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0. Introduction

A compact connected metric space is called a continuum. Let X be a con-
tinuum and d be a metric of X. A. Lelek [6], [7] defined the span, semispan,
surjective span and surjective semispan by the following formulas (the map =;
denotes the projection map from XXX onto the i-th factor).

T=0, 0y, 0%, g,*.

there exists a continuum ZC XX X such that
T=sup § ¢=0|Z satisfies the condition ) and

d(x, y)=c for each (x, y)Z

Where the condition 7) is

n(Z)=nyZ) if r=¢

7 Z)Dry(Z) if r=0,
n(Z)=rZ)=X if 6=0*
n(Z)=X if r=0,*

The property of having zero span (semispan, surjective span, surjective
semispan resp.) does not depend on the choice of metrics of X.

A continuum is said to be arc-like if it is represented as the limit of an inverse
sequence of arcs. It is known that each arc-like continuum has span zero. But
it is not known whether the converse implication is true or not. A continuum
X is said to be hereditarily indecomposable if each subcontinuum Y of X cannot be
represented as the union of two proper subcontinua of Y. Hereditarily inde-
composable arc-like continuum is topologically unique. It is called the pseudo-
arc and denoted by P in this paper. It is known to be a homogeneous plane
continuum and is also important in span theory. For example, each span zero
continuum is a continuous image of the pseudo-arc ([11] and [2]).
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The purpose of this paper is to study some roles of the pseudo-arc in span
theory. The paper is divided into three parts. In section 1, a uniformization
theorem of maps from the pseudo-arc onto span zero continua is proved. As
an application, we obtain a method of constructing maps from the pseudo-arc
onto span zero continua. In section 2 and 3, we study the (weak) confluency
of product maps. Using these results, we have an equivalent condition that a
map preserves the property of having zero span in terms of (weak) confluency
of product maps (cf. [10]). In section 4, we prove fixed point theorems for
span zero continua, which are generalizations of [13].

To obtain these results, we use some techniques of Oversteegen [10] and
Oversteegen-Tymchatyn [11].

Notations and definitions

Throughout this paper, @ denoted the Hilbert cube with a fixed metric.
Let f, g: X—Y be maps and ¢>0. We say that f and g are e-near (denoted
by f=g) if sup {d(f(x), g(x))|x€X}<e. The map fag: X—Y xX is defined

by fag (x)=(f(x), g(x)).

A collection W={W,, ---, W,} is called a weak chain if W;N\W;.,#@ for
each 1<i<n—1. Let U={U,, ---, Un} be another weak chain and f: {1, ---, m}
—{1, -+, n} be a pattern (i.e. |f(Z)—f@E+1)1£1 for each 7). Then U is said to
follow f in W if U,CW;, for each 1<i<m. A continuum W is called weakly
chainable if there exists a sequence (%,) of weak chain covers of W such that
mesh 9,—0 as n—oo, and for each n, %,,., follows a pattern in %,.

A continuum is weakly chainable if and only if it is a continuous image of
the pseudo-arc ([5]).

Let f: X—Y be an onto map between continua, The map f is called con-
fluent (weakly confluent resp.) if for each subcontinuum K of Y, each (some
resp.) component C of f~YK) satisfies f(C)=K.

1. Uniformizations

The following proposition is proved by the same way as [11] Theorem 1
and [12] Lemma 6. We give an outline of the proof (cf. [10] Lemma 2).

PROPOSITION 1. Let XCQ be a continum and suppose that 6,X<c (c=0).
Let Z be a subcontinuum of X.

1) For each >0, there exists a >0 such that for each pair of maps h,k: I
—Q satisfying dg(h(l), Z), dg(k(I), Z)<8, there exist onto maps a, b: I—I such



Span zero continua and the pseudo-arc 329

that hea = k-b.

cte

2) Suppose that X is hereditarily indecomposable and z=Z. If the maps
h, k: I->Q in 1) further satisfy d(h(0), z), d(k(0), 2)<8, then the maps a and b
can be chosen so that a(0)=b(0)=0.

OUTLINE OF PROOF. We give an outline of the case 2). Give any subcon-
tinuum Z and any ¢>0. For each pair of maps &, k: [—-@, we define

N(h, k; e)={(x, y)eIXI| dh(x), k(y)<c+e}.

As in the proof of [11] Theorem 1 and [12] Lemma 6, we have
a) there exists an ¢>0 which satisfies the following condition:
Let &, k: I-Q be any pair of maps satisfying

du(h(l), 2)<é,  du(k(I), Z)<o
d(h(0), 2)<0 and d(k(0), 2)<d.

Then each continuum KCIXI with KNIx0+@®+KN0XI intersects
N(h, k:e).
This ¢ is the required number. To prove this, we take maps h, k: [-@Q
as in the hypothesis. Then as in [12] Lemma 6 again,
b) there exists a component C(e) of N(h, k:¢) such that each continuum
KCIxI satisfying KNIx0=@+KN0X I intersects C(e).
Let p; be the projection map from IXI to the i-th factor. It is easy to see
that (0, 0)=C(e) and
P(C(e)=1 or py(Ce)=I.

Assume that p,(C(¢))=1. By the similar argument of [11] Theorem 1, we see
that there exists a component D(¢) of N(h, k;¢) such that p(D(e))=I. But
clearly, C(e)N\D(e)* @ so, C(e)=D(e).

Take a graph GCC(e) such that (0, 0)=G and p,(G)=1I i=1,2. Let f: I[>G
be an onto map such that f(0)=(0, 0). Then a=p,-f and b=p,-f are the re-
quired.

Let X; be continua and d; be a metric of X; (/=1,2). In this paper, the
metric of X,XX, is defined by d((x1, x.), (1, Y2))=max di(x:, ys)-
Using Proposition 1.1 and the same way as [10] Theorem 3, we can prove

the following.

PROPOSITION 1.2. Let X; be continua in @ such that ¢.*X;<c (¢<0) i=1, 2.
Then each pair of onto maps fi:Y;— X, (1=1 ‘2) satisfies the following condition.
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For each subcontinuum KC XX X satisfying m;X(K)=X; (i=1, 2), there exists
a continuum LCY XY, such that =;¥(L)=Y;, i=1, 2 and

Au((f1X f2X(L), K)Zc¢, where, the map m;% denotes the projection X; X X, to
the i-th factor eic.

REMARK. In the proof of [10] Theorem 3, the weak conluency of each
factor of the product map is used. The map f; in the above proposition need
not be weakly confluent, but the same proof works in our situation.

THEOREM 1.3. Let XCQ be a continuum such that ¢,*X<c (¢=0).
1) For each pair of onto maps [, g:Y—X, there exists a continuum Z and
onto maps a, B: Z—Y such that f-a = g-8.
2¢

2) In particular, if Y =P, then for each ¢>0, there exists a homeomorphism
h: P—P such that f2: geh.
c+e

Proor. 1) Consider the map fxXg: Y XY —>XXX and the diagonal set AX
of X. By Proposition 1.2, there exists a continuum ZCY XY such that z,(Z)=
7(Z)=Y and du(f xg(Z), X)<c. Let a=n,|Z and f=mn,|Z: Z—Y, then a and
B are onto maps. For each (x, y)=Z, there exists a point (p, p)=AX such that
d(f(x), D), d(g(y), p)<c. Hence d(f(x), g(»))<2c. This means f-a = g°B.

2) Give any ¢>0. There exists a 6>0 such that
for each x, ye P with d(x, )<, d(f(x), f(y)<e/2
and d(g(x), g(¥N<e/2.
Consider the continuum Z as in 1). By [14], there exists a homeomorphism
h: P—P such that dz(G(h), Z)<0/2, where G(h)={x, h(x))|x<P}, the graph
of h.
For each p= P, there exists a point (x, y)=Z such that d(x, p), d(h(p), ¥)
<d. Since f(x);—g(y), we have that

d(f(p), g=h(PN=d(f(P), f(x)+d(f(x), g(yN+d(g(y), g h(p))
<e/242¢c+¢e/2<2¢c+e¢.

This completes the proof.

As an application of Theorem 1.3, we obtain a characterization of span zero
continua as follows.

THEOREM 1.4. Let XCQ be a tree-like continuum in Q. Then the follow-
ing are equivalent.
1) ¢X=0.
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2) For each subcontinuum Z of X and for each €>0, there exists a §>0
such that
for each pair of maps f, g: P—Q satisfying f(P)Dg(P) and
du(f(P), Z)<d, there exists a subcontinuum P,C P and an (onto)
homeomorphism h: Pi— P such that g-h=f|P,.

We need the following lemma for the proof.

LEMMA 1.5. Let f: P-X be a map from the pseudo-arc into a weakly chain-
able continuum X. Then there exists an arc-like continuum P*DP and an exten-
sion F: P*—X of f such that F(P)=X.

PROOF. Take a point p of P and let x=f(p). Take another pseudo-arc
P’ and an onto map g: P’/—X. Fix a point p’=g x) and let P* be the one
point union of P and P’ identified at p and p’. Define F: P*—~X by F|P=f
and F|P'=g. For each >0, there exist a chain cover C (¢’ resp.) of P (P’
resp.) such that mesh € (mesh ¢’ resp.)<e and p (p’ resp.) is contained in the
first link of € (' resp.). Using this fact, it is easy to see that P* is arc-like.

PROOF OF THEOREM 1.4.
1)-2). Notice that ¢,X=0 by [2]. Fix any subcontinum Z and give any
e>0. As ¢,Z=0, there exists a §>0 such that

each continuum KC@Q with dx(K, Z)<4d, satisfies g,K<e/4.

To prove that this J is the required number, take any pair of maps f, g: P—@
as in the hypothesis. Then o,f(P)<e/4 by the choice of . By Lemma 1.5,
there exist an arc-like continuum P*DP and a surjective extension G: P*— f(P)
of g. Fix an onto map k: P—P* Applying Theorem 1.3 to f and Gek: P—
f(P), there exists a homeomorphism A*: P—P such that f :2 Geokoh*,

Since P* is arc-like, it is in class W (i.e. each map onto P* is weakly con-
fluent). Hence there exists a continuum P,CP such that keA*(P,)=P. Define
h'=k-h*|P,: PP—P. Each onto map from P, onto P is a near-homeomorphism
by [14]. A homeomorphism h: P,—P which is sufficiently close to A’ satisfies
the required condition.

2)—1). Suppose that ¢ X=c>0. There exist maps a, f: C—X from a con-
tinuum C such that a(C)=8(C) and d(a(p), B(p))=c for each p=C. We assume
that CC@ and let Z=a(C)=F(C) and 0<e<c/4. Take § for ¢ as in 2). Let
X=lim X, be the inverse limit description of X by an inverse sequence of trees.



332 Kazuhiro KAWAMURA

We may assume that X\U\UX,CQ and the projection map p,: X—X, is 1/27-
translation in @. Take sufficiently large =, so that 1/2"<d and let T=p(2).
Since T is a tree, pnca and p,-f has extensions A, B:@~>T respectively.
There exists an 7>0 such that

for each x, y=Q with d(x, »)<%, d(A(x), A(y)N<e/2

and d(B(x), B(y)<e/2.
Let E be the set of all end points of 7. For each pEE, take XpE(Prea) (D).
It is easy to find a pseudo-arc PC@ such that dz(P, C)<% and {x,| p=E}CP.
Then A(P)=T.

Applying 2) to A|P and B|P:P—T, we can find a subcontinuum P,CP

and a homeomorphism & : P,—P such that BothIPl. There exists a point

p=P, such that h(p)=p. As dz(C, P)<7, we can find a point x&C such that
d(p, x)<=7. But then,

d(a(x), B(x))=d(A(x), B(x))
<d(A(x), A(P)+d(Ap), Beh(p)+d(B(®B), B(x)
<e/24e+e/2=2e<c/2,
which is a contradiction.

This completes the proof.

The following theorem gives a method of constructing maps from P onto
span zero continua.

THEOREM 1.6. Let X be a continuum which is the limit of an inverse sequence
(Xn, Drnsr: Xn—Xn). If aX=0, then X has the following property.

For each sequence (a,: P—X,) of onto maps, there exists a subsequence
(m,) and a sequence of homeorphism (hy nii: P—P) such that the following
diagram is 1/2 - '-commutative.

p—=—p
a"il la".t
Dayn, Prin; k<i<g .
X"’k Xng ny
Where, hij dénotés hi i+1°hi+1 i+2%, "°°, °hj-1 7 etc.

Hence an onto map a: P—X is induced [9].
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Again, we can assume that XU\UX,C@ and the projection p,: X— X, is
an 1/2*-translation in @. For the proof, we need the following lemma.

LEMMA 1.7. Under the above notation, the following condition holds.
For each i=1 and for each ¢>0, there exist an integer N>0 and a 0>0
such that
for each n=N and for any points x, y= X, with d(x, y)<0,
d(pin(x), Pin(yN<e.

PROOF. Define n: XU \U X,—X; by n|X=p; and z|X,=p;». Then z is
nzt

continuous. Hence for each >0, there exists a 6>0 such that for any points
x, yEXU U X, with d(x, y)<3d, d(z(x), n(y))<e/2. Take sufficiently large N

such that for each n=N, p, is a d-translation in @. It is easy to see that N

andio are the required numbers.

ProorF OF THEOREM 1.6. Inductively we will construct the desired diagram.
Since lim ¢,X,=0,X=0 by [8] ((3.1), (3.2)), [4] and [2], taking a subsequence
if necessary, we may assume that ¢,X,<1/2".

i=1; Let n,=1, a,,=a;, and §,=1/2. Choose an &, >0 so that 2(00X5,)
+e,<61.

i=2; Applying Lemma 1.5 to /=1 and ¢=1/2%, we have an integer N,>0
such that 0,<1/2% and

for each n=N, and for each x, ye X, with d(x, y)<d,,
d(p1a(x), Pra(¥))<1/2%

Take an n,>m;, N; such that ¢,X,,<0./2 and choose ¢, >0 such that
2(00Xn,)+e:<0,. Applying Theorem 1.3t0 &1, @, and Ha n,°an,, then we have
a homeomorphism h,,: P—P such that anlehml’—/—; Pryny Qage

i=3; Applying Lemma 1.5 to n, and 1/2% take N,'>0 and 9,'>0. Apply-
ing Lemma 1.5 again to n, and 1/2°, take N,*>0 and 6,°>0.

Let N,>max (Ns', N,?) and 0<d,< min (d,%, §,%), and take ns>n, N, such
that ¢,X,,<0s/2. Choose an e5>0 such that 2(¢Xn,)+€,<d;. Apply Theorem
1.3 t0 &5, Gns @nd Pn,n,°@n,. Then, there exists a homeomorphism hg: P—P
such that anz"hzsi Dryny®@ng.  Since 2(g,X)+e,<<d,<1/2°, we have

a"2°h231; Pryngoln, and

pn1n2°an2°hzal;—;zp7zln2°pn2n3°an3 .
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Continuing these steps, we have a subsequence (n;) and a sequence of
homeomorphisms (A; ;41 : P-»P) such that

for each k=i<j, Paynoln;oh; = Prpbiolngn;o g
1/2t-

This completes the proof.

2. (Weak) Confluency of product maps

ProproSITION 2.1 (cf. [10] Theorem 3) Let Y be a continuum such that
oY =0.

1) For each map f: X—Y and for each continum Z, fXidy is weakly con-
Jfluent.

2) In particular, if Y is hereditarily indecomposable, then f Xidy is confluent.

ProoOF. The proof uses the method of [10] Theorem 3. We prove only
the case 2). Let X=lim (X, Pnat1: Xns1—Xn), Y=Im (Y p, ¢r nt1: Y=Y 2)
and Z=U1m(Z., 7n as1: Zrns1—Zz) be inverse limit descriptions of X, ¥ and Z re-
spectively. Taking a subsequence if necessary, we may assume that f is in-
duced by the following diagram.

Xn X, < X
Y, Ym Ya Y.

Where ¢,—0 as n—oo.

Further we assume that XUUX,, YUUY, and ZUUZ,C® and projection maps
pn: X—Xa, qn: Y=Y, and rn: Z—Z, are 1/2"-translations in Q. The map
F: XUUX,-»YUUY, defined by F|X=f, F|X,=f, is continuous.

To prove that fXxid; is confluent, we take any continuum KCY X Z and
choose a point (x, 2)E(f Xidz)"(K). It suffices to construct a continuum CC
XxZ such that fXxidz(C)=K and (x, z)C. By an induction, we take a suita-
ble subsequence (m,) and a sequence (C,) of continua such that

8) CaCXn, XZn, b) dulfmyXidz, (Co), K)<1/n.
Q) d((x, z), C.)<1/n.

Let zy and 7, be the projection from V' XZ to Y and Z respectively. Define
K¥=ny(K), K?=r,K) and (y, z)=f Xids(x, 2).
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Let m,=0 and C,=XXxZ and assume that m,_, and C,_, have been defined.
Since Y is hereditarily indecomposable and ¢Y =0, by Proposition 1.1, there
exists a >0 such that 0<<d<1/2n and

d) for each pair of maps h, k: I—Q which satisfy dy,(h(I), K¥)<o
and dg(k(I), K¥)<4, there exist maps a, b: I--@ such that
hcalz keb and a(0)=b(0)=0.

12n
Since f is a confluent map, there exists a continuum C of X such that
e) x=C and f(C)=K?.
We use the following notation ;

f) Km———merm(]{>y KmY—_'QM<KY>» KmZ:rm(KZ):
CmX:pwz<c); CmZ:KmZ-

Take sufficiently large m such that

g) m>mnoy, dp(Kn, K)<6/3, du(fa(Ca®), Kn¥)<d/3
and ¢,<6/3.

Now we define maps a,: [=Y n, Bi: [-Xn, az, B:: [>Z, as follows;

h) d(a0), y)<d and dulall), K,¥)<5/3.

) d(Bi0), x)<1/m, d(fnfi0), »)<d and du(fnpi(), Kn")<d/3.

P dlay0), 2)<d and dyla,(l), Kn*)<d/3.

k) The map a=a,Aa;: [-Y . XZ, satisfies dgy(a(l), Kz)<1/2n.

D) Ba=a..

Then by h), i) and d), there exist maps a,, b, : -1 such that aloall?nfm°ﬁ1°b1
and a,(0)=0,(0)=0. Let w=pf°bAazoa,: [>X,XZ,. Then we havc/e

m) d(w(0), (x, 2))<1l/n.

n) d(fwXidz, (@), ala.(t)<1/n.

Let m,=m. As a, is an onto map, we see that C,=w(J) is the required
continuum.
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B

[—-——9—->Xm

P [/

We may assume that C,) converges to a continuum CCXXZ.
= C and fXidz(C)=K.

THEOREM 2.2. Let f:Y—Y be an onto map between continua.
ing are equivalent respectively.

Then (x, 2)

The follow-

1) The map fXidp: XXP—=Y XP is weakly confluent (confluent resp.).
2) For each continuum Z with ¢Z=0 (for each hereditarily indecomposable
continuum Z with ¢Z=0 resp.), fXidz: XXZ—-Y XZ is weakly confluent

(confluent resp.).

3) There exists a hereditarily indecomposable continum Z such that fXidy

s weakly confluent (confluent resp.).

Proor. We prove the confluent case. Another case is similarly proved.

1)—2). Since Z is weakly chainable, there exists an onto map ¢:P—Z.

Clearly,
FXo=(f Xidz)-(idx X ¢)

:(zdngo)°(f Xl'dp) .

By Theorem 2.1, idyX¢ is confluent and by the assumption, fXidp is confluent,

so fX¢ is confluent. Hence fXidz is confluent.
2)—1)—3). These are trivial.

3)—1). By [1], there exists an onto map ¢:Z—P. Then fX¢=(fXidp)
(1dx X P)=(idy X ¢p)o(f Xidz). The similar argument as above implies the con-

clusion.

3. The preservation of the property of having zero span

LEMMA 3.1. Let f: XY be an irreducible map (i. e. no proper subcontinuum
of X can be mapped onto Y). If fXidp: XXP—Y XP is weakly confluent, then
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f has the following property;

(%) for each onto map a: P—Y, there exists a continuum ZC XX P
such that nx(Z)=X, np(Z)=P, and ferny|Z=a-znp|Z.

Where mx and mp is the projections from XXP to X and P respectively.

Proor. Let H,={(a(p), p)|p=P}. Then np(H,)=P and ny(H,)=Y. Since
f Xidp is weakly confluent, there exists a continuum ZC XX P such that f Xidp(Z)
=H,. Then f(z(Z))=ny(H,)=Y, so by the irreducibility of f, mx(Z)=X. It
is easy to see that Z satisfies the other conditions which are required.

THEOREM 3.2. Let f: X—Y be a map which satisfies the following conditions.
1) f satisfies (%) 2) fXf: XXX->Y XY is weakly confluent. If oX=0,
then ¢*Y =0.

PrROOF. We first show that

a) for each pair of onto maps a, §8: P—Y from the pseudo-arc, there exists
a point p= P such that a(p)=8(p).

To prove a), we apply the property (x) to @ and 8 respectively. There
exist continua Z, and Zg such that fomy*=aemp® and femx?=pf-np?, where
nx*=ny|Z, etc. By Theorem 1.3, there exist a continuum W and onto maps
fa:W—Z, and fg:W—Zs such that zmp®ef,=mnpfefs Since mx*-f, and
zxPofs: W-—X are onto maps and ¢X=0, there exists a point w=W such that
mx%fo(w)=nx?fofg(w). Then we can see that a-mwp% f (w)=PFoxpfs(w). So
p=npef(w)=mnpPof s(w) satisfies the conclusion of a).

Using a), it is easy to see that

b) for each pair of onto maps &, §: W—Y from any weakly chainable con-
tinuum W onto X, there exists a point w=W such that a(w)=p(w).

Next we prove that

¢) for each subcontinuum ZCY XY, there exists a sequence (W,) of weakly
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chainable continua such that

WnCYXY, Lim Wn:Z and pz(Wn):pi(Z) ’
where p; denotes projection from Y XY to the i-th factor.

To see this, we note that 6 X=0 and hence X is weakly chainable. Take
an onto map ¢:P—X, then ¢X¢: PXP—XXX is weakly confluent ([10],
Theorem 3). From this fact and condition 2), there exists a continuum CCPXx P
so that foX fe(C)=Z. Let P;==p(C) i=1, 2, where each 7p' denotes projec-
tion from PXP to the /-th factor. By [14], there exist a sequence of homeo-
morphism (A, : Pr—Py)nze such that G(h,)’s, the graphs of h,’s (CPxP), con-
verges to C. Define W, by W.=feXfe(G(h,)), which is clearly weakly
chainable. Moreover, W, — foX fo(C)=Z, and for i=1, 2,

pWa)=f p(np(G(ha)))

=fo(P)=p{foX feXC)=p(2).
This prove c).
Now we prove that ¢*Y=0. Take any continuum ZCY XY satisfying
p{Z)=Y i=1, 2. By c), there exists a sequence (W,) of weakly chainable con-

tinua such that p,(w,)=Y and W,—Z. Byb), W,NAY +¢ for each n. So we
have ZNAY = @. This completes the proof.

Using Theorem 3.2, we have

THEOREM 3.3 (cf. [10] Theorem 7). Let f: X—Y be an onto map between
continua and suppose that ¢ X=0.

1) The following are equivalent.

a) o¢Y=0.

b) For each subcontinuum K of X.

(fIK)Xidp: KXP— f(K)XP and (fIK)Xidy: KXY — f(K)XY

are weakly confluent.

2) Suppose that X is hereditarily indecomposable and f is conflent. Then
the following are equivalent.

a) oY=0.

b) fXidy: XXY—=XXY is confluent.

¢) fXf: XXX->YXY is confluent.

Proor. 1) a)—b). This follows for [10] Theorem 3.
b)—a). Take any subcontinuum Z in Y. There exists a contituum KCX
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such that f|K: K—Z is an irreducible map. By the assumption and Theorem
2.2, we see that (f|K)Xidy is, and hence (f|K)X(f|K) is weakly confluent.
Hence by Theorem 3.2 and Lemma 3.1, we have ¢*Z=0. So ¢Y =0.

2) a)—b). This follows from [10] Theorem 3.

b)—c). Since Y is hereditarily indecomposable (Notice that confluent maps
preserve hereditary indecomposability), it follows that fXidy is confluent by
Theorem 2.2. Then fXf=@GdyX f)e(f Xidx) is confluent.

c)—a). This follows from [10] Theorem 7.

4. Fixed points for multi-valued map on span zero continua

We prove some fixed point theorem for multi-valued map of span zero con-
tinua, which generalize some results of Rosen [14]. Also in this section, [10]
Theorem 3 is used.

Let X be a continuum. The space of all nonempty compact subsets of X
(the space of all nonempty subcontinua of X resp.) with the Hausdorff metric
is denoted by 2¥ (C(X) resp.). Let f: X—2¥ be a (not necessarily continuous)
function. The set G(f)= U {x} Xf(x)CXXY is called the graph of f. The

zeX

image of f, denoted by f(X), is defined by \U f(x). A function f is uppersemi-
reX

(lowersemi- resp.) continuous. abbreviated u.s.c. (L.s.c. resp.), if for each open
set Uof Y, {x=X|f(x)CU} ({x=X|f(x)NU#=@} resp.) is open. A function
f: X—2¥ is continuous if and only if f is both upper- and lower- semi- con-
tinuous. We say that f is onto if f(X)=X,

THEOREM 4.1 (cf. [13] Theorem 1). Let f, g: X—2Y be w.s.c. functions.
Suppose that

1) ¢X=0¢Y=0 2) G(f) and G(g) are connected and

3) f is onto.

The there exists a point x=X such that f(x)Ng(x)+@.

PROOF. Since X and Y are weakly chainable by 1), there exist irreducible
onto maps a: P—X and b:P—-Y. By the uppersemicontinuity and 2), G(f),
G(g)C XXY are continua. By [10] Theorem 3, there exist subcontinua K and
L of PxP such that a Xb(K)=G(f) and a Xb(L)=G(g). Let p;’s (z;’s resp.)
denote the projection maps from PXP (XXY resp.) to the i-th factor, /=1, 2.
Then a(p,(K))==.,(G(f))=X, and by the irreducibility of a, p,(K)=P. Similarly,
pi(L)=P, p(K)=P.

Since P is arc-like, it is easy to see that KNL=+@, hence G(/)"G(g)=@.
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Take (x, y)eG(f)NG(g). The point x satisfies the conclusion.

COROLLARY 4.2. Let f, g: X—2Y be u.s.c. functions and suppose that
1) 6 X=0¢Y=0

2) f is onto and G(f) is connected, and

3) g is continuous.

Then there exists a point x<=X such that f(x)Ng(x)+Q.

ProoF. By [13] Lemma 1, there exists an u.s.c. function h: X—2% such
that A(x)Cg(x) for each x=X and G(h) is connected.

THEOREM 4.3 (cf. [13] Theorem 2). Let f, g: X—>C(Y) be u.s.c. functions.
Suppose that

2) Y =0 and 2) f is onto.
Then there exists a point x=X such that f(x)Ng(x)#@.

PrOOF. Define a subset G(f, g) of YXY by U f(x)Xg(x). Since f(x)
zeX

and g(x) are continua for each x<X, and f and g are uppersemicontinuous,
G(f, g) is a subcontinuum of Y XY, and =.(G(f, g))=Y (=, is the projection
to the first factor). By [2], ¢,Y=0, so G(f, g@)NAY =@. This means the con-
clusion.

Let f: X—2% be a function. A point xeX is called a fixed point of f if
x=f(x).

COROLLARY 4.4. Let X be a continuum with ¢ X=0. Then X has the fixed
point property for the following classes of multi-valued functions.

1) {f: X—=2%|f is u.s.c. and G(f) is connected}.

2) {f: X—2%|f is continuous}.

3) {f: X—=>C(X)|f is u.s.c.}.
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