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SPACES OF BEURLING TYPE
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1. Introduction

In this paper we extend the concept of Sobolev spaces to the generalized

distribution spaces of Beurling type and investigate the Sobolev imbedding

theorem, the Rellich's compactness theorem and etc on these generalized Sobolev

spaces.

For this purpose we brieflyintroduce the basic spaces and theories which

we need in this paper. The reader can find the details in [3]. Let
<MC
the

set of all continuous real valued functions w on Rn which satisfiesthe follow-

ing conditions:

(a) 0=<o(0)<(d(£+v)^(o(£)+(o(v),£,v^Rn.

Q9)

00

! *>(?)

tf≪(l+lll)re+1
d£<co

<y(£)^a+&log(l+ III) for some constants a and b>0.

(5) <y(£)is radial.

With the weight functions a)in 3ic and open set Q in Rn Bjorck defines

<Dm(Q) the set of all <j>in L＼Rn) such that 0 has compact support in Q and

hh=＼
Rn＼^)＼eiw^d$<co

for all ^>0. The space 2)^(0) equipped with the inductive limit topology, as

2){Q), is Frechet and we call ^{Q), the dual of WJ^Q), the Beurling's gener-

alized distributionspace. They denote by GJ^Q) the set of all complex valued

functions <p in Q such that <ptj>^.S)S.Q')for all <f><E.3)w(Q)and the topology is

given by the semi-norms ||0</>IUfor every X>0 and every <j)in WJ^Q). The

dual space e'J^Q) of the space Sa{Q) can be identified with the set of all ele-

ments of 3)'a>(Q)which have compact support contained in Q. They also extend

the Schwartz space denoting by Sw the space of all C°°-function(j>in L＼Rn)

with the property that for each multi-index a and each non-negative number A
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Pa. j(0)= sup elmw IDa$(x)] < co

n≪.^)=supe'"<*>|£>a#£)|<oo

and S'ojthe dual space of the space Sw. Most theorems in the distributionspace

can be extended in this generalized distribution spaces. For example, we have

the following Paley-Wiener type theorem which can be founded in [3] ;

Theorem. Let K be a compact convex set in Rn with support function H.

If F is an entire function of n-complex variables C=H-Z7/=(G, ･･･, £≫),the fol-

lowing three conditions are equivalent:

( i) For each A~>0and each s>0 there exists a constant C;,s such that for

every v^Rn.

f ＼F($+iV)＼e^d^Cx,seH^+^^
JRn

c=

(iii) For each X>0 and each s>0 there existsa constant Cx,s such that for

(iii) F(Q =
f

ne-i<x-°0(x)dx
for some <ft^3)JiK).

Moreover, the Fourier transform is isomorphic on the space Sw and S'm.

According to the definitionsof the above spaces we may assume b=l in

the condition (y) of (v<=JMc, since it does not effect the size of the spaces.

Throughout this paper we assume that the weight function oj satisfiesthe con-

dition (r) with b=l.

2. Generalized Sobolev Spaces

Since the Beurling's generalized distribution space with weight function

<y(£)=log(l+l£|)is exactly the distributionspace, we naturally define the gener-

alized Sobolev space as follows:

Definition 2.1. For s<=R, we denote by HI the set of all generalized

distributions u^SL such that

ii≪n?=[J
1/2

We call H£,the generalized <a-Sobolev space of order s or simply o>-Sobolev

space of order s.



v<=Hz'|<w, v>＼£＼＼u＼＼f＼＼v＼＼≫st u =H*,
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From the definition we can easily see that Sm is contained in H& for all

szeR; H2,=L＼Rn), H'aH^ for s£0 and H'Z)H' for s^O. m=Hs when cd($)

=log(l+|$|).

Theorem 2.2. HI is a Hilbert space with inner product given by (u, v)f=

Je2S(0^(|)z>(f)d£.

Proof. It is clearlyan inner product on El and the completeness follows

from the Proposition2.2.2and Theorem 2.2.3in [3].

As we mentioned before,El―E^ when the weight function <≪(£)=log(l+

III).

Theorem 2.2. Scois densein HI for alls^R.

Proof. Since S)mis dense in C%, C" is dense in L2(e2Sa)(fM|)and WmcSa>

ClV8({)(ff), Sw is dense in L＼elsa>^d£).From the fact that Fourier trans-

form is isomorphism on S^ the theorem follows.

Corollary 2.3. HidH^ for t>s, the inclusion is continuous and has dense

image.

From the fact that for multi-index a

＼lJwlls―lal=='- IIwI＼s} U^―lJu)

we have

Corollary 2.4. The differentialDa is a continuous linear operator from

to H£~]al.

To find the relationbetween H& and H^s. We definethe pairing

<m, 0>=m(^) for u<ES'm and jJg^.

Then we can easily get the following.

Lemma 2.5. For u^H£>, The conjugate linear functional(u, ･> on S^ extends

uniquely to a conjugate linear functional on Hzs satisfying

(i) <m, v>=(27c)-n[a(Sm)d$

(ii)

(iii)
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r _
Proof. For ue.H£, the map v＼->(27tyn＼u(!-)v(£)dt; is a continuous conjugate

linear functional, since

I(2;r)-Bf≪(£)*>(£)</£[^{2rcYn^s^ | fl(S)|'d*)'"^*-"^ ＼v(£)12d£)in

― /O-N-nll,.||cu|!7;||a>―＼6K) IIMllsIIu＼＼-s･

The remaining results follow from the density of Sm in H^s.

Theorem 2.6. The pairing <-, ■>identifies Hms isometrically with the an-

tidual of HI. If u^S}'w, then u^Hl if and only if there is a constant c such

that ＼u($)＼^Lc＼＼$＼＼-sfor (j><^£)m. Moreover, the best value of c is ＼＼u＼＼f.

Proof. Let *(H') be the antidual of HI. Define G: H^*(H£) by

G(v)(u)=(v, u>=(2nyn＼mmd$.

From lemma 2.5 (ii) we have ||G(v)||^||v||!!!,for all v(eH^s, which implies ||G||^1.

On the other hand, if G(v)=0, G(v)(u)=<v, u>=(27:yn＼v(%)u(%)d£=Q for all kg

So,. Therefore v=0 as a point of So,,and hence v=0 as a point of H~s. To

show the surjectivity of G, for w<E:*(H£),there is a w1^Hsa> due to the Riesz

representation theorem such that w{u)=(wi, u)f for all u in H£. Since 0―

＼e2sa)C?)#i(£)$(£)d£*s a continuous linear functional on Sm, there is a distribution

w2<=Hus such that w2(^)=e2S(u^w1^) a.e. Then we have

w (u) =(wlf u)f^{2zYn[e2s<u^wmu^)d^

=(27r)-n[e*sa>^e-2Sa>^w2($)u(&dZ

=<w2, uy=G(w2)(u) for all u ih H^,

that is, w-―G{w2). To show the isometry, let v<=H~s and put u<=H£ such that

u(%)=e-2sa>^i>($)a.e. Then

G(v)(M)=(2ff)-≫J e-2Sa^|D(£)|2^

= [IMM2=Mlf!M!V

Therefore, ||G(v)||^IMI-s,which means ||G||^1. Hence G is an isometry and

so G is an isometric isomorphism from H^s onto *(i/<2).

In order to show the last statement, let ugH£. Then, by the above identi-

fication,we have
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which Is required. Conversely, if i/e^i and |w(0)| ^c||0||_s for all $^2)a,T

then the map 0|->m(0) extends to an element <m, ･> of *(H^S) with norm <;c.

Thus there is a unique wei/J such that G(w)(<f))=(w, ^>=m(^)=<m, 0>. This

shnws ij=ziji

Corollary 2.7. Let A: W^-^S)^ be a linear map. Then A extends uniquely

to a continuous linear map A: Hi>-±Hl if and only if ＼(Au)(v)＼f^c＼＼u＼＼<i＼＼v＼＼QLtfor

u, v^£>w, for some constant c. Moreover, the best value of c is the norm ＼＼A＼＼

of the linear operator A: Hl-^Hi.

Proof. If me^ and Au^Hi, we have, from

KAu,v)＼^＼＼Au＼＼t＼＼vT-i^＼＼A＼＼＼＼u＼＼t＼＼v＼＼m-t for u,v<=S)m.

from the density of £)w.

theorem 2.6, |C4k)(i;)| =

The converse is obvious

Definition 2.2. If Q is an open subset of Rn and s^R, then we define

H£l0C(Q)=}u<=&,(£):6u(=H' for all6t=ga(Q)}.

Lemma 2.8. // 0eA≪ and u^HS,, then ^>u^H^.

Proof. By the Minkowski inequality,we have

||0W||? = /(* /＼ ＼l/2(Jeif-cft|^M≪)|2^)

(＼e>sa>^[(2xrn^(Vm-V)dVJd%)m

^(27r)-*'2f|$(V)|(f |m-y)12e2s^d$)md7]

(27T)-n/2

(2tt)-"/2

(J

(i

＼^{y])＼eso>^dr^([＼u^-r])＼2e2sa>^-^di)112 if s^O

=(27r)-re/2||0||lslN|r<^,which shows <j)u^H^

Theorem 2.9. // P{x, D)= S aa(x)Da with aa(ESm{Q), then P(x, D) is
laism

continuouslinear map from Hl＼0C(Q)into Hl＼Sc{Q).

Proof. Let u<=HlXoc and ^^3)m.

neighborhood of supp(<£). Then we

Choose 1 in £)m{R)such that 1=1 on a

get the result from corollary 2.4 and
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Next we give some examples.

Example.
(1)

(2)

(3)

dx is an element of H^ for any s<―(n/2).

Da8x is an element of #<T|a| for s<-(n/2).

On /?,the characteristicfunction u(x)=l(_1 n is an element of Hi

when s^O.

3. Imbedding Theorem and Compactness

In thissection we extend the Sobolev imbedding theorem and Rellich's

compactness theorem to the generalized Sobolev space. For this we need

several definitions.

Definition 3.1. We denote by H%=r＼H£ and H^=＼JH^. We provide

i/£(resp. Hzx) with the weakest (resp. the strongest) topology such that the

cannonical injection H^-^H^(resp. H£,-*Ha°°)is continuous for all s^R.

Definition 3.2. Let k be a non-negative integer. We denote by ekm(Q)

the vector space of alllocally integrable functions u on Q such that

＼eka>&＼$u($)d£<oo
for all <p^2)m(Q).

We notice that the intersection of such spaces Skw{Q) is e^Q). Moreover

we get

Proposition 3.1. For any nonnegative integer k, <Si(Q)(ZCk(Q).

Proof. Let u<E.ekm(Q)and x(=Q. Choose <j)<=0m{Q) with 0=1 in a neigh-

borhood of x. Then

(^u)(x)=fe≪*-≪>^(c^,

since 0u&L＼Rn). Using the inequality for ＼a＼^k,

!6l|a|^(l+!H)la'^e~a|a|gmffl(f)^0~a|a|0ftaKO

we know that Da($u)(x)=[ei<x-*>£a(t$u)(£)d£has finite value for ＼a＼^k. This

means weC*(i2).

Theorem 3.2 (Sobolev imbedding theorem). For s>(n/2)Jrk, k(=N, we
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have H^c.ei(Rn). Moerover,

E ＼＼Dau＼＼^Cs,k＼＼u＼＼ffor all wei/'.
＼a＼sk

Proof. Let M6i/i and 6^2)m{Rn). From lemma 2.8 we have

J J

rr
^ /s

ii/2rr * ni/2

^C＼＼0u＼＼? for s>j + k

Hence ≪£<?tcCs. Furthermore, for ＼a＼^k, we have

|f*ft(£)|= |£ae"'fflC≪Va'(f)fl(£)|

^(l+iei)*'V-≪J|ft(≪|
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The last term is product of L2-functions and so (Dffw)(£)is integrable. By the

Riemann-Lebesgue lemma we get lim Dau(x)=0 and

＼Dau(x)＼= ＼(27tyn[ei<x-^au(^d^＼

£＼＼£aa(G)hi^C＼＼u＼＼t for all xeF,

which shows the inequality.

We can easily see that H^d<S(0 and

u^H . Moreover we have

Proposition 3.3. eLciH-00.

lim Dau(x)=O for every a<=Nn and

Proof. Let we^. According to the Paley-Wiener type theorem, we can

find some constant X>0 and Cx such that |m(S)I£CxeXa*s＼£ei?＼ Thus we have

^cj(l+|£|)2(*+^£<co

if s + /l<―(m/2). That is, u is in such H%, and H~°°.

Collary 3.4. // ^g^So), then the multiplicationoperator T^, given by T$u

=6u, is a bounded linear operator on H^ for all s^R.

Definition 3.3. We denote by H£(Q) the closure of &JQ) in the ffi-norm
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for every s^R.

Theorem 3.5(Trace Theorem). // u^Hl(Q) for some s>n/2, then w=0

on dQ.

Proof. If s>n/2 and u<=Hl{Q), then there is a sequence {un＼ of functions

in 3)W{Q) such that un converges to u in H^. According to Sobolev imbedding

theorm,

SUP |ll(x)＼= SUP ＼(U―Un)(x)＼^SUp| U~ Un＼^ C s＼＼Un ―U ＼t
xedQ xedQ Q

for all n = 1. 2. ■･･. Hence u=0 on dQ

Theorem 3.6 (Rellich's compactness theorem). // Q is bounded open in Rn

and t<s, the inclusion map from Hl(Q) into Hi is compact

Proof. Let {uk} be a bounded sequence in H£(Q) and let 1 be a local unit

for Q. Then

e'a>(l)|fi*(^)|^fe'0'^-"BC')|Z(^-57)|e*0'c')|fi*(57)|d57

SI

L*s(o>&-<ow^x(g-v)＼2dr]Y2＼[e2sa>^＼uk(r])＼2d7]~]1
*

UkWs
＼＼e2ls^-^＼X(£-r])＼*dy]＼

^C:<oo

for some constant Cu independent of | and k. In a similar way we have

etm<-^＼Djuk{^)＼^Ci for some constant C2, independent of | and &. We now

claim that esa>a:>uk{^)is an equicontinuous sequence of functions on any compact

set. Let Kbe any given compact subset of Rn and C3=sup{e|S|<uc4):£e£(0, /?)}

where i?=sup||x||. Then |fi*(^)|̂C1e-s"cf)^C2C3 and ＼DjUk(£)＼̂C2C3 for all

% in K and all positive integer k. From the uniform continuity of esa)(-ôn i^C,

we can find, for each e>0, a constant dx such that ＼^―rj＼<d1implies |esa)^―

gs^c^s|<£/2CiC3. On the other hand, we have, from the mean value theorem,

＼uk^)-uk(V)＼£^＼^-Vj＼＼DjUk^+d(V-^)＼

for some constant C'z and for all &=1, 2, ･･･and £,57gI Hence, for each s>0

there is a constant 52>0 such that |£―w|^d2, £,we/T imply the inequality
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|0*(£)-≪*O?)I <s/2C'2Cs. Choosing 8 = min {3U d2}, we have ＼esw&{tk($)-

esm^uk(7})＼^esm^＼uk($)-uk(7})＼ + ＼esa>^-~esa>c^＼＼uk(r})＼<£,provided that |£-

7]＼<8 and $, t]^K, which shows our claim. Since {esa>(-^uk(%)} is a pointwise

bounded sequence on K, the Arzela-Ascoli theorem gives a subsequence

[esa)&uk;.(|)} converging uniformly on each compact sets in Rn. Now, for each

real number R>0, we have

(.＼＼ukt-ukJ＼＼ry=＼e"≫≪>＼(iiki-{ikJm＼*d$

^[ e2sa>^＼(iiki-ukM)＼*d%

_j_g2a-S)aQ_|_^2(£-S)

4

ils/s^)|(^-^)(^

＼

^/s^＼{uk-ukjm＼^d^

for some constant C. The last inequality follows from the boundedness of

{uk} in fl&Q). Now, given s>0, we can take R so large that Ce2cf~s)a(l+

i?)2C£'s)<e/2.The uniform convergence on B(Q, R) of the subsequence

esaK^u,,l£)then srivesa constant M such that kitk<>M imply

f
e*s≫^＼iiki(£)-ukjmz<e/2.

Therefore, {ukj＼is a convergent subsequence of uk in Hi.

We remark that this theorem is not true when t=s.
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