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§0. Introduction.

In a sphere, Erbacher [2] and Yano-Ishihara [14] characterized Riemannian

submanifolds with non-negative sectional curvature, flat normal connection and

parallel mean curvature vector under the additional assumptions. It is a natural

question to consider this problem in the semi-Riemannian case. Recently, we

characterized proper isoparametric semi-Riemannian hypersurfaces in a semi-

Riemannian space form under certain assumptions [1]. The main purpose of

this paper is to characterize, in a semi-Riemannian space form, proper isopara-

metric semi-Riemannian submanifolds with non-negative (or non-positive) sec-

tional curvature and parallel mean curvature vector under certain additional

assumptions.

The author wishes to express his gratitude to Professor S. Yamaguchi for

his constant encouragement and various advice. He also wishes to thank Pro-

fessor N. Abe for his helpful suggestions.

§1. Preliminaries.

Throughout this paper, all manifolds are smooth and connected and geo-

metrical objects are assumed to be smooth unless mentioned otherwise. In this

section, we prepare basic facts about semi-Riemannian submanifolds in a semi-

Riemannian manifold. We call a non-degenerate symmetric (0, 2)-tensor field

on an n-dimensional manifold Mn a semi-Riemannian metric of Mn and a mani-

fold Mn equipped with such a metric a semi-Riemannian manifold. Especially,

an n-dimensional real vector space equipped with a non-degenerate symmetric

bilinear form of signature (v, n―v) given by

<X, X) = -Sl/+ S Xj*
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is called an n-dimensional semi-Euclidean space and is denoted by J?", where

x=(xu ■･･,xn) is the natural coordinate. A frame (eu ･･■, en) is said to be

orthonormal if |<ef, e,->|=dij. Semi-Riemannian manifolds S≫(c) and H?(c)

given by

S≫(c)={(Xl, -, xB+1)e/??+1 I -

H≫(c)={(xu -..,xn+1)e=R?X I

±xt2+
IU*2 = l/c} (00),

-sV-f-
Bs*i2=i/d

(c<0)
1=1 i=v+2

are called a semi-sphere and a semi-hyperbolic space, respectively. These spaces

are complete and of constant curvature c, that is,

R{X, Y)Z=c(XAY)Z (=c≪r, Z}X-(X, Z)Y)),

where R is the curvature tensor (n^2). It is clear that S (c) is diffeomorphic

to RvxSn-v and H?(c) is diffeomorphic to SuxRn-＼ where S^Sfl and Rf=R%.

We note that S%{c) and i/"(c) are not connected and SjJ_i(c)and //"(c) are not

simply connected. We call these three spaces R?, S?(c) and i/"(c) semi-Rieman-

nian space forms.

A semi-Riemannian manifold Mn isometrically immersed into a semi-Rie-

mannian manifold Mm by an immersion / is called a semi-Riemannian submani-

fold of M. Since / can be treated locally as an imbedding, p (gM) will often

be identified with f(p) and the mention of / will be supressed. Especially if

n=m―1, then M is called a semi-Riemannian hypersurface of M. Let TPM

(resp. T^M) be the tangent space (resp. the normal space) of Mat peM, TM

(resp. T±M) the tangent bundle (resp. the normal bundle) of M and F{TM)

resp. r(TxM)) the space of all cross sections of TM (resp. TXM). We denote

the semi-Riemannian metrics of M and M by <, > and the Levi-Civita connec-

tions on M (resp. M) by 1 (resp. V). For any X<=TM and any FeT(TM),

we have the Gauss formula:

(1.1) VxY=VxY + h(X, Y)

where V^F and h(X, Y) are the tangentialand the normal components of 1XY

respectively.It is easy to show that h is symmetric. We call h the second

fundamental form of the semi-Riemannian submanifold M.

For any X^TM and any E^FiT^M), we have the Weingarten formula:

(1.2) VXE=-AEX+1＼E,

where ―AEX and ixE are the tangential and the normal components of 1XE>

respectively. It is easy to verify that Vx is a connection of the normal bundle

of M. We call A the shape operator of the semi-Riemannian submanifold M.
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It follows that

(1.3) <h(X, Y), E>=<AEX, Y>

for any X, Y^TPM and any EgT^M (/>gM).

Let R and R be the curvature tensors of M and M, respectively. The

equation of Gauss is given by

R(X, Y)Z=(R(X, Y)Z)T+m±ns^AEaXAAEaY)Z (ei=<Ea> Ea≫
a=l

for any X, Y and Z<=TPM (p^M), where (R(X, Y)Z)T is the tangential com-

ponent and (Eu ■■■,Em_n) is an orthonormal frame of T^M. The equation of

Codazzi is given by

(R(X, Y)E)T=(1'YA)EX-(1'XA)EY

for any X, YzeTpM and any EeiTp-M (p^M), where (l'xA)EY=lx(AEY)

Ay^sY―AE(VXY). In particular,if M is of constant curvature c, then these

eauations can he rewritfen as follows:

(1.4)

(1.5)

R(X, Y)=cXAY+m±n

a =l
siAEaXAAEaY

{TXA)EY={1'YA)EX

§2. Shape operators of proper Isoparametric semi-Riemannian

siibmanifolds.

Let Q be a (1, l)-tensor of a real vector space V equipped with a non-

degenerate symmetric bilinear form. If Q can be expressed by a real diagonal

matrix with respect to an orthonormal frame of V, then Q is said to be proper.

Lemma 2.1. Let Qu ■■■, Qk be proper {I, l)-tensors of V such that ＼_Qa,Qb~]

=0 (l^a, b<k). Then Qu ■･■,Qk are simultaneously diagonalizable with respect

to an orthonormal frame of V.

Proof. It is sufficientto show the case where k=2. Let {Xlf･･･, ht} (resp.

{fiu ･･･, fiu}) be the set of all distinct eigenvalues of Qi (resp. Q2). Set Vxa =

KeriQ^-lJ) (l£a^t), Wn=Ker(Qz-ftbI) (l^b^u). Let v be a vector of

Vza. There exists a unique vb^Wflb (l^b^u) such that y=yi+ ･･･+vu because

of V― c W'n, where 0 means the orthogonal direct sum. By operating Q%
i&bsu

to both sides of v=Vx+ ･･･+vu, we have XaVi+ ･■■+Xavu ―QiVi+ ■･･+Q{vu- On

the other hand, from ＼_QUQ2~＼=Q,it follows that QiVb<=Wn {l<b^u). Hence,

we have QiVb=Xavb, which means that y6e V*nr＼WUh. Therefore, we can obtain
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Via= c (V^nW^) and hence V= 0 {VXar＼Wn) because of V= 0 Via,
beGa (a,b)eG lSasj

where G={(a, b) ＼l^a^t, l^b^u, (V x
ar＼W^

{0})} and Ga={b＼(a, b)^G]

O-^a^t). Moreover, since Vxar＼W
Pb((a,
b)<=G) are orthogonal to one another,

they are non-degenerate, respectively. So we can take orthonormal frames of

V^rW^ ((a, b)<E:G) and, by using them, we can construct an orthonormal

frame of V. It is clear that Qt and Q2 are simultaneously diagonalizable with

respect to this orthonormal frame. This completes the proof. Q. E. D.

Let A be the shape operator of a semi-Riemannian submanifold M of a

semi-Riemannian manifold M. The submanifold M is said to be proper if AE

is proper for any E<=TLM. If the normal connection is fiatand the charac-

teristicpolynomial of AE is constant over the domain of E for any local parallel

normal vector fieldE, then M is said to be isoparametric [3, 11]. By a similar

method to the proof of Lemma 2 in [21, we can show the following.

Lemma 2.2. Let Mn be a proper semi-Riemannian submanifold in a semi-

Riemannian space form Mn+T of constantcurvature c with flat normal connection

and parallel mean curvature vector. Then we have

A<A 4>=2<7'A 7M>+ S 'EKiJm-X'])＼Ea)Eay
i,j=l a =l

where {ex,･･･, en) and {Ex, ･･･, Er) are an orthonormal tangent frame and an

orthonormal normal frame of M such that AEaei―laiei{l^i^n, l^a^r), Ktj

is the sectionalcurvature with respect to the 2-dimensional subspace spanned by

et and e,-(i^j), and A is the Laplacian operator of M.

Note that (A, A} and <C7'A,1'A} are defined as follows:

<A, A> = S S eteii<AEaet,AE(ed and
4=1 £1=1

i, j'= l a = l

where Bi―iei, et} (l<.i<,n) and B^―{Ea, Ea} (l<>a£r)

We denote by 5x0 ･･･@BZ the following matrix:

.

where Bi (l^f^SO are square matrices, respectively.
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By using Lemma 2.1 and 2.2,we can show the followingtheorem.
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Theorem 2.3. Let Mn be a proper isoparametric semi-Riemannian submani-

fold in i?"+r with parallel mean curvature vector and <V'A, V'y!>^0. Further-

more, suppose that all sectional curvatures of M are non-negative (resp. non-

positive)and <,>|rJ-jifis positivedefinite(resp. negative definite). Then, for any

point p of M, there exists a parallelorthonormal normal frame field{Eu ■■■,ET)

on a neighborhood U of p with the property (#): At each point of U, AEl, ■■■,AEr

can be expressed with respect to a certain orthonormal tangent frame (eu ■■･, en)

as follows:

AE=0h@XJhR0k,,

AES+1

where ^a^O, ka ― n ―

(co,a)evz,eo*,,

＼a=l /

= ABr=0,

a
111b, U^l (l^a^s), ks^0 and Ot and It are the zero
6=

matrix of type (I,I) and the identity matrix of type (I,I), respectively.

Proof. Fix a point p of M. Since the normal connection of M is fiat,

there exists a parallel orthonormal normal frame field(Eu ･･･, Er) on a neigh-

borhood U of p and moreover ＼_AEa,AEb~]=0 holds (l^a, b^r). Hence, by

Lemma 2.1, AEl, ･･･,
^4£r
are simultaneously diagonalizable with respect to an

orthonormal tangent frame at each point of U. Suppose that AEl, ･･･,AEr are

expressed with respect to an orthonormal tangent frame (eu ■■■,en) at each

point of U as follows:

AEl = AiIiR ･･■cAn/x, ･･･, AEr=X[Ii@ ･･･cXn-≫i･

By our assumptions and Lemma 2.2, we have

(2.1) KijUl-^y^O {l^a^r, l^i^j^n).

In the firstplace, suppose that p is a geodesic point, that is, AEl― ･■■―AEr

=0 at p. Since M is isoparametric, AEl= ･･･=AEr―0 on f/. Thus (JSi,･･･,Er)

satisfiesthe property (#).

In the next place, we consider the case where p is not a geodesic point.

Since p is not a geodesic point, we may assume that Ai^O, KHi=0 (2^i^lt)

and KlS=0 (1,+l^j^n). From (2.1), we have
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(2.2)

We set
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Xl=Xat(2<i^lu l<a<r).

＼a=＼ f

Eb: -UiEa-^W^+OT)1'2 (2£b^r)

/
r ＼l/2

=( SUT)2) ･ It is clear that

<E[, E[> = ±1, <E(, £6>=0, <Eb,Eb>=±l, 7-^=7^=0.

Because of (2.2), AE< and AEb (2^b^r) are expressed as follows:

AEb=0iMh+JiR - c^Ji V^b^r).

Let (Eg, ･･･,££)be an orthonormal normal system given by applying Gram-

Schmidt orthogonalization to (Ez, ･･･,Er). It is clear that Eb (2<^bt^r) are

parallel and AE< (2^b^r) are expressed as follows:

Ae^Ot^X'l+j!R - m'Mi (2£b^r).

By the assumption that KH=0 (li+l^i£n) and the equation (1.4), we have

O=/Cii=<0i, 0i><0t,ed{R(eu et)ei,ex>

= <0i, eiXeu ed(± S (^V e,f＼AE' et)ei, eC>
a =l o a

=±x1n

that is, A'＼=Q (h + l^i^n). After all, we obtain Ae^Ui^Ou-i,. Thus ii

Ae'2= ･■■=AE'r=10, (E{, ■･■,E'T) satisfy the property (#). So we consider

the case where there exists b^2 such that AE>^0. We may assume that X[＼+i

^0, Kll+uii=Q (/i+2^i^/!+/s) and Kll+uj=0 (li+l*+l^j^n). By the same

process as the above, we can obtain a parallel orthonormal normal system

{El, ■■■, E?) such that

AH=0h+liRX'i'!+i2+JiR ■-0^Ui Q^b^r).

In the sequel, by repeating the same process, we reach the conclusion. Q.E.D.

In general, if M is simply connected and the normal connection is flat,then

there exists a parallel orthonormal normal frame field on M. By using this

fact, we can obtain the following.
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Theorem 2.4. Under the same hypothesis as in Theorem 2.3, // M is simply

connected, then there existsa parallelorthonormal normal frame field{Eu ■■■,Er)

on M with the property (#) in Theorem 2.3.

§3. Eigendistributions of the shape operator.

Let M be a semi-Riemannian manifold equipped with a metric <, > and D a

distribution on M, that is, a subbundle of the tangent bundle TM. If V^FeD

for any X^TM and any Y^F(D), then D is said to be parallel, where F(D)

is the space of all cross sections of D. If <, >|D is non-degenerate at each

point of M, then Z) is said to be non-degenerate. We have

Lemma A. Let D be a non-degenerate parallel distribution on a semi-Rie-

mannian manifold M. Let M' be the maximal integral manifold of D through

a point of M. Then M' is a totallygeodesic semi-Riemannian submanifold of M.

If M is complete, then so is M'.

Let Q be a (1, l)-tensor field on M. If Q is proper at each point of M

then Q is said to be proper. The following result is stated in [1].

Lemma B. Let Q be a proper (1,l)-tensorfield on M which has exactly two

mutually distinctconstant eigenvalues Xx and A2. Suppose that (7xQW'=CJyQ)X

holds for any X,Y^TPM (p^M). Then DXi=Ker{Q-liI) (i"=1,2) are non-

degenerate parallel distributionson M.

By using these results, we obtain the following theorem.

Theorem 3.1. Let Mn be a semi-Riemannian submanifold of R"+r. Suppose

that for each point p of M, there exists a parallel orthonormal normal frame

field{Ei, ･･･,Er) on a neighborhood U of p with the property (#) in Theorem

2.3. Then

(i) Da=Ker(AEa-lJ) (l<a<s) and D0=(D1R ･･･c£>s)x are parallel on U

respectively,where (Di0 ･･･cDO1 is the orthogonal complement of Dic ･･･c£>S

in TU,

(ii) the each maximal integral manifold of Da is a totally umbilical sub-

manifold of i?"+r with the mean curvature vector e£^a£a(ei=<-Ba> Ea}) (l^a^s)

and that of Do is a totallygeodesic semi-Riemannian submanifold of i?"+r.

Proof. Let us restrict ourselves to the neighborhood U.

(i) By applying Lemma B to AE we see that each Da is parallel on U
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(l^a^s). Since Z>i0 ･･･RZ)≪ is parallel on U, so is the orthogonal comple-

ment Do.

(ii) Let £/(o>be the maximal integral manifold of Da through a point of

U (l^a^s). We denote the second fundamental form of U (resp. £/(cO)in i??+r

by /z (resp. /ij. Take X, Y^TqUca> (?ef/(a)). Since £7(a)is totally geodesic

in £7,hJX, Y)=h(X, Y) holds. Also, by the assumption, we have

h(X, Y)= S ei<h(X, Y), Eb>Eb
6=1

=
tet<AEbX,Y^Eb

= <X,Y>eiXaEa.

Thus we obtain that ha(X, Y)=(X, Y)eaZaEa, thatis,£/(a)is a totally umbilical

submanifold of R?+r with the mean curvature vector £.iXaEa. Similarly, we can

show that the each maximal integral manifold of Do is a totally geodesic semi-

Riemannian submanifold of i?"+r. Q. E. D.

§4. Proper isoparametric semi-Riemannian submanifolds

in a semi-Euclidean space.

In this section, we characterize proper isoparametric semi-Riemannian sub-

manifolds in a semi-Euclidean space under the hypothesis as in Theorem 2.3.

Now we prepare the following lemma.

Lemma 4.1. Let Mn be a semi-Riemannian submanifold of i?"+r with the

second fundamental form h and Du ･･■, Dt non-degenerate parallel distributions

on M such that TM=D1R ■■■cD£. Suppose that h(X, F)=0 holds for any l£

(Da)P and any Y<^(Db)p (a^b, p^M) and the each maximal integral manifold

of Da (l^=tf2=10is a totallyumbilical submanifold of R≫+r with the mean curva-

ture vector "Ha- Then
(i)

(ii)

(iii)

VxY(EDb for any X^Da and any Y^F{Db) (a=tb),

VxVb^O for any X^Da (a^b),

<ya, ?]b>=Q(a=tb).

Proof. It is sufficientto prove the case where t―2.

(i) Take X<^{D1)P and Y<=r(D2) (£eM). Let (U, xu ･･･,xnv ylt- , yn%)

be a coordinate neighborhood of p in M such that d/dxi&Dx and d/dy}^Dz

(l^i<nu iSJ^kni), where na=dimZ)a (a = l, 2). Choose constantsX1 (l^z^nO
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and smooth functions Yj (l^/^n≪) such that X= 2 X'd/dxt and Y―
2
YJd/dy,

i=＼ 7=1

Since Du D2 are parallel on M and ^5idxid/dyj=r7d/dyjd/dxi,we have 7a/3xtd/dyj
A

n

Therefore, the assumption on h implies ^disxfi/dy^O and hence 1XY

S
^XKd/dxiYW/dyj^DJp.

i =l i=l

(ii) Take X^FiD^. By the Weingarten formula (1.2),we have

(4.1) VxV*=-A,2X+^xV2,

where A and 7X are the shape operatorand the normal connection of M, re-

spectively. For Y<=TPM, we have

(4.2) (AV2X, Yy=(h{X, Y), Vz>

where (eu ■■■,en%)

follows that

(4.3)

=d/n.) S ej<h(X, Y), KeJt ≪,)>

is a local orthonormal frame fieldof Dz about p and sj=

On the other hand, from the equations (1.3) and (1.4), it

<h<X, Y＼ htfij,ej)}= <R(Y, efa, X> + (h(X, et),h(Y, ej)>

where R is the curvature tensor of M. Moreover, by the assumption, the right

hand side of(4.3,is equal to zero. Therefore, the equation (4.2)implies AV2X=0.

Also, by the assumptions and the equations (1.3) and (1.5), we have

^x{h{es, ej))

=(!/≪･)S sjWJLKX, e3))-h{!ejX,e3)

-h(X, Vejej)+2h(yxej, ej)}

=(2/n,)Ssj/i(7^) ej)

Moreover, since the each maximal integral manifold of D2 is totally geodesic

in M and totallyumbilic in i?"+r,h^Jxej, e3)=<^Jxej, e/>i?2=0 holds. Therefore,

V^2=0 is induced. Finally, we obtain 7*372=0.

(iii) Let {eu ･･･,eni)(resp. (eu ■■･,enz))be an orthonormal frame of (Dx)p

(resp. (D2)v) (*gM), By the equation (1.4), we have

<Vu V*>~

<=1 7=1
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Moreover, the right hand side of this equation is equal to zero by the assump-

tions. Hence, we obtain (i)u ^2>=0. Q. E. D.

For a semi-Riemannian submanifold M, we define the firstnormal space Np

at p as follows:

Np=Span {h(X, Y) ＼X, Y^TVM).

A subbundle N of TXM is said to be normal parallelis I^E^bN for any X(eTM

and any E^FCN). The following reduction theorem was proved by Magid [61.

Theorem C. Let Mn be a semi-Riemannian submanifold isometrically im-

mersed into i?"+r by f. If the firstnormal spaces constitute a normal parallel

subbundle, then there exists a complete (w + s)-dimensional totally geodesic sub-

manifold M of i?"+r such that f(M)C.M, where s is the dimension of the first

normal spaces.

By using this theorem, he obtained the following result [6], where he also

treated the case <,f],r]}―0.

Theorem D. Let

mersed into R?+r by f,

=£0. Then

Mn be a totallyumbilical submanifold isometrically im-

Suppose that the mean curvature vector v satisfies<r/,r/>

(I) // <rj,)7>>0, then f(M)dS;

(II) // <V, rjXO, then f(M)dHnM

where a is theindex of M.

By using Theorem C, D and Lemma 4.1, we can show the following lemma.

Lemma 4.2. Under the same hypothesis as in Lemma 4.1, moreover suppose

that fja(l^a^O are non-null and <^a, 7?a>>0 (l^a^u), (y]a,^a><0 (w + l^a^s)

and 7}a=R (s+l^a^t). Then

f{M)dSnv＼{Cl)X ･･･XS^(cJXH≫≪+i(ctt+1)X - Xi/^(cs)Xi?",o

ci?^+1x ･･･xi?n4+1xi?^+jllx ･･･xRnuitixRnv°czR?+r,

where ca―(y]a> f]a)>,(va, na―va) is the signature of Da (l^a^s) and (v0,no―vo)

is that of Ds+1c ･･･cL>£.

Proof. We shallprove in the case where £=3, u ―1 and s=2. We denote

the maximal integralmanifold of Da (resp.Di) through p^M by (La)p (resp.

(Li)p) (l<Ia^3), where Di is the orthogonal complement of Da in TM. Since
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(Li)p is a totallyumbilical submanifold of R?+r with the mean curvature vector

771,it is contained in the affine subspace (Ii)p=Tp((L1)p)0i?(^1)2, through f(p)

by Theorem C, where R(t]i)pis the line tangent to (r}i)p. Now we shall show

that (Li)p and {Lx＼ are parallelin R?+r for any />,q<=M. First we consider

the case where p and <? are contained in a cubic coordinate neighborhood V

with respect to D&Dj. Then it is clear that (L|)pn(L1)g^0. Take #'e

(Li)pr＼(L1＼. Since (Lj)p=(LfV, (LOp and (L1)g-(=(L1)g) are parallel in i??+r

by (i),(ii)of Lemma 4.1. Next we consider a general case for p and q. Take

a curve <r:[0, 1]-≫M with a(0)=pf a(l)=q. Since <r([0,1]) is compact, there

exists a finite open covering {Vi＼l<if^k} of <r([0,1]) by cubic coordinate

neighborhoods such that Vir＼Vi+1=£0 O-^iHkk ―1), p^Vx and q^Vk. Take

j&jGFjnVt+i (l^/<^& ―1). Since pi-x and pt is contained in a cubic coordinate

neighborhood, (L1)Pi_1 and (Li)Pf are parallelin R?+r. Similarly, so are (LJp

and (Li)Pl (resp. (Li)Pft_1and (Li)g). Therefore, (Li)p and (Li)g are parallelin

i??+r. Similarly, (La)P and (La), (a=2, 3) are parallelin R?+r for any p, q<=M,

where {L2)p―Tp{{L2)p)@R{r]2)p, (L3)P=TP((LS)P). Also, by (iii)of Lemma 4.1,

(Ia)PKWp holds for any p<=M (a^b).

Let i?(a)(l^a^3) be the subspace of R?+r spanned by all tangent vectors

of (La)P. Note that i?(a) (l^a^3) are well-defined and orthogonal to one

another by the above facts. Let J?≪obe the orthogonal complement of i?a>c

^(2)Ri?(3). We regard i?(a)(0^c^3) as the affinesubspace through the origin

of R?+r. It is clear that i??+r=i?(0)X ･･･ Xi?(3). Let (pa (0£a^3) be the natural

projections of R?+r onto i?(a). It is easy to show that </v/ is a constant map.

Suppose that (L|)p=(Li)3. Then we have (<pi°f)(p)=(<pi°f)(q).Since {f)i)pand

(57i)3are parallelin i??+r by (ii)of Lemma 4.1,(^i)*(5?i)p=(^i)*(5?i)Q.Therefore,

from Theorem D and <^i, ^i>>0, if follows that there exists a hypersurface

Snv＼of i?U) which contains both (^1°/)((Li)p)and (^i°/)((Li),).By the same

method as used in the proof of parallelism between (La)p and (La)g, we can

show that (^i°/)((Li)p)is contained in this hypersurface for any p^M. This

fact implies that(^i°/)(M)cS"l1. Similar arguements on (<p2°f)(M)and (^3°/)(M)

lead to

/(M)C(01o/)(M)X(02<=/)(M)X(^3°/)(M)cS^X//"4Xi?^

Ci?(i)Xi?(2)Xi?(3).

Q. E. D.

Remark. From the assumption of Lemma 4.2, we can show that the

second fundamental form is paralleland the normal connection is fiat. In [6],
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he characterized a complete Riemannian submanifold Mn of i?"+r with paralle

second fundamental form and flat normal connection. The proof depends 01

Satz 2 of [12], which uses the Moore's lemma [8]. We can show that the]

are generally valid for proper semi-Riemannian submanifolds. On the othei

hand, Moore treats the case where M is a product manifold. If M is complete

then we can use the Moore's lemma for the universal covering of M. How

ever, if M is not complete, then the lemma is not valid for this arguement ai

least globally- The lemma assures that each product neighborhood V of M is

contained in a product manifold M of semi-Riemannian space forms as an oper

submanifold. However, we have to show that the manifolds M can be taher

in common for all V as in Lemma 4.2.

The distributions Da (O^g^s) of Theorem 3.1 satisfy the conditions ol

Lemma 4.2. Hence we have the following proposition.

PROPOSITION 4.3. Let Mn be a semi-Riemannian submanifold isometrically

immersed into R +T by f. Suppose that there exists a parallel orthonormal normal

frame field(Eu ･･･, Er) on M with the property (#) in Theorem 2.3. Then

/(M)cS≫i(c,)X ･･･XS≫≪(cB)X#≫≪+i(cB+1)X･･･X#n4(c5)Xi?*°

aRnp{+1 x- xRl^xRlixitlx ■-xi?n4lixi?^ci??+r,

where u is the number of +1 in {(Eu EO, ■･･,(Es, £s>} and n = no-{-･･･+ns.

By taking the universal semi-Riemannian covering manifold of M if neces-

sary, this proposition together with Theorem 2.4 gives the following main

theorem.

TNEOREM 4.4. Let Mn be a proper isoparametric semi-Riemannian submani-

fold isometrically immersed into R?+r by f with parallel mean curvature vector

and <?7'A,V.A>^0. Furthermore, suppose that all sectionalcurvatures of M are

non-negative (resp. non-positive),(,}＼t1m is positive definite{resp. negative de-

finite). Then

/(M)cS^jx ･･･xS7lixRTlic.Rrl＼+1x ･･･ xRli+lxRl°c:R?+r

(resp. f(M)<zHl＼X ･･･XH^xRlicRl^XX ･･･xRnjst＼xRnvooc:R?+r), where n =

no+ ―hns.
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§5. Proper isoparametric semi-Riemannian siibmaitifolcts

in S?+r(c) cr H2+T(c).

In this section we shall show the results corresponding to §4 in the case

where the ambient space is H?+T(c) (or S?+r(c)).

Lemma 5.1. Let Mn be a proper isoparametric semi-Riemannian submanifold

of H?+r{c) such that

(i) the mean curvature vector is parallel,

(ii) (1'A, WA}^0.

Then, if we consider M. as isometricallyimmersed into R?+[+1, M also is a proper

isoparametric semi-Riemannian submanifold with (i) and (ii).

Proof. Let A and 71- (resp. A and 71) be the shape operator and the

normal connection of M in H?+r(c) (resp. R??{+1). By the Gauss formula (1.1)

and the Weingaten formula (1.2), we have

(5.1) AEX=AEX, %E=1XE,

(5.2) AEX=±V:zFX> 7i£=0

for any X^TM and any E<=r{TLM), where E is a unit normal vector field

of H?+T(c) in Rft[+1 and TLM is the normal bundle of M in H?+r(c). By (5.1),

(5.2) and the assumption, we see that Mis a proper isoparametric semi-Rieman-

nian submanifold of R^{+1.

Let 7] (resp. fj) be the mean curvature vector of M in H^+r(c) (resp.

Rffi+1) and rj that of H?+r(c) in R?#+1. Since H?+r(c) is a totally umbilical

submanifold of i??+ir+1,7j= 7]+ yj holds. Moreover, the equation (5.1) and the

assumption (resp. the equation (5.2) and 7j= ±V―cE) imply 7^=0 (resp. Vj^

=0) for any XzeTM. Thus 7^=0.

By (5.1), (5.2) and the assumption, we can show <7M, 7'.4>=<V'i4, l'A>

^0, where (%A)EY=7x(AEY)-Ay±EY-AE(1xY) for any ZgTM, any Fg

F(TM) and any E^r(TxMRTLH^+r(c)). Q.E.D.

This lemma together with Theorem 4.4 gives the following theorem.

Theorem 5.2. Let Mn be a proper isoparametric semi-Riemannian submani-

fold isometrically immersed into H?+r(c) by f with parallel mean curvature vector

and <7M, 7'^4>^Q. Furthermore, suppose that all sectionalcurvatures of M are

non-positive,Olr-'-jf is negative definite. Then
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(i'fxmaHMcjx ･･･xmi(cs)dmfssiruc)czHrr(s)c:R^r＼

where n = nx+ ･･･+ns, l/ci+ ■■■+l/cs=l/c^l/c and i is the inclusion mapping

of H?+r(c) into R?n+l-

Proof. By Theorem 4.4 and Lemma 5.1, we have

(/o/)(A/)C^≫j(c1)X - Xtf^(cs)Xi?*°X{x}

cRnv＼＼＼X.■-xR1litlxR1i°xRrr-lt＼=R?X+1 ･

Take p(E(i°f)(M＼ We denote the leaf of Rty through p by Lp and LPC＼

(i°f)(M) by Lp. Suppose no>l. Since Lp is totally geodesic in i?"+ir+＼it is

also totally geodesic in H?+r(c). Hence Lp is of constant curvature c. This

fact contradicts the flatness of Lp. Therefore, we have no^l. If no=l, then

Lp is a family of non-null curves of H*+r(c). By the way, all line segments

of i?^r+1 contained in i/"+r(c) are null. Hence each component of Lp is not a

line segment. This fact contradicts that Lp is totallygeodesic in R +{+＼ Thus

we see that no=Q.

Let oa be the center of Hnp%(ca) (l^a^s). Take p(E{i°f){M). We can

uniquely decompose p into p=pi+ ･･･+p≫+x, where pa^Rl^+l (l^a^s).

From (pa―Oa, pa―Ca>=l/ca, it follows that

<Pa, Pa> = <Oa + (pa ― Oa), Oa + {pa ― Oa)}

= <Oa, 2pa-Oa} + l/Ca

= <Oa, 2p-0} + l/Ca,

where 0=^,+ ･･･-＼-os.Hence we have

l/C=<p, p> = <pu Pi>+ - +<Ps, Ps> + <X, X}

=<o, 2p-o>+l/Cl+ ･･･+l/cs+<x, *>.

Thus <o, 2p―oy=l/c―(l/d+ ■･･+l/cs+{x, x≫ holds. This equality implies

that ip, o> is independent of /)e(f°/)(M). Hence, if o is a non-zero vector,

then (i°f)(M) is contained in the hyperplane orthogonal to o in Rl{+＼X ■■■

xRi'XlXix}. This fact contradicts that (i°f)(M) is full in R^tlX ■■■XR1*ZI

X{x}. Therefore, we see that o is the zero vector and l/c―l/ci+ ■■■+l/cs

+ <x, x>. These facts imply that

Hl＼{c,)X - xHn4cs)X{x}(ZHrr(c)

and hence
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mi(Cl)x - xmi(cs)x{x}dHrr(c)rMRii++＼x ･･･xR^t

=i/≫+V-r1-i(c)X{j:}.

iX{x})
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Here l/c = l/ci+ ･･･+l/cs because

l/c―(q, q}=(x+(q―x), x+(q―x)>=<x, x>+l/c

for ge//^/-r-i(c)x{x}. Therefore, we obtain

Q.E.D.

Similarly, in the case where the ambient space is S?+r(c), we have the fol

lowing theorem.

Theorem 5.3. Let Mn be a proper isoparametric semi-Riemannian submani-

fold isometrically immersed into S^+r(c) by f with parallel mean curvature vector

and (V'A, 1'Ay^Q. Furthermore, suppose that allsectional curvatures of M are

non-negative, <>>|r±ifis positive definite. Then

(^/)(M)cSn,}(c1)X ･･･xS^(c,)cS?+'-1(c)cS?+r(?)Ci??+r+1,

where n = nl-＼-■■･-＼-ns,1/^+ ･･･+l/cs=l/c^l/c and i is the inclusion mapping

of S?+T(c)into i?"+r+1.
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