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0. Introduction

By

KazuhiroKawamura

A compact connected metric space is called a continuum. Let I be a con-

tinuum and d be a metric of X. A. Lelek [6], [7] defined the span, semispan,

surjective span and surjective semispan by the following formulas (the map iz}

denotes the projection map from XxX onto the i-th factor).

T = <T, ff0, a*, (To*

c>0

there existsa continuum ZdXxX such that

Z satisfiesthe conditionr) and

d(x, y)^c for each (x, v)gZ

Where the condition r) is

7t1(Z)=7v2(Z) if r=a

7C1(Z)ZDtv2(Z) if z=a0

iv1(Z)=7i2(Z)=X if 0=0*

t:1{Z)=X if t=<jq*

The property of having zero span (semispan, surjective span, surjective

semispan resp.) does not depend on the choice of metrics of X

A continuum is said to be arc-likeifit is represented as the limit of an inverse

sequence of arcs. It is known that each arc-like continuum has span zero. But

it is not known whether the converse implication is true or not. A continuum

X is said to be hereditarilyindecomposable if each subcontinuum Y of X cannot be

represented as the union of two proper subcontinua of Y. Hereditarily inde-

composable arc-like continuum is topologically unique. It is called the pseudo-

arc and denoted by P in this paper. It is known to be a homogeneous plane

continuum and is also important in span theory. For example, each span zero

continuum is a continuous image of the pseudo-arc ([11] and [2]).
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The purpose of this paper is to study some roles of the pseudo-arc in span

theory. The paper is divided into three parts. In section 1, a uniformization

theorem of maps from the pseudo-arc onto span zero continua is proved. As

an application, we obtain a method of constructing maps from the pseudo-arc

onto span zero continua. In section 2 and 3, we study the (weak) confluency

of product maps. Using these results, we have an equivalent condition that a

map preserves the property of having zero span in terms of (weak) confluency

of product maps (cf. [10]). In section 4, we prove fixed point theorems for

span zero continua, which are generalizations of [13].

To obtain these results, we use some techniques of Oversteegen [10] and

Oversteegen-Tymchatyn [11].

Notations and definitions

Throughout this paper, Q denoted the Hilbert cube with a fixed metric.

Let /, g: X->Y be maps and s>0. We say that / and g are e-near (denoted

by f=g) if sup {d(f(x),g(x))＼x^X}<e. The map fAg: X->YxX is defined

by fAg (x)=(/(x), g(x)).

A collection W={WU ■■■,Wn} is called a weak chain if Wir＼Wi+1^0 for

each l^z^n―1. Let ^={^1, ･･･,Um} be another weak chain and / : {1, ･･･, m}

-*{1, ■■■, n] be a pattern (i.e. |/0')-/(z+l)| ^1 for each 0. Then <U is said to

follow f in W if UidWfw for each l^z^m. A continuum PF is called weakly

chainable if there exists a sequence (^n) of weak chain covers of W such that

mesh "Wn-^-Oas n^oo, and for each n, Wn+1 follows a pattern in <Wn.

A continuum is weakly chainable if and only if it is a continuous image of

the pseudo-arc ([5]).

Let /: X-+Y be an onto map between continua, The map / is called con-

fluent {weakly confluent resp.) if for each subcontinuum K of Y, each (some

resp.) component C of f~＼K) satisfiesf{C)―K.

1. Uniformizations

The following propositionis proved by the same way as [11] Theorem 1

and [12] Lemma 6. We give an outlineof the proof(cf.[10] Lemma 2).

Proposition 1. Let XaQ be a continum and suppose that o0X^c (c^O).

Let Z be a sub continuum of X.

1) For each s>0, there exists a <5>0 such thatfor each pair of maps h,k: I

->Q satisfying dH(h(I), Z), dH(k{I), Z)<8, there exist onto maps a, b: /->/ such
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that h°a ― k°b.

2) Suppose that X is hereditarily indecomposable and zzeZ. If the maps

h, k : 7->Q in 1) further satisfy d(h(0),z), d(k(O), z)<8, then the maps a and b

can be chosen so that a(0)=6(0)=0.

Outline of proof. We give an outlineof the case 2). Give any subcon-

tinuum Z and any e>0. For each pair of maps h, k: I―+Q,we define

N(h, k ; e)={(x, y)e=lxl I d{h{x),k(y))<c+e}.

As in the proof of [11] Theorem 1 and [12] Lemma 6, we have

a) there existsan s>0 which satisfiesthe followingcondition:

Let h, k :I-*Q be any pair of maps satisfying

dH{h{I),Z)<d, dH(k(I),Z)<5

d(h(0),z)<8 and d(k(0),z)<8.

Then each continuum K(ZlXl with KnIxOi=0^Kr＼OxI intersects

N(h, k: e).

This d is the requirednumber. To prove this,we take maps h, k : /―>Q

as in the hypothesis. Then as in [12] Lemma 6 again,

b) there existsa component C(e) of N(h, k; e) such that each continuum

Kclxl satisfyingKnIxO^0^Kr＼OxI intersectsC(e).

Let pi be the projectionmap from Ixl to the i-thfactor. Itis easy to see

that(0,O)eC(s) and

pAC{s))=I or /≫2(C(e))=/.

Assume that p1(C(e))=I. By the similarargument of [11] Theorem 1, we see

that there exists a component D(e) of N(h, k; e) such that p2(D(e))=I. But

clearly,C(e)r＼D(e)^0 so, C(e)=D(e).

Take a graph GdC(s) such that(0,0)gG and pt{G)=I i=l, 2. Let /: I-+G

be an onto map such that /(0)=(0,0). Then a―p^f and b=pz°fare the re-

quired.

Let Xi be continua and dt be a metric of Xt (z=l, 2). In this paper, the

metric of XxxXz is defined by d((xlf x2),(yi, y2)):=m&xdi(xi, yt).
i=l,2

Using Proposition 1.1 and the same way as [10] Theorem 3, we can prove

the following.

Proposition 1.2. Let Xt be continue, in Q such that ao*Xt^c (c^O) *=1, 2.

T/ign ecc/z ^ex'r of onto maps ft: Yi―>Xt (i=l '2) satisfies the following condition.
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For each subcontinuum KdXxX satisfying7tiX(K)―Xi (i=l, 2), there exists

a continuum LcYiXYz such that TCiY{L)=Yif i=l, 2 and

dndfiXfzXL), K)^kc, where, the map HiX denotes the projection XtxX2 to

the i-th factor etc.

Remark. In the proof of [10] Theorem 3, the weak conluency of each

factor of the product map is used. The map ft in the above proposition need

not be weakly confluent, but the same proof works in our situation.

Theorem 1.3. Let XczQ be a continuum such that ao*X£c (c^O).

1) For each pair of onto maps f, g: Y-*X, there exists a continuum Z and

onto maps a, 8: Z->Y such that f°a = g°B.
2e

2) In particular,if Y―P, then for each e>0, there exists a homeomorphism

h: P-^P such that f = g°h.
2c+s

PROOF. 1) Consider the map fXg: YxY-+XxX and the diagonal set AX

of X. By Proposition 1.2, there exists a continuum ZcYxY such that x1(Z)=

Xi(Z)=Y and dH(fXg(Z), X)£c. Let a=n1＼Z and fi= 7t2＼Z＼Z-+Y, then a: and

/3 are onto maps. For each (x, y)^Z, there exists a point (/>,p)^AX such that

<*(/(*),/>),d(£(;y),/>)^c. Hence d(f(x), g(y))£2c. This means /.a = go^.
2C

2) Give any s>0. There exists a <5>0 such that

for each x, y^P with d(x, 3>)<5, d{f(x), f(y))<e/2

and rf(^(x),̂ ))<e/2.

Consider the continuum Z as in 1). By [14], there exists a homeomorphism

h : P->P such that dH{G{h), Z)<8/2, where G(/j)={x,/iW)|xeP}, the grcM

of h.

For each ^gP, there exists a point (x, jOeZ such that <i(x,p), d(h(p), y)

<8. Since f(x) = g(y), we have that
2c

<*(/(/>)>g°Kp))^d{f{p), f(x))+d(f(x), g(y))+d(g(y), g°h(p))

<e/2+2c+£/2<2c+e.

This completes the proof.

As an application of Theorem 1.3, we obtain a characterization of span zero

continua as follows.

Theorem 1.4. Let XdQ be a tree-likecontinuum in Q. Then the .follow-

ing are equivalent.

1) aX=0.
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2) For each sub continuum Z of X and for each £>0, there exists a d>0

such that

for each pair of maps f, g: P->Q satisfying f(P)Z)g(P) and

dji{f{P), Z)<8, there exists a subcontinuum PiCP and an {onto)

homeomorphism h: P1-j>-Psuch that g°h=f＼P1.
E

We need the following lemma for the proof.

Lemma 1.5. Let f : P―>X be a map from the pseudo-arc into a weakly chain-

able continuum X. Then there existsan arc-like continuum P*Z)P and an exten-

sion F: P*-+X of f such that F(P)=X.

Proof. Take a point p of P and let x―f{p). Take another pseudo-arc

P' and an onto map g: P'->X. Fix a point p'^g~＼x) and let P* be the one

point union of P and P' identified at p and p'. Define F: P*->Z by F＼P=f

and F＼P'=g. For each s>0, there exist a chain cover C (C resp.) of P (P'

resp.) such that mesh C (mesh " resp.)<£ and p (/>'resp.) is contained in the

firstlink of C { ' resp.). Using this fact, it is easy to see that P* is arc-like.

Proof of Theorem 1.4.

l)-*2). Notice that a0X―0 by [2]. Fix any subcontinum Z and give any

£>0. As a0Z=0, there exists a <5>0 such that

each continuum KcQ with dH(K, Z)<8, satisfiesa0K<e/4:.

To prove that this 8 is the required number, take any pair of maps /, g: P―>Q

as in the hypothesis. Then a0f(P)<e/4 by the choice of d. By Lemma 1.5,

there exist an arc-like continuum P*Z)P and a surjective extension G : P*―>/(P)

of g. Fix an onto map k : P->P*. Applying Theorem 1.3 to / and G°k : P->

f(P), there exists a homeomorphism h*: P-^P such that / = G°&°/z*.
e/2

Since P* is arc-like,it is in class W (i.e. each map onto P* is weakly con-

fluent). Hence there exists a continuum PiCP such that ^°/i:i;(P1)=P.Define

h'= k°h*＼Pi:Pi―>P. Each onto map from Pi onto P is a near-homeomorphism

by [14]. A homeomorphism h'.P^P which is sufficientlyclose to h' satisfies

the required condition.

2)->l). Suppose that aX―c>Q. There exist maps a, ft: C->X from a con-

tinuum C such that a(C)=fi(C) and d(a(p), P(p))^c for each p^C. We assume

that CcQ and let Z=a(C)=fi(C) and 0<£<c/4. Take 5 for e as in 2). Let

Z=lim Xn be the inverse limit description of X by an inverse sequence of trees.
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We may assume that X＼J＼JXncQ and the projection map pn: X―>Xn is l/2n-

translation in Q. Take sufficientlylarge n, so that l/2re<<5 and let T=pn(Z).

Since T is a tree, pn°a and pn°fihas extensions A, B: Q-+T respectively.

There exists an ij>0 such that

for each x, y^Q with d(x, y)<rj, d{A{x), A(y))<s/2

and d(B(x), B(y))<e/2.

Let E be the set of all end points of T. For each p^E, take xp^(pn°a)~＼p).

It is easy to find a pseudo-arc PdQ such that dH(P, C)<rj and {xp＼p<^E}C.P.

Then A(P)=T.

Applying 2) to A＼P and B＼P: P―>T, we can find a subcontinuum PiCf

and a homeomorphism /i:P^P such that J3o/i= ^4|Pi. There exists a point
£

p^Px such that h(p)=p. As d#(C, P)<f], we can find a point xgC such that

cf(/),x)<.7]. But then,

d(a(*), ]9(x))=d(>l(^),B(x))

^.Gf(^(x),A(p))+d(A(p), B°h{p))+d(B(p), B{x))

<e/2+e + e/2=2e<c/2,

which is a contradiction.

This completes the proof.

The following theorem gives a method of constructing maps from P onto

span zero continua.

Theorem 1.6. Let X be a continuum which is the limit of an inverse sequence

(Xn, pn n+1: Xn+1~^Xn). If aX=0, then X has the following property.

For each sequence(an: P-^Xn) of onto maps, there existsa subsequence

(jnn) and a sequence of homeorphism (hn n+i'-P―>P) such that the following

diagram is 1/2*-1-commutative.

Pnkni

Gnt

p

y , v

Pntnj *

Where, hi} denotes hi i+i°hi+1i+2°, ･■■, °hj-l h etc

Hence an onto map a : P-+X is induced [9].

k£i£j
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Again, we can assume that X＼J＼jXnaQ and the projection pn＼X->Xn is

an l/2ra-translationin Q. For the proof, we need the following lemma.

Lemma 1.7. Under the above notation, the following condition holds.

For each i}>l and for each e>0, there exist an integer N>0 and a 8>0

such that

for each n^N and for any points x, y^Xn with d(x, y)<d,

d(pin(x). pin(y))<e.

Proof.

continuous.

Define it: X＼J ＼JXn―>Xt by 7z＼X―pi and 7i＼Xn--=pin. Then x is

Hence for each £>0, there exists a <5>0 such that for any points

x, y^X＼J＼J Xn with d(x, y)<3d, d{7t{x), 7c(y))<e/2. Take sufficiently large N
n>i

such that for each n>N, pn is a ^-translation in Q. It is easy to see that N

andf<5 are the required numbers.

Proof of Theorem 1.6. Inductively we willconstruct the desired diagram.

Since lim o0Xn=<T0X=0 by [8] ((3.1),(3.2)),[4] and [2], taking a subsequence

if necessary, we may assume that o0Xn<l/2n.

i=l; Let ni=l, ani=au and 5i=l/2. Choose an £i>0 so that 2(<j0Xni)

+ e,<5,.

i=2 Applying Lemma 1.5 to i=l and e= l/22, we have an integeriV2>0

such that 52<l/22 and

for each n^N2 and for each x, y^Xn with d(x, y)<d2,

d{pln{x), pln(y))<l/22.

Take an nz>nlr Nz such that a0Xn2<82/2 and choose £2>0 such that

2(aaXn2)+S2<d2. Applying Theorem 1.3 to £1;any, and t>nin.2°an2,then we have

a homeomorphism h12: P-^P such that ani°h12― pmno°ano.
1 1/2 1 ^ z

2=3; Applying Lemma 1.5 to ny and 1/23, take N^yO and Sa^O. Apply-

ing Lemma 1.5 again to n2 and 1/23, take N32>0 and 532>0.

Let A^3>max(A^31, A^32)and 0<d3< min (53X,<532),and take n3>n2, N3 such

that ao^Yn3<53/2. Choose an £3>0 such that 2(o-0^re3)+£3<^3. Apply Theorem

1.3 to e2, 0^3 and pn2n%oa.nr Then, there exists a homeomorphism hZ3: P-*P

such that an °h23= pn2n3°anr Since 2(o-0^)+£2<<52<1/22, we have

On2°^23 ― Pn2n3°Cln3 and

1/22

Pnin2° 0-n≪°^23 == Pn,ri2°Pn2n3° ^ n3
1/22
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Continuing these steps, we have a subsequence (wf) and a sequence of

homeomorphisms (hi i+i: P-+P) such that

for each k^i^j, pnknioCLniohij = pnkpioaninjoanj.
1/22-1

This completes the proof.

2. (Weak) Confluency of product maps

Proposition 2.1 (cf. [10] Theorem 3) Let Y be a continuum such that

oY=0.

1) For each map f: X―>Y and for each continum Z, fxidz is weakly con-

fluent.

2) In particular,if Y is hereditarilyindecomposable, then fXidz is confluent.

Proof. The proof uses the method of [10] Theorem 3. We prove only

the case 2). Let X=＼lm{Xn, pn B+1: Xn+1-+Xn), Y=lim(Yn, qn B+1: Fn+1->FB)

and Z=lim(Zn, rn n+1: Zn+x-*Zn) be inverse limit descriptions of X, F and Z re-

spectively. Taking a subsequence if necessary, we may assume that / is in-

duced by the following diagram.

Yt Ym

Xn X

I

Y .

fn

≪ Yn

Where en―>Qas n->oo.

Further we assume that X＼JVjXn, Y＼J＼jYn and Z＼JUZndQ and projection maps

pn: X^rXn, qn: Y->Yn and rn: Z-+Zn are l/2n-translations in Q. The map

F: X＼J＼jXn-*Y＼J＼jYn defined by F＼X=f, F＼Xn=fn is continuous.

To prove that fxidz is confluent, we take any continuum KaYxZ and

choose a point (x, z)tE(fXidz)~＼K). It suffices to construct a continuum Cd

XxZ such that fxidz{C)=K and (x, z)£C. By an induction, we take a suita-

ble subsequence (jnn) and a sequence (Cn) of continua such that

a) Cn(ZXmnxZmn b) dH{fmnXidZmn{Cn), K)<l/n.

c) d(U, ^), CB)<l/n.

Let izY and ^z be the projection from YxZto Y and Z respectively. Define

Ky=tzy{K), Kz--=tvz(K) and (y, z)=fxidz(x, z).
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Let mo=0 and C0=XxZ and assume that mn-x and Cn-＼ have been defined.

Since Y is hereditarily indecomposable and oY=Q, by Proposition 1.1, there

exists a 5>0 such that 0<8<l/2n and

d) for each pair of maps h, k : I-+Q which satisfy dH{h(I), KY)<5

and dH(k(I), KY)<8, there exist maps a, b: /-->Q such that

h°a = k°b and a(0)=&(0)=0.
l/2n

Since / is a confluent map, there exists a continuum C of X such that

e) xeC and f(C)=Kv.

We use the following notation;

f) Km=qmXrm{K), Kj=qm{KY), Kmz-=rm(Kz),

Take sufficientlylarge m such that

g) m>mn-u dH(Km,K)<8/3, dH{fm{Cmx), KmY)<8/3

and em<<5/3.

Now we define maps ax: I->Ym, jQi:I-+Xm, a2, ^2: /-^^m as follows;

h) d(aM,y)<8 and d^a^I), KmY)<8/3.

i) ^(^(0), x)<l/n, difnPtflyKd and dH{fm^{I), KmY)<8/3.

j) d(≪2(0),2)<5 and d*(a8(/), iTmz)<5/3.

k) The map a~<XiAa2: I-*YmxZm satisfiesdH{a(I), Km)<l/2n.

1) ^2 = ≪2.

Then by h),i) and d), there exist maps a1}bx: I-*I such that a^a^ = fm^B^bi
l/2n

and fl1(0)=61(0)=0. Let oi―^xobxAa^a^.: /-≫ZmxZm. Then we have

m) d(<o(0),U, z))<l/n.

n) d(fnxidzjia>(t)), a{ax{t)))<l/n.

Let mn―m. As ax is an onto map, we see that Cn=o)(I) is the required

continuum.
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/

/

>-＼■

1/"

I

Y m X^m

I

We may assume that Cn) converges to a continuum CdXxZ. Then (x, z)

EC and fXtdz(C)=K.

Theorem 2.2. Let f: Y―>Y be an onto map between continua. The follow-

ing are equivalent respectively.

1) The map fXidP: XxP-+YxP is weakly confluent(confluent resp.).

2) For each continuum Z with aZ--=0 (for each hereditarily indecomposable

continuum Z with aZ=Q resp.), fxidz'.XxZ->YxZ is weakly confluent

(confluent resp.).

3) There exists a hereditarily indecomposable continum Z such that fxidz

is weakly confluent(confluent resp.).

Proof. We prove the confluent case. Another case is similarly proved.

l)->2). Since Z is weakly chainable, there exists an onto map <p:P―>Z.

Clearly,

f X<p=(f Xidz)°(idxX(p)

=(zdYX<p)°(fXidP).

By Theorem 2.1,idYX<p is confluent and by the assumption, fxidp is confluent,

so fX(p is confluent. Hence fxidz is confluent.

2)-*l)->3). These are trivial.

3)->l). By [1], there exists an onto map (p:Z-+P. Then fx<p=(fXidP)°

(idxX(p)=(idYX(p)°(f Xidz). The similar argument as above implies the con-

clusion.

3. The preservation of the property of having zero span

Lemma 3.1. Let f : X-+Y be an irreducible map (i.e. no proper subcontinuum

of X can be mapped onto Y). If fXidP: XxP-^YxP is weakly confluent, then
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/ has the followingproperty;

(*) for each onto map a: P-+Y, thereexistsa continuum ZdXxP

such thatitx{Z)=X, itP{Z)=P, and f°7tx＼Z=a°7:P＼Z.

Where tcx and tcpis the projectionsfrom XxP to X and P respectively.

Proof. Let Ha={(a(p), p)＼p^P}. Then 7iP(Ha)=Pand 7iY(Ha)=Y. Since

fXidP is weakly confluent,thereexistsa continuum ZdZxPsuch that fXidP(Z)

=J7a. Then f{i:Y{Z))―icY{Htt)=Y,so by the irreducibilityof /, nx(Z)=X. It

is easy to see that Z satisfiesthe other conditionswhich are required.

Theorem 3.2. Let f : X-*Y be a map which satisfiesthe following conditions.

1) / satisfies(*) 2) /x/:IX^KxF is weakly confluent. If aX=0,

then (7*7=0.

Proof. We firstshow that

a) for each pair of onto maps a, ft:P-^>Y from the pseudo-arc, there exists

a point p(BP such that a(p)=ft(p).

To prove a), we apply the property (*) to a and ft respectively. There

exist continua Za and Zg such that f°-KXa―oi°7tPaand f°7tx^=zft°ftp^,where

XX a= 7Tr＼Za etc. By Theorem 1.3, there exist a continuum W and onto maps

fa:W-+Za and fa: W->Za such that 7iPa-fa = 7tP^fn Since ■KXa°fa and

7txa

°fp'･W-->X are onto maps and aX―0, there exists a point iv^W such that

°fa{w)=7Zx^afB{w). Then we can see that a°xpa°fa(iv)=8°7ZpP°fs(iv).So

p=7rpa°fa(u>)=7tpP°fp(w) satisfiesthe conclusion of a)

i

w p

1

≫■

a

≫
**■

=≪≫

X

＼f

Y

X.

Using a),itis easy to see that

b) for each pair of onto maps a, /3:W-+Y from any weakly chainablecon-

tinuum W onto X, there existsa point w^W such that a{w)―^{w).

Next we prove that

c) for each subcontinuum ZdYxY. thereexistsa sequence (Wn) of weakly
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WndYxY, UmWn=Z and pt(Wn)=pt(Z),

where pt denotes projection from YxY to the i-th factor.

To see this, we note that <?X=0 and hence X is weakly chainable. Take

an onto map q>＼P^X, then <pX<p: PxP-*XxX is weakly confluent ([10],

Theorem 3). From this fact and condition 2), there exists a continuum CczPxP

so that f<pxf(p(C)―Z. Let />i=rPi(C) z=l, 2, where each izp- denotes projec-

tion from PxP to the i-th factor. By [14], there exist a sequence of homeo-

morphism (hn: P1-*P2)n>Q such that G(/in)'s, the graphs of hn's (ciPxP), con-

verges to C. Define Wn by Wn―f<pXf<p(G(hn)), which is clearly weakly

chainable. Moreover, Wn-> f<pxf<p(C)=Z, and for z=l, 2,

Pi(Wn)=f<p(nAG(hn)))

^fipm^plfyXfyXQ^plZ).

This prove c).

Now we prove that a*Y―0. Take any continuum ZdYxY satisfying

pi{Z)~Y i―l, 2. By c), there exists a sequence (Wn) of weakly chainable con-

tinua such that pi{wn)―Y and Wn~^Z. By b), Wnr＼AY^0 for each n. So we

have Zr＼AY^0. This completes the proof.

Using Theorem 3.2, we have

Theorem 3.3 (cf. [10] Theorem 7). Let f: X-+Y be an onto map between

continua and suppose that <rX=Q.

1) The following are equivalent.

a) <jY=0.

b) For each subcontinuum K of X.

(f＼K)xidP:KxP―>f(K)xP and (f＼K)xidr:KxY―> f(K)xY

are weakly confluent.

2) Suppose that X is hereditarilyindecomposable and f is confluent. Then

the following are equivalent.

a) aY=0.

b) fXidY : Xx Y->Xx Y is confluent.

c) fxf: XxX-*Yx Y is confluent.

Proof. 1) a)->b). This follows for [10] Theorem 3.

b)-*a). Take any subcontinuum Z in Y. There exists a contituum KdX
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such that f＼K: K-^Z is an irreducible map. By the assumption and Theorem

2.2, we see that (f＼K)Xidx is, and hence (f＼K)x(f＼K) is weakly confluent.

Hence by Theorem 3.2 and Lemma 3.1, we have <r*Z=0. So aY=0.

2) a)-≫b). This follows from [10] Theorem 3.

b)->c). Since Y is hereditarily indecomposable (Notice that confluent maps

preserve hereditary indecomposability), it follows that fxidx is confluent by

Theorem 2.2. Then fXf={idYXf)°{fXidx) is confluent.

c)->a). This follows from [10] Theorem 7.

4. Fixed points for multi-valued map on span zero continua

We prove some fixed point theorem for multi-valued map of span zero con-

tinua, which generalize some results of Rosen [14]. Also in this section, [10]

Theorem 3 is used.

Let X be a continuum. The space of all nonempty compact subsets of X

(the space of all nonempty subcontinua of X resp.) with the Hausdorff metric

is denoted by 2X (C(X) resp.). Let /: X->2r be a (not necessarily continuous)

function. The set G(/)= U {x}Xf(x)dXxY is called the graph of /. The
xex

image of /, denoted by f(X), is defined by ＼Jf(x). A function / is uppersemi-

(lowersemi- resp.) continuous, abbreviated u. s.c. (1.s.c. resp.),if for each open

set U of Y, {x(EX＼f(x)c:U} ({x^X＼f(x)r＼U^0} resp.) is open. A function

/: X->2Y is continuous if and only if / is both upper- and lower- semi- con-

tinuous. We say that / is onto if f(X)=X,

Theorem 4.1 (cf. [13] Theorem 1). Let f,g:X-^2Y be u.s.c. functions.

Suppose that

1) aX=aY=0 2) G(f) and G(g) are connected and

3) / is onto.

The there existsa point x-^X such that f(x)r＼g(x)^0.

Proof. Since X and Y are weakly chainable by 1), there exist irreducible

onto maps a : P->X and b: P^Y. By the uppersemicontinuity and 2), G(f),

G(g)dXxY are continua. By [10] Theorem 3, there exist subcontinua K and

L of PxP such that aXb{K)=G{f) and aXb(L)=G(g). Let pt's(r/s resp.)

denote the projection maps from PxP (1x7 resp.) to the z'-thfactor, i―1, 2.

Then a(p1(K))=7t1(G(f))=X, and by the irreducibilityof a, p,(K)=P. Similarly,

p1(L)=P, Pz(K)=P.

Since P is arc-like,it is easy to see that Kr＼L~0, hence G(f)r＼G(g)^0.
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Take (x, y)<EG(f)r＼G(g). The point x satisfiesthe conclusion.

Corollary 4.2. Let f, g: X->2Y be u.s.c. functions and suppose that

1) aX=aY=0

2) / is onto and G(f) is connected, and

3) g is continuous.

Then there existsa point xg! such that f(x)r＼g(x)^0.

Proof. By [13] Lemma 1, there exists an u.s.c. function h: X->2Y such

that h(x)dg(x) for each x(EX and G(h) is connected.

Theorem 4.3 (cf. [13] Theorem 2). Let f, g: X-+C(Y) be u.s.c. functions.

Suppose that

2) <7F=0 and 2) / is onto.

Then there exists a point xgI such that f(x)r＼g(x)^0.

Proof. Define a subset G(f,g) of YxY by ＼Jf(x)Xg(x). Since/(x)
zex

and g(x) are continua for each igI, and / and g are uppersemicontinuous,

G(f, g) is a subcontinuum of 7xF, and ni(G(f, g))=Y (ki is the projection

to the firstfactor). By [2], a0Y=0, so G{f, g)r＼AY^0. This means the con-

clusion.

Let /: X->2X be a function. A point xc=X is called a fixed point of / if

x^f(x).

Corollary 4.4. Let X be a continuum with aX~Q. Then X has the fixed

point property for the following classesof multi-valued functions.

1) {/: X-+2x＼f is u.s.c. and G(f) is connected}.

2) {/ : X-^2x＼f is continuous}.

3) {f:X->C(X)＼f is u.s.c.}.
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