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1. Introduction

In this paper we extend the concept of Sobolev spaces to the generalized
distribution spaces of Beurling type and investigate the Sobolev imbedding
theorem, the Rellich’s compactness theorem and etc on these generalized Sobolev
spaces.

For this purpose we briefly introduce the basic spaces and theories which
we need in this paper. The reader can find the details in [3]. Let .H, the
set of all continuous real valued functions w on R™ which satisfies the follow-
ing conditions :

(@) 0=w0)=wé+n=w@+aw(y), & n=R™.

(&)
B o<

() wé)=a-+blog(l+ &) for some constants a and b>0.

@) w(&) is radial.

With the weight functions @ in #. and open set £ in R™ Bjérck defines
D,(L2) the set of all ¢ in L(R™) such that ¢ has compact support in £ and

loli={_, 18t de< oo

for all 2>0. The space 9,(2) equipped with the inductive limit topology, as
(L), is Fréchet and we call 9,(2), the dual of 9,(2), the Beurling’s gener-
alized distribution space. They denote by &,(£2) the set of all complex valued
functions ¢ in 2 such that ¢¢c9,2) for all $=9,(2) and the topology is
given by the semi-norms |@¢|; for every 2>0 and every ¢ in 9,8). The
dual space &,(£) of the space &€,(2) can be identified with the set of all ele-
ments of 9,,(2) which have compact support contained in £. They also extend
the Schwartz space denoting by S, the space of all C>-function ¢ in L'(R™)
with the property that for each multi-index a and each non-negative number 2
we have
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P, :(¢)=supe?*® | D*¢(x)| < oo
and zeRn

.. z(é)=€s%1:;e“’“” | D@(&)] < oo

and S, the dual space of the space S,. Most theorems in the distribution space
can be extended in this generalized distribution spaces. For example, we have
the following Paley-Wiener type theorem which can be founded in [3];

THEOREM. Let K be a compact convex set in R™ with support function H.
If F is an entire function of n-complex variables {=E+in=(, -, ), the fol-
lowing three conditions are equivalent:

(i) For each 2>>0 and each ¢>0 there exists a constant C; . such that for
every n<R™.

|| Ferimleiv®desC, ememrm,
(iii) For each 2>0 and each >0 there exists a constant C; . such that for

{=&+insC™
| F(6+in)| SCy eBmreinizto®,

(i) F(C):SRne‘“z'@gﬁ(x)dx for some ¢ DLK).
Movreover, the Fourier transform is isomorphic on the space S, and Si.

According to the definitions of the above spaces we may assume b=1 in
the condition (7) of @&SM., since it does not effect the size of the spaces.
Throughout this paper we assume that the weight function o satisfies the con-
dition (7) with b=1.

2. Generalized Sobolev Spaces

Since the Beurling’s generalized distribution space with weight function
o@)=log(1+|£&}) is exactly the distribution space, we naturally define the gener-
alized Sobolev space as follows:

DEFINITION 2.1. For seR, we denote by HS the set of all generalized
distributions uS;, such that

lule=[[ e@la@dg] <o

We call H the generalized -Sobolev space of order s or simply o-Sobolev
space of order s.
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From the definition we can easily see that S, is contained in H¢ for all
seR; HS=L¥R"), H*CHS for s<0 and H*DHS for s=0. Hi=H® when w(§)
=log(1+1&)).

THEOREM 2.2. H$ is a Hilbert space with inner product given by (u, v)¢=

Se“w@m(eﬁ%s“)ds.

PRrROOF. It is clearly an inner product on H¢ and the completeness follows
from the Proposition 2.2.2 and Theorem 2.2.3 in [3].
As we mentioned before, Hi=H® when the weight function w(§)=log(1+

13p2

THEOREM 2.2. S, is dense in HS for all s€R.

PROOF. Since 9, is dense in C%, C% is dense in L*e**>d€) and 9,C8,
C L¥e*°®d¢), S, is dense in L*(e**“d&). From the fact that Fourier trans-
form is isomorphism on S, the theorem follows.

COROLLARY 2.3. HICHS for t>s, the inclusion is continuous and has dense
image.
From the fact that for multi-index «
[ D*ulle- e ule, usHS

we have

COROLLARY 2.4. The differential D* is a continuous linear operator from
HS to HE 1%,

To find the relation between H$ and H,°. We define the pairing

lu, ¢>=u(g) for usS, and $S8,.

Then we can easily get the following.

LEMMA 2.5, For ueHS, The conjugate linear functional {u, -) on S, extends
uniquely to a conjugate linear functional on Hy* satisfying

(i) <, vy=en)"|a@iEae

(i) IKu, | Elulglvles, u=sHS, veHy®

(iii) <u, vd>=, u>
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Proor. For usHS, the map v\-—>(2n)‘"§ﬁ(5)§($)d$ is a continuous conjugate
linear functional, since

1/2

— 1/2 R
|eay |a@i@de <@m (e a@1dg) (Jerr @15 1248)
=) Mlull vl
The remaining results follow from the density of &, in H,°.
THEOREM 2.6. The pairing <-, - identifies H;* isometrically with the an-

tidual of HE If us9d., then wucHE if and only if there is a constant ¢ such
that |u(p)| <cldll®; for ¢=D.. Moreover, the best value of ¢ is |ullg.

PrOOF. Let *(Hg) be the antidual of HS. Define G: H,°—*(H}) by
G)w=Cv, w=(m) (2@ FE@dE.
From lemma 2.5 (ii) we have |G(v)|<|v]|¢; for all v=H,*, which implies |G| <1,

On the other hand, if Gv)=0, Gv)(u)=<v, u>=(27r)‘"517(5)5($)d5:0 for all u=

Seo. Therefore v=0 as a point of S, and hence v=0 as a point of H,*. To
show the surjectivity of G, for we*(HS), there is a w,=H" due to the Riesz
representation theorem such that w(u)=(w,, )¢ for all u in HS. Since ¢—

Se“"’@wl(é)ﬁ(g)ds is a continuous linear functional on S,, there is a distribution

wsEHy® such that @,(&)=e**®®,(&) a.e. Then we have

w(w)=(w,, u>z":<2n>-ngeﬂwwms)ﬁ(&)de

=<2n>-n§ew<f>e~2w<f>wz@ﬁ@ds

={w,, u>=G(ws)(u) for all » ih HJ,

that is, w=G(w,). To show the isometry, let v=H;* and put u<Hg such that
a(g)=e"»*®p(&) a.e. Then

G<v><u>=<2n>-"§e-m<f> 0(8)|2dE

=[lviz = ]ulPlv]2.

Therefore, |G@)||=!lv]|?;, which means |G|=1. Hence G is an isometry and
so G is an isometric isomorphism from H;*® onto *(H}J).

In order to show the last statement, let u=HS. Then, by the above identi-
fication, we have
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lu(d)| |
lgll2s ~
which is required. Conversely, if v, and |u(@)|Zclgles for all g9,
then the map ¢|—u(g) extends to an element <u, -» of *(H;*) with norm =Zc.

Thus there is a unique weH¢$ such that G(w)(@)=<w, ¢>=u(g)=<{u, ¢>. This
shows u=uw.

¢EHJ‘}gsup{ Ii[uqs(ﬁzs‘ﬁ)J : ¢E£Dw},

Jully=sup{

COROLLARY 2.7. Let A: D,—D,, be a linear map. Then A extends uniquely
to a continuous linear map A: HE—H, if and only if |(Auw)@w)| Lcllul|?v]2: for
u, veD,, for some constant c. Moreover, the best value of ¢ is the norm | A|
of the linear operator A: Hi—H}.

Proor. If u=9, and AusH}, we have, from theorem 2.6, |(Au)(v)|=
| <Au, v| < Aullgve.=1Allul2lv]e, for u,v=9,. The converse is obvious
from the density of 9,.

DEeFINITION 2.2. If £ is an open subset of R® and s=R, then we define
HS 1o )=} uca,(2): ducHS for all ¢=9,(2)}.

LEMMA 2.8. If ¢=D, and usHS, then ¢ucsHS.
PrROOF. By the Minkowski inequality, we have
guly=([eeo1fue)1ag)
:(gezswca[(Zﬂ)—ngg,(v)a(s—n)dwde&)m
. A 1/2
<)1) ([ 1 ae—mireooag) "y

(zz)-n/z(g | 5(77) | esetn 4 7])(5 1 ﬁ(é_n)lzezsw(é—v)dsy/z i 520

SIA

@y ([13te e un) ([l a@—peec-rag)™ it s<o
=@r) | liailiuly <o, which shows gusHS

THEOREM 2.9. If P(x, D):] > a (x)D* with a,=E€,8), then P(x, D) is
aljsm

continuous linear map from HE oo(2) into HIT(D).

PROOF. Let u€HS o and ¢=9,. Choose X in 9,(2) such that X=1 on a
neighborhood of supp(¢). Then we get the result from corollary 2.4 and
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lemma 2.8.
Next we give some examples.

EXAMPLE.

(1) 0, is an element of HS for any s<—(n/2).

(2) D%, is an element of H:'¢' for s<—(n/2).

(3) On R, the characteristic function u(x)=2X._,» is an element of H}
when s=0.

3. Imbedding Theorem and Compactness

In this section we extend the Sobolev imbedding theorem and Rellich’s
compactness theorem to the generalized Sobolev space. For this we need
several definitions.

DEeFINITION 3.1. We denote by Hy=NH and Hy*=\JHS. We provide

S&R SR
Hy(resp. H;~) with the weakest (resp. the strongest) topology such that the

cannonical injection Hy— HS(resp. Hi—Hg=) is continuous for all s R.

DEFINITION 3.2. Let %2 be a non-negative integer. We denote by &4(2)
the vector space of all locally integrable functions u on £ such that

Sekw<5>]¢/;(g)d5<oo for all ¢€9,(Q).

We notice that the intersection of such spaces &%4(2) is &,(2). Moreover
we get

PROPOSITION 3.1. For any nonnegative integer k, EL(2)CC* Q).

PROOF. Let useh() and x<£. Choose ¢=9D,(2) with ¢=1 in a neigh-
borhood of x. Then

(ux0=[eodueas,

since gues L'(R"). Using the inequality for |a| <k,

]S| lalg(l_i_|£])IalSe‘a\alelalm(f)ge'ﬂlalekw(f)

we know that D“(¢u)(x)=§e“x'5>E“(¢Au)($)d§ has finite value for |a|<k. This

means us C* Q).

THEOREM 3.2 (Sobolev imbedding theorem). For s> (n/2)+k, k=N, we
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have HSCEL(R™). Moerover,
2 ID%ullo=Cys pliully  for all usHS.

laisk

L'y

ProoF. Let ueH and ¢=9D,(R™). From lemma 2.8 we have

[ereo 1 guce)i de=(ero® | fu@)|er-vaoag

1/2

<[ {1 gu@y1rag] [ fercroeoae]

<Clgully  for s>g+k
Hence us&ic C*. Furthermore, for |a| <k, we have
[&°a(@)| =& ©e o @n(8)]
A+ IED e @] a)]

PN
The last term is product of L*functions and so (D*u)&) is integrable. By the
Riemann-Lebesgue lemma we get lim D%u(x)=0 and

A

| D*u(x)| =] (Zﬂ)‘"ge“r’@&“ﬁ(é)dél
=g a@lun=Cluly  for all x=R",

which shows the inequality.
We can easily see that HXC&, and lim D%u(x)=0 for every a=N" and

1T |00

usHZ. Moreover we have
PRrROPOSITION 3.3. &,CH;™.

PROOF. Let u=é&,. According to the Paley-Wiener type theorem, we can
find some constant A>0 and C; such that |#(&)| < C e**®, £ R*. Thus we have

Sezsw(é) ] 72(5) [ deg C%Sez(s-i-i)w(é)dé

§C§<1+|51>2<s+*>ds<oo
if s4+A<—(u/2). That is, u is in such HS and Hj;>.

COLLARY 3.4. If ¢&S,, then the multiplication operator Ty, given by Tyu
=¢u, is a bounded linear operator on HS for all s€R.

DEFINITION 3.3. We denote by H&(8) the closure of 9,(2) in the HS-norm
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for every s=R.

THEOREM 3.5 (Trace Theorem). If usHY(Q) for some s>n/2, then u=0
on 08.

ProOOF. If s>n/2 and u=H(2), then there is a sequence {u,} of functions
in 9,(Q) such that u, converges to u in Hi. According to Sobolev imbedding
theorm,

sup |u(x)|=sup |(u—u)(x)| Ssuplu—u| SCellun—ul?
reof ol 2

for all n=1, 2, ---. Hence u=0 on 90%2.

THEOREM 3.6 (Rellich’s compactness theorem). If £ is bounded open in R™
and t<s, the inclusion map from HER) into HE is compact

PROOF. Let {u;} be a bounded sequence in H&(2) and let X be a local unit
for 9. Then

e D 0,8 ége*“‘e"”‘“ [HE—n) e [a:(n)|dy
é[ggzs(w(é)~w(n)) 12(5_7]” 2d77i|1/2ligezsw(r,) | ﬁk(ﬂ>|2d”]”2

<C,<

for some constant C,, independent of & and k. In a similar way we have
e**®| D.7,(&)|<C, for some constant C, independent of & and 2. We now
claim that ¢**®#,(&) is an equicontinuous sequence of functions on any compact
set. Let K be any given compact subset of R” and C,=sup{e'*'*®: £ B0, R)}
where R:fgg“xl]. Then |7,(8)|£Ce™*¢®<LC,Cy and | D;61(8)| < C,C, for all
€ in K and all positive integer k. From the uniform continuity of ¢**¢> on K,
we can find, for each >0, a constant 8, such that |§—x]| <0, implies |e**®>—
et | <g/2C,C,. On the other hand, we have, from the mean value theorem,

|24 @— ()| < 5 18—, | Dtal&+6(n—8)]

=Cillg—nll

for some constant Cj and for all £=1, 2, --- and &, =K. Hence, for each ¢>0
there is a constant §,>0 such that |é—x|<d,, & n<K imply the inequality
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l@4(&)—ar(n)| <e/2C3C;. Choosing & = min {4,, d:}, we have |e%® ,(&) —
e P ay()| P 2u(E)—ax(n) |+ *© —e50 | |2,(n)| <e, provided that |&—
7| <0 and &, p<K, which shows our claim. Since {e’*®q,(8)} is a pointwise
bounded sequence on K, the Arzela-Ascoli theorem gives a subsequence
{ese©g, A&} converging uniformly on each compact sets in R”. Now, for each
real number R>0, we have

I L G [ R GILFE
=[ere-ve oo, —a, o) rae
| el a1

+2¢ma(] 4 R)W-S)S Rezsw(g) Wl — 2 )(8)|°dS

Isiz

ég RQZSw(E) I (ﬁki_ﬁkj)(e)l2d§+C62(s<s)a(l+R)2(t—s)
1§1s

for some constant C. The last inequality follows from the boundedness of
{us} in H(D). Now, given e>0, we can take R so large that Ce2¢-9a(1+
R)*™9<e/2. The uniform convergence on B(0, R) of the subsequence
e**®q, (§) then gives a constant M such that k;, k;=M imply

g ezsw(‘:)]@k¢<§)_ﬂkj($)[2<5/2'
1§1sR

Therefore, {u:,;} is a convergent subsequence of u, in H{.
We remark that this theorem is not true when t=s.
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