ON THE COMPLETE RELATIVE HOMOLOGY AND COHOMOLOGY OF FROBENIUS EXTENSIONS

By
Takeshi Nozawa

Introduction.

Let G be a finite group, K a subgroup of G and M a left G-module. Then for $r \in \boldsymbol{Z}$ the complete relative homology group $H_{r}(G, K, M)$ and cohomology group $H^{r}(G, K, M)$ are defined in [6]. Let 1 be the unit element of G. For the case of $K=\{1\} H_{r}(G, K, M) \cong H^{-r-1}(G, K, M)$ holds. But it is not true that for any G, K, M and r there exists an isomorphism from $H_{r}(G, K, M)$ into $H^{-r-1}(G, K, M)$. In fact, in [6, p. 262] there are G, K and M such that $H_{r}(G, K, M) \cong \boldsymbol{Z} / 2 \boldsymbol{Z}$ and $H^{r}(G, K, M)=0$ for all $r \in \boldsymbol{Z}$. And if we set $M=\boldsymbol{Q} / \boldsymbol{Z}$ in [6, p. 262], $H_{r}(G, K, M)=0$ and $H^{r}(G, K, M) \cong \boldsymbol{Z} / 2 \boldsymbol{Z}$ hold for all $r \in \boldsymbol{Z}$.

Let Λ be an algebra over a commutative ring K and Γ a subalgebra such that the ring extension A / Γ is a Frobenius extension. In section 1 we shall introduce the complete relative cohomology group $H^{r}(\Lambda, \Gamma,-)$ and homology group $H_{r}(\Lambda, \Gamma,-)$ for $r \in Z$. When the ring extension Γ / K is also a Frobenius extension, We can define a K-homomorphism $\Psi_{A / \Gamma}^{r}: H_{r}\left(\Lambda, \Gamma,(-)^{\Delta}\right) \rightarrow$ $H^{-r-1}(\Lambda, \Gamma,-)$ for $r \in \mathbb{Z}$, where Δ is the Nakayama automorphism. The main purpose of this paper is to show necessary and sufficient conditions on which $\Psi_{1 / \Gamma}^{r}$ is an isomorphism. Theorems $6.3,7.1$ and 7.2 provide the necessary and sufficient conditions. In section 8 we apply our results to extensions defined by a finite group G and a subgroup K. In generalization of the well-known duality for Tate cohomology we show that $H_{r}(G, K,-) \cong H^{-r-1}(G, K,-)$ if and only if K is a Hall subgroup of G.

1. Complete relative homology.

Throughout this paper, let Λ be an algebra over a commutative ring K and Γ a subalgebra such that the ring extension Λ / Γ is a (projective) Frobenius extension in the sense of [9]. Since A / Γ is a Frobenius extension, there exist elements $R_{1}, \cdots, R_{n}, L_{1}, \cdots, L_{n}$ in Λ and a $\Gamma-\Gamma$-homomorphism $H \in \operatorname{Hom}\left(_{\Gamma} \Lambda_{\Gamma}\right.$,
$\left.{ }_{\Gamma} \Gamma_{\Gamma}\right)$ such that $x=\sum_{i=1}^{n} H\left(x R_{i}\right) L_{i}=\sum_{i=1}^{n} R_{i} H\left(L_{i} x\right)$ for all $x \in \Lambda$. The pair (R_{i}, L_{i}) $(1 \leqq i \leqq n)$ and H are called the dual projective pair as in [1] and Frobenius homomorphism of Λ / Γ, respectively. Let Λ° and Γ° be the opposite rings of Λ and Γ, respectively. Put $P=\Lambda \otimes_{K} \Lambda^{\circ}$, and let S be a subring of P which is the image of the natural homomorphism $\Gamma \otimes_{K} \Gamma^{0} \rightarrow P$. Note that the ring extension P / S is a Frobenius extension with the dual projective pair $\left.\left(R_{i} \bigotimes_{K} L_{j}, L_{i} \otimes_{K} R_{j}\right)\right) 1 \leqq i, j \leqq n$) and Frobenius homomorphism $H \otimes_{K} H$.

Regard Λ as a left P-module with the usual way. Then a complete (P, S) resolution of Λ

$$
\begin{equation*}
\cdots \rightarrow X_{r} \xrightarrow{d_{r}} X_{r-1} \rightarrow \cdots \rightarrow X_{1} \xrightarrow{d_{1}} X_{0} \xrightarrow{d_{0}} X_{-1} \xrightarrow{d_{-1}} \cdots \rightarrow X_{-r} \xrightarrow{d_{-r}} X_{-(r+1)} \rightarrow \cdots \tag{1}
\end{equation*}
$$

is a (P, S)-exact sequence with a P-epimorphism ε and a P-monomorphism η such that X_{r} is (P, S)-projective for all $r \in \mathbb{Z}$ and $d_{0}=\eta \circ \varepsilon$ holds. Note that X_{r} is also (P, S)-injective since for (projective) Frobenius extensions of rings, the relative projectivity and injectivity are equivalent by [9, Theorem 7]. Let M be a left P-module. Then we have the following sequence from (1):

$$
\ldots \longleftarrow-\operatorname{Hom}\left({ }_{P} X_{1},{ }_{P} M\right) \stackrel{d_{1}{ }^{*}}{\leftarrow} \operatorname{Hom}\left({ }_{P} X_{0},{ }_{P} M\right) \stackrel{d_{0} *}{\leftarrow} \operatorname{Hom}\left({ }_{P} X_{-1},{ }_{P} M\right) \stackrel{d_{-1} *}{\leftarrow} \cdots,
$$

where we set $d_{r} *(f)=f \circ d_{r}$ for $f \in \operatorname{Hom}\left({ }_{P} X_{r-1},{ }_{P} M\right)$. In [8] the r-th complete cohomology group $H^{r}(\Lambda, \Gamma, M)$ is given by $H^{r}(\Lambda, \Gamma, M)=\operatorname{Ker} d_{r+1}{ }^{*} / \operatorname{Im} d_{r}{ }^{*}$. We regard $H^{r}(\Lambda, \Gamma, M)$ as a K-module with the usual way. Since left P-modules can be regarded as right P-modules, (1) gives the following sequence:

$$
\cdots \longrightarrow X_{1} \otimes_{P} M \xrightarrow{d_{1} \otimes_{P} 1_{M}} X_{0} \otimes_{P} M \xrightarrow{d_{0} \otimes_{P} 1_{M}} X_{-1} \otimes_{P} M \xrightarrow{d_{-1} \otimes_{P} 1_{M}} \cdots .
$$

We define the r-th complete relative homology group $H_{r}(\Lambda, \Gamma, M)$ as $\operatorname{Ker}\left(d_{r} \otimes_{P} 1_{M}\right) / \operatorname{Im}\left(d_{r+1} \otimes_{P} 1_{M}\right)$. Since $X_{r} \otimes_{P} M$ is a K-module, we can regard $H_{r}(\Lambda, \Gamma, M)$ as a K-module.

We now give a complete (P, S)-resolution of Λ, i.e., (2) in [8]:

$$
\begin{align*}
& \cdots \rightarrow X_{r} \xrightarrow{d_{r}} X_{r-1} \rightarrow \cdots \rightarrow X_{1} \xrightarrow{d_{1}} X_{0} \xrightarrow{d_{0}} X_{-1} \xrightarrow{d_{-1}} \cdots \rightarrow X_{-r} \xrightarrow{d_{-r}} X_{-(r+1)} \rightarrow \cdots, \tag{2}\\
& \varepsilon \bigwedge_{\Lambda}
\end{align*}
$$

where $X_{r}=\Lambda \otimes_{\Gamma} \cdots \otimes_{r} \Lambda(r+2$ copies $)$ for $r \geqq 0, X_{-r}=X_{r-1}$ for $r \geqq 1, d_{r}\left(x_{0} \otimes_{r} \cdots\right.$
$\left.\otimes_{\Gamma} x_{r+1}\right)=\sum_{t=0}^{r}(-1)^{t} x_{0} \otimes_{\Gamma} \cdots \otimes_{\Gamma} x_{t} x_{t+1} \otimes_{\Gamma} \cdots \otimes_{\Gamma} x_{r+1}$ for $r \geqq 1, \varepsilon\left(x_{0} \otimes_{\Gamma} x_{1}\right)=x_{0} x_{1}$, $\eta(x)=\sum_{i} R_{i} \otimes_{\Gamma} L_{i} x, d_{0}=\eta \circ \varepsilon, d_{-r}\left(x_{0} \otimes_{\Gamma} \cdots \otimes_{\Gamma} x_{r}\right)=\sum_{t=0}^{r} \sum_{i}(-1)^{t} x_{0} \otimes_{\Gamma} \cdots \otimes_{\Gamma} x_{i-1}$ $\otimes_{\Gamma} R_{i} \otimes_{\Gamma} L_{i} x_{i} \otimes_{\Gamma} \cdots \otimes_{\Gamma} x_{r}$ for $r \geqq 1$.

For the relative complete resolution X of (2) and a left P-module M, we denote the r-cycle module of $X \bigotimes_{P} M$ by $C_{r}^{4 / \Gamma}(M)$, and the r-boundary module of $X \otimes_{P} M$ by $B_{r}^{\Lambda / \Gamma}(M)$. Then we have $H_{r}(\Lambda, \Gamma, M)=C_{r}^{A / \Gamma}(M) / B_{r}^{\Lambda / \Gamma}(M)$. According to the definition of d_{r}, we have

Proposition 1.1. Let M be a left P-module. Then $C_{0}^{A / I}(M), C_{-1}^{A I} I^{\prime}(M)$, $B_{0}^{A / \Gamma}(M)$ and $B_{-1}^{A / \Gamma}(M)$ are K-submodules of $\left(\Lambda \otimes_{\Gamma} \Lambda\right) \otimes_{P} M$ such that $C_{0}^{A / \Gamma}(M)=$ $\left\{\left(1 \otimes_{\Gamma} 1\right) \otimes_{P} m \mid \sum_{i}\left(R_{i} \otimes_{\Gamma} L_{i}\right) \otimes_{P} m=0\right.$ in $\left.\left(\Lambda \otimes_{\Gamma} \Lambda\right) \otimes_{P} M\right\}, C_{-1}^{\Lambda / \Gamma}(M)=\left\{\left(1 \otimes_{\Gamma} 1\right) \otimes_{P} m \mid\right.$ $\Sigma_{i}\left(R_{i} \otimes_{\Gamma} L_{i} \otimes_{\Gamma} 1\right) \otimes_{P} m-\sum_{i}\left(1 \otimes_{\Gamma} R_{i} \otimes_{\Gamma} L_{i}\right) \otimes_{P} m=0 \quad$ in $\left.\quad\left(\Lambda \otimes_{\Gamma} \Lambda \otimes_{\Gamma} \Lambda\right) \otimes_{P} M\right\}$, $B_{0}^{A / \Gamma}(M)=\left\{\left(1 \otimes_{\Gamma} 1\right) \otimes_{P} \Sigma_{t}\left(m_{t} x_{t}-x_{t} m_{t}\right)\right.$ (finite sum) $\mid x_{t} \in A$ and $\left.m_{t} \in M\right\}$ and $B_{-1}^{A \mid} \Gamma^{\prime}(M)$ $=\left\{\Sigma_{i}\left(R_{i} \otimes_{\Gamma} L_{i}\right) \otimes_{p} m \mid m \in M\right\}$.

In the sequel let the ring extension Γ / K be also a Frobenius extension with the dual projective pair $\left(r_{j}, l_{j}\right)$ and Frobenius homomorphism h. Then since ring extensions Λ / Γ and Γ / K are Frobenius extensions, the ring extension Λ / K is also a Frobenius extension with the dual projective pair $\left(R_{i} r_{j}, l_{j} L_{i}\right)$ and Frobenius homomorphism $h_{\circ} H$. Since the natural homomorphisms $K \otimes_{K} K^{0}$ $\rightarrow \Gamma \otimes_{K} \Gamma^{o}$ and $\Gamma \otimes_{K} \Gamma^{0} \rightarrow P$ are monomorphisms and the image of the natural homomorphism $\Gamma \otimes_{K} \Gamma^{0} \rightarrow P$ is the subring S of P, therefore from complete (S, K)-resolutions of Γ we have the complete relative cohomology group $H^{r}(\Gamma, K, M)$ and homology group $H_{r}(\Gamma, K, M)$ for any $r \in \mathbb{Z}$ and any left S module M. Moreover we have the complete (S, K)-resolution of Γ of type (2), and have Proposition 1.1 for it. Similarly we have the complete relative cohomology group $H^{r}(\Lambda, K, M)$ and homology group $H_{r}(\Lambda, K, M)$ from complete (P, K)-resolutions of Λ for any $r \in \boldsymbol{Z}$ and any left P-module M, and have the complete (P, K)-resolution of Λ of type (2).

Since Λ is a Frobenius K-algebra, as in [10] we have the Nakayama automorphism $\Delta: \Lambda \rightarrow \Lambda$ such that $\Delta(x)=\sum_{i, j} h \circ H\left(R_{i} r_{j} x\right) l_{j} L_{i}$ for all $x \in \Lambda$. We denote Δ^{-1} by ∇. Then $\nabla(x)=\sum_{i, j} R_{i} r_{j} h \circ H\left(x l_{j} L_{i}\right)$ holds for all $x \in \Lambda$. Throughout this paper Δ is the Nakayama automorphism of the Frobenius K-algebra Λ and ∇ is Δ^{-1}.

2. The homomorphism $\Psi_{A / \Gamma}$.

Let L and M be left P-modules. Then since P / K is a Frobenius extension with the dual projective pair ($R_{i} r_{j} \otimes_{K} l_{j^{\prime}} L_{i^{\prime}}, l_{j} L_{i} \otimes_{K} R_{i^{\prime}} r_{j^{\prime}}$), we have the trace
map from $\operatorname{Hom}\left({ }_{K} L,{ }_{K} M\right)$ into $\operatorname{Hom}\left({ }_{P} L,{ }_{P} M\right)$ which is defined by trace $f(x)=$ $\sum_{i, j, i^{\prime}, j^{\prime}}\left(R_{i} r_{j} \otimes_{K} l_{j^{\prime}} L_{i^{\prime}}\right) f\left(\left(l_{j} L_{i} \otimes_{K} R_{i^{\prime}} r_{j^{\prime}}\right) x\right)$ for $x \in L$, where we denote the image of $f \in \operatorname{Hom}\left({ }_{K} L,{ }_{K} M\right)$ by trace f as in [9, section 3]. Let M^{0} be the module M with a new scalar multiplication $*$ as a left P-module such that $\left(x \otimes_{K} y\right) * m=$ $\left(\nabla(x) \otimes_{K} \Delta(y)\right) m$ for $x \otimes_{K} y \in P$ and $m \in M$. Then in [7, section 4] and [9, section 4], the mapping $\varphi: \operatorname{Hom}\left({ }_{K} L,{ }_{K} K\right) \otimes_{P} M^{0} \rightarrow \operatorname{Hom}\left({ }_{P} L,{ }_{P} M\right)$ is defined by $\varphi\left(f \otimes_{P} m\right)$ $=[x \rightarrow \operatorname{trace} f(x) m]$, where $f \in \operatorname{Hom}\left({ }_{K} L,{ }_{K} K\right)$ is regarded as an element of $\operatorname{Hom}\left({ }_{K} L,{ }_{K} P\right)$.

The left P-module M is regarded as a two-sided (A, K)-module. Modifying the structure of the right Λ-module as $m \cdot x=m \Delta(x)$ where $m \in M$ and $x \in \Lambda$, we obtain a left P-module M^{Δ} from M. We shall denote $m \in M^{\Delta}$ by m^{Δ}. For the left P-module L, when we regard $\operatorname{Hom}\left({ }_{\Lambda} L,{ }_{A} A\right)$ as a left P-module with the usual way, there is a K-isomorphism $\kappa: \operatorname{Hom}\left({ }_{(} L,{ }_{A} \Lambda\right) \otimes_{P} M^{\Delta} \xrightarrow{\sim} \operatorname{Hom}\left({ }_{K} L,{ }_{K} K\right)$ $\otimes_{P} M^{0}$ given by $\kappa\left(f \otimes_{P} m^{\Delta}\right)=[x \rightarrow h \circ H(f(x))] \otimes_{P} m$ and $\kappa^{-1}\left(g \otimes_{P} m\right)=[x \rightarrow$ $\left.\sum_{i, j} R_{i} r_{j} g\left(l_{j} L_{i} x\right)\right] \otimes_{P} m^{\Delta}$. Then putting $\psi=\varphi^{\circ} \kappa$, we have a K-homomorphism

$$
\begin{equation*}
\phi: \operatorname{Hom}\left({ }_{A} L,{ }_{\Lambda} \Lambda\right) \otimes_{P} M^{\Delta} \longrightarrow \operatorname{Hom}\left({ }_{P} L,{ }_{P} M\right) \tag{3}
\end{equation*}
$$

such that $\psi\left(f \otimes_{P} m^{\Delta}\right)(x)=\Sigma_{i, j} f\left(x R_{i} r_{j}\right) m l_{j} L_{i}$. When $\operatorname{Hom}\left({ }_{A} L, A \Lambda\right) \otimes_{P} M^{\Delta}$ and $\operatorname{Hom}\left({ }_{P} L,{ }_{P} M\right)$ are regarded as functors in P-modules L and M, it is shown by the conventional argument that ψ is natural in each of L and M. When L is (P, S)-projective, that is, there is an S-module T such that ${ }_{P} L<\oplus_{P} P \otimes \otimes_{S} T$, $\operatorname{Hom}\left({ }_{A} L,{ }_{\Lambda} \Lambda\right)$ is also (P, S)-projective since we have ${ }_{P} \operatorname{Hom}\left({ }_{A} L,{ }_{A} \Lambda\right)<$ $\oplus_{P} \operatorname{Hom}\left({ }_{A} P \otimes \otimes_{S} T,{ }_{\Lambda} \Lambda\right) \cong{ }_{P} \operatorname{Hom}\left({ }_{\Lambda} \Lambda \otimes_{\Gamma} T \otimes_{\Gamma} \Lambda,{ }_{\Lambda} \Lambda\right) \cong{ }_{P} \operatorname{Hom}\left({ }_{\Gamma} \Lambda,{ }_{\Gamma} \operatorname{Hom}\left({ }_{r} T,{ }_{r} \Lambda\right)\right) \cong$ ${ }_{P} \operatorname{Hom}\left({ }_{\Gamma} \operatorname{Hom}\left(\Lambda_{\Gamma}, \Gamma_{\Gamma}\right),{ }_{\Gamma} \operatorname{Hom}\left({ }_{\Gamma} T,{ }_{\Gamma} \Gamma \otimes_{\Gamma} \Lambda\right)\right) \cong{ }_{P} \Lambda \otimes_{\Gamma} \operatorname{Hom}\left({ }_{\Gamma} T,{ }_{\Gamma} \Gamma\right) \otimes_{\Gamma} \Lambda \cong{ }_{P} P \otimes_{S}$ $\operatorname{Hom}\left({ }_{\Gamma} T,{ }_{\Gamma} \Gamma\right)$. Therefore for any complete (P, S)-resolution X of Λ, since the complex $\operatorname{Hom}\left({ }_{A} X,{ }_{\Lambda} \Lambda\right)$ is a (P, S)-exact sequence by [8, Proposition 1.1], it is also a complete (P, S)-resolution of Λ such that the r-th component is $\operatorname{Hom}\left({ }_{A} X_{-r-1}, A \Lambda\right)$. Hence ψ induces K-homomorphisms

$$
\Psi_{A / \Gamma}^{r}: H_{r}\left(\Lambda, \Gamma, M^{\Delta}\right) \longrightarrow H^{-r-1}(\Lambda, \Gamma, M)
$$

for $r \in \boldsymbol{Z}$.
Let $0 \rightarrow L \xrightarrow{f} M \xrightarrow{g} N \rightarrow 0$ be a (P, S)-exact sequence. Then the sequence $0 \rightarrow$ $L^{\Delta} \xrightarrow{f} M^{\Delta} \xrightarrow{g} N^{\Delta} \rightarrow 0$ is also (P, S)-exact. Then the connecting homomorphisms $\partial^{r}: H^{r}(\Lambda, \Gamma, N) \rightarrow H^{r+1}(\Lambda, \Gamma, L)$ and $\partial_{r}^{\Delta}: H_{r}\left(\Lambda, \Gamma, N^{\Delta}\right) \rightarrow H_{r-1}\left(\Lambda, \Gamma, L^{\Delta}\right)$ are induced for all $r \in \mathbb{Z}$ with the usual way. Since ψ of (3) is natural in each of L and M, we obtain

Proposition 2.1. Let $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ be a (P, S-exact sequence. Then
for the connecting homomorphisms $\partial^{r}: H^{r}(\Lambda, \Gamma, N) \rightarrow H^{r+1}(\Lambda, \Gamma, L)$ and $\partial_{r}^{\Delta}: H_{r}\left(\Lambda, \Gamma, N^{\Delta}\right) \rightarrow H_{r-1}\left(\Lambda, \Gamma, L^{\Delta}\right), \Psi_{\Lambda / \Gamma^{r} \circ}^{r-} \partial_{r}^{\Delta}=\partial^{-r-1} \circ \Psi_{A / \Gamma}^{r}$ holds for $r \in \mathbb{Z}$.

For the module X_{r} of (2), as in [8], we have a P-isomorphism $\varphi_{r}: X_{r} \sim$ $\operatorname{Hom}\left({ }_{A} X_{-r-1}, A\right.$) for $r \in Z$ such that $\varphi_{r}\left(x_{0} \otimes_{\Gamma} \cdots \otimes_{\Gamma} x_{\tau(r)}\right)=\left[\lambda_{0} \otimes_{\Gamma} \cdots \otimes_{\Gamma} \lambda_{\tau(r)} \rightarrow\right.$ $\left.\lambda_{0} H\left(\cdots H\left(\lambda_{\tau(r)-1} H\left(\lambda_{z(r)} x_{0}\right) x_{1}\right) \cdots\right) x_{\tau(r)}\right], \varphi_{r}^{-1}(f)=\sum_{i_{0} \cdots, i_{\tau(r)-1}} R_{i_{0}} \otimes_{\Gamma} \cdots \otimes_{r} R_{i_{\tau(r)-1}} \otimes_{r}$ $f\left(1 \otimes_{\Gamma} L_{i_{\tau(r)-1}} \otimes_{\Gamma} \cdots \otimes_{\Gamma} L_{i_{0}}\right)$, where we put

$$
\tau(r)= \begin{cases}r+1 & \text { for } r \geqq 0, \\ -r & \text { for } r<0 .\end{cases}
$$

Then for the P-homomorphism d_{r} of (2) we have $\varphi_{r-1}{ }^{\circ} d_{r}=(-1)^{r} d_{-r}^{*}{ }^{\circ} \varphi_{r}$ where $d_{-r}^{*}: \operatorname{Hom}\left({ }_{A} X_{-r-1}, A \Lambda\right) \rightarrow \operatorname{Hom}\left({ }_{A} X_{-r}, A \Lambda\right)$. Therefore when we put the plus and minus $\operatorname{sign} \sigma()$ such that

$$
\sigma(r)= \begin{cases}+ & \text { for the case of } r \equiv 0 \text { or } 3(\operatorname{modulo} 4) \\ - & \text { for the case of } r \equiv 1 \text { or } 2(\text { modulo } 4)\end{cases}
$$

$\left\{\sigma(r) \varphi_{r}\right\}_{r \in Z}$ is a chain map from X into $\operatorname{Hom}\left({ }_{\Lambda} X,{ }_{\Lambda} A\right)$. Hence composing ψ of (3) with $\sigma(r) \varphi_{r} \bigotimes_{P} 1 M^{\Delta}$, we can consider that $\Psi^{r}{ }_{\Lambda / \Gamma}$ is induced by the K-homomorphism

$$
\begin{equation*}
\phi_{A / I}^{r}: X_{r} \otimes_{P} M^{\Delta} \longrightarrow \operatorname{Hom}\left({ }_{P} X_{-r-1},{ }_{P} M\right) \tag{4}
\end{equation*}
$$

such that $\psi_{A / \Gamma}^{r}\left(\left(x_{0} \otimes_{\Gamma} \cdots \otimes_{\Gamma} x_{z(r)}\right) \otimes_{P} m^{\Delta}\right)\left(\lambda_{0} \otimes_{\Gamma} \cdots \otimes_{\Gamma} \lambda_{z(r)}\right)=\sum_{i, j} \boldsymbol{\sigma}(r) \lambda_{0} H\left(\cdots H\left(\lambda_{z(r)-1}\right.\right.$. $\left.\left.H\left(\lambda_{\tau(r)} R_{i} r_{j} x_{0}\right) x_{1}\right) \cdots\right) x_{\tau(r)} m l_{j} L_{i}$ for $r \in \boldsymbol{Z}, \quad x_{i}, \lambda_{i} \in \Lambda$ and $m \in M$.

3. Homomorphisms of complete relative homology.

Let Y be a complete (P, K)-resolution of Λ and M a left P-module. Then we have the K-homomorphisms of change of rings, that is,

$$
\begin{equation*}
H_{r}\left(Y \otimes_{S} M\right) \longrightarrow H_{r}\left(Y \otimes_{P} M\right)=H_{r}(\Lambda, K, M) \tag{5}
\end{equation*}
$$

for $r \in \boldsymbol{Z}$. Since P is S-projective, Y is also a complete (S, K)-resolution of Λ. So the natural inclusion $\Gamma \rightarrow \Lambda$ induces K-homomorphisms

$$
\begin{equation*}
H_{r}(\Gamma, K, M) \longrightarrow H_{r}\left(Y \otimes_{s} M\right) \tag{6}
\end{equation*}
$$

for $r \in Z$. Then composing (5) with (6), we have K-homomorphisms

$$
\operatorname{Cor}_{r}: H_{r}(\Gamma, K, M) \longrightarrow H_{r}(\Lambda, K, M)
$$

for $r \in \boldsymbol{Z}$. Since Y is also a complete (S, K)-resolution of Λ, the Frobenius homomorphism of $\Lambda / \Gamma H: \Lambda \rightarrow \Gamma$ induces K-homomorphisms

$$
\begin{equation*}
H_{r}\left(Y \otimes_{S} M\right) \longrightarrow H_{r}(\Gamma, K, M) \tag{7}
\end{equation*}
$$

for $r \in \mathbb{Z}$. Since the dual projective pair of the Frobenius extension P / S is ($R_{i} \otimes_{K} L_{j}, L_{i} \otimes_{K} R_{j}$), we can define a chain map $Y \otimes_{P} M \rightarrow Y \otimes_{S} M$ such as $y \otimes_{P} m$ $\rightarrow \Sigma_{i, j} y \cdot\left(R_{i} \otimes_{K} L_{j}\right) \otimes_{S}\left(L_{i} \otimes_{K} R_{j}\right) \cdot m=\sum_{i, j} L_{j} y R_{i} \otimes_{s} L_{i} m R_{j}$ for $y \in Y_{r}$ and $m \in M$, and this chain map induces the K-homomorphisms

$$
\begin{equation*}
H_{r}(\Lambda, K, M) \longrightarrow H_{r}\left(Y \otimes_{s} M\right) \tag{8}
\end{equation*}
$$

for $r \in \boldsymbol{Z}$. Composing (7) with (8), for $r \in \boldsymbol{Z}$ we have K-homomorphisms

$$
\operatorname{Res}_{r}: H_{r}(\Lambda, K, M) \longrightarrow H_{r}(\Gamma, K, M) .
$$

Let X (resp. Y) be a complete (P, S) - (resp. (P, K)-) resolution of Λ with the differentiation $d=\left\{d_{r}\right\}$ (resp. $c=\left\{c_{r}\right\}$) and the P-epimorphism $\varepsilon: X_{0} \rightarrow \Lambda$ (resp. $\delta: Y_{0} \rightarrow \Lambda$). Then the identity homomorphism of Λ induces the following commutative diagram:

as (4) in [8]. Let M be a left P-module. Then from the positive part of the diagram (9), we have K-homomorphisms

$$
\operatorname{Def}_{r}: H_{r}(\Lambda, K, M) \longrightarrow H_{\tau}(\Lambda, \Gamma, M)
$$

for $r \geqq 1$. Since $\delta \otimes_{P} 1_{M}$ is an epimorphism, for any element $\alpha \in X_{0} \otimes_{P} M$ there is an element $\beta \in Y_{0} \otimes_{P} M$ such that $\left(\varepsilon \otimes_{P} 1_{M}\right)(\alpha)=\left(\delta \otimes_{P} 1_{M}\right)(\beta)$ holds. Therefore we can define a K-homomorphism $\tau: X_{0} \otimes_{P} M / \operatorname{Im}\left(d_{1} \otimes_{P} 1_{M}\right) \rightarrow Y_{0} \otimes_{P} M / \operatorname{Im}\left(c_{1} \otimes_{P} 1_{M}\right)$ such that $\tau(\bar{\alpha})=\bar{\beta}$, where - stands for the residue classes. Then we have the following commutative diagram from the diagram (9):

where $\overline{c_{0} \bigotimes_{P} 1_{M}}$ and $\overline{d_{0} \bigotimes_{P} 1_{M}}$ are homomorphisms induced by $c_{0} \otimes_{P} 1_{M}$ and $d_{0} \otimes_{P} 1_{M}$ respectively with the usual way. Taking the homology of this diagram, for $r \leqq 0$ we have K-homomorphisms

$$
\operatorname{Inf}_{r}: H_{r}(\Lambda, \Gamma, M) \longrightarrow H_{r}(\Lambda, K, M)
$$

Proposition 3.1. Let $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ be a (P, K)-exact sequence. Then for the connecting homomorphisms $\partial_{r}^{\Lambda}: H_{r}(\Lambda, K, N) \rightarrow H_{r-1}(\Lambda, K, L)$ and $\partial_{r}^{\Gamma}: H_{r}(\Gamma, K, N) \rightarrow H_{r-1}(\Gamma, K, L)$, we have
(i) $\partial_{r}^{\Lambda}{ }^{\circ} \operatorname{Cor}_{r}=\operatorname{Cor}_{r-1}{ }^{\circ} \partial_{r}^{\Gamma}$,
(ii) $\partial_{r}^{\Gamma} \circ \operatorname{Res}_{r}=\operatorname{Res}_{r-1} \circ \partial_{r}^{\Lambda}$
for all $r \in \boldsymbol{Z}$. Let $0 \rightarrow L \stackrel{f}{\rightarrow} M \xrightarrow{g} N \rightarrow 0$ be a (P, S)-exact sequence. Then for the connecting homomorphisms $\partial_{r}: H_{r}(\Lambda, \Gamma, N) \rightarrow H_{r-1}(\Lambda, \Gamma, L)$ and $\partial_{r}^{\Lambda}: H_{\tau}(\Lambda, K, N)$ $\rightarrow H_{r-1}(\Lambda, K, L)$, we have
(iii) $\partial_{r} \circ \operatorname{Def}_{r}=\operatorname{Def}_{r-1} \circ \partial_{r}^{\Lambda}$ for $r \geqq 2$,
(iv) $\partial_{r}^{1} \circ \operatorname{Inf}_{r}=\operatorname{Inf}_{r-1} \circ \partial_{r}$ for $r \leqq 0$,
(v) $\operatorname{Inf}_{0} \circ \partial_{1} \circ \operatorname{Def}_{1}=\partial_{1}^{A}$.

Proof. Since K-homomorphisms (5), (6), (7) and (8) commute with connecting homomorphisms, the composite homomorphisms Cor and Res also commute with them. Hence (i) and (ii) hold. (iii) follows from the definition. When $Y_{0} \otimes_{P} M / \operatorname{Im}\left(c_{1} \otimes_{P} 1_{M}\right)$ and $X_{0} \otimes_{P} M / \operatorname{Im}\left(d_{1} \otimes_{P} 1_{M}\right)$ in the diagram (10) are regarded as functors covariant in M, they are right exact functors, and τ in (10) is a natural transformation. Therefore by the conventional argument (iv) holds. Put $\partial_{1} \circ \operatorname{Def}_{1}(\bar{\alpha})=\bar{\beta}$ and $\partial_{1}^{A}(\bar{\alpha})=\bar{\gamma}$ for (v), where - stands for the residue classes. Then we can choose β and γ such that $\beta=\left(\sigma_{0} \otimes_{P} 1_{L}\right)(\gamma)$ for σ_{0} in (9). Hence $\operatorname{Inf}_{0} \circ \partial_{1} \circ \operatorname{Def}_{1}(\bar{\alpha})=\bar{\gamma}=\partial_{1}^{A}(\bar{\alpha})$ holds.

It is easy to see that Cor, Res, Inf and Def are independent of the choice of relative complete resolutions. Therefore they are computable from the relative complete resolutions of type (2). Then we have the following proposition.

Proposition 3.2. Let M be a left P-module, and take the relative complete resolutions of type (2). Then

$$
\begin{aligned}
& \operatorname{Inf}_{0}: C_{0}^{\Lambda / \Gamma}(M) / B_{0}^{\Lambda / \Gamma}(M) \longrightarrow C_{0}^{\Lambda / K}(M) / B_{0}^{\Lambda / K}(M), \\
& \operatorname{Inf}_{-1}: C_{-1}^{A / \Gamma}(M) / B_{-1}^{A / \Gamma}(M) \longrightarrow C_{-1}^{A_{1}^{K}}(M) / B_{-1}^{\Lambda_{1} K}(M) \text {, } \\
& \operatorname{Cor}_{-1}: C_{-1}^{\Gamma^{\prime} K}(M) / B_{-1}^{\Gamma_{K}^{\prime K}}(M) \longrightarrow C_{-1}^{\Lambda_{1}^{K}}(M) / B_{-1}^{\Lambda / K}(M) \text {, } \\
& \operatorname{Res}_{0}: C_{0}^{A / K}(M) / B_{0}^{A / K}(M) \longrightarrow C_{0}^{I / K}(M) / B_{0}^{\Gamma^{\prime / K}}(M)
\end{aligned}
$$

satisfy $\quad \operatorname{lnf}_{0}\left(\left(\overline{\left.1 \otimes_{\Gamma} 1\right) \otimes_{P} m}\right)=\overline{\left(1 \otimes_{K} 1\right) \otimes_{P} m}, \quad \operatorname{Inf}_{-1}\left(\overline{\left(1 \otimes_{\Gamma} 1\right) \otimes_{P} m}\right)=\overline{\Sigma_{j}\left(r_{j} \otimes_{K} l_{j}\right) \bigotimes_{P} m}\right.$, $\operatorname{Cor}_{-1}\left(\overline{\left(1 \otimes_{K} 1\right) \otimes_{s} m}\right)=\overline{\sum_{i}\left(\nabla\left(L_{i}\right) \otimes_{K} R_{i}\right) \otimes_{P} m} \quad$ and $\quad \operatorname{Res}_{0}\left(\overline{\left(1 \otimes_{K} 1\right) \otimes_{P} m}\right)=\overline{\sum_{i}\left(1 \otimes_{K} 1\right)}$ $\overline{\otimes_{s} L_{i} m R_{i}}$, where - stands for the residue classes and ∇ is Δ^{-1} as in section 1 .

Proof. Since we took the relative complete resolutions of type (2), for ε
and δ in $(9), \varepsilon\left(1 \otimes_{\Gamma} 1\right)=1$ and $\delta\left(1 \otimes_{K} 1\right)=1$ hold. So we have $\operatorname{lnf}_{0}\left(\left(\overline{\left.1 \otimes_{\Gamma} 1\right) \otimes_{P} m}\right)=\right.$ $\overline{\left(1 \otimes_{K} 1\right) \otimes_{P} m}$. We can take σ_{-r} in (9) for $r \geqq 1$ such that $\sigma_{-r}\left(x_{0} \otimes_{\Gamma} \cdots \otimes_{\Gamma} x_{r}\right)=$ $\sum_{j_{0}, \cdots, j_{r-1}} x_{0} r_{j_{0}} \otimes_{K} l_{j_{0}} x_{1} r_{j_{1}} \otimes_{K} \cdots \otimes_{K} l_{j_{r-1}} x_{r} . \quad$ So we have $\operatorname{Inf}_{-1}\left(\overline{\left.\left(1 \otimes_{r} 1\right) \otimes_{P} m\right)}=\right.$ $\overline{\Sigma_{j}\left(r_{j} \otimes_{K} l_{j}\right) \otimes_{P} m}$. Let Y (resp. Z) be the complete (P, K)- (resp. (S, K)-) resolution of Λ (resp. Γ) of type (2). Then for the K-homomorphism (6), we need the chain map $F: Z \rightarrow Y$ over the natural inclusion $\Gamma \rightarrow \Lambda$. Put $F=\left\{F_{r}\right\}_{r \in z}$ where F_{r} is the right S-homomorphism of Z_{r} to Y_{r}. Then we can take F_{r} such that $F_{-r}\left(z_{0} \otimes_{K} \cdots \otimes_{K} z_{r}\right)=\sum_{i_{0}, \cdots, i_{r-1}} z_{0} \nabla\left(L_{i_{0}}\right) \otimes_{K} R_{i_{0}} z_{1} \nabla\left(L_{i_{1}}\right) \otimes_{K} \cdots \otimes_{K} R_{i_{r-1}} z_{r}$ for $r \geqq 1$. Therefore $\operatorname{Cor}_{-1}\left(\overline{\left(\overline{\left.1 \otimes_{K} 1\right)} \otimes_{P} m\right.}\right)=\overline{\sum_{i}\left(\nabla\left(L_{i}\right) \otimes_{K} R_{i}\right) \otimes_{P} m}$ holds. For the K-homomorphism (7), we need the chain map $G: Y \rightarrow Z$ over the Frobenius homomorphism $H: \Lambda \rightarrow \Gamma$. Put $G=\left\{G_{r}\right\}_{r \in Z}$ where G_{r} is the right S-homomorphism of Y_{r} to Z_{r}. We can take G_{r} such that $G_{r}\left(y_{0} \otimes_{K} \cdots \otimes_{K} y_{r+1}\right)=\sum_{i_{0} \cdots, i_{r}} H\left(y_{0} R_{i_{0}}\right) \otimes_{K}$ $H\left(L_{i_{0}} y_{1} R_{i_{1}}\right) \otimes_{K} \cdots \otimes_{K} H\left(L_{i_{r}} y_{r+1}\right) \quad$ for $\quad r \geqq 0$. Therefore $\quad \operatorname{Res}_{0}\left(\overline{\left.1 \otimes_{K} 1\right)} \otimes_{P} m\right)=$ $\overline{\sum_{i}\left(1 \otimes_{K} 1\right) \otimes_{S} L_{i} m R_{i}}$ holds.

4. Ψ and homomorphisms Res, Cor, Inf and Def.

Let A and C be rings and B a subring of A. We consider a family of covariant functors $T=\left\{T_{i}\right\}_{i \in Z}$ from the category of A-modules to the category of C-modules with connecting homomorphisms $\partial: T_{i}\left(M_{3}\right) \rightarrow T_{i-1}\left(M_{1}\right)$ defined for each (A, B)-exact sequence $0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0$, and satisfying the following conditions (11) and (12):
(11) The sequence

$$
\ldots \longrightarrow T_{i}\left(M_{1}\right) \longrightarrow T_{i}\left(M_{2}\right) \longrightarrow T_{i}\left(M_{3}\right) \xrightarrow{\partial} T_{i-1}\left(M_{1}\right) \longrightarrow \cdots
$$

is exact.
(12) If

is a commutative diagram of (A, B)-exact rows, then, for $i \in \boldsymbol{Z}$, the following diagram is commutative

This family of functors is a relativized version of "connected sequence of functors" in [2] or " ∂-foncteurs" in [4]. Let U be also a family of functors which satisfies the conditions (11) and (12). When a sequence of natural transformations $f_{i}: T_{i} \rightarrow U_{i}$ satisfies a condition, that is, for any (A, B)-exact sequence $0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0$, the diagram

$$
\begin{aligned}
& T_{i}\left(M_{3}\right) \xrightarrow{\partial} T_{i-1}\left(M_{1}\right) \\
& f_{i} \downarrow \\
& U_{i}\left(M_{3}\right) \xrightarrow{\partial} \quad{ }^{2} U_{i-1}\left(M_{1-1}\right)
\end{aligned}
$$

is commutative, we call $\left\{f_{i}\right\}$ a map from T to U. Then the following proposition holds by the same way as [2, Proposition 5.2 in Chapter III] and [4, Proposition 2.2.1].

Proposition 4.1. Let T and U be families of covariant functors which satisfy the conditions (11) and (12). When a natural transformation $f_{i_{0}}: T_{i_{0}} \rightarrow U_{i_{0}}$ is given for some $i_{0} \in \boldsymbol{Z}$,
(i) $f_{i_{0}}$ extends uniquely to a map $\left\{f_{i}\right\}: T \rightarrow U$ defined for all $i \leqq i_{0}$ if $T_{i}(N)$ $=0$ holds for all $i<i_{0}$ and any (A, B)-injective module N,
(ii) $f_{i_{0}}$ extends uniquely to a map $\left\{f_{i}\right\}: T \rightarrow U$ defined for all $i \geqq i_{0}$ if $U_{i}(N)$ $=0$ holds for all $i>i_{0}$ and any (A, B)-projective module N.

Let Q be a subring of P which is the image of the natural homomorphism $\Gamma \otimes_{K} \Lambda^{0} \rightarrow P$. Note that Q is isomorphic to $\Gamma \otimes_{K} \Lambda^{0}$ and the ring extension P / Q is a Frobenius extension.

Lemma 4.2. Let M be a (P, Q)-projective module. Then for any $r \in \boldsymbol{Z}$ $H_{r}(\Lambda, \Gamma, M)=0$ and $H^{r}(\Lambda, \Gamma, M)=0$ hold. These equations also hold for M^{Δ}.

Proof. Let X be a complete (P, S)-resolution of A. Then [8, Proposition 1.1] shows that X is (P, Q)-exact. Since P / Q is a Frobenius extension, M is (P, Q)-injective. Hence $\operatorname{Hom}\left({ }_{P} X,{ }_{P} M\right)$ is an exact complex, and thus $H^{r}(\Lambda, \Gamma, M)$ $=0$ holds. Regard the differentiations of X as right P-homomorphisms. Then [8, Proposition 1.1] also shows that X is (P, Q)-exact. Hence $X \otimes_{P} M$ is an exact complex, and thus $H_{r}(\Lambda, \Gamma, M)=0$ holds. M is (P, Q)-projective, i.e., there is a Q-module N such that ${ }_{P} M<\bigoplus_{P}\left(P \otimes_{Q} N\right)$ holds. Then we have ${ }_{P} M^{\Delta}<\bigoplus_{P}\left(P \otimes_{Q} N\right)^{\Delta} \cong_{P}\left(\Lambda \otimes_{\Gamma} N\right)^{\Delta}={ }_{P} \Lambda \otimes_{r} N^{\Delta} \cong_{P} P \otimes_{Q} N^{\Delta}$. So M^{Δ} is (P, Q)-projective. Hence this lemma also holds for M^{Δ}.

The natural homomorphisms $K \otimes_{K} \Lambda^{0} \rightarrow P$ and $K \otimes_{K} \Gamma^{0} \rightarrow P$ are monomorphisms since Λ° and Γ° are K-projective. So we can regard $K \otimes_{K} \Lambda^{\circ}$ and $K \otimes_{K} \Gamma^{\circ}$ as subrings of P and S, respectively. Moreover the ring extensions $P / K \otimes_{K} \Lambda^{\circ}$ and $S / K \otimes_{K} \Gamma^{o}$ are Frobenius extensions. Therefore by the same way as Lemma 4.2, the following corollary follows from [8, Proposition 1.1].

Corollary 4.3. Let M be a $\left(P, K \otimes_{K} \Lambda^{\circ}\right)$-projective module. Then for any $r \in \boldsymbol{Z}, H^{r}(\Lambda, K, M)=0, H_{r}\left(\Lambda, K, M^{\Delta}\right)=0, H^{r}(\Gamma, K, M)=0$ and $H_{r}\left(\Gamma, K, M^{\Delta}\right)=0$ hold.

Proof. When M is regarded as a left S-module, M is $\left(S, K \otimes_{K} \Gamma^{o}\right)$-projective since Λ is Γ-projective. Therefore $H^{r}(\Gamma, K, M)=0$ and $H_{r}\left(\Gamma, K, M^{\Delta}\right)=0$ also hold.

In [8], for a left P-module M, we have defined K-homomorphisms $\operatorname{Res}^{r}: H^{r}(\Lambda, K, M) \rightarrow H^{r}(\Gamma, K, M)$ for $r \in \boldsymbol{Z}, \operatorname{Cor}^{r}: H^{r}(\Gamma, K, M) \rightarrow H^{r}(\Lambda, K, M)$ for $r \in Z, \operatorname{Inf}^{r}: H^{r}(\Lambda, \Gamma, M) \rightarrow H^{r}(\Lambda, K, M)$ for $r \geqq 1$ and $\operatorname{Def}^{r}: H^{r}(\Lambda, K, M) \rightarrow$ $H^{\tau}(\Lambda, \Gamma, M)$ for $r \leqq 0$. For these homomorphisms, the following holds.

Lemma 4.4. Let M be a left P-module, and take the relative complete resolutions of type (2). Then we have

$$
\begin{aligned}
& \operatorname{Cor}^{0}(\bar{f})=\overline{\left[y_{0} \otimes_{K} y_{1} \longrightarrow \sum_{i} y_{0} R_{i} f\left(1 \otimes_{K} 1\right) L_{i} y_{1}\right]}, \\
& \operatorname{Def}^{0}(\bar{g})=\overline{\left[x_{0} \otimes_{\Gamma} x_{1} \longrightarrow g\left(x_{0} \otimes_{K} x_{1}\right)\right]}, \\
& \operatorname{Res}^{-1}(\bar{k})=\overline{\left[z_{0} \otimes_{K} z_{1} \longrightarrow \sum_{i} k\left(z_{0} L_{i} \otimes_{K} \Delta\left(R_{i}\right) z_{1}\right)\right]},
\end{aligned}
$$

where - stands for residue classes.
Proof. The proofs about Cor ${ }^{0}$ and Def 0 are given in [8, Proposition 2.2]. Let Y (resp. Z) be the complete (P, K) - (resp. (S, K)-) resolution of Λ (resp. Γ) of type (2). Then the identity homomorphism of Λ induces a chain map $G: Z \otimes_{\Gamma} \Lambda \rightarrow Y$ which consists of left Q-homomorphisms. Put $G=\left\{G_{r}\right\}_{r \in Z}$ where $G_{r}: Z_{r} \otimes_{\Gamma} A \rightarrow Y_{r}$. Take G_{r} such that $G_{-r}\left(\left(z_{0} \otimes_{K} \cdots \otimes_{K} z_{r}\right) \otimes_{\Gamma} \lambda\right)=\sum_{i_{0}, \cdots, i_{r-1}} z_{0} L_{i_{0}}$ $\otimes_{K} \Delta\left(R_{i_{0}}\right) z_{1} L_{i_{1}} \otimes_{K} \cdots \otimes_{K} \Delta\left(R_{i_{r-1}}\right) z_{r} \lambda$ for $r \geqq 1$. Then $\operatorname{Res}^{-1}(\tilde{k})=\overline{\left[z_{0} \otimes_{K} z_{1} \rightarrow\right.}$ $\overline{\left.\sum_{i} k\left(z_{0} L_{i} \bigotimes_{K} \Delta\left(R_{i}\right) z_{1}\right)\right]}$ holds by the definition of Res in [8].

By the same argument as in section 2 we have the K-homomorphisms $\Psi_{A / K}^{r}: H_{r}\left(\Lambda, K, M^{\Delta}\right) \rightarrow H^{-r-1}(\Lambda, K, M)$ and $\Psi_{I / K}^{r}: H_{r}\left(\Gamma, K, N^{\Delta}\right) \rightarrow H^{-r-1}(\Gamma, K, N)$ for $r \in \boldsymbol{Z}$, any left P-module M and S-module N. Note that the restriction of Δ to Γ is the Nakayama automorphism of the Frobenius K-algebra Γ. Then
the following holds.
Proposition 4.5. Let M be a left P-module. Then for the K-homomorphisms $\operatorname{Cor}_{r}, \operatorname{Res}_{r}, \operatorname{Def}_{r}$ and Inf_{r} of M^{Δ}, we have the equations
(i) $\Psi^{r}{ }_{\Lambda / K}{ }^{\circ} \mathrm{Cor}_{r}=\operatorname{Cor}^{-r-1} 。 \Psi_{\Gamma / K}^{r}$ for any $r \in \boldsymbol{Z}$,
(ii) $\Psi_{\Gamma / K}^{r} \circ \operatorname{Res}_{r}=\operatorname{Res}^{-r-1} \circ \Psi_{\Lambda / K}^{r}$ for any $r \in \boldsymbol{Z}$,
(iii) $\Psi_{A / T}^{r}{ }^{\circ} \operatorname{Def}_{r}=\operatorname{Def}^{-r-1}{ }^{\circ} \Psi^{r}{ }_{1 / K}$ for $r \geqq 1$,
(iv) $\Psi_{\bar{A} / r}^{-r}=\operatorname{Def}^{r-1}{ }^{\circ} \Psi_{\bar{A} / K^{r}}{ }^{\circ} \mathrm{Inf}_{-r}$ for $r=0,1$,
(v) $\Psi_{\bar{\Lambda} / K^{\circ}}{ }^{\circ} \operatorname{Inf}_{-r}=\operatorname{Inf}^{r-1} \circ \Psi_{\bar{A}}^{-r} \Gamma$ for $r \geqq 2$.

Proof. By (4), Proposition 3.2 and Lemma 4.4, (i), (ii) and (iv) hold for the cases of $r=-1, r=0$ and $r=1$, respectively. All the composite K-homomorphisms in the equations above commute with connecting homomorphısms by Propositions 2.1, 3.1 and [8, Lemmas 2.5 and 3.8]. Therefore the uniqueness of Proposition 4.1 and Corollary 4.3 shows that (i) and (ii) hold. Similarly the uniqueness of Proposition 4.1 and Lemma 4.2 shows that (iv) holds. The case of $r=1$ of (iii) also holds. In fact, for the (P, Q)-exact sequence

$$
\begin{equation*}
0 \longrightarrow \operatorname{Ker} \xi \longrightarrow P \otimes_{Q} M \xrightarrow{\xi} M \longrightarrow 0, \tag{13}
\end{equation*}
$$

where ξ is a P-homomorphism such that $\xi\left(p \otimes_{Q} m\right)=p \cdot m$, we have the connecting homomorphisms $\partial_{r}^{\Delta}: H_{r}\left(\Lambda, \Gamma, M^{\Delta}\right) \rightarrow H_{r-1}\left(\Lambda, \Gamma,(\operatorname{Ker} \xi)^{\Delta}\right), \partial^{r}: H^{r}(\Lambda, \Gamma, M) \rightarrow$ $H^{r+1}(\Lambda, \Gamma, \operatorname{Ker} \xi), \partial_{r}^{\Delta, \Lambda}: H_{r}\left(\Lambda, K, M^{\Delta}\right) \rightarrow H_{r-1}\left(\Lambda, K,(\operatorname{Ker} \xi)^{\Delta}\right)$ and $\partial_{\Lambda}^{r}: H^{r}(\Lambda, K, M)$ $\rightarrow H^{r+1}(\Lambda, K, \operatorname{Ker} \xi)$ for all $r \in Z$. Then by (iv) of this proposition and Proposition 3.1 (v) we have $\partial^{-2} 。 \Psi_{A / F}^{1} \circ \operatorname{Def}_{1}=\Psi_{A / \Gamma^{\circ} \circ}^{\circ} \partial_{1}^{\wedge} \circ \operatorname{Def}_{1}=\operatorname{Def}^{-1} \circ \Psi_{A / K}^{\circ} \circ \operatorname{Inf}_{0} \circ \partial_{1}^{\Delta} \circ \operatorname{Def}_{1}=$ $\operatorname{Def}^{-1} \circ \Psi_{A / K}^{0} \circ \partial_{1}^{\Lambda, A}=\operatorname{Def}^{-1} \circ \partial_{A}^{-2} \circ \Psi_{\Lambda / K}^{1}=\partial^{-2} \circ \operatorname{Def}^{-2} \circ \Psi_{\Lambda / K}^{1}$. Since ∂^{-2} is an isomorphism by Lemma 4.2, the case of $r=1$ also holds. Similarly by using the connecting homomorphisms of the (P, Q)-exact sequence

$$
\begin{equation*}
0 \longrightarrow M \xrightarrow{\tau} \operatorname{Hom}\left({ }_{Q} P,{ }_{Q} M\right) \longrightarrow \operatorname{Coker} \tau \longrightarrow 0, \tag{14}
\end{equation*}
$$

where $\tau(m)=[p \rightarrow p \cdot m]$, the case of $r=2$ of (v) also holds by (iv) of this proposition and [8, Lemma 3.8 (ii)]. Therefore (iii) and (v) also hold by the uniqueness of Proposition 4.1 and Lemma 4.2.

5. Fundamental exact sequences.

We now show that we can define Cor $_{r}$ by another way. Let Y and Z be a complete (P, K)-resolution of Λ and a complete (S, K)-resolution of Γ, respectively. For the subring Q of P in section $4, \Lambda \otimes_{\Gamma} Z$ is a complete (Q, K) resolution of the right Q-module Λ. Since Y is also a complete (Q, K)-resolu-
tion of Λ, the identity homomorphism of Λ induces

$$
\begin{equation*}
H_{r}\left(\left(\Lambda \otimes_{r} Z\right) \otimes_{Q} M\right) \cong H_{r}\left(Y \otimes_{Q} M\right) \tag{15}
\end{equation*}
$$

for any left Q-module M and $r \in Z$. And we have $H_{r}\left(\left(\Lambda \otimes_{\Gamma} Z\right) \otimes_{Q} M\right) \cong$ $H_{r}\left(\left(Z \otimes_{s} Q\right) \otimes_{Q} M\right) \cong H_{r}\left(Z \otimes_{S} M\right)=H_{r}(\Gamma, K, M)$ with the usual way. Hence for $r \in \boldsymbol{Z}$ there is an isomorphism

$$
\begin{equation*}
s_{r}: H_{r}(\Gamma, K, M) \xrightarrow{\sim} H_{r}\left(Y \otimes_{Q} M\right) \tag{16}
\end{equation*}
$$

Lemma 5.1. Let M be a left P-module. Then Cor_{r} and Res_{r} coincide with the following composite homomorphisms (17) and (18), respectively:

$$
\begin{align*}
& H_{r}(\Gamma, K, M) \underset{s_{r}}{\sim} H_{r}\left(Y \otimes_{Q} M\right) \longrightarrow H_{r}(\Lambda, K, M), \tag{17}\\
& H_{r}(\Lambda, K, M) \longrightarrow H_{r}\left(Y \otimes_{Q} M\right) \underset{s_{r}^{1}}{\sim} H_{r}(\Gamma, K, M), \tag{18}
\end{align*}
$$

where $H_{r}\left(Y \otimes_{Q} M\right) \rightarrow H_{r}(\Lambda, K, M)$ is induced by the K-homomorphisms of change of rings, that is, $Y_{r} \otimes_{Q} M \rightarrow Y_{r} \otimes_{P} M$, and $H_{r}(\Lambda, K, M) \rightarrow H_{r}\left(Y \otimes_{Q} M\right)$ is induced by a chain map $\kappa: Y \otimes_{P} M \rightarrow Y \otimes_{Q} M$ such that $\kappa\left(y \otimes_{P} m\right)=\Sigma_{i} y R_{i} \otimes_{Q} L_{i} m$ for $y \in Y_{r}$ and $m \in M$.

Proof. Let $F: Z \rightarrow Y$ be the chain map over the natural inclusion $\Gamma \rightarrow \Lambda$ which induces the K-homomorphism (6), and $G: Y \rightarrow Z$ the chain map over $H: \Lambda \rightarrow \Gamma$ which induces the K-homomorphism (7). Then the isomorphism (15) is induced by a chain map $F^{\prime}: \Lambda \otimes_{\Gamma} Z \rightarrow Y$ such that $F^{\prime}\left(\lambda \otimes_{\Gamma} z\right)=\lambda F(z)$, and the inverse isomorphism of (15) is induced by a chain map $G^{\prime}: Y \rightarrow \Lambda \otimes_{\Gamma} Z$ such that $G^{\prime}(y)=\sum_{i} R_{i} \otimes_{\Gamma} G\left(L_{i} y\right)$. Using these chain maps F^{\prime} and G^{\prime}, we can see that the K-homomorphism (17) is induced by the chain map $F^{\prime \prime}: Z \otimes_{S} M \rightarrow Y \otimes_{P} M$ such that $F^{\prime \prime}\left(z \otimes_{s} m\right)=F(z) \otimes_{P} m$, and the K-homomorphism (18) is induced by the chain $\operatorname{map} G^{\prime \prime}: Y \otimes_{P} M \rightarrow Z \otimes_{S} M$ such that $G^{\prime \prime}\left(y \otimes_{P} m\right)=\sum_{i, j} G\left(L_{j} y R_{i}\right) \otimes_{S} L_{i} m R_{j}$. By the definitions of Cor_{r} and Res_{r}, these mean that (17) and (18) coincide with Cor_{r} and Res_{r}, respectively.

In the introduction of [5], it is said that fundamental exact sequences of Tor can be obtained. Therefore by the same way as [8, section 2] we have the following theorem from them and Lemma 5.1:

Theorem 5.2. Let N be a left P-module and define left P-modules $N_{i}(i \geqq 0)$ inductively as $N_{0}=N$ and $N_{i}=P \bigotimes_{Q} N_{i-1}$ for $i \geqq 1$. Then the sequence

$$
0 \longleftarrow H_{r}(\Lambda, \Gamma, N) \stackrel{\operatorname{Def}_{r}}{\leftrightarrows} H_{r}(\Lambda, K, N) \stackrel{\operatorname{Cor}_{r}}{\leftrightarrows} H_{r}(\Gamma, K, N)
$$

is exact for $r \geqq 1$ if $H_{n}\left(\Gamma, K, N_{r-n}\right)=0(0<n<r)$.
Proposition 5.3. The following sequence is exact for any left P-module :

$$
0 \longrightarrow H_{0}(\Lambda, \Gamma, M) \xrightarrow{\operatorname{Inf}_{0}} H_{0}(\Lambda, K, M) \xrightarrow{\operatorname{Res}_{0}} H_{0}(\Gamma, K, M) .
$$

Ppoof. Take relative complete resolutions of type (2). Then by Propositions 1.1 and $3.2 \operatorname{Inf}_{0}$ is a monomorphism and $\operatorname{Ker} \operatorname{Res}_{0} \subset \operatorname{Im} \operatorname{Inf} f_{0}$ holds. In fact, if $\operatorname{Res}_{0}\left(\overline{\left(1 \bigotimes_{K} 1\right) \bigotimes_{P} m}\right)=\overline{0}, \quad \sum_{i} L_{i} m R_{i}=\Sigma_{t}\left(m_{t} z_{t}-z_{t} m_{t}\right)$ (finite sum) for some $z_{t} \in \Gamma$ and $m_{\iota} \in M$ by Proposition 1.1, and so $\sum_{i}\left(R_{i} \otimes_{\Gamma} L_{i}\right) \otimes_{P} m=\sum_{i}\left(1 \otimes_{\Gamma} 1\right) \otimes_{P} L_{i} m R_{i}$ $=0$ holds in $\left(\Lambda \otimes_{\Gamma} \Lambda\right) \otimes_{P} M$, that is, $\left(1 \otimes_{\Gamma} 1\right) \otimes_{P} m \in C_{0}^{\Lambda / \Gamma}(M)$. So Ker $\operatorname{Res}_{0} \subset \operatorname{Im} \operatorname{Inf}{ }_{0}$ holds. Define a K-homomorphism $\varphi:\left(\Lambda \otimes_{\Gamma} \Lambda\right) \otimes_{P} M \rightarrow\left(\Gamma \otimes_{K} \Gamma\right) \otimes_{S} M / B_{0}^{\Gamma^{\prime K}}(M)$ such that $\varphi\left(\left(\lambda_{0} \otimes_{\Gamma} \lambda_{1}\right) \otimes_{P} m\right)=\overline{\left(1 \otimes_{K} 1\right) \otimes_{S} \lambda_{1} m \lambda_{0}}$. Then for $\left(1 \otimes_{\Gamma} 1\right) \otimes_{P} m \in C_{0}^{A / \Gamma}(M)$, $\overline{0}=\varphi(0)=\varphi\left(\sum_{i}\left(R_{i} \otimes_{\Gamma} L_{i}\right) \otimes_{P} m\right)={\overline{\sum_{i}}\left(1 \otimes_{K} 1\right) \otimes_{S} L_{i} m R_{i}}^{\text {holds. So } \sum_{i}\left(1 \otimes_{K} 1\right) \otimes_{S} L_{i} m R_{i}, ~}$ $\in B_{0}^{I / K}(M)$ holds. \quad Therefore $\operatorname{Res}_{0} \circ \operatorname{Inf}_{0}\left(\overline{\left(1 \otimes_{\Gamma} 1\right) \otimes_{P} m}\right)=\overline{\sum_{i}\left(1 \otimes_{K} 1\right) \otimes_{S} L_{i} m R_{i}}=\overline{0}$ holds. Hence the proof is complete.

LEMMA 5.4. $\quad H_{r}(\Gamma, K, M) \cong H_{r}\left(\Lambda, K, P \otimes_{Q} M\right) \cong H_{r}\left(\Lambda, K, \operatorname{Hom}\left({ }_{Q} P,{ }_{Q} M\right)\right)$ holds for any left P-module M and all $r \in Z$.

Proof. For a complete (P, K)-resolution Y of Λ, we have $H_{r}(\Gamma, K, M) \cong$ $H_{r}\left(Y \otimes_{Q} M\right)$ by (16). Since P / Q is a Frobenius extension, $P \bigotimes_{Q} M \cong \operatorname{Hom}\left({ }_{Q} P,{ }_{Q} M\right)$ holds as left P-modules. Therefore $H_{r}\left(Y \otimes_{Q} M\right) \cong H_{r}\left(Y \otimes_{P}\left(P \otimes_{Q} M\right)\right)=$ $H_{r}\left(\Lambda, K, P \otimes Q_{Q} M\right) \cong H_{r}\left(\Lambda, K, \operatorname{Hom}\left({ }_{Q} P,{ }_{Q} M\right)\right)$ holds.

Theorem 5.5. Let M be any left P-module and define left P-modules M^{i} ($i \geqq 0$) inductively as $M^{0}=M$ and $M^{i}=\operatorname{Hom}\left({ }_{Q} P,{ }_{Q} M^{i-1}\right.$) for $i \geqq 1$. Then the sequence

$$
0 \longrightarrow H_{-r}(\Lambda, \Gamma, M) \xrightarrow{\operatorname{Inf}_{-r}} H_{-r}(\Lambda, K, M) \xrightarrow{\operatorname{Res}_{-r}} H_{-r}(\Gamma, K, M)
$$

is exact for $r \geqq 0$ if $H_{-n}\left(\Gamma, K, M^{r-n}\right)=0(0 \leqq n \leqq r-1)$.

Proof. By induction on r. The case of $r=0$ is proved by Proposition 5.3. Assume that the case of $r=t$ holds. Consider the case of $r=t+1$. We use the exact sequence (14) in section 4. Put $N=\operatorname{Coker} \tau$. Then since (14) is (P, Q)exact, we have ${ }_{Q} N<\bigoplus_{Q} M^{1}$. Therefore $s_{S} N^{i}<\bigoplus_{S} M^{i+1}$ holds for all $i \geqq 0$, where we put $N^{0}=N$ and $N^{i}=\operatorname{Hom}\left({ }_{Q} P,{ }_{Q} N^{i-1}\right)$ for $i \geqq 1$ inductively. So we have $H_{-n}\left(\Gamma, K, N^{t-n}\right)=0$ for $0 \leqq n \leqq t$. Hence the theorem holds for N and the case of $r=t$. Moreover $H_{-t}(\Gamma, K, N)=0$ holds. Then by Proposition 3.1, (14) induces the following commutative diagram:

where ∂, ∂^{4} and ∂^{Γ} are connecting homomorphisms for (14), $\bar{\tau}$ is the homomorphism induced by τ, and φ is the isomorphism of Lemma 5.4. The isomorphism $H_{r}\left(Y \otimes_{Q} M\right) \rightarrow H_{r}\left(\Lambda, K, M^{1}\right)$ in the proof of Lemma 5.4 is induced by an isomorphism $u: Y_{r} \otimes_{Q} M \rightarrow Y_{r} \otimes_{P} M^{1}$ such that $u\left(y \otimes_{Q} m\right)=y \otimes_{P}\left[x_{0} \otimes x_{1} \rightarrow H\left(x_{0}\right) m x_{1}\right]$ for $y \in Y_{r}, m \in M$ and $x_{0} \otimes x_{1} \in P$. Therefore $\varphi \cdot$ Res $_{-t-1}=\bar{\tau}$ holds by Lemma 5.1. M^{1} is (P, Q)-projective since P / Q is a Frobenius extension. Therefore ∂ is an isomorphism by Lemma 4.2. And ∂^{4} is a monomorphism because by Lemma $5.4 H_{-t}\left(\Lambda, K, M^{1}\right) \cong H_{-t}(\Gamma, K, M)$ and $H_{-t}(\Gamma, K, M)=0$ holds by $H_{-t}(\Gamma, K, M)$ $\oplus H_{-t}(\Gamma, K, N) \cong H_{-t}\left(\Gamma, K, M^{1}\right)=0$. Hence for the middle sequence of the commutative diagram above, Theorem 5.5 holds.

6. $\Psi_{A / \Gamma}$ and fundamental exact sequences.

The complete (P, K)-resolution of Λ of type (2) is the complete projective resolution defined in [7] and [9] since the modules of the resolution are P projective. Therefore the absolute homology and cohomology groups in [7] and [9] are $H_{r}(\Lambda, K,-)$ and $H^{r}(\Lambda, K,-)$. Similarly for the complete (S, K)resolution of Γ of type (2), we have the same argument. Hence [7, Satz 2] and [9, Theorem 10] show that the following holds.

Theorem 6.1. $\Psi^{r}{ }^{r} / K\left(r e s p . ~ \Psi_{\Gamma / K}^{r}\right)$ is an isomorphism for any left P - (resp. S-) module and any $r \in Z$.
[10] also shows the result above by using a complete resolution.
We have the following diagrams for any left P-module M from Proposition 4.5 and Theorem 6.1:
(20)

where diagrams (19) and (21) are commutative for $r \geqq 1$ and $r \geqq 2$, respectively, and the left half of (20) is commutative for $r=0,1$. So if the top and bottom rows of (19) (resp. (21)) are exact, $\Psi^{r}{ }_{A / \Gamma}$ in (19) (resp. $\Psi_{A}^{-r} r$ in (21)) is an isomorphism, and if the top and bottom rows of (20) are exact and $H_{-r}\left(\Gamma, K, M^{\Delta}\right)$ $=0$, that is, $H^{r-1}(\Gamma, K, M)=0, \Psi_{\overline{-}}^{-} r_{\Gamma}$ in (20) is an isomorphism. Hence by results of scction 5 we have

Theorem 6.2. For any left P-module N, put left P-modules $N_{i}(i \geqq 0)$ inductively as $N_{0}=N, N_{i}=P \otimes_{Q} N_{i-1}$ for $i \geqq 1$. Then for a left P-module M, the following statements hold.
(i) $\Psi_{\Lambda / \Gamma}^{r}: H_{\tau}\left(\Lambda, \Gamma, M^{\Delta}\right) \rightarrow H^{-r-1}(\Lambda, \Gamma, M)$ for $r \geqq 1$ is an isomorphism if M satisfies the condition $H_{n}\left(\Gamma, K,\left(M^{\Delta}\right)_{r-n}\right)=0$ for $-1 \leqq n \leqq r-1$.
(ii) $\Psi_{\Lambda / \Gamma}^{0}: H_{0}\left(\Lambda, \Gamma, M^{\Delta}\right) \rightarrow H^{-1}(\Lambda, \Gamma, M)$ is an isomorphism if M satisfies the conditions $H_{0}\left(\Gamma, K, M^{\Delta}\right)=0$ and $H^{0}\left(\Gamma, K, M_{1}\right)=0$.
(iii) $\Psi_{\Lambda^{1} / \Gamma}: H_{-1}\left(\Lambda, \Gamma, M^{\Delta}\right) \rightarrow H^{0}(\Lambda, \Gamma, M)$ is an isomorphism if M satisfies the conditions $H_{0}\left(\Gamma, K,\left(M^{\Delta}\right)_{1}\right)=0$ and $H^{0}(\Gamma, K, M)=0$.
(iv) $\Psi_{\bar{A} / \Gamma}^{-r}: H_{-r}\left(\Lambda, \Gamma, M^{\Delta}\right) \rightarrow H^{r-1}(\Lambda, \Gamma, M)$ for $r \geqq 2$ is an isomorpnism if M satisfies the condition $H^{n}\left(\Gamma, K, M_{r-1-n}\right)=0$ for $-1 \leqq n \leqq r-2$.

Proof. For any left P-module N and all $i \geqq 0$, note that $N_{i} \cong N^{i}$ holds as left P-modules where N^{i} is the P-module as in Theorem 5.5. Moreover for all $i \geqq 0\left(N_{i}\right)^{\Delta} \cong\left(N^{\Delta}\right)_{i}$ holds as left P-modules by induction. In fact, by induction, we have $\left(N_{i}\right)^{\Delta} \cong\left(\Lambda \otimes_{\Gamma} N_{i-1} \otimes_{\Lambda} \Lambda\right)^{\Delta} \cong \Lambda \otimes_{\Gamma}\left(N_{i-1}\right)^{\Delta} \cong \Lambda \otimes_{\Gamma}\left(N^{\Delta}\right)_{i-1} \cong\left(N^{\Delta}\right)_{i}$. (i) follows from [8, Theorem 2.6], Theorems 5.2 and 6.1. In fact, [8, Theorem 2.6] shows that the bottom row of (19) is exact if $H^{-n}\left(\Gamma, K, M_{r+1-n}\right)=0$ for $0 \leqq n \leqq r$, and Theorem 5.2 shows that the top row of (19) is exact if $H_{n}\left(\Gamma, K,\left(M^{\Delta}\right)_{r-n}\right)=0$ for $0<n<r$. Therefore (i) holds by Theorem 6.1 and the isomorphism $\left(N_{i}\right)^{\Delta} \cong$ $\left(N^{\Delta}\right)_{i}$. Similarly by using the diagrm (20), (ii) and (iii) follow from [8, Proposi-
tion 2.2 and Theorem 2.6], Proposition 5.3 and Theorem 5.5. And by using the diagram (21), (iv) follows from [8, Theorem 2.1], Theorems 5.5 and 6.1.

By using Proposition 2.1 for (13) and (14), since the connecting homomorphisms are isomorphisms by Lemma 4.2, $\Psi_{\Lambda / \Gamma}^{r}$ is an isomorphism for any left P-module and any $z \in \boldsymbol{Z}$ if and only if $\Psi_{A / \Gamma}^{r}$ is an isomorphism for any left P module and some $r \in \boldsymbol{Z}$. Hence we have

Theorem 6.3. The following conditions are equivalent:
(i) $\Psi_{\Lambda / \Gamma}^{r}: H_{r}\left(\Lambda, \Gamma, M^{\Delta}\right) \rightarrow H^{-r-1}(\Lambda, \Gamma, M)$ is an isomorphism for any left P module M and any $r \in Z$.
(ii) $0 \leftarrow H^{-2}(\Lambda, \Gamma, M) \stackrel{\text { Def-2 }}{\leftarrow} H^{-2}(\Lambda, K, M) \stackrel{\text { Cor-2 }}{\leftarrow} H^{-2}(\Gamma, K, M)$ is exact for any left P-module M.
(iii) $\operatorname{Inf}_{-1}: H_{-1}\left(\Lambda, \Gamma, M^{\Delta}\right) \rightarrow H_{-1}\left(\Lambda, K, M^{\Delta}\right)$ is a monomorphism and $H^{0}(\Lambda, K, M)$ $=\operatorname{Im} \Psi_{\bar{A} / K^{-1}} \mathrm{Inf}_{-1} \oplus \operatorname{Ker}^{-1}$ Def 0 for any left P-module M.
(iv) $\operatorname{Def}^{-1}: H^{-1}(\Lambda, K, M) \rightarrow H^{-1}(\Lambda, \Gamma, M)$ is an epimorphism and $H_{0}\left(\Lambda, K, M^{\Delta}\right)$

(v) $0 \rightarrow H_{-2}\left(\Lambda, \Gamma, M^{\Delta}\right) \xrightarrow{\mathrm{Inf}^{-2}} H_{-2}\left(\Lambda, K, M^{\Delta}\right) \xrightarrow{\mathrm{Res}^{2}-2} H_{-2}\left(\Gamma, K, M^{\Delta}\right)$ is exact for any left P-module M.

Proof. We use (19), (20) and (21) for the proof.
(i) \Leftrightarrow (ii). For any left P-module M the top row of (19) is exact for the case of $r=1$ by Theorem 5.2 without any condition. Therefore $\Psi_{A / \Gamma}^{1 /}$ is an isomorphism for any left P-module M if and only if (ii) holds. Hence (i) \Leftrightarrow (ii) holds.
(i) \Leftrightarrow (iii). The bottom row of (20) is exact for the case of $r=1$ by [8 , Proposition 2.2]. So if $\Psi_{A 1 \Gamma}^{-1}$ is an isomorphism, Inf_{-1} is a monomorphism and the bottom row of (20) is split by $\Psi_{\bar{A}^{-1} K^{\circ}} \operatorname{Inf}_{-{ }_{-1}} \circ\left(\Psi_{\bar{A} / \Gamma}^{-1}\right)^{-1}$. Therefore (i) \Rightarrow (iii) holds. If (iii) holds, it is easy to see that $\Psi_{\bar{A} / \Gamma}^{-1}$ of (20) is an isomorphism. Hence (iii) \Rightarrow (i) holds.
(i) \Leftrightarrow (iv). The top row of (20) is exact for the case of $r=0$ by Proposition 5.3. Hence (i) \Leftrightarrow (iv) holds by the similar way to (i) \Leftrightarrow (iii).
(i) $\Leftrightarrow(\mathrm{v})$. The bottom row of (21) is exact for the case of $r=2$ by [8, Theorem 2.1] without any condition. Therefore $(\mathrm{i}) \Leftrightarrow(\mathrm{v})$ holds by the similar way to $(\mathrm{i}) \Leftrightarrow(\mathrm{ii})$.

7. The necessary and sufficient conditions on which

 $\Psi_{A / \Gamma}$ is an isomorphism.Put $\tilde{M}=\left\{m \in M \mid\left(1 \otimes_{\Gamma} 1\right) \otimes_{P} m^{\Delta} \in C_{-1}^{\Delta / \Gamma}\left(M^{\Delta}\right)\right\}$ for any left P-module M where $C_{-1}^{A / \Gamma}$ is the same as in Proposition 1.1, and put $M^{\Lambda}=\{m \in M \mid x m=m x$ for all $x \in \Lambda\}$ and $M^{\Gamma}=\{m \in M \mid z m=m z$ for all $z \in \Gamma\} . \quad \tilde{M}, M^{\Lambda}$ and M^{Γ} are K-submodules of M. Then we have the following theorem.

Theorem 7.1. The following conditions are equivalent:
(i) $\Psi_{\Lambda / \Gamma}^{r}: H_{r}\left(\Lambda, \Gamma, M^{\Delta}\right) \rightarrow H^{-r-1}(\Lambda, \Gamma, M)$ is an isomorphism for any left P_{-} module M and any $r \in \boldsymbol{Z}$.
(ii) $\Psi_{\Lambda / \Gamma}^{r}: H_{r}\left(\Lambda, \Gamma, M^{\Delta}\right) \rightarrow H^{-r-1}(\Lambda, \Gamma, M)$ is an epimorphism for any left P-module M and any $r \in \boldsymbol{Z}$.
(iii) There are elements $\lambda \in \tilde{\Lambda}$ and $\xi \in \Lambda^{\Gamma}$ such that $1=\sum_{j} r_{j} \lambda l_{j}+\sum_{i} R_{i} \xi L_{i}$.

Proof. Induce $\Psi_{A / \Gamma}$ from (4). By Proposition 1.1 and [8, Proposition 1.2] $\Psi_{\Lambda I \Gamma}^{-1} \Gamma$ can be regarded as a K-homomorphism from $C_{-1}^{A / \Gamma}\left(M^{\Delta}\right) / B_{-1}^{1 / I}\left(M^{\Delta}\right)$ inło $M^{4} / N_{A / \Gamma}(M)$ such that

$$
\begin{equation*}
\Psi_{\bar{A} 1 \Gamma}^{-1} \overline{\left(\left(1 \otimes_{\Gamma} 1\right) \otimes_{P} m^{\Delta}\right)}=\overline{\sum_{j} r_{j} m l_{j}} \tag{22}
\end{equation*}
$$

for $\left(1 \otimes_{\Gamma} 1\right) \otimes_{P} m^{\Delta} \in C_{-1}^{A / \Gamma}\left(M^{\Delta}\right)$, where $N_{A / \Gamma}(M)=\left\{\sum_{i} R_{i} m L_{i} \mid m \in M^{\Gamma}\right\}$ and - stands for the residue classes.
(i) \Rightarrow (ii). This holds obviously.
(ii) \Rightarrow (iii). Consider the case of $M=\Lambda . \Psi_{\bar{A} / r}^{-1}$ is an epimorphism. So since $1 \in \Lambda^{\Lambda}$, there is $\left(1 \otimes_{\Gamma} 1\right) \otimes_{P} \lambda^{\Delta} \in C_{-1}^{\Lambda_{1}}\left(\Lambda^{\Delta}\right)$ such that $\Psi_{\Lambda i}^{-1} \Gamma\left(\left(\overline{1} \otimes_{\Gamma} 1\right) \otimes_{P} \lambda^{\Delta}\right)=\overline{1}$, that is, $\overline{\sum_{j} r_{j} \lambda l_{j}}=\overline{1}$ holds. Therefore $1-\sum_{j} r_{j} \lambda l_{j} \in N_{A / \Gamma}(\Lambda)$, that is, there is $\xi \in \Lambda^{\Gamma}$ such that $1=\sum_{j} r_{j} \lambda l_{j}+\sum_{i} R_{i} \xi L_{i}$.
(iii) \Rightarrow (i). By using Proposition 2.1 for (13) and (14), since the connecting homomorphisms are isomorphisms by Lemma 4.2, (iii) \Rightarrow (i) holds if $\Psi_{\bar{A} / \Gamma}^{-1}$ is an isomorphism for any left P-module M. Let M be any left P-module. For λ of (iii), define a K-homomorphism $\varphi: M^{\Lambda} \rightarrow C_{-1}^{\Lambda I}\left(M^{\Delta}\right)$ such that $\varphi(m)=\left(1 \otimes_{\Gamma} 1\right) \otimes_{P}(\lambda m)^{\Delta}$. This is well-defined. In fact since $m \in M^{4}$, we can define a K-homomorphism $\kappa_{m}:\left(\Lambda \otimes_{\Gamma} \Lambda \otimes_{\Gamma} \Lambda\right) \otimes_{P} \Lambda^{\Delta} \rightarrow\left(\Lambda \otimes_{\Gamma} \Lambda \otimes_{\Gamma} \Lambda\right) \otimes_{P} M^{\Delta} \quad$ as $\quad \kappa_{m}\left(\left(x_{0} \otimes_{\Gamma} x_{1} \otimes_{\Gamma} x_{2}\right) \otimes_{P} x^{\Delta}\right)=$ $\left(x_{0} \otimes_{\Gamma} x_{1} \otimes_{\Gamma} x_{2}\right) \otimes_{P}(x m)^{\Delta}$. Since $\left(1 \otimes_{\Gamma} 1\right) \otimes_{P} \lambda^{\Delta} \in C_{-1}^{A / \Gamma}\left(\Lambda^{\Delta}\right)$, we have

$$
\begin{aligned}
0=\kappa_{m}(0) & =\kappa_{m}\left(\sum_{i}\left(R_{i} \otimes_{\Gamma} L_{i} \otimes_{\Gamma} 1\right) \otimes_{P} \lambda^{\Delta}-\Sigma_{i}\left(1 \otimes_{\Gamma} R_{i} \otimes_{\Gamma} L_{i}\right) \otimes_{P} \lambda^{\Delta}\right) \\
& =\Sigma_{i}\left(R_{i} \otimes_{\Gamma} L_{i} \otimes_{\Gamma} 1\right) \otimes_{P}(\lambda m)^{\Delta}-\Sigma_{i}\left(1 \otimes_{\Gamma} R_{i} \otimes_{\Gamma} L_{i}\right) \otimes_{P}(\lambda m)^{\Delta} .
\end{aligned}
$$

Therefore φ is well-defined. $\varphi\left(N_{A / \Gamma}(M)\right) \subset B_{-1}^{\Delta / \Gamma}\left(M^{\Delta}\right)$ holds. In fact, for any
$\sum_{i} R_{i} m L_{i} \in N_{A / \Gamma}(M)$, we have $\varphi\left(\sum_{i} R_{i} m L_{i}\right)=\sum_{i}\left(1 \otimes_{\Gamma} 1\right) \otimes_{P}\left(\lambda R_{i} m L_{i}\right)^{\Delta}=\sum_{i}\left(1 \otimes_{\Gamma} 1\right)$ $\otimes_{P}\left(R_{i} m L_{i} \lambda\right)^{\Delta}$, and since $m \in M^{\Gamma}$, we can define a K-homomorphism κ_{m} : $\left(\Lambda \otimes_{\Gamma} \Lambda \otimes_{\Gamma} \Lambda\right) \otimes_{P} \Lambda^{\Delta} \rightarrow\left(\Lambda \otimes_{\Gamma} \Lambda\right) \otimes_{P} M^{\Delta}$ as $\kappa_{m}\left(\left(x_{0} \otimes_{\Gamma} x_{1} \otimes_{\Gamma} x_{2}\right) \otimes_{P} x^{\Delta}\right)=\left(x_{0} \otimes_{\Gamma} x_{1}\right) \otimes_{P}$ $\left(m x_{2} x\right)^{\Delta}$. Then we have

$$
\begin{aligned}
0=\kappa_{m}(0) & =\kappa_{m}\left(\Sigma_{i}\left(R_{i} \otimes_{\Gamma} L_{i} \otimes_{\Gamma} 1\right) \otimes_{P} \lambda^{\Delta}-\Sigma_{i}\left(1 \otimes_{\Gamma} R_{i} \otimes_{\Gamma} L_{i}\right) \otimes_{P} \lambda^{\Delta}\right) \\
& =\sum_{i}\left(R_{i} \otimes_{\Gamma} L_{i}\right) \otimes_{P}(m \lambda)^{\Delta}-\varphi\left(\sum_{i} R_{i} m L_{i}\right)
\end{aligned}
$$

Therefore $\varphi\left(N_{A / \Gamma}(M) \subset B_{11}^{A / \Gamma}\left(M^{\Delta}\right)\right.$ holds. So φ induces a K-homomorphism $\left.\Phi: M^{\Lambda} / N_{A / \Gamma}(M) \rightarrow C_{-1}^{\Lambda / \Gamma}\left(M^{\Delta}\right) / B_{-1}^{\Lambda /} \Gamma_{(}^{\Delta}\right)$. And we have $\Phi_{\circ} \Psi_{\bar{A} / \Gamma}^{-1} \overline{\left(\left(1 \otimes_{r} 1\right) \otimes_{P} m^{\Delta}\right)}=$ $\overline{\sum_{j}\left(1 \otimes_{r} 1\right) \otimes_{P}\left(\lambda r_{j} m l_{j}\right)^{\Delta}}$. Further we have

$$
\begin{aligned}
\Sigma_{j}\left(1 \otimes_{\Gamma} 1\right) \otimes_{P}\left(\lambda r_{j} m l_{j}\right)^{\Delta} & =\Sigma_{j}\left(\nabla\left(l_{j}\right) \otimes_{\Gamma} \lambda r_{j}\right) \otimes_{P} m^{\Delta} \\
& =\Sigma_{j}\left(1 \otimes_{\Gamma} r_{j} \lambda l_{j}\right) \otimes_{P} m^{\Delta} \\
& =\left(1 \otimes_{\Gamma} 1\right) \otimes_{P} m^{\Delta}-\Sigma_{i}\left(1 \otimes_{\Gamma} R_{i} \xi L_{i}\right) \otimes_{P} m^{\Delta} \quad \text { by (iii). }
\end{aligned}
$$

Since $\xi \in \Lambda^{\Gamma}$, we can define a K-homomorphism $\kappa_{\xi}:\left(\Lambda \otimes_{P} \Lambda \otimes_{r} \Lambda\right) \otimes_{P} M^{\Delta} \rightarrow$ $\left(\Lambda \otimes_{r} A\right) \otimes_{P} M^{\Delta}$ as $\kappa_{\xi}\left(\left(x_{0} \otimes_{\Gamma} x_{1} \otimes_{\Gamma} x_{2}\right) \otimes_{P} n^{\Delta}\right)=\left(x_{0} \otimes_{\Gamma} x_{1}\right) \otimes_{P}\left(\xi x_{2} n\right)^{\Delta}$ for $x_{0} \otimes_{\Gamma} x_{1} \otimes_{\Gamma} x_{2}$ $\in \Lambda \otimes_{\Gamma} \Lambda \otimes_{\Gamma} \Lambda$ and $n \in M$. Then since $\left(1 \otimes_{\Gamma} 1\right) \otimes_{P} m^{\Delta} \in C_{-1}^{A \mid} \Gamma\left(M^{\Delta}\right)$, we have

$$
\begin{aligned}
0=\kappa_{\xi}(0) & =\kappa_{\xi}\left(\sum_{i}\left(R_{i} \otimes_{\Gamma} L_{i} \otimes_{\Gamma} 1\right) \otimes_{P} m^{\Delta}-\Sigma_{i}\left(1 \otimes_{\Gamma} R_{i} \otimes_{\Gamma} L_{i}\right) \otimes_{P} m^{\Delta}\right) \\
& =\sum_{i}\left(R_{i} \otimes_{\Gamma} L_{i}\right) \otimes_{P}(\xi m)^{\Delta}-\Sigma_{i}\left(1 \otimes_{\Gamma} R_{i} L_{i}\right) \otimes_{P} m^{\Delta},
\end{aligned}
$$

 For any $\bar{m} \in M^{\Lambda} / N_{A / \Gamma}(M)$, we have
that is, $\Psi_{\bar{\Lambda} / \Gamma^{\circ}} \Phi=1$ holds. Thus $\Psi_{\bar{\Lambda} / \Gamma}^{-1}$ is an isomorphism. Hence (i) holds.
Let M be a left P-module. Put $N_{A / K}(M)=\left\{\sum_{i, j} R_{i} r_{j} m l_{j} L_{i} \mid m \in M\right\}$ and $N_{\Gamma / K}(\tilde{M})=\left\{\Sigma_{j} r_{j} m l_{j} \mid m \in \tilde{M}\right\}$. Let $N_{A / \Gamma}(M)$ be the same as in the proof of Theorem 7.1. Then by Theorems 6.3 and 7.1 we have

Theorem 7.2. The following conditions are equivalent:
(i) $\Psi_{\Lambda / \Gamma}^{r}: H_{r}\left(\Lambda, \Gamma, M^{\Delta}\right) \leftarrow H^{-r-1}(\Lambda, \Gamma, M)$ is an isomorphism for any left P module M and any $r \in \boldsymbol{Z}$.
(ii) $M^{\Lambda} / N_{A / K}(M)=N_{\Gamma / K}(\tilde{M}) / N_{A / K}(M) \oplus N_{A / \Gamma}(M) / N_{A / K}(M)$ holds for any left P-module M.
(iii) $M^{A}=N_{\Gamma / K}(\tilde{M})+N_{A / \Gamma}(M)$ holds for any left P-module M.
(iv) $\Lambda^{\Lambda} / N_{\Lambda / K}(\Lambda)=N_{\Gamma / K}(\tilde{\Lambda}) / N_{\Lambda / K}(\Lambda) \oplus N_{\Lambda / \Gamma}(\Lambda) / N_{\Lambda / K}(\Lambda)$ holds.

Proof. (i) $\Rightarrow\left(\right.$ ii). By Theorem 6.3 (iii), $H^{0}(\Lambda, K, M)=\operatorname{Im} \Psi^{-1}{ }_{\Lambda}^{1} K^{\circ} \operatorname{Inf}_{-1} \oplus$ Ker Def ${ }^{0}$ holds. And we have $H^{0}(\Lambda, K, M) \cong M^{\Lambda} / N_{A / K}(M), \operatorname{Im} \Psi_{A^{1} / K}^{-1} \operatorname{Inf}_{-1} \cong$ $N_{\Gamma / K}(\tilde{M}) / N_{A / K}(M)$ and $\operatorname{Ker} \operatorname{Def}^{0} \cong \operatorname{Im} \operatorname{Cor}^{0} \cong N_{A / \Gamma}(M) / N_{A / K}(M)$ by (4), Propositions 3.2, Lemma 4.4 and [8, Propositions 1.2 and 2.2]. Hence (ii) holds.
(ii) \Rightarrow (iii). This is trivial.
(iii) \Rightarrow (i). Put $M=\Lambda$. Then Theorem 7.1 (iii) holds. So (i) holds.
(ii) \Rightarrow (iv). Put $M=\Lambda$. Then (iv) holds.
(iv) \Rightarrow (i). If (iv) holds, Theorem 7.1 (iii) holds. So (i) holds.

Appendix of section 7.

Let M and N be left Λ-modules. In [3], by using complete (Λ, Γ)-projective resolutions of M, the complete cohomology group $H_{(A, \Gamma)}^{r}(M, N)$ is defined for all $r \in \boldsymbol{Z}$. Similarly, when M is a right Λ-module, the complete homology group $H_{r}^{(A, \Gamma)}(M, N)$ is defined for all $r \in \boldsymbol{Z}$. For a left Λ-module M, $\operatorname{Hom}\left({ }_{K} M,{ }_{K} K\right)$ is regarded as a right Λ-module with the usual way, which we denote by M^{*}. Let N^{0} be the module N with a different structure as a left Λ-module such that $\lambda \cdot n=\nabla(\lambda) n$ for $\lambda \in \Lambda$ and $n \in N$. Then for the left P-module $M^{*} \otimes_{K} N$, we have $H_{r}\left(\Lambda, \Gamma,\left(M^{*} \bigotimes_{K} N\right)^{\Delta}\right) \cong H_{r}^{(\Lambda, ~} \Gamma^{\prime}\left(M^{*}, N^{0}\right)$ by the simple argument. Similarly $H^{r}\left(\Lambda, \Gamma, \operatorname{Hom}\left({ }_{K} M,{ }_{K} N\right)\right) \cong H_{(\Lambda, \Gamma)}^{r}(M, N)$ holds. Hence if $\Psi_{\Lambda / \Gamma}^{r}$ is an isomorphism and $M^{*} \otimes_{K} N \cong \operatorname{Hom}\left({ }_{K} M,{ }_{K} N\right)$ holds as left P-modules, we have $\left.H_{r}^{(\Lambda, \Gamma)}\left(M^{*}, N^{0}\right) \cong H_{(A, I)}^{-r}\right)(M, N)$. For the case of $\Gamma=K$, this means that we obtain the same result as [7, Satz 2] and [9, Theorem 10]. When we return to general cases, we have

Theorem 7.3. Let M be a left 1 -module. Assume that $\Psi^{r}{ }_{A / F}$ is an isomorphism for any left P-modules and any $r \in \boldsymbol{Z}$. Then if M is finitely generated and projective as a K-module, we have

$$
H_{r}^{\left(\Lambda, \Gamma^{\prime}\right)}\left(M^{*}, N^{0}\right) \cong H_{(\Lambda, \Gamma)}^{-r-1}(M, N)
$$

for any left Λ-module N and any $r \in \boldsymbol{Z}$.
Proof. Let $\kappa_{M}: M * \otimes_{K} N \rightarrow \operatorname{Hom}\left({ }_{K} M,{ }_{K} N\right)$ be a left P-homomorphism such that $\kappa_{M}\left(g \otimes_{K} n\right)=[m \rightarrow g(m) n]$. If M is finitely generated and projective as a K module, it is easy to see that κ_{M} is an isomorphism. Hence $H_{r}^{(\Lambda, \Gamma)}\left(M^{*}, N^{0}\right) \cong$ $H_{(\Lambda, I)}^{-1}(M, N)$ holds for any left Λ-module N and any $r \in \boldsymbol{Z}$.

8. The necessary and sufficient conditions for

$$
H_{r}(G, K,-) \cong H^{-r-1}(G, K,-) .
$$

Let G be a group and K a subgroup of finite index in G. Then in [6, section 4], from complete ($\boldsymbol{Z} G, \boldsymbol{Z} K$)-resolutions of \boldsymbol{Z} the complete relative homology group $H_{r}(G, K, M)$ and cohomology group $H^{r}(G, K, M)$ are defined for $-\infty<r<\infty$ where M is a left G-module. In this section we treat the case where G is a finite group.

For a subgroup K, let $G=\bigcup_{i=1}^{n} g_{i} K$ be a left coset decomposition and $H: \boldsymbol{Z} G \rightarrow \boldsymbol{Z} K$ a two-sided $\boldsymbol{Z} K$-homomorphism such that for $g \in G$

$$
H(g)= \begin{cases}0 & g \notin K, \\ g & g \in K .\end{cases}
$$

Then for $x \in \boldsymbol{Z} G \quad x=\sum_{i=1}^{n} g_{i} H\left(g_{i}^{-1} x\right)=\sum_{i=1}^{n} H\left(x g_{i}\right) g_{i}^{-1}$ holds. So the ring extension $\boldsymbol{Z} G / \boldsymbol{Z} K$ is a Frobenius extension. Let 1 be the unit element of G, and $h: \boldsymbol{Z} K \rightarrow \boldsymbol{Z}$ a \boldsymbol{Z}-homomorphism such that for $k \in K$

$$
h(k)= \begin{cases}0 & k \neq 1, \\ 1 & k=1 .\end{cases}
$$

Then for $x \in \boldsymbol{Z} K \quad x=\sum_{k \in K} k h\left(k^{-1} x\right)=\sum_{k \in K} h(x k) k^{-1}$ holds. So $\boldsymbol{Z} K$ is a Frobenius \boldsymbol{Z}-algebra. Hence $\boldsymbol{Z} G$ is a Frobenius \boldsymbol{Z}-algebra. Therefore we have the Nakayama automorphism $\Delta: \boldsymbol{Z} G \rightarrow \boldsymbol{Z} G$. By the definition in section 1Δ is the identity homomorphism of $\boldsymbol{Z} G$. We put $P=\boldsymbol{Z} G \otimes_{\mathbf{z}}(\boldsymbol{Z} G)^{\circ}$, and let Q and S be the images of the natural homomorphisms $\boldsymbol{Z} K \otimes_{\boldsymbol{z}}(\boldsymbol{Z} G)^{\circ} \rightarrow P$ and $\boldsymbol{Z} K \otimes_{\mathbf{z}}(\boldsymbol{Z} K)^{0}$ $\rightarrow P$ respectively as in the previous sections.

We have the augmentation map $\varepsilon: \boldsymbol{Z} G \rightarrow \boldsymbol{Z}$ with $\varepsilon(g)=1$ for $g \in G$. Let M be a left G-module. Then by putting $\left(x_{0} \otimes_{\boldsymbol{z}} x_{1}\right) \cdot m=x_{0} m \varepsilon\left(x_{1}\right)$ for $x_{0} \otimes_{\boldsymbol{z}} x_{1} \in P$ and $m \in M, M$ can be regarded as a left P-module, and then we shall denote M by M_{ε}. As in the previous sections, we have the Z-homomorphism $\Psi_{Z G / Z K}^{r}$: $H_{r}\left(\boldsymbol{Z} G, \boldsymbol{Z} K, M_{\varepsilon}\right) \rightarrow H^{-r-1}\left(\boldsymbol{Z} G, \boldsymbol{Z} K, M_{\varepsilon}\right)$ for $-\infty<r<\infty$. Since $H_{r}\left(\boldsymbol{Z} G, \boldsymbol{Z} K, M_{\varepsilon}\right)$ $\cong H_{r}(G, K, M)$ and $H^{r}\left(\boldsymbol{Z} G, \boldsymbol{Z} K, M_{\varepsilon}\right) \cong H^{r}(G, K, M)$ hold, we have a \boldsymbol{Z}-homomorphism for all $r \in Z$:

$$
\Psi_{G / K}^{r}: H_{r}(G, K, M) \longrightarrow H^{-r-1}(G, K, M) .
$$

Let M be a left G-module. $\boldsymbol{Z} G \otimes_{\boldsymbol{z}_{K}} M$ and $\operatorname{Hom}\left(\boldsymbol{Z}_{K} \boldsymbol{Z} G, \boldsymbol{Z}_{K} M\right)$ are left $\boldsymbol{Z} G$ modules with the usual way. Then there are (P, Q)-exact sequences

$$
0 \longrightarrow(\operatorname{Ker} \xi)_{\varepsilon} \longrightarrow\left(\boldsymbol{Z} G \otimes_{Z K} M\right)_{\varepsilon} \xrightarrow{\xi} M_{\varepsilon} \longrightarrow 0,
$$

$$
0 \longrightarrow M_{\varepsilon} \xrightarrow{\tau}\left(\operatorname{Hom}\left(z_{K} \boldsymbol{Z} G, z_{K} M\right)\right)_{\varepsilon} \longrightarrow(\operatorname{Coker} \tau)_{\varepsilon} \longrightarrow 0,
$$

where $\xi\left(x \otimes_{\boldsymbol{z}_{K}} m\right)=x m$ and $\boldsymbol{\tau}(m)=[x \rightarrow x m]$ for $x \in \boldsymbol{Z} G$ and $m \in M$. Since $\left(\boldsymbol{Z} G \bigotimes_{\boldsymbol{Z} K} M\right)_{s}=\boldsymbol{Z} G \bigotimes_{\boldsymbol{Z}_{K}} M_{\varepsilon} \cong P \bigotimes_{Q} M_{\varepsilon}$ and so $\left(\operatorname{Hom}\left(\boldsymbol{Z}_{K} \boldsymbol{Z} G,{ }_{Z K} M\right)\right)_{\varepsilon} \cong\left(\boldsymbol{Z} G \bigotimes_{\boldsymbol{Z}_{K}} M\right)_{\varepsilon} \cong$ $P \otimes_{Q} M_{\varepsilon}$ holds, $\left(\boldsymbol{Z} G \otimes_{Z_{K}} M\right)_{\varepsilon}$ and (Hom ($\left.\left.{ }_{Z_{K}} Z G, Z_{K} M\right)\right)_{\varepsilon}$ are (P, Q)-projective. Therefore by using Proposition 2.1 for these exact sequences, since the connecting homomorphisms are isomorphisms by Lemma 4.2, $\Psi_{Z_{G / Z K}}^{r}: H_{r}\left(\boldsymbol{Z} G, \boldsymbol{Z} K, M_{\varepsilon}\right) \rightarrow$ $H^{-r-1}\left(\boldsymbol{Z} G, \boldsymbol{Z} K, M_{\varepsilon}\right)$ is an isomorphism for any $r \in \boldsymbol{Z}$ and any left G-module M if and only if it is an isomorphism for some r and any left G-module M.
\boldsymbol{Z} is regarded as a left G-module by ε with the usual way. Then $\boldsymbol{Z}_{\varepsilon}$ is a left P-module. We defined $\tilde{\boldsymbol{Z}}_{s}$ as $\left\{z \in \boldsymbol{Z}_{\mathrm{s}} \mid\left(1 \otimes_{\boldsymbol{Z}_{K}} 1\right) \otimes_{P} z \in C_{-1}^{\boldsymbol{Z}_{1}^{G / Z}}\left(\boldsymbol{Z}_{\mathrm{s}}\right)\right\}$ in section 7 . \tilde{Z}_{ε} is an ideal of the ring \boldsymbol{Z}, and we have

Lemma 8.1. Let $|K|$ be the order of K and $(G: K)$ the index of K in G. Then $\tilde{\boldsymbol{Z}}_{\varepsilon}$ contains $|K|$ and ($G: K$).

Proof. Let $G=\bigcup_{i=1}^{(G)}{ }^{K)} g_{i} K$ be a left coset decomposition. Then by Proposition 1.1 we have $B_{-1}^{Z_{1}^{G / Z K}}\left(\boldsymbol{Z}_{s}\right)=\left\{\sum_{i}\left(g_{i} \otimes_{\boldsymbol{z}_{K} g_{i}^{-1}}\right) \otimes_{P} z \mid z \in \boldsymbol{Z}_{\mathrm{s}}\right\}=\left\{\left(1 \otimes_{\boldsymbol{z}_{K}} 1\right) \otimes_{P}\right.$ $\left.(G: K) z \mid z \in \boldsymbol{Z}_{\varepsilon}\right\}$. Since $B_{-1}^{\boldsymbol{Z}}{ }^{G / Z K}\left(\boldsymbol{Z}_{\mathrm{s}}\right) \subset C_{-1}^{\boldsymbol{Z} G / \boldsymbol{Z} K}\left(\boldsymbol{Z}_{\mathrm{s}}\right)$ holds, $\tilde{\boldsymbol{Z}}_{\mathrm{s}}$ contains $(G: K)$. In $\left(\boldsymbol{Z} G \otimes_{\boldsymbol{Z}_{K}} \boldsymbol{Z} G \otimes_{\boldsymbol{Z}_{K}} \boldsymbol{Z} G\right) \otimes_{P} \boldsymbol{Z}_{\boldsymbol{\varepsilon}}$, we have $\sum_{i}\left(g_{i} \otimes_{\boldsymbol{Z}_{K}} g_{i}^{-1} \otimes_{\boldsymbol{Z} K} 1\right) \otimes_{P}|K|-\sum_{i}\left(1 \otimes_{\boldsymbol{Z} K} g_{i} \otimes_{\boldsymbol{Z}_{K}}\right.$ $\left.g_{i}^{-1}\right) \otimes_{P}|K|=\sum_{i}\left(1 \otimes_{Z_{K}} g_{i}^{-1} \otimes_{Z_{K}} 1\right) \otimes_{P}|K|-\sum_{i}\left(1 \otimes_{z_{K}} g_{i} \otimes_{z_{K}} 1\right) \otimes_{P}|K|=\sum_{i} \sum_{k \in K}\left(1 \otimes_{z_{K}}\right.$ $\left.k^{-1} g_{i}^{-1} \otimes_{Z_{K}} 1\right) \otimes_{P} 1-\sum_{i} \sum_{k \in K}\left(1 \otimes_{Z_{K}} g_{i} k \otimes_{Z_{K}} 1\right) \otimes_{P} 1=\sum_{g \in G}\left(1 \otimes_{Z_{K}} g \otimes_{Z_{K}} 1\right) \otimes_{P} 1-\sum_{g \in G}$ $\left(1 \otimes_{Z_{K}} g \otimes_{Z_{K}} 1\right) \otimes_{P} 1=0$. Thus $|K| \in \tilde{Z}_{\text {s }}$ holds by Proposition 1.1.

Theorem 8.2. The following conditions are equivalent:
(i) $\Psi_{a / K}^{r}: H_{r}(G, K, M) \rightarrow H^{-r-1}(G, K, M)$ is an isomorphism for any left G module M and any $r \in \boldsymbol{Z}$.
(ii) $\Psi_{G / K}^{r}: H_{r}(G, K, M) \rightarrow H^{-r-1}(G, K, M)$ is an epimorphism for any left G module M and any $r \in \boldsymbol{Z}$.
(iii) K is a Hall subgroup of G, that is, there are $t, z \in \boldsymbol{Z}$ such that $1=$ $|K| t+(G: K) z$.

Proof. The proof is similar to the proof of Theorem 7.1.
(i) \Rightarrow (ii). This is obvious.
(ii) \Rightarrow (iii). Let M be a left G-module. For the P-module $M_{\varepsilon},(22)$ in the proof of Theorem 7.1 is

$$
\Psi_{\bar{Z} G / Z K}^{-1}\left(\overline{\left(1 \bigotimes_{\boldsymbol{Z}_{K}} 1\right) \otimes_{P} m}\right)=\overline{\sum_{k \in K} k m \varepsilon\left(k^{-1}\right)}=\overline{\sum_{k \in K} k m}
$$

for $\left(1 \otimes_{Z K} 1\right) \otimes_{P} m \in C_{-1}^{Z G / Z K}\left(M_{\varepsilon}\right)$. Regard Z as a left G-module by ε with the
usual way and put $M=\boldsymbol{Z}$. Then $\Psi_{\boldsymbol{Z}_{G / Z} \boldsymbol{Z}_{K}}^{-1}$ is a homomorphism from $C_{-1}^{\boldsymbol{Z}_{-1}^{G / Z K}}\left(\boldsymbol{Z}_{\mathrm{s}}\right) /$ $B_{-1}^{Z^{G / Z K}}\left(\boldsymbol{Z}_{\varepsilon}\right)$ into $\left(\boldsymbol{Z}_{\varepsilon}\right)^{\boldsymbol{Z} G} / N_{\boldsymbol{Z} G / \boldsymbol{Z} K}\left(\boldsymbol{Z}_{\varepsilon}\right) .\left(\boldsymbol{Z}_{\varepsilon}\right)^{\boldsymbol{Z} G}$ is $\boldsymbol{Z}_{\varepsilon}$, and $N_{\boldsymbol{Z}^{G / Z K}}\left(\boldsymbol{Z}_{\varepsilon}\right)$ is $(G: K) \boldsymbol{Z}_{\varepsilon}$. Therefore since (ii) holds, there is $t \in \tilde{\boldsymbol{Z}}_{\varepsilon}$ such that $\overline{1}=\Psi_{\bar{Z} G / Z K}^{-1}\left(\overline{\left.\left(1 \otimes_{Z_{K}} 1\right) \otimes_{P} t\right)}\right.$, that is, $\overline{\mathrm{I}}=\overline{\sum_{k \in K} k t}=\overline{|K| t}$ holds. Hence there is $z \in \mathbb{Z}$ such that $1=|K| t+(G: K) z$.
(iii) \Rightarrow (i). By the argument before Lemma 8.1, (iii) \Rightarrow (i) holds if $\Psi_{\bar{Z} G / Z K}^{-1}$: $C_{-1}^{Z G / Z K}\left(M_{\mathrm{s}}\right) / B_{-1}^{Z G / Z K}\left(M_{\mathrm{s}}\right) \rightarrow\left(M_{\varepsilon}\right)^{Z G} / N_{Z G / Z K}\left(M_{\varepsilon}\right)$ is an isomorphism for any left G module M. If (iii) holds, since $\tilde{\boldsymbol{Z}}_{s}$ is an ideal of \boldsymbol{Z}, by Lemma 8.1 we have $1 \in \tilde{Z}_{\varepsilon}$, and so $t=t \cdot 1 \in \tilde{\boldsymbol{Z}}_{\varepsilon}$ holds. Therefore when we define a Z-homomorphism $\varphi:\left(M_{\varepsilon}\right)^{Z G} \rightarrow C_{-1}^{Z / Z}{ }^{Z}\left(M_{\varepsilon}\right)$ such that $\varphi(m)=\left(1 \otimes_{Z_{K}} 1\right) \otimes_{p} t m$, it can be shown by the same procedure as the proof of Theorem 7.1 that φ is well-defined, φ induces the Z-homomorphism $\Phi:\left(M_{\varepsilon}\right)^{Z G} / N_{Z G / Z K}\left(M_{\varepsilon}\right) \rightarrow C_{-1}^{Z G / Z K}\left(M_{\varepsilon}\right) / B_{-1}^{Z G / Z K}\left(M_{\varepsilon}\right)$, and Φ is the inverse isomorphism of $\Psi_{\mathbf{Z}^{-1} / Z K K}^{-1}$. Hence (i) holds.

Acknowledgements.

The author thanks Professor Kazuhiko Hirata, Dr. Katunori Sanada and the refree for their heipful and valuable advice.

References

[1] Bell, A.D. and Farnsteiner, R., On the theory of Frobenius extensions and its application to Lie superalgebras, Trans. Amer. Math. Soc. 335 (1993), 407-424.
[2] Cartan, H. and Eilenberg, S., Homological algebra, Princeton Math. Series. Princeton, 1956.
[3] Farnsteiner, R., On the cohomology of ring extensions, Advances in Math. 87 (1991), 42-70.
[4] Grothendieck, A., Sur quelques points d'algèbre homologique, Tôhoku Math. J. 9 (1957), 119-221.
[5] Hattori, A., On fundamental exact sequences, J. Math. Soc. Jap. 12 (1960), 65-80.
[6] Hochschild, G., Relative homological algebra, Trans. Amer. Math. Soc. 82 (1956), 246-269.
[7] Kasch, F., Dualitätseigenschaften von Frobenius-Erweiterungen, Math. Z. 77 (1961), 219-227.
[8] Nozawa, T., On the complete relative cohomology of Frobenius extensions, Tsukuba J. Math. 17 (1993), 99-113.
[9] Onodera, T., Some studies on projective Frobenius extensions, J. Fac. Sci. Hokkaido Univ. 18 (1964), 89-107.
[10] Sanada, K., On the cohomology of Frobenius algebras*, J. Pure Appl. Algebra 80 (1992), 65-88.

Department of Mathematics
Faculty of Science
Chiba University
Yayoi-cho, Chiba-city
263 Japan

