SPAN ZERO CONTINUA AND THE PSEUDO-ARC

Dedicated to Professor Ryosuke Nakagawa on his 60th birthday

By

Kazuhiro KAWAMURA

0. Introduction

A compact connected metric space is called a *continuum*. Let X be a continuum and d be a metric of X. A. Lelek [6], [7] defined the *span*, *semispan*, *surjective span* and *surjective semispan* by the following formulas (the map π_j denotes the projection map from $X \times X$ onto the *i*-th factor).

$$\tau = \sigma, \sigma_0, \sigma^*, \sigma_0^*.$$

$$\tau = \sup \left\{ c \ge 0 \middle| \begin{array}{c} \text{there exists a continuum } Z \subset X \times X \text{ such that} \\ Z \text{ satisfies the condition } \tau \text{) and} \\ d(x, y) \ge c \quad \text{for each } (x, y) \in Z \end{array} \right\}.$$

Where the condition τ) is

$\pi_1(Z) = \pi_2(Z)$	if $\tau = \sigma$
$\pi_1(Z) \supset \pi_2(Z)$	if $\tau = \sigma_0$
$\pi_1(Z) = \pi_2(Z) = X$	if $\sigma = \sigma^*$
$\pi_1(Z) = X$	if $\tau = \sigma_0^*$

The property of having zero span (semispan, surjective span, surjective semispan resp.) does not depend on the choice of metrics of X.

A continuum is said to be *arc-like* if it is represented as the limit of an inverse sequence of arcs. It is known that each arc-like continuum has span zero. But it is not known whether the converse implication is true or not. A continuum X is said to be *hereditarily indecomposable* if each subcontinuum Y of X cannot be represented as the union of two proper subcontinua of Y. Hereditarily indecomposable arc-like continuum is topologically unique. It is called the *pseudo-arc* and denoted by P in this paper. It is known to be a homogeneous plane continuum and is also important in span theory. For example, each span zero continuum is a continuous image of the pseudo-arc ([11] and [2]).

Received July 26, 1989. Revised October 25, 1989.

Kazuhiro KAWAMURA

The purpose of this paper is to study some roles of the pseudo-arc in span theory. The paper is divided into three parts. In section 1, a uniformization theorem of maps from the pseudo-arc onto span zero continua is proved. As an application, we obtain a method of constructing maps from the pseudo-arc onto span zero continua. In section 2 and 3, we study the (weak) confluency of product maps. Using these results, we have an equivalent condition that a map preserves the property of having zero span in terms of (weak) confluency of product maps (cf. [10]). In section 4, we prove fixed point theorems for span zero continua, which are generalizations of [13].

To obtain these results, we use some techniques of Oversteegen [10] and Oversteegen-Tymchatyn [11].

Notations and definitions

Throughout this paper, Q denoted the Hilbert cube with a fixed metric. Let $f, g: X \to Y$ be maps and $\varepsilon > 0$. We say that f and g are ε -near (denoted by f = g) if $\sup \{d(f(x), g(x)) | x \in X\} < \varepsilon$. The map $f \triangle g: X \to Y \times X$ is defined by $f \triangle g$ (x) = (f(x), g(x)).

A collection $\mathcal{W} = \{W_1, \dots, W_n\}$ is called a *weak chain* if $W_i \cap W_{i+1} \neq \emptyset$ for each $1 \leq i \leq n-1$. Let $\mathcal{U} = \{U_1, \dots, U_m\}$ be another weak chain and $f : \{1, \dots, m\}$ $\rightarrow \{1, \dots, n\}$ be a pattern (i.e. $|f(i) - f(i+1)| \leq 1$ for each *i*). Then \mathcal{U} is said to follow f in \mathcal{W} if $U_i \subset W_{f(i)}$ for each $1 \leq i \leq m$. A continuum W is called *weakly* chainable if there exists a sequence (\mathcal{W}_n) of weak chain covers of W such that mesh $\mathcal{W}_n \rightarrow 0$ as $n \rightarrow \infty$, and for each n, \mathcal{W}_{n+1} follows a pattern in \mathcal{W}_n .

A continuum is weakly chainable if and only if it is a continuous image of the pseudo-arc ([5]).

Let $f: X \rightarrow Y$ be an onto map between continua, The map f is called *confluent* (weakly confluent resp.) if for each subcontinuum K of Y, each (some resp.) component C of $f^{-1}(K)$ satisfies f(C)=K.

1. Uniformizations

The following proposition is proved by the same way as [11] Theorem 1 and [12] Lemma 6. We give an outline of the proof (cf. [10] Lemma 2).

PROPOSITION 1. Let $X \subset Q$ be a continum and suppose that $\sigma_0 X \leq c$ $(c \geq 0)$. Let Z be a subcontinuum of X.

1) For each $\varepsilon > 0$, there exists a $\delta > 0$ such that for each pair of maps $h, k: I \rightarrow Q$ satisfying $d_H(h(I), Z), d_H(k(I), Z) < \delta$, there exist onto maps $a, b: I \rightarrow I$ such

that $h \circ a = k \circ b$.

2) Suppose that X is hereditarily indecomposable and $z \in Z$. If the maps h, $k: I \rightarrow Q$ in 1) further satisfy d(h(0), z), $d(k(0), z) < \delta$, then the maps a and b can be chosen so that a(0)=b(0)=0.

OUTLINE OF PROOF. We give an outline of the case 2). Give any subcontinuum Z and any $\varepsilon > 0$. For each pair of maps $h, k: I \rightarrow Q$, we define

$$N(h, k; \varepsilon) = \{(x, y) \in I \times I \mid d(h(x), k(y)) < c + \varepsilon\}.$$

As in the proof of [11] Theorem 1 and [12] Lemma 6, we have

a) there exists an $\varepsilon > 0$ which satisfies the following condition:

Let $h, k: I \rightarrow Q$ be any pair of maps satisfying

$$d_{H}(h(I), Z) < \delta, \qquad d_{H}(k(I), Z) < \delta$$

$$d(h(0), z) < \delta \text{ and } d(k(0), z) < \delta.$$

Then each continuum $K \subset I \times I$ with $K \cap I \times 0 \neq \emptyset \neq K \cap 0 \times I$ intersects $N(h, k: \varepsilon)$.

This δ is the required number. To prove this, we take maps $h, k: I \rightarrow Q$ as in the hypothesis. Then as in [12] Lemma 6 again,

b) there exists a component $C(\varepsilon)$ of $N(h, k; \varepsilon)$ such that each continuum $K \subset I \times I$ satisfying $K \cap I \times 0 \neq \emptyset \neq K \cap 0 \times I$ intersects $C(\varepsilon)$.

Let p_i be the projection map from $I \times I$ to the *i*-th factor. It is easy to see that $(0, 0) \in C(\varepsilon)$ and

 $p_1(C(\varepsilon)) = I$ or $p_2(C(\varepsilon)) = I$.

Assume that $p_1(C(\varepsilon))=I$. By the similar argument of [11] Theorem 1, we see that there exists a component $D(\varepsilon)$ of $N(h, k; \varepsilon)$ such that $p_2(D(\varepsilon))=I$. But clearly, $C(\varepsilon) \cap D(\varepsilon) \neq \emptyset$ so, $C(\varepsilon)=D(\varepsilon)$.

Take a graph $G \subset C(\varepsilon)$ such that $(0, 0) \in G$ and $p_i(G) = I$ i=1, 2. Let $f: I \to G$ be an onto map such that f(0)=(0, 0). Then $a=p_1 \circ f$ and $b=p_2 \circ f$ are the required.

Let X_i be continua and d_i be a metric of X_i (i=1, 2). In this paper, the metric of $X_1 \times X_2$ is defined by $d((x_1, x_2), (y_1, y_2)) = \max_{i=1,2} d_i(x_i, y_i)$.

Using Proposition 1.1 and the same way as [10] Theorem 3, we can prove the following.

PROPOSITION 1.2. Let X_i be continua in Q such that $\sigma_0^*X_i \leq c$ $(c \leq 0)$ i=1, 2. Then each pair of onto maps $f_i: Y_i \rightarrow X_i$ $(i=1 \ 2)$ satisfies the following condition.

Kazuhiro KAWAMURA

For each subcontinuum $K \subset X \times X$ satisfying $\pi_i^X(K) = X_i$ (i=1, 2), there exists a continuum $L \subset Y_1 \times Y_2$ such that $\pi_i^Y(L) = Y_i$, i=1, 2 and $d_H((f_1 \times f_2)(L), K) \leq c$, where, the map π_i^X denotes the projection $X_i \times X_2$ to

the *i*-th factor etc.

REMARK. In the proof of [10] Theorem 3, the weak conluency of each factor of the product map is used. The map f_i in the above proposition need not be weakly confluent, but the same proof works in our situation.

THEOREM 1.3. Let $X \subset Q$ be a continuum such that $\sigma_0^* X \leq c$ $(c \geq 0)$.

1) For each pair of onto maps $f, g: Y \to X$, there exists a continuum Z and onto maps $\alpha, \beta: Z \to Y$ such that $f \circ \alpha = g \circ \beta$.

2) In particular, if Y = P, then for each $\varepsilon > 0$, there exists a homeomorphism $h: P \rightarrow P$ such that $f = g \circ h$.

PROOF. 1) Consider the map $f \times g: Y \times Y \to X \times X$ and the diagonal set ΔX of X. By Proposition 1.2, there exists a continuum $Z \subset Y \times Y$ such that $\pi_1(Z) = \pi_2(Z) = Y$ and $d_H(f \times g(Z), X) \leq c$. Let $\alpha = \pi_1 | Z$ and $\beta = \pi_2 | Z: Z \to Y$, then α and β are onto maps. For each $(x, y) \in Z$, there exists a point $(p, p) \in \Delta X$ such that $d(f(x), p), d(g(y), p) \leq c$. Hence $d(f(x), g(y)) \leq 2c$. This means $f \circ \alpha = g \circ \beta$.

2) Give any $\varepsilon > 0$. There exists a $\delta > 0$ such that for each $x, y \in P$ with $d(x, y) < \delta$, $d(f(x), f(y)) < \varepsilon/2$ and $d(g(x), g(y)) < \varepsilon/2$.

Consider the continuum Z as in 1). By [14], there exists a homeomorphism $h: P \rightarrow P$ such that $d_H(G(h), Z) < \delta/2$, where $G(h) = \{x, h(x)\} | x \in P\}$, the graph of h.

For each $p \in P$, there exists a point $(x, y) \in Z$ such that $d(x, p), d(h(p), y) < \delta$. Since f(x) = g(y), we have that

$$\begin{aligned} d(f(p), g \circ h(p)) &\leq d(f(p), f(x)) + d(f(x), g(y)) + d(g(y), g \circ h(p)) \\ &< \varepsilon/2 + 2c + \varepsilon/2 < 2c + \varepsilon \,. \end{aligned}$$

This completes the proof.

As an application of Theorem 1.3, we obtain a characterization of span zero continua as follows.

THEOREM 1.4. Let $X \subset Q$ be a tree-like continuum in Q. Then the following are equivalent.

1) $\sigma X=0.$

2) For each subcontinuum Z of X and for each $\varepsilon > 0$, there exists a $\delta > 0$ such that

for each pair of maps $f, g: P \rightarrow Q$ satisfying $f(P) \supset g(P)$ and $d_H(f(P), Z) < \delta$, there exists a subcontinuum $P_1 \subset P$ and an (onto) homeomorphism $h: P_1 \rightarrow P$ such that $g \circ h = f | P_1$.

We need the following lemma for the proof.

LEMMA 1.5. Let $f: P \rightarrow X$ be a map from the pseudo-arc into a weakly chainable continuum X. Then there exists an arc-like continuum $P^* \supset P$ and an extension $F: P^* \rightarrow X$ of f such that F(P) = X.

PROOF. Take a point p of P and let x=f(p). Take another pseudo-arc P' and an onto map $g: P' \to X$. Fix a point $p' \in g^{-1}(x)$ and let P^* be the one point union of P and P' identified at p and p'. Define $F: P^* \to X$ by F|P=f and F|P'=g. For each $\varepsilon > 0$, there exist a chain cover C (C' resp.) of P(P' resp.) such that mesh C (mesh C' resp.) $< \varepsilon$ and p (p' resp.) is contained in the first link of C (C' resp.). Using this fact, it is easy to see that P^* is arc-like.

PROOF OF THEOREM 1.4.

1) \rightarrow 2). Notice that $\sigma_0 X=0$ by [2]. Fix any subcontinum Z and give any $\varepsilon > 0$. As $\sigma_0 Z=0$, there exists a $\delta > 0$ such that

each continuum $K \subset Q$ with $d_H(K, Z) < \delta$, satisfies $\sigma_0 K < \varepsilon/4$.

To prove that this δ is the required number, take any pair of maps $f, g: P \to Q$ as in the hypothesis. Then $\sigma_0 f(P) < \varepsilon/4$ by the choice of δ . By Lemma 1.5, there exist an arc-like continuum $P^* \supset P$ and a surjective extension $G: P^* \to f(P)$ of g. Fix an onto map $k: P \to P^*$. Applying Theorem 1.3 to f and $G \circ k: P \to f(P)$, there exists a homeomorphism $h^*: P \to P$ such that $f = G \circ k \circ h^*$.

Since P^* is arc-like, it is in class W (i.e. each map onto P^* is weakly confluent). Hence there exists a continuum $P_1 \subset P$ such that $k \circ h^*(P_1) = P$. Define $h' = k \circ h^* | P_1 : P_1 \rightarrow P$. Each onto map from P_1 onto P is a near-homeomorphism by [14]. A homeomorphism $h: P_1 \rightarrow P$ which is sufficiently close to h' satisfies the required condition.

2) \rightarrow 1). Suppose that $\sigma X=c>0$. There exist maps α , $\beta: C \rightarrow X$ from a continuum C such that $\alpha(C)=\beta(C)$ and $d(\alpha(p), \beta(p))\geq c$ for each $p\in C$. We assume that $C \subset Q$ and let $Z=\alpha(C)=\beta(C)$ and $0 < \varepsilon < c/4$. Take δ for ε as in 2). Let $X=\lim X_n$ be the inverse limit description of X by an inverse sequence of trees.

We may assume that $X \cup \bigcup X_n \subset Q$ and the projection map $p_n: X \to X_n$ is $1/2^n$ translation in Q. Take sufficiently large n, so that $1/2^n < \delta$ and let $T = p_n(Z)$. Since T is a tree, $p_n \circ \alpha$ and $p_n \circ \beta$ has extensions $A, B: Q \to T$ respectively. There exists an $\eta > 0$ such that

for each x, $y \in Q$ with $d(x, y) < \eta$, $d(A(x), A(y)) < \varepsilon/2$ and $d(B(x), B(y)) < \varepsilon/2$.

Let *E* be the set of all end points of *T*. For each $p \in E$, take $x_p \in (p_n \circ \alpha)^{-1}(p)$. It is easy to find a pseudo-arc $P \subset Q$ such that $d_H(P, C) < \eta$ and $\{x_p \mid p \in E\} \subset P$. Then A(P) = T.

Applying 2) to A|P and $B|P: P \to T$, we can find a subcontinuum $P_1 \subset P$ and a homeomorphism $h: P_1 \to P$ such that $B \circ h = A|P_1$. There exists a point $p \in P_1$ such that h(p) = p. As $d_H(C, P) < \eta$, we can find a point $x \in C$ such that $d(p, x) < \eta$. But then,

$$d(\alpha(x), \beta(x)) = d(A(x), B(x))$$

$$\leq d(A(x), A(p)) + d(A(p), B \circ h(p)) + d(B(p), B(x))$$

$$< \varepsilon/2 + \varepsilon + \varepsilon/2 = 2\varepsilon < c/2,$$

which is a contradiction.

This completes the proof.

The following theorem gives a method of constructing maps from P onto span zero continua.

THEOREM 1.6. Let X be a continuum which is the limit of an inverse sequence $(X_n, p_{n n+1}: X_{n+1} \rightarrow X_n)$. If $\sigma X=0$, then X has the following property.

For each sequence $(a_n: P \rightarrow X_n)$ of onto maps, there exists a subsequence (m_n) and a sequence of homeorphism $(h_{n n+1}: P \rightarrow P)$ such that the following diagram is $1/2^{i-1}$ -commutative.

$$P \xleftarrow{h_{ij}} P$$

$$a_{n_i} \downarrow \qquad \downarrow a_{n_j} \downarrow$$

$$X_{n_k} \xleftarrow{p_{n_k n_i}} X_{n_i} \xleftarrow{p_{n_i n_j}} X_{n_j} \qquad k \leq i \leq j.$$

Where, h_{ij} denotes $h_{i\,i+1} \circ h_{i+1\,i+2} \circ, \cdots, \circ h_{j-1\,j}$, etc. Hence an onto map $a: P \rightarrow X$ is induced [9].

Again, we can assume that $X \cup \bigcup X_n \subset Q$ and the projection $p_n: X \to X_n$ is an $1/2^n$ -translation in Q. For the proof, we need the following lemma.

LEMMA 1.7. Under the above notation, the following condition holds.

For each $i \ge 1$ and for each $\varepsilon > 0$, there exist an integer N > 0 and a $\delta > 0$ such that

for each $n \ge N$ and for any points $x, y \in X_n$ with $d(x, y) < \delta$, $d(p_{in}(x), p_{in}(y)) < \varepsilon$.

PROOF. Define $\pi: X \cup \bigcup_{n \ge i} X_n \to X_i$ by $\pi | X = p_i$ and $\pi | X_n = p_{in}$. Then π is continuous. Hence for each $\varepsilon > 0$, there exists a $\delta > 0$ such that for any points $x, y \in X \cup \bigcup_{n \ge i} X_n$ with $d(x, y) < 3\delta$, $d(\pi(x), \pi(y)) < \varepsilon/2$. Take sufficiently large N such that for each $n \ge N$, p_n is a δ -translation in Q. It is easy to see that N and δ are the required numbers.

PROOF OF THEOREM 1.6. Inductively we will construct the desired diagram. Since $\lim \sigma_0 X_n = \sigma_0 X = 0$ by [8] ((3.1), (3.2)), [4] and [2], taking a subsequence if necessary, we may assume that $\sigma_0 X_n < 1/2^n$.

i=1; Let $n_1=1$, $a_{n_1}=a_1$, and $\delta_1=1/2$. Choose an $\varepsilon_1>0$ so that $2(\sigma_0X_{n_1}) + \varepsilon_1 < \delta_1$.

i=2; Applying Lemma 1.5 to i=1 and $\varepsilon=1/2^2$, we have an integer $N_2>0$ such that $\delta_2<1/2^2$ and

for each $n \ge N_2$ and for each $x, y \in X_n$ with $d(x, y) < \delta_2$, $d(p_{1n}(x), p_{1n}(y)) < 1/2^2$.

Take an $n_2 > n_1$, N_2 such that $\sigma_0 X_{n_2} < \delta_2/2$ and choose $\varepsilon_2 > 0$ such that $2(\sigma_0 X_{n_2}) + \varepsilon_2 < \delta_2$. Applying Theorem 1.3 to ε_1 , a_{n_1} , and $p_{n_1 n_2} \circ a_{n_2}$, then we have a homeomorphism $h_{12}: P \rightarrow P$ such that $a_{n_1} \circ h_{12} := p_{n_1 n_2} \circ a_{n_2}$.

i=3; Applying Lemma 1.5 to n_1 and $1/2^3$, take $N_3^1>0$ and $\delta_3^1>0$. Applying Lemma 1.5 again to n_2 and $1/2^3$, take $N_3^2>0$ and $\delta_3^2>0$.

Let $N_3 > \max(N_3^1, N_3^2)$ and $0 < \delta_3 < \min(\delta_3^1, \delta_3^2)$, and take $n_3 > n_2$, N_3 such that $\sigma_0 X_{n_3} < \delta_3/2$. Choose an $\varepsilon_3 > 0$ such that $2(\sigma_0 X_{n_3}) + \varepsilon_3 < \delta_3$. Apply Theorem 1.3 to ε_2 , a_{n_3} and $p_{n_2n_3} \circ a_{n_2}$. Then, there exists a homeomorphism $h_{23}: P \rightarrow P$ such that $a_{n_2} \circ h_{23} = p_{n_2n_3} \circ a_{n_3}$. Since $2(\sigma_0 X) + \varepsilon_2 < \delta_2 < 1/2^2$, we have

$$a_{n_2} \circ h_{23} = p_{n_2 n_3} \circ a_{n_3}$$
 and
 $p_{n_1 n_2} \circ a_{n_2} \circ h_{23} = p_{n_1 n_2} \circ p_{n_2 n_3} \circ a_{n_3}$

Continuing these steps, we have a subsequence (n_i) and a sequence of homeomorphisms $(h_{i \ i+1}: P \rightarrow P)$ such that

for each $k \leq i \leq j$, $p_{n_k n_i} \circ a_{n_i} \circ h_{ij} = p_{n_k} p_i \circ a_{n_i n_j} \circ a_{n_j}$.

This completes the proof.

2. (Weak) Confluency of product maps

PROPOSITION 2.1 (cf. [10] Theorem 3) Let Y be a continuum such that $\sigma Y=0$.

1) For each map $f: X \rightarrow Y$ and for each continum Z, $f \times id_Z$ is weakly confluent.

2) In particular, if Y is hereditarily indecomposable, then $f \times id_z$ is confluent.

PROOF. The proof uses the method of [10] Theorem 3. We prove only the case 2). Let $X=\lim(X_n, p_{n n+1}: X_{n+1} \rightarrow X_n)$, $Y=\lim(Y_n, q_{n n+1}: Y_{n+1} \rightarrow Y_n)$ and $Z=\lim(Z_n, r_{n n+1}: Z_{n+1} \rightarrow Z_n)$ be inverse limit descriptions of X, Y and Z respectively. Taking a subsequence if necessary, we may assume that f is induced by the following diagram.

Where $\varepsilon_n \rightarrow 0$ as $n \rightarrow \infty$.

Further we assume that $X \cup \bigcup X_n$, $Y \cup \bigcup Y_n$ and $Z \cup \bigcup Z_n \subset Q$ and projection maps $p_n: X \to X_n$, $q_n: Y \to Y_n$ and $r_n: Z \to Z_n$ are $1/2^n$ -translations in Q. The map $F: X \cup \bigcup X_n \to Y \cup \bigcup Y_n$ defined by F|X=f, $F|X_n=f_n$ is continuous.

To prove that $f \times id_Z$ is confluent, we take any continuum $K \subset Y \times Z$ and choose a point $(x, z) \in (f \times id_Z)^{-1}(K)$. It suffices to construct a continuum $C \subset X \times Z$ such that $f \times id_Z(C) = K$ and $(x, z) \in C$. By an induction, we take a suitable subsequence (m_n) and a sequence (C_n) of continua such that

- a) $C_n \subset X_{m_n} \times Z_{m_n}$ b) $d_H(f_{m_n} \times id_{Z_{m_n}}(C_n), K) < 1/n$.
- c) $d((x, z), C_n) < 1/n$.

Let π_Y and π_Z be the projection from $Y \times Z$ to Y and Z respectively. Define $K^Y = \pi_Y(K)$, $K^Z = \pi_Z(K)$ and $(y, z) = f \times id_Z(x, z)$.

Let $m_0=0$ and $C_0=X\times Z$ and assume that m_{n-1} and C_{n-1} have been defined. Since Y is hereditarily indecomposable and $\sigma Y=0$, by Proposition 1.1, there exists a $\delta > 0$ such that $0 < \delta < 1/2n$ and

d) for each pair of maps $h, k: I \rightarrow Q$ which satisfy $d_H(h(I), K^Y) < \delta$ and $d_H(k(I), K^Y) < \delta$, there exist maps $a, b: I \rightarrow Q$ such that $h \circ a = k \circ b$ and a(0) = b(0) = 0.

Since f is a confluent map, there exists a continuum C of X such that

e) $x \in C$ and $f(C) = K^{Y}$.

We use the following notation;

f) $K_m = q_m \times r_m(K), \quad K_m^Y = q_m(K^Y), \quad K_m^Z = r_m(K^Z), \\ C_m^X = p_m(C), \quad C_m^Z = K_m^Z.$

Take sufficiently large m such that

g) $m > m_{n-1}$, $d_H(K_m, K) < \delta/3$, $d_H(f_m(C_m^X), K_m^Y) < \delta/3$ and $\varepsilon_m < \delta/3$.

Now we define maps $\alpha_1: I \to Y_m$, $\beta_1: I \to X_m$, α_2 , $\beta_2: I \to Z_m$ as follows;

- h) $d(\alpha_1(0), y) < \delta$ and $d_H(\alpha_1(I), K_m^Y) < \delta/3$.
- i) $d(\beta_1(0), x) < 1/n$, $d(f_m \beta_1(0), y) < \delta$ and $d_H(f_m \beta_1(I), K_m^Y) < \delta/3$.
- j) $d(\alpha_2(0), z) < \delta$ and $d_H(\alpha_2(I), K_m^Z) < \delta/3$.
- k) The map $\alpha = \alpha_1 \Delta \alpha_2 : I \rightarrow Y_m \times Z_m$ satisfies $d_H(\alpha(I), K_m) < 1/2n$.
- 1) $\beta_2 = \alpha_2$.

Then by h), i) and d), there exist maps $a_1, b_1: I \to I$ such that $\alpha_1 \circ a_1 \underset{1/2n}{=} f_m \circ \beta_1 \circ b_1$ and $a_1(0) = b_1(0) = 0$. Let $\omega = \beta_1 \circ b_1 \Delta \alpha_2 \circ a_1: I \to X_m \times Z_m$. Then we have

- m) $d(\omega(0), (x, z)) < 1/n$.
- n) $d(f_m \times id_{Z_m}(\boldsymbol{\omega}(t)), \boldsymbol{\alpha}(a_1(t))) < 1/n.$

Let $m_n = m$. As a_1 is an onto map, we see that $C_n = \omega(I)$ is the required continuum.

We may assume that C_n converges to a continuum $C \subset X \times Z$. Then $(x, z) \in C$ and $f \times id_Z(C) = K$.

THEOREM 2.2. Let $f: Y \rightarrow Y$ be an onto map between continua. The following are equivalent respectively.

- 1) The map $f \times id_P : X \times P \rightarrow Y \times P$ is weakly confluent (confluent resp.).
- 2) For each continuum Z with $\sigma Z=0$ (for each hereditarily indecomposable continuum Z with $\sigma Z=0$ resp.), $f \times id_z : X \times Z \rightarrow Y \times Z$ is weakly confluent (confluent resp.).
- 3) There exists a hereditarily indecomposable continum Z such that $f \times id_z$ is weakly confluent (confluent resp.).

PROOF. We prove the confluent case. Another case is similarly proved.

1) \rightarrow 2). Since Z is weakly chainable, there exists an onto map $\varphi: P \rightarrow Z$. Clearly,

$$f \times \varphi = (f \times id_Z) \circ (id_X \times \varphi)$$
$$= (id_Y \times \varphi) \circ (f \times id_P).$$

By Theorem 2.1, $id_{\mathbf{Y}} \times \varphi$ is confluent and by the assumption, $f \times id_{\mathbf{P}}$ is confluent, so $f \times \varphi$ is confluent. Hence $f \times id_{\mathbf{Z}}$ is confluent.

 $2)\rightarrow 1)\rightarrow 3$). These are trivial.

3) \rightarrow 1). By [1], there exists an onto map $\psi: Z \rightarrow P$. Then $f \times \psi = (f \times id_P) \circ (id_X \times \psi) = (id_Y \times \psi) \circ (f \times id_Z)$. The similar argument as above implies the conclusion.

3. The preservation of the property of having zero span

LEMMA 3.1. Let $f: X \rightarrow Y$ be an irreducible map (i.e. no proper subcontinuum of X can be mapped onto Y). If $f \times id_P: X \times P \rightarrow Y \times P$ is weakly confluent, then f has the following property;

(*) for each onto map $\alpha: P \to Y$, there exists a continuum $Z \subset X \times P$ such that $\pi_X(Z) = X$, $\pi_P(Z) = P$, and $f \circ \pi_X |Z = \alpha \circ \pi_P|Z$.

Where π_X and π_P is the projections from $X \times P$ to X and P respectively.

PROOF. Let $H_a = \{(\alpha(p), p) | p \in P\}$. Then $\pi_P(H_a) = P$ and $\pi_Y(H_a) = Y$. Since $f \times id_P$ is weakly confluent, there exists a continuum $Z \subset X \times P$ such that $f \times id_P(Z) = H_a$. Then $f(\pi_Y(Z)) = \pi_Y(H_a) = Y$, so by the irreducibility of f, $\pi_X(Z) = X$. It is easy to see that Z satisfies the other conditions which are required.

THEOREM 3.2. Let $f: X \rightarrow Y$ be a map which satisfies the following conditions. 1) f satisfies (*) 2) $f \times f: X \times X \rightarrow Y \times Y$ is weakly confluent. If $\sigma X=0$, then $\sigma^*Y=0$.

PROOF. We first show that

a) for each pair of onto maps α , $\beta: P \rightarrow Y$ from the pseudo-arc, there exists a point $p \in P$ such that $\alpha(p) = \beta(p)$.

To prove a), we apply the property (*) to α and β respectively. There exist continua Z_{α} and Z_{β} such that $f \circ \pi_{X}{}^{\alpha} = \alpha \circ \pi_{P}{}^{\alpha}$ and $f \circ \pi_{X}{}^{\beta} = \beta \circ \pi_{P}{}^{\beta}$, where $\pi_{X}{}^{\alpha} = \pi_{X} | Z_{\alpha}$ etc. By Theorem 1.3, there exist a continuum W and onto maps $f_{\alpha}: W \to Z_{\alpha}$ and $f_{\beta}: W \to Z_{\beta}$ such that $\pi_{P}{}^{\alpha} \circ f_{\alpha} = \pi_{P}{}^{\beta} \circ f_{\beta}$. Since $\pi_{X}{}^{\alpha} \circ f_{\alpha}$ and $\pi_{X}{}^{\beta} \circ f_{\beta}: W \to X$ are onto maps and $\sigma X = 0$, there exists a point $w \in W$ such that $\pi_{X}{}^{\alpha} \circ f_{\alpha}(w) = \pi_{X}{}^{\beta} \circ f_{\beta}(w)$. Then we can see that $\alpha \circ \pi_{P}{}^{\alpha} \circ f_{\alpha}(w) = \beta \circ \pi_{P}{}^{\beta} \circ f_{\beta}(w)$. So $p = \pi_{P}{}^{\alpha} \circ f_{\alpha}(w) = \pi_{P}{}^{\beta} \circ f_{\beta}(w)$ satisfies the conclusion of a).

Using a), it is easy to see that

b) for each pair of onto maps α , $\beta: W \to Y$ from any weakly chainable continuum W onto X, there exists a point $w \in W$ such that $\alpha(w) = \beta(w)$.

Next we prove that

c) for each subcontinuum $Z \subset Y \times Y$, there exists a sequence (W_n) of weakly

chainable continua such that

 $W_n \subset Y \times Y$, $\lim W_n = Z$ and $p_i(W_n) = p_i(Z)$, where p_i denotes projection from $Y \times Y$ to the *i*-th factor.

To see this, we note that $\sigma X=0$ and hence X is weakly chainable. Take an onto map $\varphi: P \to X$, then $\varphi \times \varphi: P \times P \to X \times X$ is weakly confluent ([10], Theorem 3). From this fact and condition 2), there exists a continuum $C \subset P \times P$ so that $f\varphi \times f\varphi(C)=Z$. Let $P_i=\pi_P{}^i(C)$ i=1, 2, where each $\pi_P{}^i$ denotes projection from $P \times P$ to the *i*-th factor. By [14], there exist a sequence of homeomorphism $(h_n: P_1 \to P_2)_{n \ge 0}$ such that $G(h_n)$'s, the graphs of h_n 's $(\subset P \times P)$, converges to C. Define W_n by $W_n = f\varphi \times f\varphi(G(h_n))$, which is clearly weakly chainable. Moreover, $W_n \to f\varphi \times f\varphi(C)=Z$, and for i=1, 2,

$$p_i(W_n) = f \varphi(\pi_P^i(G(h_n)))$$

= $f \varphi(P_i) = p_i(f \varphi \times f \varphi)(C) = p_i(Z).$

This prove c).

Now we prove that $\sigma^*Y=0$. Take any continuum $Z \subset Y \times Y$ satisfying $p_i(Z)=Y$ i=1, 2. By c), there exists a sequence (W_n) of weakly chainable continua such that $p_i(w_n)=Y$ and $W_n \rightarrow Z$. By b), $W_n \cap \Delta Y \neq \emptyset$ for each n. So we have $Z \cap \Delta Y \neq \emptyset$. This completes the proof.

Using Theorem 3.2, we have

THEOREM 3.3 (cf. [10] Theorem 7). Let $f: X \rightarrow Y$ be an onto map between continua and suppose that $\sigma X=0$.

- 1) The following are equivalent.
- a) $\sigma Y=0.$
- b) For each subcontinuum K of X.

 $(f | K) \times id_P \colon K \times P \longrightarrow f(K) \times P$ and $(f | K) \times id_Y \colon K \times Y \longrightarrow f(K) \times Y$

are weakly confluent.

2) Suppose that X is hereditarily indecomposable and f is configurate. Then the following are equivalent.

a) $\sigma Y=0$.

b) $f \times id_Y : X \times Y \rightarrow X \times Y$ is confluent.

c) $f \times f : X \times X \rightarrow Y \times Y$ is confluent.

PROOF. 1) a) \rightarrow b). This follows for [10] Theorem 3. b) \rightarrow a). Take any subcontinuum Z in Y. There exists a contituum $K \subset X$

such that $f|K: K \rightarrow Z$ is an irreducible map. By the assumption and Theorem 2.2, we see that $(f|K) \times id_X$ is, and hence $(f|K) \times (f|K)$ is weakly confluent. Hence by Theorem 3.2 and Lemma 3.1, we have $\sigma^*Z=0$. So $\sigma Y=0$.

2) a) \rightarrow b). This follows from [10] Theorem 3.

b) \rightarrow c). Since Y is hereditarily indecomposable (Notice that confluent maps preserve hereditary indecomposability), it follows that $f \times id_X$ is confluent by Theorem 2.2. Then $f \times f = (id_Y \times f) \circ (f \times id_X)$ is confluent.

c) \rightarrow a). This follows from [10] Theorem 7.

4. Fixed points for multi-valued map on span zero continua

We prove some fixed point theorem for multi-valued map of span zero continua, which generalize some results of Rosen [14]. Also in this section, [10] Theorem 3 is used.

Let X be a continuum. The space of all nonempty compact subsets of X (the space of all nonempty subcontinua of X resp.) with the Hausdorff metric is denoted by 2^{x} (C(X) resp.). Let $f: X \rightarrow 2^{y}$ be a (not necessarily continuous) function. The set $G(f) = \bigcup_{x \in X} \{x\} \times f(x) \subset X \times Y$ is called the graph of f. The image of f, denoted by f(X), is defined by $\bigcup_{x \in X} f(x)$. A function f is uppersemi-(lowersemi- resp.) continuous. abbreviated u. s. c. (l. s. c. resp.), if for each open set U of Y, $\{x \in X | f(x) \subset U\}$ ($\{x \in X | f(x) \cap U \neq \emptyset\}$ resp.) is open. A function $f: X \rightarrow 2^{y}$ is continuous if and only if f is both upper- and lower- semi- continuous. We say that f is onto if f(X)=X,

THEOREM 4.1 (cf. [13] Theorem 1). Let $f, g: X \rightarrow 2^Y$ be u.s.c. functions. Suppose that

1) $\sigma X = \sigma Y = 0$ 2) G(f) and G(g) are connected and 3) f is onto. The there exists a point $x \in X$ such that $f(x) \cap g(x) \neq \emptyset$.

PROOF. Since X and Y are weakly chainable by 1), there exist irreducible onto maps $a: P \rightarrow X$ and $b: P \rightarrow Y$. By the uppersemicontinuity and 2), G(f), $G(g) \subset X \times Y$ are continua. By [10] Theorem 3, there exist subcontinua K and L of $P \times P$ such that $a \times b(K) = G(f)$ and $a \times b(L) = G(g)$. Let p_i 's $(\pi_i$'s resp.) denote the projection maps from $P \times P$ $(X \times Y \text{ resp.})$ to the *i*-th factor, i=1, 2. Then $a(p_1(K)) = \pi_1(G(f)) = X$, and by the irreducibility of $a, p_1(K) = P$. Similarly, $p_1(L) = P, p_2(K) = P$.

Since P is arc-like, it is easy to see that $K \cap L \neq \emptyset$, hence $G(f) \cap G(g) \neq \emptyset$.

Take $(x, y) \in G(f) \cap G(g)$. The point x satisfies the conclusion.

COROLLARY 4.2. Let f, g: $X \rightarrow 2^{Y}$ be u.s.c. functions and suppose that

- 1) $\sigma X = \sigma Y = 0$
- 2) f is onto and G(f) is connected, and
- 3) g is continuous.

Then there exists a point $x \in X$ such that $f(x) \cap g(x) \neq \emptyset$.

PROOF. By [13] Lemma 1, there exists an u.s.c. function $h: X \rightarrow 2^r$ such that $h(x) \subset g(x)$ for each $x \in X$ and G(h) is connected.

THEOREM 4.3 (cf. [13] Theorem 2). Let $f, g: X \rightarrow C(Y)$ be u.s.c. functions. Suppose that

2) $\sigma Y = 0$ and 2) f is onto. Then there exists a point $x \in X$ such that $f(x) \cap g(x) \neq \emptyset$.

PROOF. Define a subset G(f, g) of $Y \times Y$ by $\bigcup_{x \in X} f(x) \times g(x)$. Since f(x) and g(x) are continua for each $x \in X$, and f and g are uppersemicontinuous, G(f, g) is a subcontinuum of $Y \times Y$, and $\pi_1(G(f, g)) = Y(\pi_1$ is the projection to the first factor). By [2], $\sigma_0 Y = 0$, so $G(f, g) \cap \Delta Y \neq \emptyset$. This means the conclusion.

Let $f: X \to 2^x$ be a function. A point $x \in X$ is called a *fixed point* of f if $x \in f(x)$.

COROLLARY 4.4. Let X be a continuum with $\sigma X=0$. Then X has the fixed point property for the following classes of multi-valued functions.

- 1) { $f: X \rightarrow 2^{X} | f \text{ is } u.s.c. and G(f) \text{ is connected}$ }.
- 2) { $f: X \rightarrow 2^{X} | f \text{ is continuous}$ }.
- 3) { $f: X \rightarrow C(X) | f \text{ is } u.s.c.$ }.

References

- Bellamy, D., Mapping hereditarily indecomposable continua, Lecture Notes in Math. Springer, Berlin 375, Topology Conference, Virginia Polytechique Institute and State University, March 1973, 22-24.
- [2] Davis, J.F., The equivalence of zero span and zero semispan, Proc. A.M.S. 96 (1984), 135-138.
- [3] Ingram, W.T., Positive span and inverse limits, Topology Proc. 9 (1984), 313-317.
- [4] Kawamura, K., On span and inverse limits, Tsukuba J. of Math. 12 (1988), 333-340.

[6] -----, Disjoint mappings and the span of spaces, Fund. Math. 55 (1964), 199-

^[5] Lelek, A., On weakly chainable continua, Fund. Math. 51 (1962-3), 271-282.

214.

- [7] ——, On surjective span and semispan of connected metric spaces, Colloq. Math. 37 (1977), 35-45.
- [8] ____, The span and the width of continua, Fund. Math. 98 (1978), 181-199.
- [9] Mioduszewski, J., Mappings of inverse limits, Colloq. Math. 10 (1964), 39-44.
- [10] Oversteegen, L.G., On products of confluent and weakly confluent mappings related to span, Houston J. of Math. 12 (1986), 109-116.
- [11] Oversteegen, L.G. and Tymchatyn, E.D., On span and weakly chainable continua, Fund. Math. 122 (1984), 159-174.
- [12] and , On span and chainable continua, Fund. Math. 123 (1984), 137-149.
- [13] Rosen, R., Fixed points for multi-valued functions on snake-like continua, Proc. A.M.S. 10 (1959), 167-173.
- [14] Smith, M., Concerning the homeomorphisms of the pseudoarc X as a subspace of $C(X \times X)$, Houston J. Math. 12 (1986), 431-440.

Institute of Mathematics University of Tsukuba Ibaraki 305, Japan