ON THE SUM OF DIGITS OF PRIMES IN IMAGINARY QUADRATIC FIELDS

$B y$
Ryuji Kaneiwa and Iekata Shiokawa

1. Introduction. Let $r \geqq 2$ be a fixed integer. Any positive integer n can be uniquely written in the form

$$
\begin{equation*}
n=\sum_{j=1}^{k} a_{j} r^{k-j}=a_{1} a_{2} \cdots a_{k} \tag{1}
\end{equation*}
$$

where each a_{j} is one of $0,1, \cdots, r-1$ and

$$
\begin{equation*}
k=k(n)=\left[\frac{\log n}{\log r}\right]+1 \tag{2}
\end{equation*}
$$

where $[u]$ is the integral part of the real number u. We put

$$
s(n)=\sum_{j=1}^{k} a_{j}
$$

I. Kátai [1] proved, assuming the validity of density hypothesis for the Riemann zeta function, that

$$
\sum_{p \leq x} s(p)=\frac{r-1}{2 \log r} x+O\left(\frac{x}{(\log \log x)^{1 / 3}}\right)
$$

where in the sum p runs through the prime numbers. The second-named author [6] proved, without any hypothesis, the result of Kátai with an improved remainder term

$$
\begin{equation*}
O\left(x\left(\frac{\log \log x}{\log x}\right)^{1 / 2}\right) \tag{3}
\end{equation*}
$$

His method is to appeal to a simple combinatorial inequality (see Lemma in §4), and the deepest result on which he depends is the prime number theorem in a weak form

$$
\begin{equation*}
\sum_{p \leq x} 1=\frac{x}{\log x}+O\left(\frac{x}{(\log x)^{2}}\right) \tag{4}
\end{equation*}
$$

E. Heppner [2] independently proved a more general result by making use of a Chebyshev's inequality to the sum of independent random variables (cf. [5] p. 387, Theorem 2): Let B be a set of positive integers such that

$$
\log \frac{x}{B(x)}=o(\log x)
$$

where

$$
B(x)=\sum_{\substack{n \leq x \\ n \in B}} 1 .
$$

Then

$$
\sum_{\substack{n \leq x \\ n \leq B}} s(n)=\frac{r-1}{2} \frac{\log x}{\log r} B(x)\left(1+O\left(\left(\frac{\log \log x+\log \frac{x}{B(x)}}{\log x}\right)^{1 / 2}\right) .\right.
$$

This together with (4) implies (3).
In the present paper we shall show that the estimate (3) is also valid. in some sense, for primes in each imaginary quadratic field $\boldsymbol{Q}(\sqrt{-m})$, where m is any positive square free integer.
2. Representation of integers in $Q(\sqrt{-m})$ in the scalle of r. Let 0 be the ring of all integers in $Q(\sqrt{-m})$. Any $\alpha \in \mathfrak{0}$ can be expressed in a unique way as

$$
\alpha=a+b \omega \quad(a, b \subseteq \mathbb{Z}),
$$

where

$$
\omega=\left\{\begin{array}{llll}
\sqrt{-m} & \text { if } & -m \equiv 2,3 & (\bmod 4), \\
\frac{1+\sqrt{-m}}{2} & \text { if } & -m \equiv 1 \quad(\bmod 4),
\end{array}\right.
$$

and \mathbb{Z} denotes as usual the set of all rational integers. So by means of the expessions

$$
|a|=a_{1} a_{2} \cdots a_{k(|a|)}, \quad|b|=b_{1} b_{2} \cdots b_{k(\mid b))}
$$

given by (1), we can define coordinatewisely the representation of $\alpha \Xi_{0}$ in the scale of r; i.e.

$$
\begin{equation*}
\alpha=\sum_{j=1}^{k} \alpha_{j} r^{k-j}=\alpha_{1} \alpha_{2} \cdots \alpha_{k}, \tag{5}
\end{equation*}
$$

where

$$
\begin{align*}
& k=k(\alpha)=\max \{k(|a|), k(|b|)\}, \quad k(0)=1, \tag{6}\\
& \alpha_{j}=\operatorname{sgn}(a) a_{j}+\operatorname{sgn}(b) b_{j} \omega,
\end{align*}
$$

and $\operatorname{sgn}(c)=c /|c|$ if $c \neq 0,=0$ otherwise. We define

$$
s(\alpha)=\sum_{j=1}^{k} \alpha_{j}
$$

We write

$$
A_{1}=\{a+b \omega \mid a, b \in Z ; a \geqq 0, b \geqq 0\},
$$

$$
\begin{aligned}
\mathcal{A}_{2} & =\left\{-a+b \omega \mid a+b \omega \in \mathcal{A}_{1}\right\}, \\
\mathcal{A}_{3} & =\left\{-a-b \omega \mid a+b \omega \in \mathcal{A}_{1}\right\}, \\
\mathcal{A}_{4} & =\left\{a-b \omega \mid a+b \omega \in \mathcal{A}_{1}\right\},
\end{aligned}
$$

so that $\mathrm{n}=\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \mathcal{A}_{3} \cup \mathcal{A}_{4}$. We denote by \mathscr{B}_{i} the set of all 'digits' α_{j} needed for the expressions (5) of all $\alpha \in \mathcal{A}_{j}$. Then

$$
\begin{aligned}
& \mathscr{B}_{1}=\{c+d \omega \mid c, d=0,1, \cdots, r-1\}, \\
& \mathscr{B}_{2}=\left\{-c+d \omega \mid c+d \omega \in \mathscr{B}_{1}\right\}, \\
& \mathscr{B}_{3}=\left\{-c-d \omega \mid c+d \omega \in \mathscr{B}_{1}\right\}, \\
& \mathscr{B}_{4}=\left\{c-d \omega \mid c+d \omega \in \mathscr{B}_{1}\right\},
\end{aligned}
$$

and card $\mathscr{B}_{i}=r^{2}(1 \leqq i \leqq 4)$. So we may say that the r-adic expression (5) of $\alpha \in \mathfrak{D}$ is a kind of representation in the scale of r^{2}. For any fixed $\beta \in \mathscr{B}_{i}$ we denote by $F(\alpha, \beta)$ the number of β appearing in the expression (5) of an integer $\alpha \in \mathcal{A}$. By definition

$$
\begin{equation*}
s(\alpha)=\sum_{\beta \in \Re_{i}} \beta F(\alpha, \beta) \quad(\alpha \in \mathcal{A}) \tag{7}
\end{equation*}
$$

and

$$
\begin{align*}
& F(a+b \omega, c+d \omega)=F(-a+b \omega,-c+d \omega) \tag{8}\\
& \quad=F(-a-b \omega,-c-d \omega)=F(a-b \omega, c-d \omega) \quad(a, b \in \boldsymbol{Z}) .
\end{align*}
$$

The norm of $\alpha=a+b \omega \in \mathbb{0}$ is a rational integer

$$
N(\alpha)=\left\{\begin{array}{lll}
a^{2}+m b^{2} & \text { if }-m \equiv 2,3 & (\bmod 4) \\
a^{2}+a b+\frac{m+1}{4} b^{2} & \text { if }-m \equiv 1 \quad(\bmod 4)
\end{array}\right.
$$

so that for $\alpha \neq 0$

$$
\begin{equation*}
\left|k(\alpha)-\frac{\log N(\alpha)}{2 \log r}\right| \leqq c_{1} \tag{9}
\end{equation*}
$$

where c_{1} is"a constant depending only on m, since by definition

$$
\left|k(a)-\frac{\max (\log |a|, \log |b|)}{\log r}\right| \leqq 1
$$

(we mean that $\max (\log 0, x)=x)$ and

$$
\begin{aligned}
& \left|2 \max ^{\prime \prime}(\log |a|, \log |b|)-\log N(\alpha)\right| \\
& \leqq\left\{\begin{array}{lll}
\log (1+m) & \text { if }-m \equiv 2,3(\bmod 4), \\
\log \left(2+\frac{m+1}{4}\right) & \text { if }-m \equiv 1 \quad(\bmod 4) .
\end{array}\right.
\end{aligned}
$$

3. A prime number theorem (A. Mitsui [3], [4]). An integer $\alpha \in \mathfrak{0}$ is said to be prime if (α) is an prime ideal in $Q(\sqrt{ }-m)$. Let θ_{1}, θ_{2} be two real numbers such that $0 \leqq \theta_{1}<\theta_{2} \leqq 2 \pi$. Then

$$
\begin{align*}
& \sum_{\substack{d_{i}, \dot{p r i m e} \\
\theta_{1} \leqslant \cos , x \\
\theta_{1} \arg \alpha \leqslant \theta_{2}}} 1=\frac{\left(\theta_{2}-\theta_{1}\right) w}{2 \pi h} \int_{2}^{x} \frac{d t}{\log t} \tag{10}\\
& \quad+O\left(x \exp \left(-c_{2}(\log x)^{3 / 5}(\log \log x)^{-1 / 5}\right)\right)
\end{align*}
$$

where h is the class number of $Q(\sqrt{-m})$ and

$$
w= \begin{cases}4 & \text { if } \quad m=1 \\ 6 & \text { if } m=3 \\ 2 & \text { otherwise }\end{cases}
$$

We note that a weaker estimate $O\left(x /(\log x)^{2}\right)$ is sufficient for the proof of our theorem.
4. A combinatorial lemma (I. Shiokawa [6]). Let $\beta_{1}, \cdots, \beta_{g}$ be given g symbols and let A^{j} be the set of all sequences of these symbols of length $j \geqq 1$. Denote by $F_{j}(\alpha, \beta)$ the number of any fixed symbol β appearing in a sequence $\alpha \in A^{j}$. Then for any ε with $0<\varepsilon<1 / 2$ there exist a positive integer j_{0} independent of ε such that the number of sequences $\alpha \in A^{j}$ satisfying

$$
\left|F_{j}(\alpha, \beta)-\frac{j}{g}\right|>j^{1 / 2+\varepsilon}
$$

is less that $j g^{j} \exp \left(-c_{3} j^{2 s}\right)$ for all $j \geqq j_{0}$, where c_{3} is an absolute constant.
5. Theorem. Let $\varphi_{1}=0, \varphi_{5}=2 \pi, \varphi_{2}=\arg \omega, \varphi_{3}=\pi$, and $\varphi_{4}=\varphi_{2}+\pi$. Then for any θ_{1}, θ_{2} satisfying $\varphi_{j} \leqq \theta_{1}<\theta_{2} \leqq \varphi_{j+1}$ for some j we have

$$
\begin{align*}
& \sum_{\substack{\alpha, \operatorname{prime} \\
\text { ond } \\
\theta_{1} \operatorname{sarg} \alpha, x \leq \theta_{2}}} s(\alpha)=\frac{\left(\theta_{2}-\theta_{1}\right) w}{2 \pi h} \frac{(r-1)}{4 \log r} \lambda_{j} x \tag{11}\\
& +O\left(x\left(\frac{\log \log x}{\log x}\right)^{1 / 2}\right),
\end{align*}
$$

where

$$
\lambda_{j}=\left\{\begin{array}{rll}
1+\omega & \text { if } j=1, \\
-1+\omega & \text { if } & j=2, \\
-1-\omega & \text { if } & j=3, \\
1-\omega & \text { if } j=4,
\end{array}\right.
$$

and the O-constant depends at most on r and m.
6. Proof of Theorem. By (7) and (8) we may assume $j=1$. We define for $\alpha \in \mathcal{A}_{1}$ and $\beta \in \mathscr{B}_{1}$

$$
\begin{equation*}
D(\alpha, \beta)=\left|F(\alpha, \beta)-\frac{k(\alpha)}{r^{2}}\right| . \tag{12}
\end{equation*}
$$

Put for brevity

$$
\mathcal{C}(x)=\left\{\alpha \in \mathfrak{v} \mid \alpha: \text { prime, } N(\alpha) \leqq x, \theta_{1} \leqq \arg \alpha \leqq \theta_{2}\right\} .
$$

Then ${ }^{\text {W }}$ by (7) and (12)

$$
\begin{align*}
\sum_{\alpha \in \mathcal{C}(x)} s(\alpha) & =\sum_{\beta \in \mathscr{P}_{1}} \beta_{\alpha \in \mathcal{U}(x)} F(\alpha, \beta) \tag{13}\\
& =\frac{r-1}{2} \lambda_{1} \sum_{\alpha \in \mathcal{L}(x)} k(\alpha)+O\left(\sum_{\beta \in: B_{1}} \sum_{\alpha \in \zeta(x)} D(\alpha, \beta)\right) .
\end{align*}
$$

By (9) and (10) we have

$$
\begin{equation*}
\sum_{\alpha \in \mathcal{C}(x)} k(\alpha)=\frac{\left(\theta_{2}-\theta_{1}\right) w}{2 \pi h} \frac{x}{2 \log r}+O\left(\frac{x}{\log x}\right) . \tag{14}
\end{equation*}
$$

Put $D(\alpha)=D\left(\alpha, \beta_{0}\right)$, where β_{0} is any fixed integer in \mathscr{B}_{1}. We have from (9),
(10), and (12)

$$
\begin{align*}
& \sum_{x \in \mathcal{C}(\alpha)} D(\alpha) \leqq \sum_{\alpha \in \mathcal{C}(x)} k(\alpha)^{1 / 2+\varepsilon}+\sum_{\substack{\alpha \\
D \in C(x) \\
D(\alpha)>k(\alpha)^{1 / 2}+\varepsilon}} D(\alpha) \tag{15}\\
& =O\left(\sum_{\alpha \in \mathcal{C}(x)}(\log N(\alpha))^{1 / 2+s}\right)=O\left(\sum_{\substack{\alpha \in \sum_{i=1} \\
N\left(\alpha, \sum_{1} \\
D(\alpha)>(\alpha) 12+\mathrm{s}\right.}} D(\alpha)\right. \\
& \left.=O(x \log x)^{\varepsilon-1 / 2}\right)+O\left(\log x \underset{\substack{\alpha \in \mathcal{\mu _ { 1 }} \\
N(x) x \\
D(\alpha)>k(\alpha)^{1 / 2+\varepsilon}}}{ } 1\right) .
\end{align*}
$$

Besides, using (9),
where

$$
l(x)=\frac{\log x}{2 \log r}+c_{1} .
$$

Applying now the lemma in $\S 4$ with $g=r^{2}$ and $A^{1}=\mathscr{B}_{1}$, we get

$$
\sum_{\substack{\alpha \in \mathcal{\mathcal { A } _ { 1 }} \\ k, j \\ k(\alpha) \gg j^{1 / 2+\varepsilon}}} 1<j r^{2 j} \exp \left(-c_{3} j^{2 \varepsilon}\right)
$$

for all $j \geqq j_{0}$, which leads to

$$
\begin{equation*}
\sum_{\substack{\alpha \in \mathcal{M} l_{1} \\ N \\ D(\alpha)>k \in(x) 1 / 2+\varepsilon}} 1=O(1)+\sum_{j_{0}<j \leq l(x)} j r^{2 j} \exp \left(-c_{3} j^{2 s}\right) \tag{16}
\end{equation*}
$$

$$
\begin{aligned}
& =O(1)+\sum_{j_{0}<j \leq l(x) / 2}+\sum_{l(x) / 2<j \leq l(x)} \\
& =O\left(x(\log x)^{2} \exp \left(-\frac{c_{3}}{4}\left(\frac{\log x}{\log r}\right)^{2 \varepsilon}\right)\right) .
\end{aligned}
$$

where the O-constant is uniform in ε.
If we take a constant $c_{4}=c_{4}(r)$ large enough and choose $\varepsilon=\varepsilon(x, r)$ with $0<\varepsilon<1 / 2$ in such a way that

$$
(\log x)^{2 \varepsilon}=c_{4} \log \log x
$$

we obtain from (15) and (16)

$$
\sum_{\alpha \in \mathcal{C}(x)} D\left(\alpha, \beta_{0}\right)=O\left(x\left(\frac{\log \log x}{\log x}\right)^{1 / 2}\right) .
$$

This together with (13) and (14) yealds the theorem.

References

[1] Kátai, I., On the sum of digits of prime numbers. Ann. Univ. Sci. Budapest Roland Eötvös nom. Sect. Math., 10 (1967), 89-93.
[2] Heppner, E., Über die summe der Ziffern naturlicher Zahlen. Ann. Univ. Sci. Budapest Roland Eötvos nom. Sect. Math., 19 (1976), 41-43.
[3] Mitsui, T., Generalized prime number theorem. Japanese J. Math., 26 (1956), 1-42.
[4] Mitsui, T., Research Institute for Mathematical Sciences Kyoto Univ., "Kokyuroku" 294 (1977), in Japanese.
[5] Rényi, A., Probability Theorey, North-Holland, Amsterdam-London, 1970.
[6] Shiokawa, I., On the sum of digits of prime numbers. Proc. Japan Acad., 50, no. 8 (1974), 551-554.

Ryuji Kaneiwa
Institute of Liberal Arts
Otaru University of Commerce
Otaru, Hokkaido
047 Japan
Iekata Shiokawa
Department of Mathematics
Keio University
Yokohama
223 Japan

