ON THE COMPLETE RELATIVE COHONOLOGY OF FROBENIUS EXTENSIONS

By

Takeshi Nozawa

Introduction.

Let Λ be an algebra over a commutative ring K and Γ a subalgebra. Suppose that the extension Λ / Γ is a Frobenius extension. Then in [3, section 3], the complete relative cohomology group $H_{(A, \Gamma)}^{r}(M,-)$ is introduced for an arbitrary left Λ-module M and $r \in \mathbb{Z}$. We denote the opposite rings of Λ and Γ by Λ^{0} and Γ^{0} respectively. Put $P=\Lambda \otimes_{K} \Lambda^{0}$ and let S denote the natural image of $\Gamma \otimes_{K} \Gamma^{0}$ in P. Then the extension P / S is also a Frobenius extension. Since Λ is a left P-module with the natural way, we have $H_{(P, S)}^{r}(\Lambda,-)$. We will denote this $H_{(p, s)}^{r}(\Lambda,-)$ by $H^{r}(\Lambda, \Gamma,-)$ for [6, section 3]. In this paper, we will study this complete relative cohomology $H(\Lambda, \Gamma$, -). In section 1 , we will study relative complete resolutions of Λ and in section 2 , we will introduce the dual of the fundamental exact sequence of [4, Proposition 1 and Theorem 1] for complete relative cohomology groups. In section 3, we will study an internal product like as in [9, section 2] which we will call the cup product. If the basic ring of the Frobenius extension is commutative, the cup product in this paper coincides with the product V in [2, Exercise 2 of Chapter XI] for dimension >0.

1. Relative complete resolutions.

Let P be a ring and S a subring such that the extension P / S is a Frobenius extension. In [3], the complete (P, S)-resolution of a left P-module M is introduced. It is a (P, S)-exact sequence $\cdots \rightarrow X_{1} \xrightarrow{d_{1}} X_{0} \xrightarrow{d_{0}} X_{-1} \xrightarrow{d_{-1}} \cdots$ such that X_{n} is $\left(P, S\right.$)-projective for all $n \in \mathbb{Z}$ and there exist a P-epimorphism $\varepsilon: X_{0} \rightarrow M$ and a P-monomorphism $\eta: M \rightarrow X_{-1}$ which satisfy $\eta \circ \varepsilon=d_{0}$, that is, the complete (P, S)-resolution of M is an exact sequence which consists of a (P, S)-projective resolution and a (P, S)-injective resolution of M since (P, S)-projectivity is equivalent to (P, S)-injectivity. Note that any two complete (P, S)-resolutions

[^0]of M denoted by Q and \mathcal{Q}^{\prime} have the same homotopy type, i. e., for chain maps $F: \mathscr{Q} \rightarrow \mathcal{U}^{\prime}$ and $G: \mathcal{U}^{\prime} \rightarrow \mathcal{U}$ over the identity map $1_{M}, F \circ G$ and $G \circ F$ are homotopic to $1_{U^{\prime}}$ and 1_{V} respectively. Therefore for any subring Q of P, if there exists a complete (P, S)-resolution of M which has a contracting Q homotopy in addition to the contracting S-homotopy, any complete (P, S)resolution of M also has a contracting Q-homotopy. Especially if P / Q is also a Frobenius extension such that $Q \supseteq S$ holds and there exists a complete (P, S) resolution with a contracting Q-homotopy, all complete (P, S)-resolutions of M are complete (P, Q)-resolutions of M since (P, S)-projective modules are (P, Q) projective modules.

Let Λ be an algebra over a commutative ring K and Γ be a subalgebra of 1. We suppose that the extension Λ / Γ is a Frobenius extension, that is to say, there exist elements of Λ denoted by $\left\{r_{1}, \cdots, r_{n}\right\},\left\{l_{1}, \cdots, l_{n}\right\}$ and a Γ - Γ homomorphism $h \in \operatorname{Hom}\left({ }_{\Gamma} \Lambda_{\Gamma}, \Gamma \Gamma_{\Gamma}\right)$ such that $x=\sum_{i=1}^{n} h\left(x r_{i}\right) l_{i}=\sum_{i=1}^{n} r_{i} h\left(l_{i} x\right)$ for all $x \in \Lambda$. Let Λ^{0} and Γ^{0} be the opposite rings of Λ and Γ respectively. Put $P=\Lambda \otimes_{K} \Lambda^{o}$ and let Q, R and S be the images of natural homomorphisms $\Gamma \otimes_{K} \Lambda^{0} \rightarrow P, \Lambda \otimes_{K} \Gamma^{0} \rightarrow P$ and $\Gamma \otimes_{K} \Gamma^{0} \rightarrow P$ respectively. Then the extensions $P / Q, P / R$ and P / S are Frobenius extensions. We regard Λ as a left P-module with the natural way.

Proposition 1.1. Any complete (P, S)-resolution of Λ has a contracting Q homotopy and a contracting R-homotopy in addition to the contracting S-homotopy.

Proof. We can prove this proposition by constructing such a complete (P, S)-resolution of Λ. Let

$$
\begin{equation*}
\cdots \longrightarrow X_{r} \xrightarrow{b_{r}} X_{r-1} \longrightarrow \cdots \longrightarrow X_{1} \xrightarrow{b_{1}} X_{0} \xrightarrow{\varepsilon} \Lambda \longrightarrow 0 \tag{1}
\end{equation*}
$$

be a (P, S)-projective resolution of Λ such that $X_{r}=\Lambda \otimes_{\Gamma} \cdots \otimes_{\Gamma} \Lambda(r+2$ copies), $b_{r}\left(x_{0} \otimes \cdots \otimes x_{r+1}\right)=\sum_{i=0}^{r}(-1)^{r-i} x_{0} \otimes \cdots \otimes x_{i} x_{i+1} \otimes \cdots \otimes x_{r+1}$ and $\varepsilon\left(x_{0} \otimes x_{1}\right)=x_{0} x_{1}$.
Note that (1) has two types of contracting S-homotopy. The one is a contracting Q-homotopy such that $x_{0} \otimes \cdots \otimes x_{r+1} \rightarrow(-1)^{r+1} 1 \otimes x_{0} \otimes \cdots \otimes x_{r+1}$. The other is a contracting R-homotopy such that $x_{0} \otimes \cdots \otimes x_{r+1} \rightarrow x_{0} \otimes \cdots \otimes x_{r+1} \otimes 1$. Hom (${ }_{A} X_{r}$, $\left.{ }_{1} \Lambda\right)$ and $\operatorname{Hom}\left(X_{r A}, \Lambda_{A}\right)$ are regarded as left P-modules by setting $((x \otimes y) \cdot f)$ ()$=f(() x) y$ and $((x \otimes y) \cdot g)()=x g(y())$ for $x \otimes y \in P, f \in \operatorname{Hom}\left({ }_{A} X_{r}, A \Lambda\right)$ and $g \in \operatorname{Hom}\left(X_{r \Lambda}, \Lambda_{A}\right)$. Applying the functors $\operatorname{Hom}\left(\Lambda_{-},{ }_{\Lambda} \Lambda\right)$ and $\operatorname{Hom}\left(-{ }_{\Lambda}, \Lambda_{A}\right)$ to (1), we have a (P, Q)-exact sequence and a (P, R)-exact sequence respectively. Let φ_{r} and ϕ_{r} denote P-isomorphisms $\operatorname{Hom}\left({ }_{A} X_{r}, \Lambda \Lambda\right) \simeq \Lambda \otimes_{r} \cdots \otimes_{r} \Lambda(r+2$ copies $)$ and $\operatorname{Hom}\left(X_{r \Lambda}, \Lambda_{\Lambda}\right) \leftrightharpoons \Lambda \otimes_{\Gamma} \cdots \otimes_{\Gamma} \Lambda(r+2$ copies) respectively such that

$$
\varphi_{r}(f)=\Sigma_{1 \leqslant i_{0} \leqslant n, \cdots, \cdots \leq i_{r} \leqslant n} r_{i_{0}} \otimes \cdots \otimes r_{i_{r}} \otimes f\left(1 \otimes l_{i_{r}} \otimes \cdots \otimes l_{i_{0}}\right),
$$

$$
\begin{gathered}
\varphi_{r}^{-1}\left(\lambda_{0} \otimes \cdots \otimes \lambda_{r+1}\right)=\left[x_{0} \otimes \cdots \otimes x_{r+1} \rightarrow x_{0} h\left(x_{1} h\left(\cdots h\left(x_{r} h\left(x_{r+1} \lambda_{0}\right) \lambda_{1}\right) \cdots\right) \lambda_{r}\right) \lambda_{r+1}\right], \\
\phi_{r}(g)=\sum_{1 \leq i_{0} \leq n, \cdots, 1 \leq i_{r} \leq n} g\left(r_{i_{0}} \otimes \cdots \otimes r_{i_{r}} \otimes 1\right) \otimes l_{i_{r}} \otimes \cdots \otimes l_{i_{0}}, \\
\phi_{r}^{-1}\left(\lambda_{0} \otimes \cdots \otimes \lambda_{r+1}\right)=\left[x_{0} \otimes \cdots \otimes x_{r+1} \rightarrow \lambda_{0} h\left(\lambda_{1} h\left(\cdots h\left(\lambda_{r} h\left(\lambda_{r+1} x_{0}\right) x_{1}\right) \cdots\right) x_{r}\right) x_{r+1}\right] .
\end{gathered}
$$

Since P / S is a Frobenius extension, (P, S)-projective module $\Lambda \otimes_{\Gamma} \cdots \otimes_{\Gamma} \Lambda$ is (P, S)-injective. Therefore we have two (P, S)-injective resolutions of Λ such that the one has a contracting Q-homotopy and the other has a contracting R homotopy. But since $\varphi_{r+1}\left(\varphi_{r}^{-1}\left(\lambda_{0} \otimes \cdots \otimes \lambda_{r+1}\right) \cdot b_{r+1}\right)=\phi_{r+1}\left(\phi_{r}^{-1}\left(\lambda_{0} \otimes \cdots \otimes \lambda_{r+1}\right) \cdot b_{r+1}\right)$ holds for all $\lambda_{0} \otimes \cdots \otimes \lambda_{r+1} \in \Lambda \otimes_{\Gamma} \cdots \otimes_{\Gamma} \Lambda$ ($r+2$ copies), two (P, S)-injective resolutions are same. Connecting this resolution with the standard (P, S) projective resolution of Λ that is (1) which has $(-1)^{r} b_{r}$ instead of b_{r} as the differentiation, we have a complete (P, S)-resolution of Λ which we want:
(2) $\begin{aligned} & \cdots \rightarrow X_{r} \xrightarrow{d_{r}} X_{r-1} \rightarrow \cdots \rightarrow X_{1} \xrightarrow{d_{1}} X_{0} \xrightarrow{d_{0}} X_{-1} \xrightarrow{d_{-1}} \cdots \rightarrow X_{-r} \xrightarrow{d_{-r}} X_{-(r+1)} \rightarrow \cdots . \\ & \varepsilon{ }_{\Lambda}^{J_{\eta}}\end{aligned}$

Here we set $d_{r}=(-1)^{r} b_{r}$ and $X_{-r}=\Lambda \otimes_{r} \cdots \otimes_{r} \Lambda$ ($r+1$ copies) for $r \geqq 1$, and η, d_{0} and d_{-r} are given by $\eta(x)=\sum_{i} r_{i} \otimes l_{i} x, d_{0}\left(x_{0} \otimes x_{1}\right)=\eta_{\circ} \varepsilon\left(x_{0} \otimes x_{1}\right)=\sum_{i} x_{0} r_{i} \otimes$ $l_{i} x_{1}$ and $d_{-r}\left(x_{0} \otimes \cdots \otimes x_{r}\right)=\sum_{i=0}^{r} \sum_{j}(-1)^{i} x_{0} \otimes \cdots \otimes x_{i-1} \otimes r_{j} \otimes l_{j} x_{i} \otimes \cdots \otimes x_{r}$. Let denote the contracting Q-homotopy of (2) by D^{Q}. $D_{r}^{Q}: X_{r} \rightarrow X_{r+1}$ is given by $D_{r}^{Q}\left(x_{0} \otimes \cdots \otimes x_{r+1}\right)=1 \otimes x_{0} \otimes \cdots \otimes x_{r+1}$ for $r \geqq 0, D_{-1}^{Q}\left(x_{0} \otimes x_{1}\right)=h\left(x_{0}\right) \otimes x_{1}$ and $D_{-}{ }_{r}\left(x_{0}\right.$ $\left.\otimes \cdots \otimes x_{r}\right)=h\left(x_{0}\right) x_{1} \otimes \cdots \otimes x_{r}$ for $r \geqq 2$. Let denote the contracting R-homotopy of (2) by D^{R}. $\quad D_{r}^{R}: X_{r} \rightarrow X_{r+1}$ is given by $D_{r}^{R}\left(x_{0} \otimes \cdots \otimes x_{r+1}\right)=(-1)^{r+1} x_{0} \otimes \cdots \otimes$ $x_{r+1} \otimes 1$ for $r \geqq 0, D_{-1}^{R}\left(x_{0} \otimes x_{1}\right)=x_{0} \otimes h\left(x_{1}\right)$ and $D_{-r}^{R}\left(x_{0} \otimes \cdots \otimes x_{r}\right)=(-1)^{r+1} x_{0} \otimes \cdots \otimes$ $x_{r-1} h\left(x_{r}\right)$ for $r \geqq 2$.

We can see other complete (P, S)-resolutions of Λ in [3], [5] and [8].
Let M be a left P-module and $(X, d, \varepsilon, \eta$) be any complete (P, S)-resolution of Λ. Then we have the following sequnce:
$\ldots \leftarrow \operatorname{Hom}\left({ }_{P} X_{1},{ }_{P} M\right) \stackrel{d_{1}{ }^{*}}{\leftarrow} \operatorname{Hom}\left({ }_{P} X_{0, P} M\right) \stackrel{d_{0}{ }^{*}}{\leftarrow} \operatorname{Hom}\left({ }_{P} X_{-1},{ }_{P} M\right) \stackrel{d_{-1}{ }^{*}}{\leftarrow} \ldots$
where we set $d_{r}{ }^{*}(f)=f \circ d_{r}$ for $f \in \operatorname{Hom}\left({ }_{P} X_{r},{ }_{P} M\right)$. The r-th complete relative cohomology group $H^{r}(\Lambda, \Gamma, M)$ with coefficients in M is given by $H^{r}(\Lambda, \Gamma, M)$ $=\operatorname{Ker} d_{r+1}{ }^{*} / \operatorname{lm} d_{r}{ }^{*}$. We put $H^{*}(\Lambda, \Gamma, M)=\oplus_{r \in \boldsymbol{Z}} H^{r}(\Lambda, \Gamma, M)$. Let $Z(\Lambda)$ be the center of Λ. Then $\operatorname{Hom}\left({ }_{p} X_{r},{ }_{P} M\right)$ becomes a $Z(\Lambda)$-module by setting $(c \cdot f)()=c f()$ for $c \in Z(\Lambda)$. Therefore $H^{r}(\Lambda, \Gamma, M)$ is a $Z(\Lambda)$-module. It is obvious that $H^{r}(\Lambda, \Gamma, M)$ is independent of the choice of complete (P, S) resolutions of Λ.

Proposition 1.2. Put $M^{\Lambda}=\{m \in M \mid x m=m x$ for all $x \in \Lambda\}, M^{\Gamma}=\{m \in M \mid x m$ $=m x$ for all $x \in \Gamma\}$ and $N_{\Lambda /} \Gamma(M)=\left\{\sum_{i} r_{i} m l_{i} \mid m \in M^{\Gamma}\right\}$. Then $H^{0}(\Lambda, \Gamma, M) \cong$ $M^{\Lambda} / N_{A / \Gamma}(M)$ holds as $Z(\Lambda)$-modules.

Proof. Take (2) as a complete (P, S)-resolution of Λ and let f be the representative of an elemant $\alpha \in H^{0}(\Lambda, \Gamma, M)$. Then the isomorphism $H^{0}(\Lambda$, $\Gamma, M) \simeq M^{A} / N_{A / I}(M)$ is given by $\alpha \rightarrow f(1 \otimes 1)+N_{A / \Gamma}(M)$.

2. The dual of the fundamental exact sequence.

Let Λ / Γ be a Frobenius extension of K-algebras and $P, Q, R, S,\left\{r_{i}\right\},\left\{l_{i}\right\}$ and h be the same as in section 1. Suppose that Γ / K is also a Frobenius extension in section 2. Note that Λ / K is a Frobenius extension and Q, R and S are isomorphic to $\Gamma \otimes_{K} \Lambda^{0}, A \otimes_{K} \Gamma^{o}$ and $\Gamma \otimes_{K} \Gamma^{o}$ respectively. We have a complete (P, K)-resolution of Λ and a complete (S, K)-resolution of Γ. We denote them by Y and Z respectively.

Now we treat the restriction homomorphism and the corestriction homomorphism introduced in [10] briefly. Let M be a left P-module. Since Y and $Z \otimes_{\Gamma} \Lambda$ are regarded as complete (Q, K)-resolutions of $\Lambda, H^{r}\left(\operatorname{Hom}\left({ }_{Q} Y,{ }_{Q} M\right)\right) \cong$ $H^{r}\left(\operatorname{Hom}\left({ }_{Q} Z \otimes_{\Gamma} \Lambda,{ }_{Q} M\right)\right)$ holds. Since $H^{r}\left(\operatorname{Hom}\left({ }_{Q} Z \otimes_{\Gamma} \Lambda,{ }_{Q} M\right)\right) \cong H^{r}\left(\operatorname{Hom}\left(s Z,{ }_{s} M\right)\right)$ $=H^{r}(\Gamma, K, M)$ holds, we have an isomorphism

$$
\begin{equation*}
s_{r}: H^{r}\left(\operatorname{Hom}\left({ }_{Q} Y,{ }_{Q} M\right)\right) \simeq H^{r}(\Gamma, K, M) \tag{3}
\end{equation*}
$$

Composing s_{r} with the homomorphism induced by the natural map $\operatorname{Hom}\left({ }_{P} Y_{r}\right.$, $\left.{ }_{P} M\right) \rightarrow \operatorname{Hom}\left({ }_{Q} Y_{r},{ }_{Q} M\right)$, we obtain the restriction homomorphism Res ${ }^{r}: H^{r}(\Lambda, K$, $M) \rightarrow H^{r}(\Gamma, K, M)$. Composing s_{r}^{-1} with the homomorphism induced by the homomorphism $N_{A I \Gamma}: \operatorname{Hom}\left({ }_{Q} Y_{r},{ }_{Q} M\right) \rightarrow \operatorname{Hom}\left({ }_{P} Y_{r},{ }_{P} M\right)$ defined by $N_{A I \Gamma}(f)()=$ $\sum_{i} r_{i} f\left(l_{i}()\right)$, we obtain the corestriction homomorphism $\operatorname{Cor}^{r}: H^{r}(\Gamma, K, M) \rightarrow$ $H^{r}(\Lambda, K, M)$.

Next let X be a complete (P, S)-resolution of Λ. Dividing X and Y into the non-negative parts and the negative parts, that is, the relative projective resolutions of Λ and the relative injective resolutions of Λ, then the identity homomorphism of Λ derives a commutative diagram

and applying the functor $\operatorname{Hom}\left({ }_{P}-,{ }_{p} M\right)$ to (4), σ_{r} induces homomorphisms $\operatorname{Inf}^{r}: H^{r}(\Lambda, \Gamma, M) \rightarrow H^{r}(\Lambda, K, M)$ for $r \geqq 1$ and $\operatorname{Def}^{r}: H^{r}(\Lambda, K, M) \rightarrow H^{r}(\Lambda, \Gamma, M)$ for $r \leqq-1$. We will call them the inflation homomorphism and the deflation homomorphism respectively. We can define $\operatorname{Def}^{0}: H^{0}(\Lambda, K, M) \rightarrow H^{0}(\Lambda, \Gamma, M)$, that is, $\operatorname{Def}{ }^{0}: \operatorname{Ker} c_{1}{ }^{*} / \operatorname{Im} c_{0}{ }^{*} \rightarrow \operatorname{Ker} d_{1}{ }^{*} / \operatorname{Im} d_{0}{ }^{*}$ since $\operatorname{Ker} c_{1}{ }^{*} \leftrightharpoons \operatorname{Hom}\left({ }_{P} \Lambda,{ }_{P} M\right) \leadsto \operatorname{Ker} d_{1}{ }^{*}$ holds and $\operatorname{Im} d_{0}{ }^{*}$ contains the image of $\operatorname{Im} c_{0}{ }^{*}$. If we identify $H^{0}(\Lambda, K, M)$ and $H^{0}(\Lambda, \Gamma, M)$ with $M^{\Lambda} / N_{A / K}(M)$ and $M^{4} / N_{A / \Gamma}(M)$ respectively by Proposition 1.2, $\operatorname{Def}^{0}\left(m+N_{A / K}(M)\right)=m+N_{A / I}(M)$ holds.

Note that Res, Cor, Inf and Def are independent of the choice of relative complete resolutions.

Now we treat on the fundamental exact sequeuce introduced in [4]. Let A be an arbitrary ring and B a subring. By U, V and W we denote a B projective, an A-projective and an (A, B)-projective resolution of a left A-module M respectively. Then the identity homomorphism of M induces the chain maps $U \rightarrow V$ and $V \rightarrow W$. They induce $\operatorname{res}^{r}: \operatorname{Ext}_{A}^{r}(M, N) \rightarrow \operatorname{Ext}_{B}^{r}(M, N)$ and inf ${ }^{r}:$ $\operatorname{Ext}_{(A, B)}^{r}(M, N) \rightarrow \operatorname{Ext}_{A}^{r}(M, N)$ for $r \geqq 0$ by the natural way where N is any left A-module. Consider $\operatorname{Hom}\left({ }_{B} A,{ }_{B} N\right)$ as a left A-module by $(a \cdot f)()=f(() a)$ for $a \in A, f \in \operatorname{Hom}\left({ }_{B} A,{ }_{B} N\right)$. Define left A-modules $N^{i}(i \geqq 0)$ inductively as $N^{0}=N$ and $N^{i}=\operatorname{Hom}\left({ }_{B} A,{ }_{B} N^{i-1}\right)$ for $i \geqq 1$. Then in [4], it is proved that the sequence

$$
0 \longrightarrow \operatorname{Ext}_{(A, B)}^{r}(M, N) \xrightarrow{\inf ^{r}} \operatorname{Ext}_{A}^{r}(M, N) \xrightarrow{\operatorname{res}^{r}} \operatorname{Ext}_{B}^{r}(M, N)
$$

is exact for $r \geqq 1$ if A is left B-projective and $\operatorname{Ext}_{B}^{n}\left(M, N^{r-n}\right)=0(0<n<r)$.
Let A, B and M be P, Q and A respectively. Then the P-projective resolution V is a Q-projective resolution of Λ since P is Q-projective. Therefore we may choose V as U. So res is the homomorphism induced by the natural map $\operatorname{Hom}\left({ }_{P} V,{ }_{P}-\right.$) $\rightarrow \operatorname{Hom}\left({ }_{Q} V,{ }_{Q}-\right) . \quad V$ is also a (P, K)-projective resolution of Λ since A and P are K-projective. Therefore we may consider that V is the non-negative part of a complete (P, K)-resolution of Λ. Hence $\operatorname{Ext}_{P}^{r}(\Lambda,-)=$ $H^{r}(\Lambda, K,-)$ and $s_{r} \circ$ res $^{r}=$ Res r hold for $r \geqq 1$ where s_{r} is the same isomorphism of (3). We know by Proposition 1.1 that the complete (P, S)-resolution of Λ is also a complete (P, Q)-resolution of Λ. Therefore as W we may choose the non-negative part of a complete (P, S)-resolution of Λ. So $\operatorname{Ext}_{(P, Q)}^{r}(\Lambda,-)=$ $H^{r}(\Lambda, \Gamma,-)$ and $\inf ^{r}=\operatorname{Inf}^{r}$ hold for $r \geqq 1$. Thus the following theorem holds:

Theorem 2.1. Let N be any left P-module and define P-modules $N^{i}(i \geqq 0)$ inductively as $N^{0}=N$ and $N^{i}=\operatorname{Hom}\left({ }_{Q} P,{ }_{Q} N^{i-1}\right)$ for $i \geqq 1$. Then the sequence

$$
0 \longrightarrow H^{r}(\Lambda, \Gamma, N) \xrightarrow{\operatorname{Inf} r} H^{r}(\Lambda, K, N) \xrightarrow{\operatorname{Res}^{r}} H^{r}(\Gamma, K, N)
$$

is exact for $r \geqq 1$ if $H^{n}\left(\Gamma, K, N^{r-n}\right)=0(0<n<r)$.
Proof. $\operatorname{Ext}_{Q}^{n}\left(\Lambda, N^{r-n}\right)=H^{n}\left(\operatorname{Hom}\left({ }_{Q} V,{ }_{Q} N^{r-n}\right)\right) \cong H^{n}\left(\Gamma, K, N^{r-n}\right)=0$ holds by (3). Therefore the sequence is exact.

We show the dual of Theorem 2.1 till the end of section 2:
Proposition 2.2. The following sequence is exact for any left P-module M :

$$
\begin{equation*}
0 \longleftarrow H^{0}(\Lambda, \Gamma, M) \stackrel{\mathrm{Def}^{0}}{\leftarrow} H^{0}(\Lambda, K, M) \stackrel{\mathrm{Cor}^{0}}{\leftarrow} H^{0}(\Gamma, K, M) . \tag{5}
\end{equation*}
$$

Proof. By Proposition 1.2 the exactness of (5) is equivalent to the exactness of $0 \leftarrow M^{\Lambda} / N_{A / \Gamma}(M) \stackrel{\text { Def }^{0}}{\leftarrow} M^{\Lambda} / N_{A / K}(M) \stackrel{\overline{N / I / T}}{\leftarrow} M^{\Gamma} / N_{\Gamma / K}(M)$ where $\operatorname{Def}^{0}(m+$ $\left.N_{A / K}(M)\right)=m+N_{A / \Gamma}(M)$ and $\overline{N_{A / \Gamma}}\left(m+N_{\Gamma / K}(M)\right)=\sum_{i} r_{i} m l_{i}+N_{A / K}(M)$. This sequence is exact. Therefore (5) is also exact.

Lemma 2.3. $H^{r}(\Gamma, K, M) \cong H^{r}\left(\Lambda, K, \operatorname{Hom}\left({ }_{Q} P,{ }_{Q} M\right)\right) \cong H^{r}\left(\Lambda, K, P \otimes{ }_{Q} M\right)$ holds for any left P-module M and all $r \in \boldsymbol{Z}$.

Proof. For a complete (P, K)-resolution Y of $\Lambda, H^{r}(\Gamma, K, M) \cong H^{r}$ (Hom $\left.\left({ }_{Q} Y,{ }_{Q} M\right)\right)$ holds by (3) and $H^{r}\left(\operatorname{Hom}\left({ }_{Q} Y,{ }_{Q} M\right)\right) \cong H^{r}\left(\Lambda, K, \operatorname{Hom}\left({ }_{Q} P,{ }_{Q} M\right)\right) \cong H^{r}(\Lambda$, $\left.K, P \otimes_{Q} M\right)$ holds.

Lemma 2.4. Let $0 \rightarrow L \stackrel{f}{\rightarrow} M \xrightarrow{g} N \rightarrow 0$ be $a(P, S)$-exact sequence. Then we have the following long exact sequence

$$
\cdots \rightarrow H^{r}(\Lambda, \Gamma, L) \longrightarrow H^{r}(\Lambda, \Gamma, M) \longrightarrow H^{r}(\Lambda, \Gamma, N) \xrightarrow{\partial} H^{r+1}(\Lambda, \Gamma, L) \rightarrow \cdots
$$

where ∂ is the connecting homomorphism. We have similar long exact sequences for $H^{*}(\Lambda, K,-)$ and $H^{*}(\Gamma, K,-)$.

Proof. This can be proved by the usual way for short exact sequences.
LEMMA 2.5. Let $0 \rightarrow L \stackrel{f}{\rightarrow} M \xrightarrow{g} N \rightarrow 0$ be a (P, S)-exact sequence. Then for the connecting homomorphisms $\partial: H^{r}(\Lambda, \Gamma, N) \rightarrow H^{r+1}(\Lambda, \Gamma, L)$ and $\partial^{\Lambda}: H^{r}(\Lambda$, $K, N) \rightarrow H^{r+1}(\Lambda, K, L)$, (i) $\partial \circ \operatorname{Def}^{r}=\operatorname{Der}^{r+1} \circ \partial^{\Lambda}$ holds for $r \leqq-1$. Let $0 \rightarrow L \xrightarrow{f}$ $M \stackrel{g}{\rightarrow} N \rightarrow 0$ be a (P, K)-exact sequence. Then for the connecting homomorphisms $\partial^{\Lambda}: H^{r}(\Lambda, K, N) \rightarrow H^{r+1}(\Lambda, K, L)$ and $\partial^{\Gamma}: H^{r}(\Gamma, K, N) \rightarrow H^{r+1}(\Gamma, K, L)$, (ii) $\partial^{A}{ }^{\circ} \mathrm{Cor}^{r}=\mathrm{Cor}^{r+1} \circ \partial^{\Gamma}$ holds for all $r \in \boldsymbol{Z}$.

Proof. We use (4) for the proof. (i) holds for $r \leqq-2$ by the commutativity of (4). Let φ denote the isomorphism $\operatorname{Ker} c_{1}{ }^{*} \rightarrow \operatorname{Ker} d_{1}{ }^{*}$ by which we defined Def ${ }^{0}$. Then $\varphi \cdot\left(\left.f_{*}\right|_{\text {Ker } c_{1} *}\right)=f_{*^{\circ}} \varphi, \varphi \circ c_{0}{ }^{*}=d_{0}{ }^{*} \sigma_{-1} *$ and $\sigma_{-1} * \circ g_{*}=g_{*^{\circ}} \sigma_{-1} *$ hold where f_{*} and g_{*} are homomorphisms induced by f and g respectively with the natural way. Therefore (i) holds for $r=-1$. Let Z be a complete (S, K) resolution of Λ with a differentiation e. Then Cor is induced by a chain map $\phi: \operatorname{Hom}\left(s Z, s^{-}\right) \rightarrow \operatorname{Hom}\left({ }_{P} Y,{ }_{P}-\right) . \quad \phi \circ f_{*}=f_{*} \circ \phi, \phi \circ e^{*}=c^{*} \circ \phi$ and $\phi \circ g_{*}=g_{*} \circ \phi$ hold. Therefore (ii) also holds.

Theorem 2.6. Let M be any left P-module and define P-modules $M_{i}(i \geqq 0)$ inductively as $M_{0}=M$ and $M_{i}=P \bigotimes_{Q} M_{i-1}$ for $i \geqq 1$. Then the sequence

$$
0 \longleftarrow H^{-r}(\Lambda, \Gamma, M) \stackrel{\operatorname{Def}^{-r}}{\longleftarrow} H^{-r}(\Lambda, K, M) \stackrel{\mathrm{Cor}^{-r}}{\longleftarrow} H^{-r}(\Gamma, K, M)
$$

is exact for $r \geqq 0$ if $H^{-n}\left(\Gamma, K, M_{r-n}\right)=0(0 \leqq n \leqq r-1)$.
Proof. By induction on r. The case of $r=0$ is proved by Proposition 2.2. Assume that the case of $r=t$ holds. Consider the case of $r=t+1$. By M^{\prime} we denote the kernel of a P-homomorphism $d: M_{1} \rightarrow M$ such that $d(p \otimes m)=p m$. Put $M_{0}^{\prime}=M^{\prime}$ and $M_{i}^{\prime}=P \bigotimes_{Q} M_{i-1}^{\prime}$ for all $i \geqq 1$. Then there holds $s M_{i}^{\prime} \oplus_{S} M_{i+1}$ for all $i \geqq 0$. Therefore $H^{-n}\left(\Gamma, K, M_{t-n}^{\prime}\right)=0$ holds for $0 \leqq n \leqq t$. Hence the following sequence

$$
0 \longleftarrow H^{-t}\left(A, \Gamma^{\prime}, M^{\prime}\right) \stackrel{\operatorname{Def}^{-t}}{\longleftarrow} H^{-t}\left(A, K, M^{\prime}\right) \stackrel{\operatorname{Cor}^{-t}}{\longleftarrow} H^{-t}\left(\Gamma, K, M^{\prime}\right)
$$

is exact by the assumption of induction. Note that $H^{-t}\left(\Gamma, K, M^{\prime}\right)=0$ holds. The (P, S)-, (P, K) - and (S, K)-exact sequence

$$
\begin{equation*}
0 \longrightarrow M^{\prime} \longrightarrow M_{1} \xrightarrow{d} M \longrightarrow 0 \tag{6}
\end{equation*}
$$

induces the following commutative diagram by Lemma 2.5

where ∂, ∂^{A} and ∂^{Γ} are connecting homomorphisms for (6), \bar{d} is a homomorphism induced by d and τ is the isomorphism of Lemma 2.3. The isomorphism $H^{r}\left(A, K, M_{1}\right) \rightarrow H^{r}\left(\operatorname{Hom}\left({ }_{Q} Y,{ }_{Q} M\right)\right)$ in the proof of Lemma 2.3 is induced by an
isomorphism $u: \operatorname{Hom}\left({ }_{P} Y_{r},{ }_{P} M_{1}\right) \rightarrow \operatorname{Hom}\left({ }_{Q} Y_{r},{ }_{Q} M\right)$ such that $u(f)=\mu \circ f$ where the Q-homomorhism $\mu: M_{1} \rightarrow M$ is defined by $\mu((x \otimes y) \otimes m)=h(x) m y$ for $x \otimes y \in$ P and $m \in M$. Therefore Cor ${ }^{-t-1} \circ \tau=\bar{d}$ holds. M_{1} is (P, Q)-injective since P / Q is a Frobenius extension. So by Proposition 1.1, $H^{i}\left(\Lambda, \Gamma^{\prime}, M_{1}\right)=0$ holds for all $i \in \mathbb{Z}$. Therefore ∂ is an isomorphism. And ∂^{4} is an epimorphism because $H^{-t}\left(\Lambda, K, M_{1}\right) \cong H^{-t}(\Gamma, K, M)$ holds by Lemma 2.3 and $H^{-t}(\Gamma, K, M)=0$ holds by $H^{-t}(\Gamma, K, M) \oplus H^{-t}\left(\Gamma, K, M^{\prime}\right) \cong H^{-t}\left(\Gamma, K, M_{1}\right)=0$. Hence for the middle sequence of the above commutative diagram, Theorem 2.6 holds.

3. The cup product on the complete relative cohomology.

The cup product on the complete cohomology of Frobenius algebras is defined in [9]. In this section we will introduce the cup product on the complete relative cohomology of Frobenius extensions. Let Λ / Γ be a Frobenius extension of K-algebras and $P, Q, R, S,\left\{r_{i}\right\},\left\{l_{i}\right\}, h$ and $Z(\Lambda)$ be the same as in section 1. Γ / K does not need to be a Frobenius extension.

Definition 3.1. Let A and B be any left P-modules and let r and s be any integers. Assume that an element $\alpha \cup \beta \in H^{r+s}\left(A, \Gamma, A \otimes_{A} B\right)$ is defined uniquely for every $\alpha \in H^{r}(A, \Gamma, A)$ and $\beta \in H^{s}(A, \Gamma, B)$. If \cup satisfies the following conditions (i), (ii), (iii) and (iv), we will call \cup the cup product on $H^{*}(\Lambda, \Gamma,-)$ and call $\alpha \cup \beta$ the cup product of α and β.
(i) \cup induces a $Z(\Lambda)$-homomorphism:

$$
H^{*}(\Lambda, \Gamma, A) \otimes_{z(\Lambda)} H^{*}(\Lambda, \Gamma, B) \xrightarrow{\cup} H^{*}\left(\Lambda, \Gamma, A \otimes_{A} B\right) .
$$

(ii) Let $0 \rightarrow A_{1} \rightarrow A_{2} \rightarrow A_{3} \rightarrow 0$ be a (P, S)-exact sequence and B be a left P_{-} module. If $0 \rightarrow A_{1} \otimes_{A} B \rightarrow A_{2} \otimes_{A} B \rightarrow A_{3} \otimes_{A} B \rightarrow 0$ is also (P, S)-exact, there holds $\partial(\alpha \cup \beta)=\partial(\alpha) \cup \beta$ for every $\alpha \in H^{r}\left(\Lambda, \Gamma, A_{3}\right)$ and $\beta \in H^{s}(\Lambda, \Gamma, B)$, where ∂ denotes the connecting homomorphism.
(iii) Let $0 \rightarrow B_{1} \rightarrow B_{2} \rightarrow B_{3} \rightarrow 0$ be a (P, S)-exact sequence and A be a left P module. If $0 \rightarrow A \otimes_{A} B_{1} \rightarrow A \otimes_{A} B_{2} \rightarrow A \otimes_{A} B_{3} \rightarrow 0$ is also (P, S)-exact, there holds $\partial(\alpha \cup \beta)=(-1)^{r} \alpha \cup \partial(\beta)$ for every $\alpha \in H^{r}(A, \Gamma, A)$ and $\beta \in H^{s}\left(\Lambda, \Gamma, B_{3}\right)$, where ∂ denotes the conneting homomorphism.
(iv) The diagram

commutes, in which the vertical homomorphisms are isomorphisms by Proposition 1.2 and the homomorphism in the bottom row is defined by

$$
\left(a+N_{A / \Gamma}(A)\right) \otimes\left(b+N_{A / \Gamma}(B)\right) \longrightarrow a \otimes b+N_{A / \Gamma}\left(A \otimes_{A} B\right)
$$

Proposition 3.2. If \cup and \cup^{\prime} satisfy the conditions (i), (ii), (iii) and (iv) of Definition 3.1 respectively, then $\cup=\cup^{\prime}$ holds.

Proof. This proposition is proved by the same method as [1, VI, Lemma 5.8], that is, proved inductively by using the following lemma of dimensionshiftings:

Lemma 3.3. Let M be a left P-module. Then we have the following four natural (P, Q) - (or (P, R)-) exact sequences for M :

$$
\begin{align*}
& 0 \longrightarrow \operatorname{Ker} \phi \longrightarrow P \otimes_{Q} M \xrightarrow{\phi} M \longrightarrow 0, \tag{7}\\
& 0 \longrightarrow \operatorname{Ker} \phi^{\prime} \longrightarrow P \otimes_{R} M \xrightarrow{\phi^{\prime}} M \longrightarrow 0, \tag{8}
\end{align*}
$$

$$
\begin{align*}
& 0 \longrightarrow M \xrightarrow{i} \operatorname{Hom}\left({ }_{Q} P,{ }_{Q} M\right) \longrightarrow \operatorname{Coker} i \longrightarrow 0, \tag{9}\\
& 0 \longrightarrow M \xrightarrow{i^{\prime}} \operatorname{Hom}\left({ }_{R} P,{ }_{R} M\right) \longrightarrow \operatorname{Coker} i^{\prime} \longrightarrow 0 \tag{10}
\end{align*}
$$

where $\phi(p \otimes m)=p m, \phi^{\prime}(p \otimes m)=p m, i(m)=[p \rightarrow p m]$ and $i^{\prime}(m)=[p \rightarrow p m]$. For any left P-module $N, 0 \rightarrow \operatorname{Ker} \phi \otimes_{A} N \rightarrow\left(P \otimes_{Q} M\right) \otimes_{A} N \rightarrow M \otimes_{A} N \rightarrow 0$ is also a (P, Q) exact sequence. With this sequence and (7) there hold
(i) $\partial: H^{r}(\Lambda, \Gamma, M) \leftrightharpoons H^{r+1}(\Lambda, \Gamma, \operatorname{Ker} \phi)$,

$$
\partial: H^{r}\left(\Lambda, \Gamma, M \otimes_{\Lambda} N\right) \simeq H^{r+1}\left(\Lambda, \Gamma, \operatorname{Ker} \phi \otimes_{\Lambda} N\right)
$$

where ∂ is the connecting homomorphism. Similarly there hold
(ii) $\partial: H^{r}(\Lambda, \Gamma, M) \simeq H^{r+1}\left(\Lambda, \Gamma, \operatorname{Ker} \phi^{\prime}\right)$,
$\partial: H^{r}\left(\Lambda, \Gamma, N \otimes_{\Lambda} M\right) \simeq H^{r+1}\left(\Lambda, \Gamma, N \otimes_{\Lambda} \operatorname{Ker} \phi^{\prime}\right)$,
(iii) $\partial: H^{r-1}(\Lambda, \Gamma$, Coker $i) \simeq H^{r}(\Lambda, \Gamma, M)$, $\partial: H^{r-1}\left(\Lambda, \Gamma\right.$, Coker $\left.i \otimes_{\Lambda} N\right) \simeq H^{r}\left(\Lambda, \Gamma, M \otimes_{\Lambda} N\right)$,
(iv) $\partial: H^{r-1}\left(\Lambda, \Gamma\right.$, Coker $\left.i^{\prime}\right) \rightrightarrows H^{r}(\Lambda, \Gamma, M)$,

$$
\partial: H^{r-1}\left(\Lambda, \Gamma, N \otimes_{\Lambda} \text { Coker } i^{\prime}\right) \leftrightharpoons H^{r}\left(\Lambda, \Gamma, N \otimes_{\Lambda} M\right)
$$

with (8), (9) and (10) respectively.

Proof. By Proposition 1.1 any complete (P, S)-resolution of Λ is a (P, Q) exact sequence. $P \otimes_{Q} M$ and $\left(P \otimes_{Q} M\right) \otimes_{A} N \cong P \otimes_{Q}\left(M \otimes_{A} N\right)$ are (P, Q)-injective since P / Q is a Frobenius extension. Therefore $H^{*}\left(\Lambda, \Gamma, P \otimes_{Q} M\right)=0$ and $H^{*}\left(\Lambda, \Gamma,\left(P \otimes_{Q} M\right) \otimes_{A} N\right)=0$ hold. Hence (i) holds. Similar arguments prove (ii), (iii) and (iv).

Note that the cup product is independent of the choice of complete (P, S) resolutions of Λ.

Lemma 3.4. Let $(X, d, \varepsilon, \eta)$ be a complete (P, S)-resolution of Λ. Then for any integers r and s there exists a left P-homomorphism $\Delta_{r, s}: X_{r+s} \rightarrow X_{r} \otimes_{A} X_{s}$ which satisfies the following conditions:
(i) $\left(\varepsilon \otimes_{1} \varepsilon\right) \cdot \Delta_{0,0}=\varepsilon$,
(ii) $\Delta_{r, s^{\circ}} d_{r+s+1}=\left(d_{r+1} \otimes_{A} 1_{X_{s}}\right) \cdot \Delta_{r+1, s}+(-1)^{r}\left(1_{X_{r}} \otimes_{\Lambda} d_{s+1}\right) \cdot \Delta_{r, s+1}$.

Proof. This lemma is proved by using the same method as [1, p. 140]: For $n \in \mathbf{Z}$ put $\left(X \hat{\otimes}_{A} X\right)_{n}=\prod_{p+q=n} X_{p} \otimes_{A} X_{q}$ and define $\delta_{n}:\left(X \hat{\otimes}_{A} X\right)_{n} \rightarrow\left(X \hat{\otimes}_{A} X\right)_{n-1}$ by $\delta_{n}=\Pi_{p+q=n} d_{p} \otimes_{A} 1_{X_{q}}+\Pi_{p+q=n}(-1)^{p} 1_{X_{p}} \otimes_{A} d_{q}$. Then $\left(X \widehat{\otimes}_{A} X, \delta\right)$ is a chain complex and has a contracting S-homotopy $\Pi_{p+q=n} D_{p}^{Q} \otimes_{A} 1_{X_{q}}:\left(X \widehat{\otimes}_{A} X\right)_{n} \rightarrow$ $\left(X \widehat{\otimes}_{1} X\right)_{n+1}$ where D^{Q} is a contracting Q-homotopy of X which exists by Proposition 1.1. Therefore $\left(X \hat{\otimes}_{A} X, \delta\right)$ is (P, S)-exact. The direct product of relative injectives is relative injective and the (P, S)-projective module $X_{p} \otimes_{A} X_{q}$ is (P, S)-injective since P / S is a Frobenius extension. So $\left(X \hat{\otimes}_{A} X, \delta\right)$ is dimen-sion-wise (P, S)-injective. Therefore if there exists a P-homomorphism $\alpha: X_{0} \rightarrow$ $\left(X \hat{\otimes}_{A} X\right)_{0}$ such that $\left(\varepsilon \otimes_{1} \varepsilon\right) \cdot \alpha=\varepsilon$ and $\delta_{0} \circ \alpha \circ d_{1}=0$ holds, α extends to a chain map $\Delta: X \rightarrow X \widehat{\otimes}_{A} X$ which satisfies the conditions (i) and (ii). Put $\alpha=\left(\alpha_{p}\right)$ where $\alpha_{p}: X_{0} \rightarrow X_{p} \otimes_{1} X_{-p}$. Then since X_{0} is (P,S)-projective, we can take α such that the condition $\left(\varepsilon \bigotimes_{A} \varepsilon\right) \circ \alpha=\left(\varepsilon \otimes_{A} \varepsilon\right) \circ \alpha_{0}=\varepsilon$ holds. Put $\delta_{p q}^{\prime}=d_{p} \otimes_{A} 1_{X_{q}}$ and $\delta_{p q}^{\prime \prime}=$ $(-1)^{p} 1_{X_{p}} \otimes_{\Lambda} d_{q}$. Then the condition $\delta_{0} \circ \alpha \circ d_{1}=0$ is equivalent to a condition (iii) $\delta_{p,-p}^{\prime} \alpha_{p}+\delta_{p-1,1-p}^{\prime \prime} \alpha_{p-1}=0$ on Im d_{1} for all $p \in \mathbf{Z}$. Consider the sequence $\left(X \otimes_{1} X_{q}\right.$, $\left.\delta_{-, q}^{\prime}\right)$ for any fixed $q . X_{q}$ is (P, S)-projective, that is, ${ }_{p} X_{q} \oplus_{P}\left(\Lambda \otimes_{\Gamma} M \otimes_{\Gamma} \Lambda\right.$) holds for an S-module M, and X has a contracting R-homotopy by Proposition 1.1. Therefore ($X \otimes_{1} X_{q}, \delta_{-, q}^{\prime}$) has a contracting P-homotopy H. Now assume that $p>0$ and that α_{p-1} has been defined. Set $\alpha_{p}=-H \circ \delta_{p-1,1-p}^{\prime \prime} \alpha_{p-1}$. Then α_{p} satisfies the condition (iii). In fact,

$$
\begin{aligned}
\delta^{\prime} \circ \alpha_{p}+\delta^{\prime \prime} \circ \alpha_{p-1} & =-\delta^{\prime} \circ H \circ \delta^{\prime \prime} \circ \alpha_{p-1}+\delta^{\prime \prime} \circ \alpha_{p-1} \\
& =H \circ \delta^{\prime} \circ \delta^{\prime \prime} \circ \alpha_{p-1} \quad \text { by the definition of } H \\
& =-H \circ \delta^{\prime \prime} \circ \delta^{\prime} \circ \alpha_{p-1} \quad \text { because } \delta^{\prime} \text { and } \delta^{\prime \prime} \text { anti-commute }
\end{aligned}
$$

where we have ommitted the subscripts on δ^{\prime} and $\delta^{\prime \prime}$ to simplify the notations. If $p=1$, then $H \circ \delta^{\prime \prime} \circ \delta^{\prime} \circ \alpha_{p-1}=H \circ\left(d_{0} \otimes_{A} d_{0}\right) \circ \alpha_{0}=H \circ\left(\eta \otimes_{\Lambda} \eta\right) \circ\left(\varepsilon \otimes_{\Lambda} \varepsilon\right) \circ \alpha_{0}=H \circ\left(\eta \otimes_{\Lambda} \eta\right) \circ \varepsilon$ $=0$ holds on $\operatorname{Im} d_{1}$. If $p>1$, then by the inductive hypothesis $\delta^{\prime} \circ \alpha_{p-1}+\delta^{\prime \prime} \circ \alpha_{p-2}$ $=0$ holds on $\operatorname{Im} d_{1}$. So $H \circ \delta^{\prime \prime} \circ \delta^{\prime} \circ \alpha_{p-1}=-H \circ \delta^{\prime \prime} \circ \delta^{\prime \prime} \circ \alpha_{p-2}=0$ holds on Im d_{1}. A similar argument constructs α_{p} for $p<0$ by descending induction. Thus the proof of this lemma is complete.

By Lemma 3.4 we have the cup product of $\alpha \in H^{r}(\Lambda, \Gamma, A)$ and $\beta \in$ $H^{s}(A, \Gamma, B)$: Put $\alpha=\bar{f}$ and $\beta=\bar{g}$ where f and g are representatives. Then the cup product is given by $\alpha \cup \beta=\overline{\left(f \otimes_{A} g\right) \cdot \Delta_{r, s}}$. Thus we obtain the following theorem:

Theorem 3.5. There is a cup product uniquely on $H^{*}(\Lambda, \Gamma,-)$.
The cup product has the following anti-commutativity:
Theorem 3.6. Let M be a P-module. Then for arbitrary $\alpha \in H^{r}(\Lambda, \Gamma, \Lambda)$ and $\beta \in H^{s}(\Lambda, \Gamma, M), \alpha \cup \beta=(-1)^{r s} \beta \cup \alpha$ holds.

Proof. Let $(X, d, \varepsilon, \eta)$ be (2) in section 1. Put $\varphi_{n}=\left(1_{X_{n}} \otimes_{A} \varepsilon\right)_{\cdot} \Delta_{n, 0}$ and $\phi_{n}=\left(\varepsilon \otimes_{\Lambda} 1_{X_{n}}\right) \cdot \Delta_{0, n}$ for any $n \in \mathbb{Z}$ where Δ is the same as in Lemma 3.4. φ : $X \rightarrow X$ and $\phi: X \rightarrow X$ are chain maps. Since $\varepsilon=\varepsilon^{\circ} \varphi_{0}=\varepsilon^{\circ} \phi_{0}$ holds, φ is homotopic to ϕ, that is, there exists a P-homomorphism $\nu_{n}: X_{n} \rightarrow X_{n+1}$ such that $\varphi_{n}-\phi_{n}=$ $\nu_{n-1} \circ d_{n}+d_{n+1} \circ \nu_{n}$ holds for all n. Let f and g be representatives of $\alpha \in H^{r}(\Lambda$, $\Gamma, \Lambda)$ and $\beta \in H^{s}(\Lambda, \Gamma, M)$ respectively. Consider the case of $s=0$. Since $g(1 \otimes 1) \in M^{4}$ holds by Proposition 1.2, there holds $\left(f \otimes_{\Lambda} g\right) \cdot \Delta_{r, 0}=g(1 \otimes 1) f \circ \varphi_{r}=$ $g(1 \otimes 1) f \circ \phi_{r}+g(1 \otimes 1) f \circ \nu_{r-1} \circ d_{r}=\left(g \otimes_{A} f\right) \circ \Delta_{0, r}+g(1 \otimes 1) f \circ \nu_{r-1} \circ d_{r}$. Therefore $\alpha \cup \beta$ $=(-1)^{\circ} \beta \cup \alpha$ holds for any $r \in \mathbf{Z}$. Since Λ is flat as a left Λ-module and as a right Λ-module, we can use (ii) and (iii) of Definition 3.1. Therefore by using Lemma 3.3 for $H^{s}(\Lambda, \Gamma, M), \alpha \cup \beta=(-1)^{r s} \beta \cup \alpha$ holds for any r and s.

The cup product has the following associatitivity:
Theorem 3.7. Let A, B and C be P-modules. Then for $\alpha \in H^{r}(\Lambda, \Gamma, A)$, $\beta \in H^{s}(\Lambda, \Gamma, B)$ and $\gamma \in H^{t}(\Lambda, \Gamma, C),(\alpha \cup \beta) \cup \gamma=\alpha \cup(\beta \cup \gamma)$ holds.

Proof. We can prove this theorem by the method like the proof of Theorem 3.6: Let $(X, d, \varepsilon, \eta)$ be (2) in section 1. Put

$$
\varphi_{n}=\left(\varepsilon \otimes_{A} 1_{X_{n}} \otimes_{A} \varepsilon\right) \circ\left(\Delta_{0, n} \otimes_{A} 1_{X_{0}}\right) \cdot \Delta_{n, 0} \quad \text { and } \quad \phi_{n}=\left(\varepsilon \otimes_{A} 1_{X_{n}} \otimes_{A} \varepsilon\right) \circ\left(1_{X_{0}} \otimes_{A} \Delta_{n, 0}\right) \cdot \Delta_{0, n}
$$

for $n \in \mathbf{Z}$ where Δ is the same as in Lemma 3.4. $\varphi: X \rightarrow X$ and $\phi: X \rightarrow X$ are chain maps. Since $\varepsilon=\varepsilon^{\circ} \varphi_{0}=\varepsilon{ }^{\circ} \phi_{0}$ holds, φ is homotopic to ϕ, that is, there exists a P-homomorphism $\nu_{n}: X_{n} \rightarrow X_{n+1}$ which satisfies $\varphi_{n}-\phi_{n}=\nu_{n-1} \circ{ }^{\circ} d_{n}+d_{n+1}$ 。 ν_{n}. Let f, g and k be representatives of $\alpha \in H^{r}(A, \Gamma, A), \beta \in H^{s}(A, \Gamma, B)$ and $\gamma \in H^{t}(\Lambda, \Gamma, C)$ respectively. Consider the case of $r=t=0$. Since $f(1 \otimes 1) \in A^{4}$ and $k(1 \otimes 1) \in C^{A}$ hold, there holds

$$
\begin{aligned}
& \left(\left(f \otimes_{\Lambda} g\right) \otimes_{A} k\right) \circ\left(\Delta_{0, \delta} \otimes_{\Lambda} 1_{X_{0}}\right) \cdot \Delta_{s, 0}=f(1 \otimes 1) \otimes_{\Lambda} g \circ \varphi_{s} \otimes_{A} k(1 \otimes 1) \\
& \quad=f(1 \otimes 1) \otimes_{A} g \circ \phi_{s} \otimes_{A} k(1 \otimes 1)+\left(f(1 \otimes 1) \otimes_{\Lambda} g \circ \nu_{s-1} \otimes_{A} k(1 \otimes 1)\right) \cdot d_{s} \\
& \quad=\left(f \otimes_{A}\left(g \otimes_{\Lambda} k\right)\right) \circ\left(1_{X_{0}} \otimes_{\Lambda} \Delta_{s, 0}\right) \cdot \Delta_{0, s}+\left(f\left(1 \otimes_{1}\right) \otimes_{\Lambda} g \circ \nu_{s-1} \otimes_{A} k(1 \otimes 1)\right) \circ d_{s}
\end{aligned}
$$

Therefore $(\alpha \cup \beta) \cup \gamma=\alpha \cup(\beta \cup \gamma)$ holds for the case of $r=t=0$. By using Lemma 3.3 for $H^{r}(\Lambda, \Gamma, A)$ and $H^{t}(\Lambda, \Gamma, C)$, we have $(\alpha \cup \beta) \cup \gamma=\alpha \cup(\beta \cup \gamma)$ for any $r, s, t \in \mathbf{Z}$.

By Theorem 3.7 $H^{*}(\Lambda, \Gamma, \Lambda)=\oplus_{r=z} H^{r}(\Lambda, \Gamma, \Lambda)$ is a ring with the identity element which is the image of $\overline{1} \in Z(\Lambda) / N_{\Lambda / \Gamma}(\Lambda)$ on the isomorphism $Z(\Lambda) /$ $N_{\Lambda / \Gamma}(\Lambda) \leftrightharpoons H^{0}(\Lambda, \Gamma, \Lambda)$ of Proposition 1.2.

Now assume that Γ / K is also a Frobenius extension. Then since Λ / K is a Frobenius extension, we have the cup product \cup on $H^{*}(\Lambda, K,-)$.

Lemma 3.8. For any (P, S)-exact sequence $0 \rightarrow L \stackrel{f}{\rightarrow} M \xrightarrow{g} N \rightarrow 0$, we have two connecting homomorphisms $\partial: H^{r}(\Lambda, \Gamma, N) \rightarrow H^{r+1}(\Lambda, \Gamma, L)$ and $\partial^{\Lambda}: H^{r}(\Lambda$, $K, N) \rightarrow H^{r+1}(\Lambda, K, L)$ for all $r \in \mathbf{Z}$ by Lemma 2.4. Then we have
(i) $\partial^{A}{ }^{\circ} \operatorname{Inf}^{r}=\operatorname{Inf}^{r+1} \circ \partial$ for $r \geqq 1$,
(ii) $\operatorname{Inf}^{1} \circ \partial \circ \operatorname{Def}^{0}=\partial^{4}$.

Proof. We use (4) in section 2 for the proof. (i) holds by the commutativity of (4). Let A be any left P-module. By $K(A)$ and $K^{\prime}(A)$ we denote the kernels of $c_{1}{ }^{*}: \operatorname{Hom}\left({ }_{P} Y_{0},{ }_{P} A\right) \rightarrow \operatorname{Hom}\left({ }_{P} Y_{1},{ }_{P} A\right)$ and $d_{1}{ }^{*}: \operatorname{Hom}\left({ }_{P} X_{0},{ }_{P} A\right) \rightarrow$ $\operatorname{Hom}\left({ }_{P} X_{1},{ }_{P} A\right)$ respectively. Then the diagram

is commutative where g_{*} is the homomorphism induced by g with the natural way and $K() \rightarrow K^{\prime}()$ is the same isomorphism by which we defined Def ${ }^{0}$ in section 2. $\quad \sigma_{1}{ }^{*} \circ f_{*}=f_{*^{\circ}} \sigma_{1}{ }^{*}$ and $\sigma_{1}{ }^{*} \circ d_{1}{ }^{*}=c_{1}{ }^{*} \circ \sigma_{0}{ }^{*}$ hold. Therefore (ii) holds.

Proposition 3.9. Let A and B be left P-modules and let $\alpha, \beta, \alpha^{\prime}$ and β^{\prime} be elements of $H^{r}(\Lambda, \Gamma, A), H^{s}(\Lambda, \Gamma, B), H^{r}(\Lambda, K, A)$ and $H^{s}(\Lambda, K, B)$ respectively. Then we have
(i) $\operatorname{Inf}^{r+s}(\alpha \cup \beta)=\operatorname{Inf}^{r}(\alpha) \cup \operatorname{Inf}^{s}(\beta)$ for $r \geqq 1$ and $s \geqq 1$,
(ii) $\operatorname{Def}^{r+s}\left(\alpha^{\prime} \cup \beta^{\prime}\right)=\operatorname{Def}^{r}\left(\alpha^{\prime}\right) \cup \operatorname{Def}^{3}\left(\beta^{\prime}\right)$ for $r \leqq 0$ and $s \leqq 0$,
(iii-i) $\operatorname{Def}^{r+s}\left(\alpha^{\prime} \cup \operatorname{Inf}^{s}(\beta)\right)=\operatorname{Def}^{r}\left(\alpha^{\prime}\right) \cup \beta$ for $r<0, s \geqq 1$ and $r+s \leqq 0$,
(iii-ii) $\operatorname{Def}^{r+s}\left(\operatorname{Inf}^{r}(\alpha) \cup \beta^{\prime}\right)=\alpha \cup \operatorname{Def}^{s}\left(\beta^{\prime}\right)$ for $r \geqq 1, s<0$ and $r+s \leqq 0$,
(iv-i) $\operatorname{Inf}^{r+s}\left(\operatorname{Def}^{r}\left(\alpha^{\prime}\right) \cup \beta\right)=\alpha^{\prime} \cup \operatorname{lnf}^{s}(\beta)$ for $r \leqq 0, s \geqq 1$ and $r+s \geqq 1$,
(iv-ii) $\operatorname{Inf}^{r+s}\left(\alpha \cup \operatorname{Def}^{s}\left(\beta^{\prime}\right)\right)=\operatorname{Inf}^{r}(\alpha) \cup \beta^{\prime}$ for $r \geqq 1, s \leqq 0$ and $r+s \geqq 1$.
Proof. Let X be (2) in section 1. Then we can take Δ of Lemma 3.4 such that $\Delta_{0,0}\left(x_{0} \otimes_{\Gamma} x_{1}\right)=\left(x_{0} \otimes_{\Gamma} 1\right) \otimes_{A}\left(1 \otimes_{\Gamma} x_{1}\right)$ and $\Delta_{-1,1}\left(x_{0} \otimes_{\Gamma} x_{1}\right)=\sum_{i}\left(x_{0} r_{i} \otimes_{\Gamma} 1\right) \otimes_{A}$ $\left(1 \otimes_{\Gamma} l_{i} \otimes_{\Gamma} x_{1}\right)$ hold. Since Λ / K is a Frobenius extension, we have a complete (P, K)-resolution Y of Λ whose type is (2) in section 1 . Then σ_{r} of (4) in section 2 is given by

$$
\begin{gathered}
\sigma_{r}\left(x_{0} \otimes_{K} \cdots \otimes_{K} x_{r+1}\right)=x_{0} \otimes_{\Gamma} \cdots \otimes_{\Gamma} x_{r+1} \quad \text { for } r \geqq 0, \\
\sigma_{-r}\left(x_{0} \otimes_{\Gamma} \cdots \otimes_{\Gamma} x_{r}\right)=\sum_{i_{0} \cdots, i_{r-1}} x_{0} r_{i_{0}}^{\prime} \otimes_{K} l_{i_{0}}^{\prime} x_{1} r_{i_{1}}^{\prime} \otimes_{K} \cdots \otimes_{K} l_{i_{r-1}}^{\prime} x_{r} \text { for } r \geqq 1
\end{gathered}
$$

where $\left\{r_{i}^{\prime}\right\}$ and $\left\{l_{i}^{\prime}\right\}$ are elements of Γ with respect to the Frobenius extension Γ / K like as $\left\{r_{i}\right\}$ and $\left\{l_{i}\right\}$ of Λ respectively. Let $\Delta_{r, s}^{1}$ be the P-homomorphism of Lemma 3.4 for Y. Then $\Delta_{-1,1}^{A}\left(x_{0} \otimes_{K} x_{1}\right)=\sum_{i, j}\left(x_{0} r_{i} r_{j}^{\prime} \otimes_{K} 1\right) \otimes_{A}\left(1 \otimes_{K} l_{j}^{\prime} l_{i} \otimes_{K} x_{1}\right)$ holds. Now we show (iii-i). Put $\alpha^{\prime}=\bar{f}$ and $\beta=\bar{g}$ where f and g are representatives of α^{\prime} and β respectively. At first we prove the case of $r+s=0$ by induction on s. Since there holds

$$
\begin{aligned}
\operatorname{Def}^{0}\left(\bar{f} \cup \operatorname{Inf}^{1}(\bar{g})\right) & \left.=\operatorname{Def}^{0} \overline{\left(\left(f \otimes_{\Lambda} g^{\circ} \sigma_{1}\right) \cdot \Delta_{-1,1}^{A}\right.}\right) \\
& =\overline{\left[x _ { 0 } \otimes _ { \Gamma } x _ { 1 } \longrightarrow \sum _ { i , j } f (x _ { 0 } r _ { i } r _ { j } ^ { \prime } \otimes _ { K } 1) \otimes _ { A } g \left(1 \otimes_{\left.\left.\Gamma_{j}^{\prime} l_{i} \otimes_{\Gamma} x_{1}\right)\right]}\right.\right.} \begin{array}{l}
=\overline{\left(f_{\circ} \sigma_{-1} \otimes_{A} g\right) \cdot \Delta_{-1,1}} \\
\\
\end{array}=\operatorname{Def}^{-1}(\bar{f}) \cup \bar{g},
\end{aligned}
$$

the case of $s=1$ holds. Assume that (iii-i) holds for some s and for any left P-modfules A and B. Let α^{\prime} and β be elements of $H^{-(s+1)}(A, K, A)$ and $H^{s+1}(\Lambda, \Gamma, B)$ respectively. Then with $(7), \partial^{A}\left(\alpha^{\prime}\right) \in H^{-s}(\Lambda, K, \operatorname{Ker} \phi)$ holds where ∂^{4} is the connecting homomorphism. By (iv) of Lemma 3.3 there exists $\beta^{\prime \prime} \in H^{s}\left(\Lambda, \Gamma\right.$, Coker $\left.i^{\prime}\right)$ such that $\partial\left(\beta^{\prime \prime}\right)=\beta$ holds. By the assumption of induction $\operatorname{Def}^{0}\left(\partial^{A}\left(\alpha^{\prime}\right) \cup \operatorname{Inf}^{s}\left(\beta^{\prime \prime}\right)\right)=\operatorname{Def}^{-s}\left(\partial^{A}\left(\alpha^{\prime}\right)\right) \cup \beta^{\prime \prime}$ holds. So we have $\partial\left(\operatorname{Def}^{-1}\left(\alpha^{\prime} \cup\right.\right.$ $\left.\left.\operatorname{Inf} f^{s}\left(\beta^{\prime \prime}\right)\right)\right)=\partial\left(\operatorname{Def}^{-(s+1)}\left(\alpha^{\prime}\right) \cup \beta^{\prime \prime}\right)$ by Lemma 2.5. Since this ∂ is an isomorphism, we can cancel ∂. Therefore by Lemmas 2.5 and 3.8 (iii-i) holds for α^{\prime} and β.

Assume that (iii-i) holds for the case of $r+s=-n(n \geqq 0)$. Consider the case of $r+s=-(n+1)$. By (ii) of Lemma 3.3, $\partial(\beta) \in H^{s+1}\left(\Lambda, \Gamma, \operatorname{Ker} \phi^{\prime}\right)$ holds. So $\operatorname{Def}^{-n}\left(\alpha^{\prime} \cup \operatorname{Inf}^{s+1}(\partial(\beta))\right)=\operatorname{Def}^{r}\left(\alpha^{\prime}\right) \cup \partial(\beta)$ holds. By Lemmas 2.5 and $3.8 \partial\left(\operatorname{Def}^{-(n+1)}\right.$ $\left.\left(\alpha^{\prime} \cup \operatorname{Inf}^{s}(\beta)\right)\right)=\partial\left(\operatorname{Def}^{r}\left(\alpha^{\prime}\right) \cup \beta\right)$ holds. This ∂ is an isomorphism. Hence (iii-i) holds. (iii-ii) is shown by the same method. Next we show (iv-i). At first we show the case of $r+s=1$ by induction on r. For $r=0$ (iv-i) holds by the computation like (iii-i). Assume that (iv-i) holds for some r and for any left P-modules A and B. Let α^{\prime} and β be elements of $H^{r-1}(\Lambda, K, A)$ and $H^{2-r}(\Lambda$, $\Gamma, B)$ respectively. By (iv) of Lemma 3.3 there exists $\beta^{\prime \prime} \in H^{1-r}\left(\Lambda, \Gamma\right.$, Coker $\left.i^{\prime}\right)$ such that $\partial\left(\beta^{\prime \prime}\right)=\beta$ holds. Then $\operatorname{Def}^{0}\left(\alpha^{\prime} \cup \operatorname{Inf}^{1-\tau}\left(\beta^{\prime \prime}\right)\right)=\operatorname{Def}^{r-1}\left(\alpha^{\prime}\right) \cup \beta^{\prime \prime}$ holds by (iii-i). Therefore by Lemma 3.8,

$$
\begin{aligned}
\operatorname{Inf}^{1}\left(\operatorname{Def}^{r-1}\left(\alpha^{\prime}\right) \cup \beta\right) & =\operatorname{Inf}^{1}\left(\operatorname{Def}^{r-1}\left(\alpha^{\prime}\right) \cup \partial\left(\beta^{\prime \prime}\right)\right) \\
& =(-1)^{r-1} \operatorname{Inf}^{1} \circ \partial\left(\operatorname{Def}^{r-1}\left(\alpha^{\prime}\right) \cup \beta^{\prime \prime}\right) \\
& =(-1)^{r-1} \operatorname{Inf}^{1} \circ \partial \circ \operatorname{Def}^{0}\left(\alpha^{\prime} \cup \operatorname{Inf}^{1-r}\left(\beta^{\prime \prime}\right)\right) \\
& =(-1)^{r-1} \partial{ }^{1}\left(\alpha^{\prime} \cup \operatorname{Inf}^{1-r}\left(\beta^{\prime \prime}\right)\right) \\
& =\alpha^{\prime} \cup \operatorname{Inf}^{2-r}(\beta)
\end{aligned}
$$

holds. Next assume that (iv-i) holds for the case of $r+s=n(n \geqq 1)$. Consider the case of $r+s=n+1$. By (iv) of Lemma 3.3 there exists $\beta^{\prime \prime} \in H^{8-1}(\Lambda, \Gamma$, Coker i^{\prime}) such that $\partial\left(\beta^{\prime \prime}\right)=\beta$ holds. Since $\operatorname{Inf}^{n}\left(\operatorname{Def}^{r}\left(\alpha^{\prime}\right) \cup \beta^{\prime \prime}\right)=\alpha^{\prime} \cup \operatorname{Inf}^{s-1}\left(\beta^{\prime \prime}\right)$ holds, (iv-i) holds for α^{\prime} and β by using Lemma 3.8. (iv-ii) is shown by the same method. (i) and (ii) are also shown by induction easier than (iii-i) and (iv-i).

Acknowledgements.

The author would like to express his tanks to Professor Kazuhiko Hirata and Dr. Katunori Sanada for their kind advice during the preparation of this paper.

References

[1] Brown, K.S., "Cohomology of Groups", Springer-Verlag, New York, 1982.
[2] Cartan, H. and Eilenberg, S., Homological algebra, Princeton Math. Series. Princeton, 1956.
[3] Farnsteiner, R., On the cohomology of ring extensions, Advances in Math. 87 (1991), 42-70.
[4] Hattori, A., On fundamental exact sequences, J. Math. Soc. Jap. 12 (1960), 6580.
[5] Hirata, K., On relative homological algebra of Frobenius extensions, Nagoya Math.
J. 15 (1959), 17-28.
[6] Hochschild, G., Relative homological algebra, Trans. Amer. Math. Soc. 82 (1956), 246-269.
[7] Nakayama, T., On the complete cohomology theory of Frobenius algebras, Osaka Math. J. 9 (1957), 165-187.
[8] Onodera, T., Some studies on projective Frobenius extensions, J. Fac. Sci. Hokkaido Univ. 18 (1964), 89-107.
[9] Sanada, K., On the cohomology of Frobenius algebras, Preprint.
[10] Sanada, K., On the cohomology of Frobenius algebras II, Preprint.
[11] Weiss, E., "Cohomology of Groups", Academic Press, New York, 1969.

> Department of Mathematics
> Faculty of Science
> Chiba University
> Yayoi-cho, Chiba city
> 260 Japan

[^0]: Received November 8, 1991, Revised June 9, 1992.

