n_{\alpha}}$ is a basis of $S_{-\alpha}$. Then we have

Lemma 2.1. $\left\{x_{\alpha, j}+x_{-\alpha, j} \mid \alpha \in \Gamma^{+}, 1 \leqq j \leqq n_{\alpha}\right\}$ is a basis of S_{+}.
Proof. Let $x=h+\sum_{\alpha \in \Gamma^{+}}\left(\sum_{j=1}^{n_{\alpha}} a_{\alpha, j} x_{\alpha, j}+b_{\alpha, j} x_{-\alpha, j}\right)$ be an element in S_{+}where $h \in H_{s}$. Then $n(x)=x$ implies that $h=0$ and $a_{\alpha, j}=b_{\alpha, j}$ for all $\alpha \in \Gamma^{+}, 1 \leqq j \leqq n_{\alpha}$. Thus, x is in the linear span of the set $\left\{x_{\alpha, j}+x_{-\alpha, j} \mid \alpha \in \Gamma^{+}, 1 \leqq j \leqq n_{\alpha}\right\}$. The rest is clear.

We now define some elements of interest to us. Let $x_{j}=e_{j}+f_{j}, y_{j}=i\left(e_{j}-f_{j}\right)$, and $z_{j}=i h_{j}$ for $1 \leqq j \leqq l$. Clearly $x_{j}, y_{j}, z_{j} \in S_{C}$ for $1 \leqq j \leqq l$.

Lemma 2.2. S_{+}is generated by the elements x_{1}, \cdots, x_{l}.
Proof. Let M be the subalgebra of S_{+}generated by the elements x_{1}, \cdots, x_{l}. By Lemma 2.1 it is enough to show that for all $\alpha \in \Gamma^{+}$and $j \in\left\{1, \cdots, n_{\alpha}\right\}$ that $x_{\alpha, j}+x_{-\alpha, i} \in M$. We do this by induction on $l(\alpha)$, where $l(\alpha)$ is defined to be ΣC_{j}, when $\alpha=\Sigma C_{j} \alpha_{j}$; the case when $l(\alpha)=1$ being clear because $\operatorname{dim} S_{\alpha_{k}}=1$ for $1 \leqq k \leqq l$, so that $x_{\alpha_{k}, 1}+x_{-\alpha_{k}, 1}=x_{k}$ for $1 \leqq k \leqq l$. Assume $\alpha \in \Gamma^{+}$and $l(\alpha)=n+1$ where $n \geqq 1$ and that if $\beta \in \Gamma^{+}$and $l(\beta) \leqq n$ that $x_{\alpha, j}+x_{-\beta, j} \in M$ for $1 \leqq j \leqq n_{\beta}$. Now, since $l(\alpha) \geqq 2$ then for any $j \in\left\{1, \cdots, n_{\alpha}\right\}$ we may assume that there exists some $\beta \in \Gamma^{+}, k \in\{1, \cdots, l\}$ such that $l(\beta)=n$, and $x_{\alpha, j}=\left[x_{\beta, t}, e_{k}\right]$, for some $t \in\left\{1, \cdots, n_{\alpha}\right\}$. (This is because $x_{\alpha, j}=\left[e_{j_{1}}, \cdots, e_{j_{n}}, e_{k}\right]$ for some k and $x_{\alpha_{k}, 1}=e_{k}$). Thus, $x_{\alpha, j}+x_{-\alpha, j}=x_{\alpha, j}+n\left(x_{\alpha, j}\right)=\left[x_{\beta, t}, e_{k}\right]+\left[x_{-\beta, t}, f_{k}\right]$.

Next, note that $x_{\beta, t}+x_{-\beta, t} \in M$ and $e_{k}+f_{k} \in M$, so that $\left[x_{\beta, t}+x_{-\beta, t}, e_{k}+f_{k}\right]$ $=x_{\alpha, j}+x_{-\alpha, j}+\left[x_{\beta, t}, f_{k}\right]+\left[x_{-\beta, t}, e_{k}\right] \in M$. But the element $\left[x_{\beta, t}, f_{k}\right]+\left[x_{-\beta, t}, e_{k}\right]$ is in $S_{+} \cap\left(S_{\beta-\alpha_{k}} \oplus S_{-\left(\beta-\alpha_{k}\right)}\right)$, and hence by Lemma 2.1 is an R-linear combination
of the elements $x_{\gamma, s}+x_{-\gamma, s}$ for $s \in\left\{1, \cdots, n_{r}\right\}$ and $\gamma=\beta-\alpha_{k}$. Thus, by induction $\left[x_{\beta, t}, f_{k}\right]+\left[x_{-\beta, t}, e_{k}\right]$ is in M. It now follows that $x_{\alpha, j}+x_{-\alpha, j} \in M$, as desired.

Lemma 2.3. The elements $i h_{j}, 1 \leqq j \leqq l$, together with the elements $i\left(x_{\alpha, k}-x_{-\alpha, k}\right)$ for $\alpha \in \Gamma^{+}, k \in\left\{1, \cdots, n_{\alpha}\right\}$ from a basis of iS.

Proof. It is enough to show that the elements $h_{j}, 1 \leqq j \leqq l$, together with the elements $x_{\alpha, k}-x_{-\alpha, k}$, for $\alpha \in \Gamma^{+}, k \in\left\{1, \cdots, n_{\alpha}\right\}$, span S_{-}. Let M be the subspace spanned by these elements and note that $h_{j}, 1 \leqq j \leqq l, x_{\alpha, k}+x_{-\alpha, k}$, $x_{\alpha, k}-x_{-\alpha, k}$, for $\alpha \in \Gamma^{+}, k \in\left\{1, \cdots, n_{\alpha}\right\}$ form a basis of S, so that $S=S_{+} \oplus M_{0}$ Since we also have $S=S_{+} \oplus S_{-}$and $M \subseteq S_{-}$, it follows that $M=S_{-}$.

Proposition 2.4. S_{C} is generated by the $3 l$ elements $x_{j}, y_{j}, z_{j}, 1 \leqq j \leqq l$.
Proof. $1 / 2\left[x_{j}, z_{j}\right]=1 / 2\left[e_{j}+f_{j}, i h_{j}\right]=(i / 2)\left(2 e_{j}-2 f_{j}\right)=y_{j}, 1 \leqq j \leqq l$. Thus, letting M be the subalgebra of S_{C} generated by $x_{j}, z_{j}, 1 \leqq j \leqq l$, we have that $y_{j} \in M$, $1 \leqq j \leqq l$. By Lemma 2.1 and Lemma 2.3 we know that S_{C} has basis $i h_{j}, 1 \leqq j \leqq l$, $\left(x_{\alpha, k}+x_{-\alpha, k}\right), i\left(x_{\alpha, k}-x_{-\alpha, k}\right)$, for $\alpha \in \Gamma^{+}, k \in\left\{1, \cdots, n_{\alpha}\right\}$; hence it is enough to show that these elements are in M. By Lemma 2.2 we have that ($x_{\alpha, k}+x_{-\alpha, k}$) $\in M$ for $\alpha \in \Gamma^{+}, k \in\left\{1, \cdots, n_{\alpha}\right\}$. It is clear that $i H_{S} \subseteq M$. Next, let $\alpha \in I^{+}$, $k \in\left\{1, \cdots, n_{\alpha}\right\}$ and choose $h \in H_{S}$ such that $\alpha(h) \neq 0$, (this is possible since ($A_{i j}$) is not Euclidean). Then we get $i h \in M$ and $x_{\alpha, k}+x_{-\alpha, k} \in M$ so that $\left[x_{\alpha, k}+x_{-\alpha, k}, i h\right]=\alpha(h)\left(i\left(x_{\alpha, k}-x_{-\alpha, k}\right)\right) \in M$. It follows that $i\left(x_{\alpha, k}-x_{-\alpha, k}\right) \in M$.

Definition 2.5. Let $j, k \in\{1, \cdots, l\}, j \neq k$ and let $s, t \in \boldsymbol{Z}$.
We define the integer $C_{s, t}^{(j, k)}$ as follows:
$C_{0,0}^{(j, k)}=1, C_{s, t}^{(j, k)}=0$ if either $s<0, t<0$, or if $t>s$. Otherwise $C_{s, t}^{(j, k)}$ is defined inductively by $C_{s, t}^{(j, k)}=C_{s-1, t-1}^{(j, k)}+(s-1)\left[A_{k j}+(s-2)\right] C_{s-2, t}^{(j, k)}$. Note that $C_{s, s}^{(j, k)}=1$ for all $s \geqq 0$, and that $C_{s, t}^{\left(j_{k}\right)}=0$ if $(-1)^{s} \neq(-1)^{t}$.

Proposition 2.6. The elements x_{j}, y_{i}, z_{j} for $1 \leqq j \leqq l$ satisfy the following relations:

$$
\begin{array}{ll}
\mathrm{F}_{1} & y_{j}=1 / 2\left[x_{j}, z_{j}\right], \quad 1 \leqq j \leqq l, \\
\mathrm{~F}_{2} & {\left[x_{j}, z_{k}\right]=A_{k j} y_{j}, \quad 1 \leqq j, k \leqq l,} \\
\mathrm{~F}_{3} & {\left[y_{j}, z_{k}\right]=-A_{k j} x_{j}, \quad 1 \leqq j, k \leqq l,} \\
\mathrm{~F}_{4} & {\left[z_{j}, z_{k}\right]=0,1 \leqq j, k \leqq l,} \\
\mathrm{~F}_{5} & {\left[x_{j}, x_{k}\right]+\left[y_{j}, y_{k}\right]=0, \quad 1 \leqq j, k \leqq l,}
\end{array}
$$

$$
\begin{aligned}
& \mathrm{F}_{6} \quad\left[x_{j}, y_{k}\right]+\left[x_{k}, y_{j}\right]=-4 \delta_{j k} z_{j}, \quad 1 \leqq j, k \leqq l, \\
& \mathrm{~F}_{7} \quad e_{j}\left(\text { ad } e_{k}\right)^{2 n}+f_{j}\left(\text { ad } f_{k}\right)^{2 n}=\sum_{t=0}^{n}(-1)^{n-t} C_{2 n, 2 t}^{(j, k)} x_{j}\left(\text { ad } x_{k}\right)^{2 t}, \\
& \text { for } n \geqq 0,1 \leqq j, k \leqq l, j \neq k, \\
& \mathrm{~F}_{8} \quad e_{j}\left(\text { ad } e_{k}\right)^{2 n+1}+f_{j}\left(\text { ad } f_{k}\right)^{2 n+1}=\sum_{t=0}^{n}(-1)^{n-t} C_{2 n+1,2 t+1}^{(j, k} x_{j}\left(\text { ad } x_{k}\right)^{2 t+1}, \\
& \text { for } n \geqq 0,1 \leqq j, k \leqq l, j \neq k, \\
& \mathrm{~F}_{9} \quad i\left(e_{j}\left(\text { ad } e_{k}\right)^{2 n}-f_{j}\left(\text { ad } f_{k}\right)^{2 n}\right)=\sum_{t=0}^{n}(-1)^{n-t} C_{2 n, 2 t}^{(j, k)} y_{j}\left(\text { ad } x_{k}\right)^{2 t} \text {, } \\
& \text { for } n \geqq 0,1 \leqq j, k \leqq l, j \neq k, \\
& \mathrm{~F}_{10} \quad i\left(e_{j}\left(\text { ad } e_{k}\right)^{2 n+1}-f_{j}\left(\text { ad } f_{k}\right)^{2 n+1}\right)=\sum_{t=0}^{n}(-1)^{n-t} C_{2 n+1,2 t+1}^{(0, t)} y_{j}\left(\text { ad } x_{k}\right)^{2 t+1} \text {, } \\
& \text { for } n \geqq 0,1 \leqq j, k \leqq l, j \neq k \text {. }
\end{aligned}
$$

In particular, these relations are a consequence of the definitions and the relations (i)-(iv) of Section 1.

Proof. The relations F_{1} through F_{6} are easy to establish so we do F_{7} and F_{8} together, by induction on n. In doing this we write $C_{s, t}$ for $C_{s, t}^{(j, k)}$. Also, we will use the following well known formulas.

$$
\begin{aligned}
& e_{j}\left(a d e_{k}\right)^{t}\left(a d f_{k}\right)=\left(t A_{k j}+t(t-1)\right) e_{j}\left(a d e_{k}\right)^{t-1} \quad \text { for } t \geqq 1 \text {, } \\
& f_{j}\left(a d f_{k}\right)^{t}\left(a d e_{k}\right)=\left(t A_{k j}+t(t-1)\right) f_{j}\left(\text { ad } f_{k}\right)^{t-1} \quad \text { for } t \geqq 1 \text {. }
\end{aligned}
$$

When $n=0, e_{j}\left(\text { ad } e_{k}\right)^{2 n}+f_{j}\left(\text { ad } f_{k}\right)^{2 n}=e_{j}+f_{j}=x_{j}$ while

$$
\sum_{t=0}^{n}(-1)^{n-t} C_{2 n, 2 t} x_{j}\left(\text { ad } \quad x_{k}\right)^{2 t}=C_{0,0} x_{j}=x_{j},
$$

so F_{7} holds when $n=0$. By definition, $\left[e_{j}, e_{k}\right]+\left[f_{j}, f_{k}\right]=\left[x_{j}, x_{k}\right]$ for $j \neq k$, so $\mathrm{F}_{8}{ }^{*}$ holds when $n=0$. Also F_{7} holds when $n=1$, since we have

$$
\begin{aligned}
& e_{j}\left(\begin{array}{ll}
\text { ad } & \left.e_{k}\right)^{2}+f_{j}\left(\begin{array}{ll}
\text { ad } & f_{k}
\end{array}\right)^{2} \\
=\left[\begin{array}{ll}
e_{j}\left(\begin{array}{ll}
\text { ad } & e_{k}
\end{array}\right)+f_{j}\left(\begin{array}{ll}
\text { ad } & f_{k}
\end{array}\right), e_{k}+f_{k}
\end{array}\right]-\left[f_{j}\left(\begin{array}{ll}
\text { ad } & f_{k}
\end{array}\right), e_{k}\right.
\end{array}\right]-\left[\begin{array}{ll}
e_{j}\left(\begin{array}{ll}
\text { ad } & e_{k}
\end{array}\right), f_{k}
\end{array}\right] \\
& =x_{j}\left(\begin{array}{ll}
\text { ad } & x_{k}
\end{array}\right)^{2}-A_{k j} f_{j}-A_{k j} e_{j} \\
& =C_{2,2} x_{j}\left(\begin{array}{ll}
\text { ad } & x_{k}
\end{array}\right)^{2}-C_{2,0} x_{j} .
\end{aligned}
$$

Next, assume that $m \geqq 1$ and that F_{7} holds when $n \leqq m$, and that F_{8} holds when $n \leqq m-1$. We show F_{8} holds when $n=m$. We have that

$$
\begin{aligned}
& e_{j}\left(\text { ad } e_{k}\right)^{2 m+1}+f_{j}\left(\text { ad } f_{k}\right)^{2 m+1} \\
& =\left[\begin{array}{ll}
e_{j}(a d & \left.\left.e_{k}\right)^{2 m}+f_{j}\left(a d f_{k}\right)^{2 m}, e_{k}+f_{k}\right]
\end{array}\right. \\
& -\left[e_{j}\left(\operatorname{lad} e_{k}\right)^{2 m}, f_{k}\right]-\left[f_{j}\left(\operatorname{lad} f_{k}\right)^{2 m}, e_{k}\right] \\
& =\left[\sum_{t=0}^{m}(-1)^{m-t} C_{2 m, 2 t} x_{j}\left(\text { ad } x_{k}\right)^{2 t}, x_{k}\right] \\
& -\left(2 m A_{k j}+2 m(2 m-1)\right) e_{j}\left(a d e_{k}\right)^{2 m-1}-\left(2 m A_{k j}+2 m(2 m-1)\right) f_{j}\left(a d f_{k}\right)^{2 m-1} \\
& =\sum_{t=0}^{m}(-1)^{m-t} C_{2 m, 2 t} x_{j}\left(\text { ad } \quad x_{k}\right)^{2 t+1} \\
& -\left(2 m A_{k j}+2 m(2 m-1)\right) \sum_{t=0}^{m-1}(-1)^{m-1-t} C_{2 m-1,2 t+1} x_{j}\left(\text { ad } x_{k}\right)^{2 t+1} .
\end{aligned}
$$

This equals

$$
\begin{aligned}
& \sum_{t=0}^{m-1}\left\{(-1)^{m-t} C_{2 m, 2 t}-\left(2 m A_{k j}+2 m(2 m-1)\right)(-1)^{m-1-t} C_{2 m-1,2 t+1}\right\} x_{j}\left(\text { ad } x_{k}\right)^{2 t+1} \\
& \quad+C_{2 m, 2 m} x_{j}\left(\text { ad } x_{k}\right)^{2 m+1} .
\end{aligned}
$$

Now

$$
C_{2 m, 2 t}+2 m\left(A_{k j}+(2 m-1)\right) C_{2 m-1,2 t-1}=C_{2 m+1,2 t+1}
$$

and

$$
\begin{aligned}
& (-1)^{m-t} C_{2 m, 2 t}-\left(2 m A_{k j}+2 m(2 m-1)\right)(-1)^{m-1-t} C_{2 m-1}{ }_{2 t+1} \\
& =(-1)^{m-t}\left(C_{2 m, 2 t}+\left(2 m A_{k j}+2 m(2 m-1)\right) C_{2 m-1,2 t+1}\right) \\
& =(-1)^{m-t}\left(C_{2 m, 2 t}+2 m\left(A_{k j}+(2 m-1)\right) C_{2 m-1,2 t+1}\right) \\
& =(-1)^{m-t} C_{2 m+1,2 t+1} .
\end{aligned}
$$

Thus, we have that

$$
e_{j}\left(a d e_{k}\right)^{2 m+1}+f_{j}\left(a d f_{k}\right)^{2 m+1}=\sum_{t=0}^{m}(-1)^{m-t} C_{2 m+1,2 t+1} x_{j}\left(\text { ad } x_{k}\right)^{2 t+1},
$$

as desired.
Next, one lets $m \geqq 1$ and assumes F_{8} holds when $n \leqq m$ and that F_{7} holds when $n \leqq m$ and shows that F_{7} holds when $n=m+1$. This is similar to the above and so is ommitted. In the same way F_{9} and F_{10} can be shown to hold.

Definition 2.7. Let $F \mathcal{L}=F \mathcal{L}\left(X_{j}, Y_{j}, Z_{j} \mid 1 \leqq j \leqq l\right)$ be the free Lie algebra over \boldsymbol{R} generated by the $3 l$-symbols $X_{j}, Y_{j}, Z_{j}, 1 \leqq j \leqq l$. Recall that $\left(A_{i j}\right)$ is a fixed $l \times l$ indecomposable Cartan matrix which is not of Euclidean type. Let J denote the ideal of $F \mathcal{L}$ generated by the following elements: $\left(\mathrm{R}_{1}-\mathrm{R}_{10}\right)$
$\mathrm{R}_{1}: \quad Y_{j}-1 / 2\left[X_{j}, Z_{j}\right], \quad 1 \leqq j \leqq l$,
$\mathrm{R}_{2}:\left[X_{j}, Z_{k}\right]-A_{k j} Y_{j}, \quad 1 \leqq j, k \leqq l$,
$\mathrm{R}_{3}:\left[Y_{j}, Z_{k}\right]+A_{k j} X_{j}, \quad 1 \leqq j, k \leqq l$,
$\mathrm{R}_{4}:\left[Z_{j}, Z_{k}\right], \quad 1 \leqq j, k \leqq l$,
$\mathrm{R}_{5}:\left[X_{j}, X_{k}\right]+\left[Y_{j}, Y_{k}\right], 1 \leqq j, k \leqq l$,
$\mathrm{R}_{6}:\left[X_{j}, X_{k}\right]+\left[X_{k}, Y_{j}\right]+4 \delta_{j k} Z_{j}, \quad 1 \leqq j, k \leqq l$.
Next, let $j, k \in\{1, \cdots, l\}, j \neq k$. Let $m=-A_{k j}+1$. If m is even we put $n=m / 2$. Then
$\mathrm{R}_{7}: \quad \sum_{t=0}^{n}(-1)^{n-t} C_{2 n, 2 t}^{(j, k)} X_{j}\left(\operatorname{ad} X_{k}\right)^{2 t}$, and
$\mathrm{R}_{9}: \quad \sum_{t=0}^{n}(-1)^{n-t} C_{2 n, 2 t}^{(j, k)} Y_{j}\left(\text { ad } X_{k}\right)^{2 t}$.
If m is odd we put $n=\frac{m-1}{2}$. Then
$\mathrm{R}_{8}: \quad \sum_{t=0}^{n}(-1)^{n-t} C_{2 n+1,2 t+1}^{(j, k)} X_{j}\left(\operatorname{ad} X_{k}\right)^{2 t+1}$, and
$\mathrm{R}_{10}: \sum_{t=0}^{n}(-1)^{n-t} C_{2 n+1,2 t+1}^{(j, k)} Y_{j}\left(\operatorname{ad} X_{k}\right)^{2 t+1}$.
Finally, we let $\bar{L}_{C}=\frac{F \mathcal{L}}{J}$ and let \bar{L}_{C} be the complexification of \bar{L}_{C}. Let $E_{j}, F_{j}, H_{j} \in \bar{L}_{C}$ be defined by

$$
E_{j}=1 / 2\left(X_{j}-i Y_{j}\right), \quad F_{j}=1 / 2\left(X_{j}+i Y_{j}\right)
$$

and

$$
H_{j}=-i Z_{j}, \quad 1 \leqq j \leqq l
$$

Proposition 2.8. The algebras $\overline{\mathcal{L}}_{C}$ and \bar{L}_{C} are isomorphic. In particular, $\mathrm{R}_{1}-\mathrm{R}_{10}$ provides a presentation of $\overline{\mathcal{L}}_{c}$. Moreover, \bar{L}_{C} has a unique maximal ideal and the corresponding simple factor is isomorphic to \mathcal{L}_{C}.

Proof. We first note that formulas (i)-(iv) of section 1 hold in \bar{L}_{c}. Indeed, R_{4} implies that $\left[H_{j}, H_{k}\right]=0$ for $1 \leqq j, k \leqq l$. Now

$$
\begin{aligned}
{\left[E_{k}, H_{j}\right] } & =1 / 2\left[X_{k}-i Y_{k},-i Z_{j}\right] \\
& =-i / 2\left[X_{k}, Z_{j}\right]-1 / 2\left[Y_{k}, Z_{j}\right] \\
& =-i / 2 A_{j k} Y_{k}+1 / 2 A_{j k} X_{k}\left(\text { by } \mathrm{R}_{2} \text { and } \mathrm{R}_{3}\right) \\
& =A_{j k}\left(1 / 2\left(X_{k}-\mathrm{i} Y_{k}\right)\right)=A_{j k} E_{k}
\end{aligned}
$$

as desired. Similarly, one finds that $\left[F_{k}, H_{j}\right]=-A_{j k} F_{k}$ and that $\left[E_{j}, F_{k}\right]=\delta_{j k} H_{j}$.
By Proposition 2.6 we obtain a Lie algebra homomorphism ϕ from \bar{L}_{c} onto the subalgebra of $\overline{\mathcal{L}}_{C}$ generated by the elements $x_{j}, y_{j}, z_{j}, 1 \leqq j \leqq l$; and by Proposition 2.4 this is the algebra $\overline{\mathscr{L}}_{c}$. Thus, ϕ is a surjective homomorphism of \bar{L}_{C} onto \bar{I}_{C}.

Since the relations (i)-(iv) of Section 1 hold in \bar{L}_{C} we get a Lie algebra homomorphism $\tilde{\mathscr{Y}}$ from the universal Kac-Moody algebra $\tilde{I}_{\boldsymbol{C}}$ to \bar{L}_{C} such that $\tilde{\Psi}\left(e_{j}\right)=E_{j}, \tilde{\Psi}\left(f_{j}\right)=F_{j}$, and $\tilde{\Psi}\left(h_{j}\right)=H_{j}, 1 \leqq j \leqq l$. Now formulas $F_{1}-\mathrm{F}_{10}$ hold in \bar{L}_{c} thanks to Proposition 2.6. Thus, since $\mathrm{R}_{7}-\mathrm{R}_{10}$ hold in \bar{L}_{C} we see that $E_{j}\left(\text { ad } E_{k}\right)^{-\Lambda_{k j} j^{+1}}=0=F_{j}\left(\text { ad } F_{k}\right)^{-A_{k j+1}}$. It follows that $\tilde{\Psi}$ induces a homomorphism Ψ of \bar{I}_{c} to \bar{L}_{c}. Clearly, $\Psi\left(x_{j}\right)=X_{j}, \Psi\left(y_{j}\right)=Y_{j}$, and $\Psi\left(z_{j}\right)=Z_{j}, 1 \leqq j \leqq l$, so that $\Psi\left(\overline{\mathscr{L}}_{C}\right)=\bar{L}_{C}$. Finally, it is clear that $\psi \circ \Psi=i d_{\bar{L}_{C}}$ and $\Psi \circ \phi=i d_{\bar{L}_{C}}$, so that $\overline{\mathcal{L}}_{C}$ and \bar{L}_{C} are isomorphic. As in Section 1 it is clear that \bar{L}_{C} has a unique maximal ideal with the corresponding simple factor being isomorphic to \mathcal{L}_{C}.

Assume now that ($A_{i j}$) is one of the 9 types of $l \times l$ indecomposable finite Cartan matrices. Then by Serre's Theorem $\mathcal{L}_{C}=\overline{\mathcal{L}}_{C}$ is the split simple Lie algebra of type $\left(A_{i j}\right)$ over C. Let (\cdot, \cdot) denote the Killing form \mathcal{L}_{c} and let n be as in Section 1. As in [6 pg. 147-149] a compact subalgebra C of \mathcal{L}_{C} has basis $\mathrm{i} h_{j}, 1 \leqq j \leqq l, e_{\alpha}+e_{-\alpha}, \mathrm{i}\left(e_{\alpha}-e_{-\alpha}\right)$; for $\alpha \in \Delta$, (the root system of \mathcal{L}_{C}) and $e_{\alpha} \in \mathcal{L}_{\alpha}$ is chosen such that $n\left(e_{\alpha}\right)=e_{-\alpha}$ and $\left(e_{\alpha}, e_{-\alpha}\right)=-1$, for all $\alpha \in \Delta$.

We are going to show that $x_{j}, y_{j} \in C, 1 \leqq j \leqq l$. As usual, h_{α} denotes the element in H satisfying $\alpha(h)=\left(h_{\alpha}, h\right)$ for all $h \in H, \alpha \in \Delta$. Then $\left[e_{j}, f_{j}\right]=h_{j}$ and $\alpha_{j}\left(h_{j}\right)=2$ imply that

$$
\left(e_{j}, f_{j}\right)=\frac{-2}{\left(\alpha_{j}, \alpha_{j}\right)}, \quad 1 \leqq j \leqq l,
$$

since

$$
\begin{aligned}
2 & =\left(h_{j}, h_{\alpha_{j}}\right)=\left(\left[e_{j}, f_{j}\right], h_{\alpha_{j}}\right)=\left(e_{j},\left[f_{j}, h_{\alpha_{j}}\right]\right) \\
& =-\alpha_{j}\left(h_{\alpha_{j}}\right)\left(e_{j}, f_{j}\right)=\left(-\alpha_{j}, \alpha_{j}\right)\left(e_{j}, f_{j}\right) .
\end{aligned}
$$

Let

$$
\lambda_{j}=\left(\frac{\left(\alpha_{j}, \alpha_{j}\right)}{2}\right)^{1 / 2} \in \boldsymbol{R}, \quad 1 \leqq j \leqq l .
$$

Then $\left(\lambda_{j} e_{j}, \lambda_{j} f_{j}\right)=-1$ so that, as part of our basis of C, we can take $e_{\alpha_{j}}=\lambda_{j} e_{j}$, $e_{-\alpha_{j}}=\lambda_{j} f_{j}$. Then $e_{\alpha_{j}}+e_{-\alpha_{j}}=\lambda_{j}\left(e_{j}+f_{j}\right) \in C$, hence $x_{j}=\lambda_{j}^{-1}\left(e_{\alpha_{j}}+e_{-\alpha_{j}}\right) \in C$, and similarly $y_{j} \in C$ for $1 \leqq j \leqq l$. It follows that $\mathcal{L}_{C} \leqq C$. But $\left(\mathcal{L}_{C}\right)_{C}=\mathcal{L}_{C}=C$ so that $\mathcal{L}_{C}=C$. This completes the proof of the following result.

Theorem 2.9. Let $\left(A_{i j}\right)$ be an $l \times l$ indecomposable Cartan matrix of finite type. Then the Lie algebra generated by the $3 l$ elements $X_{j}, Y_{j}, Z_{j}, 1 \leqq j \leqq l$, satisfying the relations $\mathrm{R}_{1}-\mathrm{R}_{10}$ is the compact simple Lie algebra of type $\left(A_{i j}\right)$.

One consequence of this result is the following Corollary.
Corollary 2.10. Let $\left(A_{i j}\right)$ be an $l \times l$ indecomposable Cartan matrix of finite type. Then there is one and only one simple Lie algebra generated by 31 elements $X_{j}, Y_{j}, Z_{j}, 1 \leqq j \leqq l$, satisfying the relations $\mathrm{R}_{1}-\mathrm{R}_{6}$. Moreover, this algebra is compact.

Proof. The algebra $\tilde{\mathcal{I}}_{C}$ satisfies $\mathrm{R}_{1}-\mathrm{R}_{6}$, and has a unique simple factor. This factor is compact.

References

[1] Berman, S., On the construction of simple Lie algebras, J. Algebra, 27 (1973), 158-183.
[2] Berman, S., Isomorphisms and Automorphisms of universal Heffalump Lie algebras, Proc. A. M. S., 65 (1977), 29-34.
[3] Berman, S. and Moody, R.V., Lie algebra multiplicities, Proc. A. M. S., 76 (1979), 223-228.
[4] Garland, H. and Lepowsky, J., Lie algebra homology and the Macdonald-Kac formulas, Invent. Math., 34 (1976), 37-76.
[5] Humphreys, J. E., Introduction to Lie Algebras and Representation Theory, SpringerVerlag, (1972), New York.
[6] Jacobson, N., Lie Algebras, Wiley Interscience, (1962), New York.
[7] Kac, V. G., Simple irreducible graded Lie algebras of finte growth, Math. U.S.S.R. -Izv., 2 (1968), 1271-1311.
[8] Moody, R. V., A new class of Lie algebras, J. Algebra, 10 (1968), 211-230.
[9] Serre, J.P., Algébres de Lie semi-simples complexes, W.A. Benjamin, (1966), New York.

Department of Mathematics
University of Saskatchewan
Saskatoon, Saskatchewan
CANADA S7N 0W0

[^0]: 1) This work was supported by a National Science and Engineering Research Council of Canada grant.
 Received September 8, 1980. Revised December 8, 1980.
