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GENERATORS AND RELATIONS FOR COMPACT

LIE ALGEBRAS

By

S. Herman^

1. Introduction.

The main purpose of this paper is to provide a system of generators and

relations for each of the nine types of compact simple Lie algebras. Indeed, we

are able to give a presentation of each such algebra which depends only on the

finiteCartan matrix (Aij) which is attached to the complexification of our com-

pact algebra. One of the main results that lies behind our work is the Theorem

of Serre which gives a presentation of the simple Lie algebras over the complex

fieldattached to (Ai}).

Although our main interest is with the compact Lie algebras, we work in

the generality of Kac-Moody Lie algebras (see [1], [4], [7], [8]). In this setting

we will be able to provide a generalization of the compact simple Lie algebras.

We realize these algebras as certain forms of the Kac-Moody algebra. More

specifically,if (Ai}) is any indecomposable Cartan matrix which is non-Euclidean

we let Xc (resp. Xc) be the reduced (resp. standard) Kac-Moody Lie algebra

over the complex field C, (see Section 1 for more details). We define a real

form Xc (resp. Xc) of Xc (resp. Xc), and show that Xc is the only simple

homomorphic image of Xc. We then give generators and relations for Ic. The

question of when I'C=XC is equivalent to the question of when Xc―Xc, and is

a major unsolved question about Kac-Moody algebras. However, thanks to Serre's

Theorem, we know XC=XC, and hence XC=XC, when {Aij) is of finite type.

This yields a presentation of Xc in this case.

The content of the paper is as follows. In Section 1 we recall the notation

and a few facts about Kac-Moody algebras. In Section 2, the final section, we

begin by making a study of the algebras Xc and Xc- We then go on to obtain

a presentation of Xc, and then use thisin dealing with the compact simple Lie

algebras. We think it is interesting that analogues of the compact Lie algebras

exist in the Kac-Moody setting. Moreover, just as the compact algebras are
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important in studying all real forms of the simple Lie algebras over C (e.g.

Cartan and Iwasawa decompositions),no doubt the generalizationsstudied here

will play a similarrole. Throughout, we let R denote the real fieldand C the

complex field.

Section 1: We use similar notation to [1] and [2] where the reader may

find all the necessary facts. Also, one may consult [4], [7], [8]. Thus, (Ai})

will denote an Ixl indecomposable Cartan matrix which is not Euclidean. £

denotes the universal Kac-Moody algebra of type {At]) over R, so that £ is

generated by 3/ elements ejf hjt fjt l^jSl, subject to the relations

(i ) O*, hf＼= Ajkek,

(ii) [/*, hj} = -AJkfk,

(iii) Ihj, /i*]=0,

(iv) tek,fd=5kjhk, l^j, kSL

The reduced Kac-Moody algebra is defined to be £I Sl where SI is the

radical of 1. We let this be denoted by £ and recall that 31 is the unique

maximal ideal of 1. The standard Kac-Moody algebra is denoted £ and is £

factored by the ideal a, where we recall that S is generated by the elements

g/flrf ek)-A"i+＼ fjiad fk)-A^+1, l^j^k^l, and the elements {/ie=#|a//i)=0,

lf^j^l}. Here, as usual, H is the linear span of hu ･･･hi in £. Vz denotes the

free abelian group with basis alt ■■■, at and Vz acts on H by aj(hk)=Akj for

1^;, k^L Fx denotes the roots of £ and F2 will denote the roots of £ and £,

(they have the same roots). Thus, we have the decomposition X=HR 2 -Ca ',

similarly for £ and £. As usual, n denotes the automorphism of £ (or £ or

£) which satisfiesn{e.3)―fj,n(fj)=ejf l^j^l. Here, we are of course using the

convention of letting ejr hh fjt lf^j^l, denote the image in £ or £ of the

corresponding elements of £. Note that £ has a unique maximal ideal which

is the kernel of the natural map of £ onto £.

If S denotes any one of the algebras £, £, £ we let Sc denote the com-

plexification of S. Thus, Sc^C^rS, and we let r be the map ―(££)≪of Sc,

where the " over bar" denotes complex conjugation. Thus, r is a semi-linear

automorphism of Sc of period 2. We define Sc to be the fixed points of Sc

under r. Clearly Sc is real form of Sc- We let S+= {seS|n(s)=s} and S_ =

{seS|≪(s)= ―s}. Then we have the decompositions

(1.1) S=S+RS-, Sc=S+RiS-.

Of course, £c is our generalization of the simple compact Lie algebras.

Indeed, we will see in the next section that £c is a finite dimensional simple
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compact Lie algebra when (Atj) is of finite type. For the present we remark,

since Xc is simple, and Xc is a real form of Xc, that Xc is simple. Moreover,

it is clear, and follows from the corresponding fact for Xc (or Xc), that Xc (or

Xc) has a unique maximal ideal which is the kernel of the obvious natural

homomorphism onto Xc-

Section 2: As in the previous section we let S denote any one of the

algebras X, X, or X. Letting Hs denote the image of H in S we have the

decomposition S=HSR S Sa, where F is the root system of S. Let na=dim Sa,

and for a^F+ we let xa,i, ･･･, xa,na be a basis of the space Sa chosen from

among the elements [_ejv ■■■,ej£]where aix+ ■■･-＼-aJt― a. It's worth noting that

the na's are known when S=X or S=X, (see [3]). Thus, for example, xajil=ej

for 1^;^/. Let x-a,j=n(xa,j) for a^F+, l^j^na, so that x-a,lf ■■■, x-a,na is

a basis of S-a. Then we have

Lemma 2.1. {xa,j+x-a,j＼a^r+, l^j^na} is a basis of S+.

Proof. Let x ―h + 2 ( 2 aa,jXa,j+ba,jX-a,j) be an element in S+ where

h^Hs. Then n(x)―x implies that h=0 and aa,j―ba,j for all a^F+, l^j^na.

Thus, x is in the linear span of the set {xa,j-＼-x-a,j＼oc^rjr,l^j^na}. The

rest is clear. □

We now define some elements of interest to us. Let Xj―e^fj, yj=i(ej~fj),

and Zj―ihj for 1^;'^/. Clearly xjt yjt Zj^Sc for 1^;^.

Lemma 2.2. S+ fs generated by the elements xlt■■■, X/.

Proof. Let M be the subalgebra of S+ generated by the elements xu ･■･,xt.

By Lemma 2.1 it is enough to show that for all a^P+ and ;'e{l, ･･･, na} that

xa,j+x-aii^M. We do this by induction on l(a), where /(a) is defined to be

2Q, when a=2C,-a/; the case when l(oc)=l being clear because dimSaft = l for

l^k^l, so that xak,1+X-ah,1―xk for lfSfefS/. Assume a^F+ and l{a)―n + l

where n^l and that if j3er+ and /(/3)^n that xtt,j+x_^,;eM for l^j^np.

Now, since /(a)^2 then for any j'e {1, ･･■,na} we may assume that there exists

some /3er+, fee {1, ■■･,/} such that /(/3)=n, and xUtj―＼ix^t,ek~＼,for some

£e{l, ･･･, na}. (This is because xa,J=[eJl, ･･･, eJn, e*] for some k and xa&,i~£*)-

Thus, xa,j+x-atj―Xa,j+n(xa,j)=lx^t, eh~＼+ [.x-p,t,/*].

Next, note that x^t + x-^eM and ek+fk^M, so that [x^j+x-^t, eft+/ft]

= xff,;-+x_a,j+[x^,,/i] + [xj,j, g*]eM. But the element [x^.t, Al + Hx-^, efc]

is in S+nlSjS-tt.SS.f^-aj)), and hence by Lemma 2.1 is an /2-linear combination
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of the elements xr,s+x_r,s for se{l, ･･･, nr) and }"=/3―ak. Thus, by induction

LxB,t, fkl + Lx-p.t, £k]is in M. It now follows that iaiJ4x.≪,jEM, as desired. □

Lemma 2.3. The elements ihj,l^j^l, together with the elements i(xa.k―x-a,k)

for a^r+, &e {1, ■･･,na] from a basis of iS.

Proof. It is enough to show that the elements hjf lfS;^/, together with

the elements xa,k ―x-a,k, for ≪e.T+, &e {1, ■･･,n≪}, span S_. Let M be the

subspace spanned by these elements and note that hJt l^j^l, xa,k + x-a>k,

xa,k ―x^a,k, for asr, &e{l, ･･･, na) form a basis of S, so that S=S+Q)M.

Since we also have S=S+(BS- and MgS_, it follows that M=S.. □

Proposition 2.4. Sc is generated by the 31 elements xjt yjf z}, l^j^l.

Proof. 1/2[x,-, ^J] = l/2[ei+/J, i/ii]=(z72)(2eJ-2fj)=yj, l^j^L Thus, letting

M be the subalgebra of Sc generated by j^-,^-, l^j^/, we have that y^M,

l^j^l. By Lemma 2.1 and Lemma 2.3 we know that Sc has basis ihj, l^j^l,

(xa,k + x-a,k), i(xa,k ―x-a,k), for a^F+, kG {1, ･■■,na} ; hence it is enough to

show that these elements are in M. By Lemma 2.2 we have that (xa, 4+ x_≪,k)

gM for a^F+, jfeejl, ･･･, na}. It is clear that iHsQM. Next, let a^l+,

&e{l, ･･･, n≪} and choose h^Hs such that a(/i)^0, (this is possible since (.4^)

is not Euclidean). Then we get ih^M and xa, k -＼-x-a,k e M so that

[xa.i + x-a,*, i/i]=a(h)(i(xaj k― x-a, 4))gM. It follows that i(xa,k ―x..ay)<=:M. D

Definition 2.5. Let j, £e {1, ･･･,/},j^k and let s, t^Z.

We define the integer Clj/tk)as follows:

C0(fbw=l, CifiB=O if either s<0, ^<0, or if t>s. Otherwise Q{-tk)is defined

inductively by Cfr≫=C£1≫t-1+(s-i)lAkJ+(s-2)-lCiL&. Note that Cftw = l for

all s^O, and that Cs°^= 0 if (~1)S^(-1)J.

Proposition 2.6. The dements xjt yit zj for l^j^t satisfy the following

relations:

Fx yj=l/2ixj, ZJ1, l^j^l,

F2 lxh zk-]=Akjyj, l^j, k^l,

F3 Lyj, Zkl=-AkJxj, l£j, k^i,

F4 lzj,zh2=0, l£j, k^t,

F6 Lxj, xk-] + lyh ^*:=0, l^j, ife^/,
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Lxj, ykl + lxk, yj}=―4djkzj, 1^;, k^i,

ej{ad ek)2n+fj(ad fk)2n=
ti-ir-'Cti^Xjiad

xkf＼

for n^O, 1^/, k^l, j*k,

n

8 ej＼aa e.^) -＼-jj＼aa jk) ― Zj ＼ -U ^2n+i.2£+i^Aa" xk)
t= 0

for n^O, 1^;, k^l, j±k,

F9 i(ej(adekyn-fj(ad fkfn)=
±

(-lr^C^yjiad xk)2t

137

for n^O, l^j, k£l, j±k,

F10 i(ej(ad ek)2n+1-fj(ad fk)2n+1)=
±

(-l)re-£C&+*i,2£+1J>/fldxkft+＼
t=0

for n^O, 1^;, ^^/, 7>Jfe.

/n particular, these relationsare a consequence of the definitionsand the relations

(i)-(iv) of Section 1.

Proof. The relations Fi through F6 are easy to establish so we do F7 and

F8 together, by induction on n. In doing this we write CStt for C(s{ik)･Also, we

will use the following well known formulas.

ej(ad ek)＼ad fk)=(tAkJ+t(t-l))e^ad e*)'"1 for t^l,

fj(ad fk)＼ad ek)=(tAkj+t(t-l))Uad f＼TX for t^L

When n =0, elad ek)2n+fj(ad fkyn=eJ+fJ=xJ while

n

Z-i ( 1) C2n,2tXj＼dd Xk) ―Co,oXj―Xj

t=0

so F7 holds when n―0. By definition, ＼_ej}e&] + [/;>/&ZNE*.;, xk~]for ji=k, so

F8^holds when n=0. Also F7 holds when n=l, since we have

. ej(ad ek)2+fj(ad fkf

= Zej(ad ek)+fj(ad fk), ek+fk~＼―Ufad fk), ek] ―[ej(ad ek),fk~＼

= Xj(ad xky―AkJfj―Akjej

―G2,2Xj(ad xk) C2,oXj.

Next, assume that m^l and that F7 holds when n^m, and that F8 holds when

n<m―1. We show F≫ holds when n―m. We have that
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ej(ad ek)2m+1+fj(ad fk)2m+1

= lej(ad ek)im+fj(ad fkfm, efe+/fe]

-Mad ≪*)≪≫,/*]-[//ad fkfm, ek-＼

m
= CS(-l)m-JC2m,2tx/ad xkT, xk1

£=0

-(2mAkj+2m(2m-l))ej(ad ek)2m-1-(2mAkj+2m(2m-l))fj(ad A)2"1'1

= S(-l)fll-tC2m,2txXarf xk)2t+1

4=0

-(2mAkj+2m(2m-l))

This equals

t = 0

m2
{(-l)m-tC2m,u-(2mAkj+2m(2m-i))(-l)m-1-tC2m.l,2t+i}xj(ad xk)u+l

t=0

+ C2m≫mxj(ad xkfm+l.

Now

C2OT,2£+ 2?W(^4ftj+ (2??I―l))C2m-l,it-l= Cim +l,2t+l

and

(-ir-tC2m,n-(2mAkj+2m(2m-l))(-l)m-l-tC2m.12t+1

= (-l)m-t(C2m,2t+(2rn/l,i+2m(2m-l))C2m_1,2£+1)

= (-l)m-J(C2m,2(+2m(^+(2m-l))C2m_12i+1)

―( -＼＼m-tp

Thus, we have that

ej(ad ekym+1+fj(ad A)2m+1= 2(-l)TO-JC2m+1,2(+1x/ad xkyt+1,

as desired.

Next, one lets m^l and assumes F8 holds when n^m and that F7 holds

when nr^m and shows that F7 holds when n=m+l. This is similar to the

above and so is ommitted. In the same way F9 and Fi0 can be shown to hold. □

Definition 2.7. Let FX=Fx{Xj, Yit Zj＼l^j^l) be the free Lie algebra

over R generated by the 3/-symbols Xjt Y}, Zh 1^;^/. Recall that {Atj) is a

fixed IXI indecomposable Cartan matrix which is not of Euclidean type. Let /

denote the ideal of FX generated by the following elements: (R,―Ri0)
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Ri: Yj-1/2LXj, Zjl, l^jSl,

R2: IXj, Zkl-Ak}Yj, iSj, k£l,

R3: LYj, ZA + AmjXj, l^j, k^l,

R5: lXi,Xk-]+[Yit Ykl, l^j, k^l,

R6: LXj, Xk-] + [_Xk, Yjl+AdjtZj, l^j, k^L

Next, let ;, fee{l, ･･･,/}, j=£k. Let m― ―Akj-＼-l. If m is even we put

n=m/2. Then

R7:
£

(-lr-'CttfrXAad Xk)*<, and

t= 0

R9: SC-D-'C^r/ad Jr*)".

If m is odd we put n

n
Rb

m-1

2 "
. Then

2

£ = 0

{-IT-tCitiU^Xlad Xkft+＼ and

Rao: SC-ir-'C&fU+iF/ad Xkyt+1
t=O

FX
Finally, we let Lc=―y― and let Lc be the complexification of

Ej, Fj, Hj^Lc be defined by

Ej=l/2(Xj-iYj), Fj^lMXj+iYj),

and

Hj=-iZJ! l£j^L

Lc. Let

Proposition 2.8. The algebras Xc and Lc are isomorphic. In particular,

R1-R10 provides a presentation of £c- Moreover, Lc has a unique maximal ideal

and the corresponding simple factor is isomorphic to Xc-

Proof. We firstnote that formulas (i)-(iv)of section 1 hold in

R4 implies that [Hs, i/*]=0 for l^j, k^l. Now

lEk, Hd=l/2lXk-iYk, -iZjl

= -i/2[_Xk, Zj2-l/2[_Yk, Zji

= -i/2AjkYk + l/2AjkXk (by R2 and R3)

= Ajk(l/2(Xk-iYk))=AjkEk,

Lc. Indeed,



140 S. Berman

as desired. Similarly, one finds that [_Fk,Hj]= ―AjkFk and that [£,-,Fk^djkHj.

By Proposition 2.6 we obtain a Lie algebra homomorphism <p from Lc onto

the subalgebra of 2C generated by the elements xjy yj} zj}l^j^l; and by Pro-

position 2.4 this is the algebra lc. Thus, <ftis a surjective homomorphism of

Lc onto lc

Since the relations (i)-(iv)of Section 1 hold in Lc we get a Lie algebra

homomorphism ＼ from the universal Kac-Moody algebra £c to Lc such that

f(ej)=Ej, t(fj)=Fj, and t(hj)=HJt l^j^L Now formulas F^F hold in Lc

thanks to Proposition 2.6. Thus, since R7-Ri0 hold in Lc we see that

Ej(ad Ek)~Aki+1=0―Fj(ad Fk)~AkJ+1.It follows that ＼induces a homomorphism

＼ of lc to Lc. Clearly, W{x3)=Xh W{y})=Yj} and W{Zj)=Zjt l^j^l, so that

＼(XC)=LC. Finally,it is clear that 0°W=id2c and ＼°<j)=idzc,so that ic and

Lc are isomorphic. As in Section 1 it is clear that Lc has a unique maximal

ideal with the corresponding simple factor being isomorphic to Xc- D

Assume now that (Ai}) is one of the 9 types of Ixl indecomposable finite

Cartan matrices. Then by Serre's Theorem Xc=~Cc is the split simple Lie

algebra of type (.4^) over C. Let (-, ･) denote the Killing form Xc and let n be

as in Section 1. As in [6 pg. 147-149] a compact subalgebra C of Xc has basis

ihj, lf^j^l, ea-＼-e.a,i(ea―e-a); for aei, (the root system of Xc) and ea^Xa

is chosen such that n(ea)=e-a and (ea, e_ff)=―1, for all aezl.

We are going to show that xj, y^C, l^j^L As usual, ha denotes the

element in H satisfying a{h)={ha, h) for all h^H, aej. Then ＼_ahfj]=h} and

ai(hi)=2 imolv that

since

2

(ej, fj)=

= {hj, ha
p

Let

-2

(<Xj, a,)
ISJ^I,

=([>* fjl haj)=(ej, Ifj. /i≪,])

= ― aj(haj)(ej, fj)=(―aj, (Xj){ejyf})

Zt=(Sa^iLyeRi lsis,

Then (XjejtXjfj)=~l so that, as part of our basis of C, we can take ea.―lj2j,

e-aj=hfi> Tnen eaj+e-aj=Zj(ej+fj)GC, hence xj=kj＼eaj+e-aj)^C, and similar-

ly yjeC for l^j^l. It follows that XCQC But (xc)c=Xc=Cc so that XC=C.

This completes the proof of the following result.
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Theorem 2.9. Let (Ai}) be an Ixl indecomposable Cartan matrix of finite

type. Then the Lie algebra generated by the 3/ elements Xj, Yj} Zj, l^j^l,

satisfying the relations R1-R10 is the compact simple Lie algebra of type (An).

One consequence of this result is the following Corollary.

Corollary 2.10. Let (Ai}) be an Ixl indecomposable Cartan matrix of finite

type. Then there is one and only one simple Lie algebra generated by 3/ elements

Xj, Yj,Zj, l^j^l, satisfying the relations Ri-R6. Moreover, this algebra is

compact.

Proof. The algebra lc satisfies Ri-R6, and has a unique simple factor.

This factor is compact. □
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