DEGREE OF THE STANDARD ISOMETRIC MINIMAL IMMERSIONS OF COMPLEX PROJECTIVE SPACES INTO SPHERES

By
Katsuya Mashimo

1. Introduction.

Let $\left(M^{m}, g\right)$ be an irreducible symmetric space of compact type, and Δ be the Laplace-Beltrami operator of (M, g) acting on C^{∞} functions. We denote by λ_{k} the k-th eigen-value of $\Delta, 0=\lambda_{0}<\lambda_{1}<\cdots$, and by V^{k} the corresponding eigenspace.

For each $k \geqq 1$, an orthonormal base of V^{k} defines the standard isometric minimal immersion x_{k} of $\left(M,\left(\lambda_{k} / m\right) g\right.$) into the unit hypersphere in V^{k} centered at the origin. do Carmo and Wallach [2] showed that the standard minimal immersion x_{k} of the sphere S_{c}^{n} with constant sectional curvature $c=n / k(n+1)$ into a unit sphere of dimension $m(k)=(2 k+n-1)(k+n-2)!/ k!(n-1)!-1$ has degree k (cf. $\S 3$, about the definition of the degree). Every homogeneous harmonic polynomial of degree k on \boldsymbol{R}^{n+1} induces a harmonic function on S^{n} by restriction. Such a function just belongs to V^{k}. Conversely every function in V^{k} is obtained in this way. So the degree of $x_{k}: S_{c}^{n} \rightarrow S_{1}^{m(k)}$ is equal to the (algebraic) degree of the polynomials.

Wallach says [8], without proof, that the standard minimal immersion x_{1} of complex projective space $C P_{h}^{n}, n \geqq 2$, of constant holomorphic sectional curvature $h=2 n /(n+1)$ into $S_{1}^{n(n+2)-1}$ has degree 2. Let $\pi: S^{2 n+1} \rightarrow C P^{n}$ be the Hopf fibration, where we consider $S^{2 n+1}$ as the unit hypersphere in C^{n+1} with respect to the standard Hermitian product. A complex valued homogeneous polynomial f on C^{n+1} of $2 n+2$ variables $z_{1}, \cdots, z_{n+1}, \bar{z}_{1}, \cdots, \bar{z}_{n+1}$ is said to be of type (p, q) when f satisfies

$$
\begin{aligned}
f\left(c z_{1}, \cdots,\right. & \left.c z_{n+1}, \bar{c} \bar{z}_{1}, \cdots, \bar{c} \bar{z}_{n+1}\right) \\
= & c^{p} \bar{c}^{q} f\left(z_{1}, \cdots, z_{n+1}, \bar{z}_{1}, \cdots, \bar{z}_{n+1}\right), \\
& c \in C,\left(z_{1}, \cdots, z_{n+1}\right) \in C^{n+1}
\end{aligned}
$$

or in short

$$
f(c Z)=c^{p} \bar{c}^{q} f(Z), \quad c \in \boldsymbol{C}, \quad Z \in \boldsymbol{C}^{n+1} .
$$

Received November 20, 1979.

Every real valued homogeneous harmonic polynomial on C^{n+1} of type (k, k) induces a harmonic function on $C P^{n}$ through π. Such a function belongs to V^{k}. Conversely every function in V^{k} is obtained in this way [1]. In this paper we show the following:

Theorem. Let x_{k} be the standard minimal immersion of $C P_{n, n}^{n} n \geqq 2$, of constant holomorphic sectional curvature $h=2 n / k(n+k)$ into a unit sphere $S_{1}^{n(k)}$, where

$$
m(k)=n(n+2 k)((n+1)(n+2) \cdots(n+k-1))^{2} /(k!)^{2}-1 .
$$

Then x_{k} has degree $2 k$.
From our Theorem the (geometric) degree of $x_{k}: C P_{n}^{n} \rightarrow S_{1}^{m(k)}$ coincides with the (algebraic) degree of the polynomials on C^{n+1} which induce the functions in V^{k}.

The author is grateful to Professors. T. Takahashi and R. Takagi for their heartly guidances.

2. The standard minimal immersions

In this section we define the standard minimal immersions of a compact irreducible symmetric space. We refer to do Carmo and Wallach [2] for details.

Let $\left(M^{m}, g\right)$ be an irreducible symmetric space of compact type, and V^{k} the eigen-space of $J^{(n, g)}$ corresponding the k-th eigen-value λ_{k}. We define the L^{2} inner product (,) on V^{k} by

$$
(f, h)=\int_{M} f \cdot h d \mu, \quad f, h \in V^{k} .
$$

For simplicity, we normalize the canonical measure $d \mu$ of (M, g) in such a way that $\int_{M} d \mu=\operatorname{dim} . V^{k}=m(k)+1$. An orthonormal base $f_{0}, f_{1}, \cdots, f_{m(k)}$ of V^{k} defines naturally a mapping x_{k} of M into $R^{m(k)+1}$. Let (G, K) be a symmetric pair corresponding to M so that $M=G / K$. Then G acts on V^{k} as a group of orthogonal transformations by

$$
\begin{equation*}
(\sigma \cdot f)(p)=f\left(\sigma^{-1} \cdot p\right), \quad \sigma \equiv G, \quad p \in M . \tag{2.1}
\end{equation*}
$$

The irreducibility of the linear isotropy action of K and the G-invariance of the metric g guarantees that x_{k} is an isometric immersion of ($M^{m}, c^{2} g$) into $\mathbb{R}^{m(k)+1}$ for some constant $c>0$. A Theorem of T . Takahashi [7] implies that x_{k} is an isometric minimal immersion of $\left(M, c^{2} g\right.$) into a sphere of radius $c\left(m / \lambda_{k}\right)^{1 / 2}$ where $m=\operatorname{dim} . M$. Since there exists an orthogonal matrix $\left(\sigma_{i j}\right)_{0 \leq i, j \leqslant m(k)}$ such that $\sigma \cdot f_{j}=\sum_{i=0}^{m(k)} \sigma_{i j} f_{i}$ for each $\sigma \in G$, we have

$$
\begin{equation*}
\sum_{j=0}^{m(k)} f_{j}^{\prime}\left(\sigma^{-1} \cdot K\right)=\sum_{j=0}^{m(k)}\left(\sigma \cdot f_{j}\right)^{2}(e K)=\sum_{j=0}^{m(k)} f_{j}^{\eta}(e K) . \tag{2.2}
\end{equation*}
$$

Integrating right and left hand sides of (2.2) on M, we obtain

$$
\begin{gather*}
\sum_{j=0}^{m(k)}\left(f_{j}, f_{j}\right)=m(k)+1=\left(\sum_{j=0}^{m(k)} f_{j}^{j}(e \cdot K)\right) \int_{M} d \mu \tag{2.3}\\
=\left(\sum_{j=0}^{m(k)} f_{j}^{2}(e \cdot K)\right)(m(k)+1)
\end{gather*}
$$

So we obtain

$$
\begin{equation*}
\sum_{j=0}^{m(k)} f_{j}^{\ell}(e \cdot K)=1 \tag{2.4}
\end{equation*}
$$

(2.2) and (2.4) show that $x_{k}(M)$ is contained in the unit sphere in $\mathbb{R}^{m(k)+1}$ centered at the origin, hence we get $c=\left(\lambda_{k} / m\right)^{1 / 2}$. We shall call this isometric minimal immersion x_{k} of $\left(M,\left(\lambda_{k} / m\right) g\right)$ into $S_{1}^{m(k)}$ the k-th standard minimal immersion of M.

The standard minimal immersion can be described in another words as follows. Take an orthonormal base $e_{0}, e_{1}, \cdots, e_{m(k)}$ of $\mathbb{R}^{m(k)+1}$ such that $e_{0}=x_{k}(e \cdot K)$ $=\left(f_{0}(e \cdot K), \cdots, f_{m(k)}(e \cdot K)\right)$. Let A be an isometry of V^{k} into $\boldsymbol{R}^{m(k)+1}$ such that $A\left(f_{j}\right)=e_{j}, j=0,1, \cdots m(k)$. Let G act on $\mathbb{R}^{m(k)+1}$ so that A is a G-isomorphism. Then by a simple computation we get

$$
\begin{equation*}
x_{k}(\sigma \cdot K)=A\left(\sigma \cdot f_{0}\right), \quad \sigma \in G \tag{2.5}
\end{equation*}
$$

Since A is an isometry, we can consider x_{k} as an isometric minimal immersion of $\left(M,\left(\lambda_{k} / m\right) g\right)$ into a unit hypersphere in V^{k} defined by

$$
\begin{equation*}
x_{k}(\sigma \cdot K)=\sigma \cdot f_{0}, \quad \sigma \in G \tag{2.6}
\end{equation*}
$$

Hereafter we take the standard minimal immersions in the latter sense.

3. Degree of an equivariant isometric immersions

In this section we define the higher fundamental forms and the degree of an equivariant isometric immersion.

Let $x: M^{m} \rightarrow \tilde{M}^{m+q}(c)$ be an isometric immersion of a Riemannian homogeneous space $M=G / K$ into a space of constant curvature c. Such an immersion x is said to be equivariant, if there exists a continuous homomorphism of O into the isometry group $I(\tilde{M})$ of $\tilde{M}=\tilde{M}^{m+q}(c)$ such that

$$
\begin{equation*}
x(\sigma \cdot p)=\rho(\sigma) \cdot x(p), \quad p \in M, \quad \sigma \in G \tag{3.1}
\end{equation*}
$$

It is easily seen that the standard minimal immersion in $\S .2$ are naturally equivariant.

Let $B_{2 i p}$ be the second fundamental form of x at $p \in M$, and $O_{p}^{2}(M)$ be the linear span of Image $B_{2 \mid p}$ in the normal space $N_{p}(M)$ of the immersion x at $p \in M$. Because of the equivariance of $x, \cup_{p \in M} O_{p}^{2}(M)$ has the structure of a subbundle of the normal bundle $N(M)$. The orthogonal projection $N_{2 \mid p}: N_{p}(M)$ $\rightarrow\left(O_{p}^{2}(M)\right)^{\perp}$ at each point $p \in M$ defines a differentiable homomorphism $N_{2}: N(M)$ $\rightarrow N(M)$. We define the third fundamental form $B_{3 \mid p}$ at $p \in M$ by

$$
\begin{equation*}
B_{3 \mid p}(u, v, w)=\left[\left(D B_{2}\right)(u, v, w)\right]^{N_{2 \mid p}}, \quad u, v, w \in T_{p} M \tag{3.2}
\end{equation*}
$$

where $D B_{2}$ is the covariant derivative of van der Waerden-Bortolotti of B_{2}. Inductively we define $O_{p}^{j}(M)$ as the linear span of Image $B_{j \mid p}, N_{j \mid p}$ as the orthogonal projection $N_{p}(M) \rightarrow\left(O_{p}^{2}(M)+\cdots+O_{p}^{j}(M)\right)^{\perp}$, and $B_{j+1 \mid p}$ by

$$
\begin{equation*}
B_{j+1 \mid p}\left(u_{1}, \cdots, u_{j+1}\right)=\left[\left(D B_{j}\right)\left(u_{1}, \cdots, u_{j+1}\right)\right]^{N_{j \mid p}}, \quad u_{1}, \cdots, u_{j+1} \in T_{p} M . \tag{3.3}
\end{equation*}
$$

By the following Lemma 3.1, $\cup_{p \in M} O_{p}^{j}(M)$ has the structure of a subbundle of $N(M)$ and we can define N_{j} and the higher fundamental forms B_{j+1} on M inductively. We can express B_{j+1} using the Riemannian connection $\tilde{\nabla}$ in \tilde{M} as follows. We extend $N_{j \mid p}$ to $T_{p} M$ by putting $N_{j \mid p}\left(T_{p} M\right)=0$. Then

$$
\begin{equation*}
B_{j+1 \mid p}\left(u_{1}, \cdots, u_{j+1}\right)=\left[\tilde{\nabla}_{U_{1}}\left(B_{j}\left(U_{2}, \cdots, U_{j+1}\right)\right)\right]^{N_{j \mid p}} \tag{3.4}
\end{equation*}
$$

where U_{1}, \cdots, U_{j+1} are local extensions of u_{1}, \cdots, u_{j+1}.
Lemma 3.1. Let $x: M^{m} \rightarrow \tilde{M}^{m+q}(c)$ be an equivariant isometric immersion of a Riemannian homogeneons space $M=G / K$ into a space of constant cnrvature c. Then
(1) B_{j} is G-invariant and commutes with $\rho(\sigma)$.

$$
\begin{align*}
& B_{j \mid \sigma \cdot p}\left(\sigma \cdot u_{1}, \cdots, \sigma \cdot u_{j}\right)=\rho(\sigma) \cdot B_{j i p}\left(u_{1}, \cdots, u_{j}\right), \tag{3.5}\\
& \rho(\sigma) \cdot O_{p}^{j}(M)=O_{\sigma}^{j} \cdot p(M), \quad \sigma \in G . \\
& N_{j^{\circ}} \rho(\sigma)=\rho(\sigma) \circ N_{j}, \quad \sigma \in G . \tag{3.6}
\end{align*}
$$

(2) B_{j} is a symmetric $C^{\infty}(M)$ multilinear mapping,

$$
B_{j}: \underbrace{\mathfrak{X}(M) \times \cdots \times \mathfrak{X}}_{j \text {-itimes }}(M) \longrightarrow N(M) .
$$

Proof. We prove (3.5) and (3.6) by induction on j. From (3.1) we get

$$
x_{* \mid \sigma \cdot p} \sigma \cdot u=\rho(\sigma) \cdot x_{* \mid p} u, \quad \sigma \in G, \quad u \in T_{p} M .
$$

Since σ and $\rho(\sigma)$ are isometries of M and \tilde{M}, we have

$$
\begin{aligned}
B_{2 \mid \sigma \cdot p}\left(\sigma \cdot u_{1}, \sigma \cdot u_{2}\right) & =\tilde{\nabla}_{x, \sigma \cdot u_{1}} x_{*} \sigma \cdot U_{2}-x_{*} \nabla_{\sigma \cdot u_{1}} \sigma \cdot U_{2} \\
& =\tilde{\nabla}_{\rho(\sigma) \cdot x+u_{1}} \rho(\sigma) \cdot x_{*} U_{2}-x_{*} \sigma \cdot \nabla_{u_{1}} U_{2} \\
& =\rho(\sigma) \cdot \tilde{\nabla}_{x, u_{1}} x_{*} U_{2}-\rho(\sigma) \cdot x_{*} \nabla_{u_{1}} U_{2}
\end{aligned}
$$

$$
=\rho(\rho) \cdot B_{2 \mid p}\left(u_{1}, u_{2}\right) .
$$

Then we get

$$
\rho(\sigma) \cdot O_{\rho}^{2}(M)=O_{\sigma \cdot p}^{2}(M) .
$$

Since $\rho(\sigma)$ induces an isometry of $N_{p}(M)$ to $N_{\sigma \cdot p}(M)$, we get

$$
N_{2 \mid \sigma \cdot p^{\circ}} \rho(\sigma)=\rho(\sigma) \cdot N_{2 \mid p}, \quad \sigma \in G, \quad p \in M .
$$

Suppose that (3.5) and (3.6) are valid for $j=2,3, \cdots, k$. Then by (3.4), (3.5) and (3.6), we have

$$
\begin{aligned}
& B_{k+1 \mid \sigma \cdot p}\left(\sigma \cdot u_{1}, \cdots, \sigma \cdot u_{k+1}\right) \\
&=\left[\tilde{\nabla}_{x * \sigma \cdot u_{1}} \rho(\sigma) \cdot B_{k}\left(U_{2}, \cdots, U_{k+1}\right)\right]^{N_{k}} \\
&=\left[\rho(\sigma) \cdot \tilde{\nabla}_{x, u_{1}} B_{k}\left(U_{2}, \cdots, U_{k+1}\right)\right]^{N_{k}} \\
&=\rho(\sigma) \cdot\left[\tilde{\nabla}_{x+u_{1}} B_{k}\left(U_{2}, \cdots, U_{k+1}\right)\right]^{N_{k}} \\
&=\rho(\sigma) \cdot B_{k+1}\left(u_{1}, \cdots, u_{k+1}\right)
\end{aligned}
$$

From this we get

$$
\rho(\sigma) \cdot O_{p}^{k+1}(M)=O_{\sigma \cdot p}^{k+1}(M) .
$$

(3.6) for $j=k+1$ is easily verified.

Let $e_{1}^{(r)}, \cdots, e_{s(r)}^{(r)}$ be a local orthonormal frame field, such that it spans $O_{p}^{r}(M)$ at each point around the origin $o=e K, r \geqq 1$, where we mean $O_{p}^{1}(M)=x_{*}\left(T_{p} M\right)$. Then $B_{j-1}\left(U_{2}, \cdots, U_{j}\right), j \geqq 3$, can be written in the following form by C^{∞} functions $f_{i}^{(r)}$

$$
\begin{align*}
B_{j-1}\left(U_{2}, \cdots, U_{j}\right)= & \tilde{\nabla}_{U_{2}} B_{j-2}\left(U_{3}, \cdots, U_{j}\right) \tag{3.7}\\
& -\sum_{r=1}^{j-2} \sum_{i=1}^{s(r)} f_{i}^{(r)} e_{i}^{(r)}
\end{align*}
$$

Differentiating both sides of (3.7) with respect to U_{1}, we obtain

$$
\begin{align*}
& \widetilde{\nabla}_{U_{1}}\left(B_{j-1}\left(U_{2}, \cdots, U_{j}\right)\right)=\tilde{\nabla}_{U_{1}}\left(\widetilde{\nabla}_{U_{2}} B_{j-2}\left(U_{3}, \cdots, U_{j}\right)\right) \tag{3.8}\\
& \quad-\sum_{r=1}^{j-2} \sum_{i=1}^{s(r)}\left(U_{1} \cdot f_{i}^{(r)}\right) e_{i}^{(r)}-\sum_{r=1}^{j-2} \sum_{i=1}^{s(r)} f_{i}^{(r)}\left(\widetilde{\nabla}_{U_{1}} e_{i}^{(r)}\right) .
\end{align*}
$$

Since the second and third term of the right hand side of (3.8) is contained in the kernel of N_{j}, (3.4) and (3.8) imply

$$
B_{j}\left(U_{1}, \cdots, U_{j}\right)=\left[\tilde{\nabla}_{U_{1}}\left(\tilde{\nabla}_{U_{2}}\left(B_{j-2}\left(U_{3}, \cdots, U_{j}\right)\right)\right)\right]^{N_{j-1}}
$$

Obviously (2) is true for $j=2,3$ by the equation of Coddazzi. So we assume (2) is true for $j-1, j \geqq 4$. Since \tilde{M} is a space of constant curvature, we have

$$
\begin{aligned}
\tilde{\nabla}_{U_{1}} \tilde{\nabla}_{U_{2}} B_{j-1} & \left(U_{3}, \cdots, U_{j}\right)-\tilde{\nabla}_{U_{2}} \tilde{\nabla}_{V_{1}} B_{j-2}\left(U_{3}, \cdots, U_{j}\right) \\
& -\tilde{\nabla}_{\left[U_{1}, U_{2}{ }^{2}\right.} B_{j-2}\left(U_{3}, \cdots, U_{j}\right) \\
= & \widetilde{R}\left(U_{1}, U_{2}\right) B_{j-2}\left(U_{3}, \cdots, U_{j}\right) \\
= & c\left(\left\langle U_{2}, B_{j-2}\left(U_{3}, \cdots, U_{j}\right)\right\rangle U_{1}-\left\langle U_{1}, B_{j-2}\left(U_{3}, \cdots, U_{j}\right)\right\rangle U_{3}\right) \\
= & 0 .
\end{aligned}
$$

We operate N_{j-1} on the above equation. Then we get

$$
B_{j}\left(U_{1}, U_{2}, U_{3}, \cdots, U_{j}\right)=B_{j}\left(U_{2}, U_{1}, U_{3}, \cdots, U_{j}\right)
$$

Hence by induction hypothesis, (2) is als true for j.
Q.E.D.

We call degree of x the first integer d such that $B_{d \mid p} \neq 0, B_{d+1 / p}=0$ at some point $p \in M$. It is obvious that the above definition of degree is independent of the choice of p.

Now we confine our consideration to the standard minimal immersions of an irreducible symmetric space $M=G / K$ of compact type. We regard $O_{e K}^{j}(M)$ as a subspace in V^{k} in a natural manner. Let $S^{j}\left(T_{e K} M\right)$ be the j-fold symmetric power of $T_{e K} M$. We extend the linear isotropy action of K on $S^{j}\left(T_{e K} M\right)$ in a natural manner. Since $B_{j \mid e K}$ is a symmetric multilinear form by Lemma 3.1 (2), we extend this to a linear map of $S^{j}\left(T_{e K} M\right)$ to $O_{e K}^{j}(M)$, and denote it also by B_{j}.

Lemma 3.2. Let $x: M \rightarrow S_{1}^{m(k)} \subset V^{k}$ be the k-th standard minimal immersion of a compact irreducible symmetric space M. Then
(1) the j-th fundamental form B_{j} is a K-homomorphism,

$$
B_{j}: S^{j}\left(T_{e K} M\right) \longrightarrow O_{e K}^{j}(M) .
$$

(2) V^{k} admits the following orthogonal direct sum decomposition

$$
V^{k}=R f_{0}+T_{e K} M+O_{e K}^{2}(M)+\cdots+O_{e K}^{d}(M),
$$

where d is the degree of x_{k}.
(3) Let e_{1}, \cdots, e_{m} be an orthonornal frame of $T_{e K} M$. Put $r=\sum_{i=1}^{m} e_{i}^{i} \equiv S^{2}\left(T_{e K} M\right)$, then

$$
\begin{equation*}
\text { Ker } B_{j} \supset r \cdot S^{j-2}\left(T_{e K} M\right), \quad j \geqq 2 . \tag{3.9}
\end{equation*}
$$

Proof. (1) holds by (3.5).
It is easy to see that $x_{k}(M)$ is not contained in any totally geodesic submanifold in $S_{1}^{m(k)}$. Then (2) is a direct consequence of a Theorem of J. Erbacher [3].

Let E_{1}, \cdots, E_{m} be a local orthonormal frame field around $o=e K$, such that $E_{i \mid e K}=e_{i}$. Since x_{k} is a minimal immersion, we have $\sum_{i=1}^{m} B_{2}\left(E_{i}, E_{i}\right)=0$. This implies $B_{2}(r)=0$. Assume that $\sum_{i=1}^{m} B_{j+2}\left(E_{k_{1}}, \cdots, E_{k_{j}}, E_{i}, E_{i}\right)-0, j \geq 0$. Then, by (3.4), we have

$$
\sum_{i=1}^{m} B_{j+3}\left(E_{k_{0}}, E_{k_{1}}, \cdots, E_{k_{j}}, E_{i}, E_{i}\right)=0
$$

This proves (3.9).
Q.E. D.

4. Proof of our Theorem

In this section we prove our Theorem stated in the introduction. For this we need some results about representation of the special unitary group $\operatorname{SU}(n+1)$. First we explain the notations.

We denote by $P_{p, q}^{n+1}$ the complex vector space of all homogeneous polynomials of type (p, q) on C^{n+1}. Let $C^{\infty}\left(C^{n+1}, C\right)$ be the space of all complex valued C^{∞} functions on \mathbb{C}^{n+1}. We denote by D the Laplace-Beitrami operator of $C^{\infty}\left(\boldsymbol{C}^{n+1}, C\right)$. Then D can be written as

$$
D=-4 \sum_{i=1}^{n+1} \partial^{2} / \partial z^{i} \partial \breve{z}^{i}
$$

We put $H_{p, q}^{n+1}=\left\{f \in P_{p, q}^{n+1} ; D f=0\right\}$ and $r=\sum_{i=1}^{n+1} z^{i} \bar{z}^{i} \in P_{1,1}^{n+1}$.
Let \mathfrak{h} be the space of all diagonal matrices in the Lie algebra $\mathfrak{z u}(n+1)$ of $S U(n+1)$. Since $\mathfrak{B l}(n+1)$ is a compact semisimple Lie algebra and \mathfrak{h} is a maximal abelian subalgebra of $\mathfrak{3 u}(n+1), \mathfrak{h}^{c}$ is a Cartan subalgebra of $(\mathfrak{g u}(n+1))^{c}=\mathfrak{k r}(n+1)$. We define $\lambda_{1}, \cdots, \lambda_{n} \in q^{*}$ by

$$
\lambda_{i}\left(\left(\begin{array}{cc}
(-1)^{1 / 2} x_{1} & 0 \\
0 & \ddots \overbrace{(-1)^{1 / 2} x_{n+1}}
\end{array}\right)=x_{i}, 1 \leqq i \leqq n+1, x_{1}, \cdots, x_{n+1} \in \mathbb{R}\right.
$$

and fix the following lexicographic order in \mathfrak{h}^{*}

$$
\lambda_{1}>\lambda_{2}>\cdots>\lambda_{n}>0>\lambda_{n+1}
$$

We define an action of $S U(n+1)$ on $C^{\infty}\left(C^{n+1}, C\right)$ by

$$
(\sigma \cdot f)(Z)=f\left(\sigma^{-1} \cdot Z\right), \quad Z \in \mathbb{C}^{n+1}, \quad \sigma \in G
$$

It can easily be seen that $P_{p, q}^{n+1}$ and $H_{p, q}^{n+1}$ are $S U(n+1)$-invariant subspaces of $C^{\infty}\left(\mathbb{C}^{n+1}, \mathbb{C}\right)$. Furthermore we have the following :

Theorem. 4.1. ([6], §.14)
(1) $P_{p, q}^{n+1}= \begin{cases}H_{p, q}^{n+1}, & \text { if }(p, q)=(0,0),(1,0),(0,1), \\ H_{p, q}^{n+1}+r \cdot P_{p-1, q-1}^{n+1}(\text { direct sum }), & \text { if otherwise. }\end{cases}$
(2) $H_{p, q}^{n+1}$ is an $\operatorname{SU}(n+1)$-irreducible subspace of $C^{\infty}\left(C^{n+1}, C\right)$ with highest weight $p \lambda_{1}-q \lambda_{n+1}$.

From now on we employ the following notations;

$$
\begin{aligned}
& G=S U(n+1) \\
& K=S(U(1) \times U(n))=\left\{\left[\begin{array}{cc}
1 / \operatorname{det} \sigma & 0 \\
0 & \sigma
\end{array}\right] ; \sigma \in U(n)\right\} \\
& L=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & \sigma
\end{array}\right] ; \sigma \in S U(n)\right\} \\
& \mathfrak{q}=\mathfrak{Z u}(n+1)=\left\{X \in M_{n+1}(\boldsymbol{C}) ;{ }^{t} X+\bar{X}=0 \text {, trace } X=0\right\} \\
& \mathfrak{H}=\left\{\left[\begin{array}{cc}
-\operatorname{trace} X & 0 \\
0 & X
\end{array}\right] ; X \in M_{n}(\boldsymbol{C}),{ }^{t} X+\bar{X}=0\right\} \\
& \mathfrak{L}=\left\{\left[\begin{array}{ll}
0 & 0 \\
0 & X
\end{array}\right] ; X \in M_{n}(C), \text { trace } X=0,{ }^{t} X+\bar{X}=0\right\} \\
& \mathfrak{h}=\left\{\left(\begin{array}{ccc}
(-1)^{1 / 2} x_{1} & 0 \\
0 & \ddots & (-1)^{1 / 2} x_{n+1}
\end{array}\right\} ; x_{1}, \cdots, x_{n+1} \in \boldsymbol{R}, x_{1}+\cdots+x_{n+1}=0\right\} \\
& \left.\mathfrak{y}^{\prime}=\left\{\begin{array}{llll}
0 & (-1)^{1 / 2} x_{2} & & \\
& & \ddots & \\
& & & (-1)^{1 / 2} x_{n+1}
\end{array}\right) ; x_{2}, \cdots, x_{n+1} \in \boldsymbol{R}, x_{2}+\cdots+x_{n+1}=0\right\}
\end{aligned}
$$

Then G / K is identified with $C P^{n}$ in a natural way, and (G, K) is a Riemannian symmetric pair corresponding to $C P^{n} . \mathfrak{g}, \mathfrak{f}$ and \mathfrak{r} are Lie algebras of G, K and L respectively. We define $\lambda_{1}^{\prime}, \cdots, \lambda_{n}^{\prime} \in h^{\prime *}$ by

$$
\lambda_{2}^{\prime}\left(\left(\begin{array}{llll}
0 & (-1)^{1 / 2} x_{2} & & \\
& & \ddots & \\
& & & (-1)^{1 / 2} x_{n+1}
\end{array}\right)\right)=x_{i+1}, 1 \leq i \leqq n,
$$

and fix the following lexicographic order in $\mathfrak{l}^{\prime *}$

$$
\lambda_{1}^{\prime}>\lambda_{2}^{\prime}>\cdots>\lambda_{n-1}^{\prime}>0>\lambda_{n}^{\prime} .
$$

It is well-known that the k-th eigen-space V^{k} of $J^{c^{p} n}$ is G-isomorphic with the subspace $H_{k, k}^{n+1} \cap C^{\infty}\left(\boldsymbol{C}^{n+1}, \boldsymbol{R}\right)$ of $H_{k, k}^{n+1}$ through the Hopf fibration $\pi: S^{2 n+1}$ $\rightarrow C P^{n}$, where $C^{\infty}\left(\boldsymbol{C}^{n+1}, \boldsymbol{R}\right)$ denotes the space of all real valued C^{∞} functions on C^{n+1}. By Theorem $4.1\left(V^{k}\right)^{C}$ is an irreducible G-module with highest weight $k\left(\lambda_{1}-\lambda_{n+1}\right)$.

We denote by \mathfrak{p} the orthogonal complement of \mathfrak{f} in \mathfrak{g} with respect to the Killing form of \mathfrak{g}. Precisely

$$
\mathfrak{p}=\left\{\left(\begin{array}{cc}
0 & -\bar{z}_{1} \cdots-\bar{z}_{n} \\
z_{1} & 0 \\
\vdots & 0 \\
z_{n} &
\end{array}\right\} ; z_{1}, \cdots, z_{n} \in C\right\}
$$

We identify \mathfrak{p} with $T_{e K}\left(C P^{n}\right)$ in a usual manner. As the base of \mathfrak{p} we take the following one;

$$
X_{i}=E_{1, i+1}-E_{i+1,1}, \quad Y_{i}=(-1)^{1 / 2}\left(E_{1, i+1}+E_{i+1,1}\right), \quad 1 \leqq i \leqq n
$$

where $E_{i, j}$ is a matrix unit of which (i, j)-component is 1 and other components are 0 . We put

$$
Z_{i}=X_{i}-(-1)^{1 / 2} Y_{i}, \quad \bar{Z}_{i}=X_{i}+(-1)^{1 / 2} Y_{i}, \quad 1 \leqq i \leqq n,
$$

then $Z_{1}, \cdots, Z_{n}, \bar{Z}_{1}, \cdots, \bar{Z}_{n}$ forms a base of \mathfrak{p}^{c} over C. Let z^{1}, \cdots, z^{n} be the usual complex coordinate functions on \mathbb{C}^{n}, and $\bar{z}^{1}, \cdots, \bar{z}^{n}$ be their complex conjugate functions. Let $S\left(\mathfrak{p}^{C}\right)=\sum_{j=0}^{\infty} S^{j}\left(\mathfrak{p}^{C}\right)$ be the symmetric algebra of \mathfrak{p}^{C}. We identify L with $S U(n)$ canonically. Then $S U(n)$ acts on \mathfrak{p} as a subgroup of the linear isotropy group K. Extend this action to $S\left(\mathfrak{p}^{c}\right)$ in a usual manner. Let $P\left(\mathbb{C}^{n}\right)=\sum_{j=0}^{\infty} P_{j}$ be the polynomial algebra in 2 n-variables $z^{1}, \cdots, z^{n}, \bar{z}^{1}, \cdots, \bar{z}^{n}$. Then we have

LEMMA 4.2. There exists a graded algebra isomorphism $f: S\left(\mathfrak{p}^{c}\right) \rightarrow P\left(\mathbb{C}^{n}\right)$ such that $f\left(Z_{i}\right)=z^{i}$ and $f\left(\bar{Z}_{i}\right)=\bar{z}^{i}$. Furthermore f commutes with the action of $S U(n)$.

Proof. About the first half of the Lemma we refer to [5], p. 428. We remark that f carries the element $Z_{1}^{i_{1}} \cdots Z_{n}^{i_{n}} \bar{Z}_{1}^{j_{1}} \cdots \bar{Z}_{n}^{j_{n}} \in S\left(\mathfrak{p}^{c}\right)$ to $\left(z^{1}\right)^{i_{1}} \cdots\left(z^{n}\right)^{i_{n}}$ $\left(\bar{z}^{1}\right)^{j_{1}} \cdots\left(\bar{z}^{n}\right)^{j_{n}} \in P\left(C^{n}\right)$.

We will prove that $f \mid S^{1}\left(\mathfrak{p}^{c}\right)$ commutes with the action of $S U(n)$. Then by the definition of the action of $S U(n)$ on $S\left(\mathfrak{p}^{c}\right)$ and on $P\left(\mathbb{C}^{n}\right)$ and by the above remark, we can see that f commutes with the action of $S U(n)$. We identify $\sigma=\left(\sigma_{i j}\right)_{1 \leqq i, j \leqq n} \in S U(n)$ with $\left(\begin{array}{cc}1 & 0 \\ 0 & \sigma\end{array}\right) \in L$. Since the linear isotropy action σ on \mathfrak{p} is $\operatorname{Ad}(\sigma)$, we have

$$
\begin{aligned}
& \sigma \cdot Z_{i}=\operatorname{Ad}(\sigma) X_{i}-(-1)^{1 / 2} \operatorname{Ad}(\sigma) Y_{i}=\sum_{j=1}^{n} \bar{\sigma}_{j i} Z_{j} \\
& \sigma \cdot \bar{Z}_{i}=\operatorname{Ad}(\sigma) X_{i}+(-1)^{1 / 2} \operatorname{Ad}(\sigma) Y_{i}=\sum_{j=1}^{n} \sigma_{j i} \bar{Z}_{j}
\end{aligned}
$$

On the other hand we have

$$
\begin{aligned}
& \sigma \cdot z^{i}=z^{i} \circ \sigma^{-1}=\sum_{j=1}^{n} \bar{\sigma}_{j i} z^{j} \\
& \sigma \cdot \bar{z}^{i}=\bar{z}^{i} \circ \sigma^{-1}=\sum_{j=1}^{n} \sigma_{j i} \bar{z}^{j}
\end{aligned}
$$

So $f \mid S^{\mathfrak{1}}\left(\mathfrak{p}^{c}\right)$ commutes with the action of $S U(n)$.
Q. E. D.

By the above Lemma $S^{j}\left(\mathfrak{p}^{c}\right)$ is $S U(n)$-isomorphic with $P_{j}=\sum_{p+q=j} P_{p, q}^{n}$. We identify $S^{j}\left(\mathfrak{p}^{c}\right)$ with P_{j} under f.

As we showed in $\S .3, B_{j}$ is a K-homomorphism, a fortiori L-homomorphism of $S^{j}(\mathfrak{p})$ into V^{k}. There exists a unique extension B_{j}^{C} of $B_{j}, B_{j}^{C}:\left(S^{j}(\mathfrak{p})\right)^{C} \rightarrow\left(V^{k}\right)^{C}$, which is also an L-homomorphism. Since $\left(S^{j}(\mathfrak{p})\right)^{C}$ is L-isomorphic with $S^{j}\left(\mathfrak{p}^{c}\right)$, we have an L-homomorphism

$$
B_{i}^{C}: S^{j}\left(p^{C}\right)=\sum_{p+q=j} P_{p, q}^{n} \longrightarrow\left(V^{k}\right)^{C}
$$

Now we apply Theorem 4.1 to $S U(n)$-module $P_{p, q}^{n}$, then we have

$$
\begin{equation*}
P_{p, q}^{n}=H_{p, q}^{n}+r \cdot P_{p-1, q-1}^{n} . \tag{4.1}
\end{equation*}
$$

By Lemma 3.2 (3), we can easily obtain

$$
\begin{equation*}
B_{j}^{C}\left(r \cdot P_{p-1, q-1}^{n}\right)=0 . \tag{4.2}
\end{equation*}
$$

So we get

$$
B_{j}^{C}\left(\sum_{p+q=j} P_{p, q}^{n}\right)=\sum_{p+q=j} B_{j}^{C}\left(H_{p, q}^{n}\right) .
$$

Since $H_{p, q}^{n}$ is $S U(n)$-irreducible, $B_{j}^{c} \mid H_{p, q}^{n}$ is zero or an isomorphism. We denote by I the set of all indices (p, q) such that $B_{j}^{C} \mid H_{p, q}^{n}$ is an isomorphism. Then we have

$$
\begin{equation*}
\left(O_{e K}^{j}\left(C P^{n}\right)\right)^{c}=\sum_{p+q=j,(p, q) \in I} B_{j}^{C}\left(H_{p, q}^{n}\right) . \tag{4.3}
\end{equation*}
$$

Let d be the degree of the k-th standard isometric minimal immersion of $C P^{n}$. Then by Lemma 3.2 (2), we have

$$
\begin{equation*}
\left(V^{k}\right)^{C}=\mathbb{C} f_{0}+\mathfrak{p}^{c}+\left(O_{e K}^{2}\left(C P^{n}\right)\right)^{c}+\cdots+\left(O_{e K}^{d}\left(C P^{n}\right)\right)^{c} \tag{4.4}
\end{equation*}
$$

Since f_{0} is a K-fixed, a fortiori L-fixed vector, $\mathbb{C} f_{0}$ is an irreducible L-module with highest weight 0 . Hence $C f_{0}$ is $S U(n)$-isomorphic with $H_{0,0}^{n}, \mathfrak{p}^{C}=S^{1}\left(\mathfrak{p}^{c}\right)$ is $S U(n)$-isomorphic with $H_{1,0}^{n}+H_{0,1}^{n}$ by Theorem 4.1 (applied to $S U(n)$-modules $P_{1,0}^{n}$ and $P_{0,1}^{n}$) and Lemma 4.2. Therefore we have the following direct sum decomposition of $\left(V^{k}\right)^{C}$ into $S U(n)$-irreducible subspaces by (4.3) and (4.4)

$$
\begin{equation*}
\left(V^{k}\right)^{C}=H_{0,0}^{n}+H_{1,0}^{n}+H_{0,1}^{n}+\sum_{j=2}^{d}\left(\sum_{(p, q) \in I, p+q=j} H_{p, q}^{n}\right) \tag{4.5}
\end{equation*}
$$

We see that $\max _{(p, q) \in I}(p+q)=d$ by (4.3). Using a Proposition of Ikeda and Taniguchi ([4], p. 50), we can show that $d=2 k$. But we give here another proof. First we show the following :

Lemma 4.3. d is not less than $2 k$.
Proof. We denote by exp $t H$ the one parameter subgroup in L generated by $H \in \mathfrak{G}^{\prime}$. For the non-zero element $v=\left(\bar{z}^{2}\right)^{k}\left(z^{n+1}\right)^{k} \in\left(V^{k}\right)^{c}$ and for any

$$
H=\left(\begin{array}{llll}
0 & (-1)^{1 / 2} x_{2} & & \\
& & \ddots & \\
& & \ddots & \\
& & & (-1)^{1 / 2} x_{n+1}
\end{array}\right)
$$

we have

$$
\begin{aligned}
H \cdot v & =d /\left.d t\right|_{t=0} \exp t H \cdot v \\
& =d /\left.d t\right|_{t=0}\left(e^{(-1)^{1 / 2} x_{2}} t^{2}\right)^{k}\left(e^{-(-1)^{1 / 2} x_{n+1} t} z^{n+1}\right)^{k} \\
& =k\left((-1)^{1 / 2} x_{2} \bar{z}^{2}\right)\left(\bar{z}^{2}\right)^{k-1}-k\left((-1)^{1 / 2} x_{n+1} z^{n+1}\right)\left(z^{n+1}\right)^{k-1} \\
& =(-1)^{1 / 2} k\left(\lambda_{1}^{\prime}-\lambda_{n}^{\prime}\right)(H) \cdot v .
\end{aligned}
$$

Let $\pi_{p, q}:\left(V^{k}\right)^{c} \rightarrow H_{p, q}^{n}$ be the projection with respect to the decomposition (4.5). Then there exists a pair $(p, q) \in I$ such that $\pi_{p, q}(v) \neq 0$. Since $\pi_{p, q}$ is an $S U(n)$ homomorphism we have

$$
H \cdot \pi_{p, q}(v)=\pi_{p, q}(H \cdot v)=(-1)^{1 / 2} k\left(\lambda_{1}^{\prime}-\lambda_{n}^{\prime}\right)(H) \pi_{p, q}(v) .
$$

Then

$$
k\left(\lambda_{1}^{\prime}-\lambda_{n}^{\prime}\right)=2 k \lambda_{1}^{\prime}+k \lambda_{2}^{\prime}+\cdots k \lambda_{n-1}^{\prime}
$$

is a weight of the $S U(n)$-module $H_{p, q}^{n}$. Since the highest weight of $H_{p, q}^{n}$ is equal to

$$
p \lambda_{1}^{\prime}-q \lambda_{n}^{\prime}=(p+q) \lambda_{1}^{\prime}+q \lambda_{2}^{\prime}+\cdots+q \lambda_{n-1}^{\prime},
$$

we have

$$
2 k \leqq p+q \leqq \max _{(p, q) \in I}(p+q)=d
$$

Q. E. D.

To prove our Theorem, we have only to show the following:
Lemma 4.4. d is not greater than $2 k$.
Proof. Let Λ [resp. M] be the set of all weights of $\left(V^{k}\right)^{c}$ as representation of $G[$ resp. $L]$ and $\tilde{V}_{\lambda}, \lambda \in \Lambda$, [resp. $\left.\tilde{V}_{\mu}, \mu \in \mathrm{M}\right]$ be the corresponding weight spaces. Then we have two weight space decompositions of $\left(V^{k}\right)^{C}$

$$
\begin{equation*}
\left(V^{k}\right)^{C}=\sum_{\lambda \in \Lambda} \tilde{V}_{\lambda}=\sum_{\mu \in \mathrm{M}} \tilde{V}_{\mu} \tag{4.6}
\end{equation*}
$$

It is easily seen that $\lambda \mid G^{\prime}$ is contained in M for any $\lambda \in \Lambda$ and $\tilde{V}_{\lambda} \subset \tilde{\widetilde{V}}_{\lambda \mid \mathrm{F},}$. So for every weight $\mu \in \mathrm{M}$ there exists $\lambda \in \Lambda$ such that $\lambda \mid h^{\prime}=\mu$. Otherwise $\tilde{\tilde{V}}_{\mu}$ cannot be contained in $\sum_{\lambda \in 1} \tilde{\tilde{V}}_{\lambda}$, which is a contradiction.

Put $\alpha_{i}=\lambda_{i}-\lambda_{i+1}, 1 \leqq i \leqq n$. Then it is well-known that every weight $\lambda \in \Lambda$ can be written in the following form

$$
\begin{equation*}
\lambda=\lambda_{0}-\sum_{i=1}^{n} m_{i} \alpha_{i}, \tag{4.7}
\end{equation*}
$$

where $\lambda_{0}=k\left(\lambda_{1}-\lambda_{n+1}\right)$ and m_{i} 's are nonegative integers.
Let (p, q) be a pair in I. We choose $\lambda=\lambda_{0}-\sum_{i=1}^{n} m_{i} \alpha_{i}$ such that

$$
\lambda \mid \xi^{\prime}=p \lambda_{1}^{\prime}-q \lambda_{n}^{\prime}=(p+q) \lambda_{1}^{\prime}+q \lambda_{2}^{\prime}+\cdots+q \lambda_{n-1}^{\prime} .
$$

Then we have

$$
\begin{align*}
\lambda \mid \mathfrak{h}^{\prime} & =\left(\lambda_{0}-\sum_{i=1}^{n} m_{i} \alpha_{i}\right) \mid \mathfrak{h}^{\prime} \tag{4.8}\\
& =\sum_{i=1}^{n}\left(k-m_{i}\right)\left(\alpha_{i} \mid \mathfrak{h}^{\prime}\right) \\
& =\left(k+m_{1}-m_{2}-m_{n}\right) \lambda_{1}^{\prime}+\sum_{i=2}^{n-1}\left(k+m_{i}-m_{i+1}+m_{n}\right) \lambda_{i}
\end{align*}
$$

By the definition of λ we have

$$
\begin{equation*}
k+m_{1}-m_{2}-m_{n}=p+q . \tag{4.9}
\end{equation*}
$$

Let $S_{\alpha_{1}}$ be the reflection of \mathfrak{h}^{*} with respect to α_{1}. Then $S_{\alpha_{1}}$ is an element of the Weyl group of g. We get by a simple computation

$$
S_{\alpha_{1}}(\lambda)=\lambda_{0}-\left(k-m_{1}+m_{2}\right) \alpha_{1}-\sum_{i=2}^{n} m_{i} \alpha_{i} .
$$

Since Λ is invariant under the Weyl group, $S_{\alpha_{1}}(\lambda)$ must be contained in Λ, and hence

$$
k-m_{1}+m_{2} \geqq 0 .
$$

This and (4.9) imply that

$$
2 k \geqq p+q, \text { for any }(p, q) \in I .
$$

So the Lemma is proved.
Q.E.D.

Reference

[1] Berger, M., Gauduchon, P. et Mazet, E., Le spectre d'une variété riemannienne. Lecture notes in Math., 194, Springer, (1971).
[2] do Carmo, M. P. and Wallach, N., Minimal immersions of spheres into spheres.

Ann. of Math., 93 (1971), 43-62.
[3] Erbacher, J., Reduction of the codimension of an isometric immersions. J. Diff. Geometry, 5 (1971), 333-350.
[4] Ikeda, A. and Taniguchi, Y., Spectra and eigenforms of the Laplacian on S^{n} and $P^{n}(\mathrm{C})$. Osaka J. Math., 15 (1978), 515-546.
[5] Lang, S., Algebra. Addison-Wesley, (1965).
[6] Takeuchi, M., Gendai no Kyukansu. Iwanami Shoten (in Japanese), (1974).
[7] Takahashi, T., Minimal immersions of Riemannian manifolds. J. Math. Soc. Japan, 18 (1966), 380-385.
[8] Wallach, N., Minimal immersions of symmetric spaces into spheres. Symmetric spaces. Pure and Applied Math. Series, 8, Marcel Dekker, (1972).

Institute of Mathematics
University of Tsukuba
Sakura-mura, Ibaraki,
305 Japan

