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DEGREE OF THE STANDARD ISOMETRIC MINIMAL

IMMERSIONS OF COMPLEX PROJECTIVE

SPACES INTO SPHERES

By

Katsuya Mashimo

1. Introduction.

Let (Mm, g) be an irreducible symmetric space of compact type, and A be

the Laplace-Beltrami operator of (M, g) acting on C°°functions. We denote by

Xk the &-th eigen-value of A, 0=^0</?i< ･･･, and by Vk the corresponding eigen-

space.

For each k^l, an orthonormal base of Vk defines the standard isometric

minimal immersion xk of (M, (Ak/ni)g) into the unit hypersphere in Vk centered

at the origin, do Carmo and Wallach [2] showed that the standard minimal

immersion xk of the sphere S" with constant sectional curvature c=n/k(n-＼-l)

into a unit sphere of dimension m(k)―(2k-Jrn―l)(k-＼-n―2) ＼/k＼{n―V)!―1 has degree

k (cf. §3, about the definition of the degree). Every homogeneous harmonic

polynomial of degree k on Rn+1 induces a harmonic function on Sn by restriction.

Such a function just belongs to Vk. Conversely every function in Vk is obtained

in this way. So the degree of xk : S"^Sfik:> is equal to the (algebraic) degree

of the polynomials.

Wallach says [8], without proof, that the standard minimal immersion xx oi

complex projective space CPl, n>2, of constant holomorphic sectional curvature

h=2n/(n + l) into SrCn+2)"1 has degree 2. Let n : S2n+1->CPn be the Hopf fib-

ration, where we consider S2n+1 as the unit hypersphere in Cn+1 with respect

to the standard Hermitian product. A complex valued homogeneous polynomial

/ on Cn+l of 2n+2 variables zu ･■■, zn+u Z＼,■･■, zn+i is said to be of type (p, q,

when f satisfies

f(czu
■■■, czn+1, czu ･･･ , czn+1)

= C C J＼Z＼, ･･･ , Zn + i, Z＼, ･･■ , Zn + i)

ceCAzu -, z≫+])er'

or in short

/(cZ)=cW(Z), c<eC, Z^Cn+1
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Every real valued homogeneous harmonic polynomial on Cn+1 of type (k, k)

induces a harmonic function on CPn through n. Such a functionbelongs to V.

Conversely every functionin Vk is obtainedin this way [1]. In thispaper we

show the following:

Theorem. Let xk be the standard minimal immersion of CP", n}~2, of

constant holomorphic sectional curvature h=2n/k(n-＼-k) into a unit sphere S["(*°,

where

m(k)=n(n+2k)((n+l)(n+2) ･･･(n+Jfe-l))Y(£!)2-l ･

Then xk has degree 2k.

From our Theorem the (geometric) degree of xk: CP＼―≫Sfc*} coincides with

the (algebraic) degree of the polynomials on Cn+1 which induce the functions in

VK

The author is grateful to Professors. T. Takahashi and R. Takagi for their

heartly guidances.

2. The standard minimal immersions

In this section we define the standard minimal immersions of a compact

irreducible symmetric space. We refer to do Carmo- and Waliach [2] for details.

Let (Mm, g) be an irreducible symmetric space of compact type, and Vk the

eigen-space of ACtt'Rycorresponding the k-t＼＼eigen-value ?,k. We define the U-

inner product ( , ) on Vk by

(/, h)=[ f-hdft, f, h(EVk.
JM

For simplicity,we normalize the canonical measure da of (M, g) in such a way

r
that ＼ du=dim. Vk~m(k)Jrl. An orthonormal base/0, fu ･･･ , /OTu) of Vk defines

jm r

naturally a mapping xk of M into Rmik)+l. Let (G, K) be a symmetric pair

corresponding to M so that M―GjK. Then G acts on Vk as a group of or-

thogonal transformations by

(2.1) ia-f){p)=f{a-i'P), o<=G, peM.

The irreducibilityof the linear isotropy action of K and the G-invariance of the

metric g guarantees that xk is an isometric immersion of (Mm, c2g)into RmCk)+1

for some constant c>0. A Theorem of T. Takahashi [7] implies that xk is an

isometric minimal immersion of (M, czg)into a sphere of radius c(m/Xk)xl'2where

m―dim. M. Since there exists an orthogonal matrix (<Jij)a<,i,jim<:k)such that

o-fi―Yn Oijfi for each a^G, we have



(2.2)
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S f%a~1-K)= S (vfjY(eK)
j=0 j=0

- 2 f%eK)
j-o

Integrating right and left hand sides of (2.2) on M, we obtain

(2.3)

So we obtain

(2.4)

E (/;, /j)=m(fe) + l=( S /}(≪-^)) ^
j=0 ＼j=0 /J M

m( k)
2 f%e-K)=l

135

(2.2) and (2.4) show that xk{M) is contained in the unit sphere in EmCk)+1

centered at the origin, hence we get c―(Ak/m)1/2. We shall call this isometric

minimal immersion xk of (M, (Xk/m)g) into S?ck'} the k-th standard minimal

immersion of M.

The standard minimal immersion can be described in another words as

follows. Take an orthonormal base e0, e1} -■■, em(k) of Rmih:i+1 such that eo=xk(e-K)

=(fo(e-K), ■■■,fmc≫(e-K)). Let A be an isometry of Vk into Rm≪≫+>- such that

A(fj)―ej, ;=0, 1, ･■･m(k). Let G act on RmCk^+1 so that A is a G-isomorphism.

Then by a simple computation we get

(2.5) xk{o-K)=A{a-f0), o^G.

Since /I is an isometry, we can consider xk as an isometric minimal immersion

of (M, Qk/m)g) into a unit hypersphere in Vk defined by

(2.6) xk(o-K)=O'f0, a^G.

Hereafter we take the standard minimal immersions in the latter sense.

3. Degree of an equivariant isometricimmersions

In thissectionwe define the higher fundamental forms and the degree of

an equivariantisometricimmersion.

Let x: Mm―>Mm+q(c) be an isometricimmersion of a Riemannian homogene-

ous space M―G/K into a space of constant curvature c. Such an immersion x

is said to be equivariant,if there exists a continuous homomorphism p of G

into the isometry group I(M) of M―Mm+q(c) such that

(3.1) x(a-p)=p(a)-x(p), pe=M, a^G.

It is easily seen that the standard minimal immersion in §.2 are naturally

equivariant.
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Let BZ＼Pbe the second fundamental form of x at p&M, and O＼(M) be the

linear span of Image B2lp in the normal space NP(M) of the immersion x at

p^M. Because of the equivariance of x, WpfEMOl(M) has the structureof a

subbundle of the normal bundle N(M). The orthogonal projectionN2lp: NP(M)

―>(P%{M))i-at each point peM definesa differentiablehomomorphism N2: N(M)

―≫MA/). We define the //zircffundamental form B^p at teM by

(3.2) B3lp(u,v, w)=l(DB2)(u, v, w)1N2'p , u, v, w^TvM,

where DB2 is the covariant derivativeof van der Waerden-Bortolotti of B2.

Inductively we define OJP(M) as the linear span of Image Bjlp,Njlp as the or-

thogonal projectionNP(M)^(O%{M) + ･■･+Ojp{M)Y, and Bj+l]pby

(3.3) Bj+Up(Ul,■■■,Uj+^KDBjXu!, - , uj+1)Y^ , uu - , uj+1<eTpM.

By the followingLemma 3.1,WpeAfO^(M) has the structure of a subbundle of

N(M) and we can define Nj and the higher fundamental forms Bj+1 on M

inductively. We can express Bj+1 using the Riemannian connection V in Mas

follows. We extend Nj]p to TPM by putting Njlp(TpM)=0. Then

(3.4) Bj+1]p(Uu -, uj+^tfuiWu,, -, uj+1mN^,

where Ui, ■■■, Uj+1 are local extensions of uu ･■■,Uj+1.

Lemma 3.1. Let x: Mm―≫Mm+q(c) bean equivariant isometric immersion of

a Riemannian homogeneons space M=G/K into a space of constant curvature c.

Then

(1) Bj is G-invariant and commutes with p(a).

(3.5)

(3.6)

Bjia.pia-Ui, ･･･, a-MJ)=io(a)-5J-,p(M1, ･･･, uj)

p(o)-0i(M)=0lp(M), o^G.

NJ'P(a)=p(a)oNJ, a^G.

(2) Bj is a symmetric C°°(M)multilinear mapping,

Bj: 1(M)X ■･･X36(M) ―> N(M).

J-times

Proof. We prove (3.5) and (3.6) by induction on j. From (3.1) we get

x*[a.pa-u=p(a)-x*lpu, a^G, u^TpM.

Since a and p{o) are isometries of M and M, we have

B2]a.p{o-uu o■u2)=VXta.Ulx*o･ Uz―x*la.U}o-U2

■=^1pt^-x^pio)- x*U2―x*a-7UlU2

= p(o)-l XtU.x*U 2―p{o)-
x*l
UlU 2
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Then we get

p(a)-0l(M)=0l.p(M).

Since p(a) induces an isometry of NP(M) to Na.p(M), we get

N2la.p°p{o)=p(a)°N2lp, o&G, p^M.

Suppose that (3.5) and (3.6) are valid for ;=2, 3, ･･･, k. Then by (3.4),(3.5) and

(3.6), we have

Bk+i＼a-p{<Jmult･･･, a-uk+1)

= CVx...≪,/o(a).B*(f72, ･･-, Uk+l)Yk

=W*) Vx^B^Us, ･■-,Uk+1)lNk

= p{a)-[lXtUlBk{U2, -.., Uk+1)-]Nk

= p(a)'Bk+1(u1, ･･･, MHi)

From this we get

p{o)-Okp+＼M)=Okat;{M).

(3.6) for j―k + l is easily verified.

Let e[r＼■･■, eill)be a local orthonormal frame field, such that it spans Orp(M)

at each point around the origin o=eK, rj^l, where we mean Op(M)=x*(TpM).

Then Bj-1(U2, ■■■, U/), i^3, can be written in the following form by C°°functions

(3.7) £,_!(£/, - , Uj)=%tBj-a(U,, - , £/j)

J-2 sCr)

r=l i=l

Differentiating both sides of (3.7) with respect to Uu we obtain

(3.8) %XBj^(U2, ･･■, Uj))=%1(%2Bj^(Us, ■■■, Uj))

j-2 sCr) j-'Z sir) ^

r=l i=l r=l i=l

Since the second and third term of the right hand side of (3.8)is contained in

the kernel of NJt (3.4) and (3.8)imply

BfJJu -, r/j)= [7ir1(7lrt(^-,(f/s,■", Uj)))!"'-1.

Obviously (2) is true for j=2, 3 by the equation of Coddazzi. So we assume

(2) is true for j―1, j"2t4. Since M is a space of constant curvature, we have
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Bj-Wt, - , UJ-WnBj-AU,, ■-, Uj)

-%uvu2iBj-2(U,, ■-, Uj)

:-=R(Uu UJBUUt,-, Uj)

. A

We operate Nj-i on the above equation. Then we get

Bj(Uu U2, Ua, ■■■, Uj)=Bj{U2, Uu Us, ■■■, Uj).

Hence by induction hypothesis, (2) is als true for j. Q. E. D.

We call degree of x the firstinteger d such that 5d|P^0, Bd+l{p―0 at some

point P<bM. It is obvious that the above definition of degree is independent of

the choice of p.

Now we confine our consideration to the standard minimal immersions of an

irreducible symmetric space M=G/K of compact type. We regard 0{K{M) as a

subspace in Vk in a natural manner. Let Sj(TeKM) be the 7-fold symmetric

power of TeKM. We extend the linear isotropy action of K on Sj(TeKM) in a

natural manner. Since BjleK is a symmetric multilinear form by Lemma 3.1 (2),

we extend this to a linear map of Sj(TeKM) to OiK{M), and denote it also by Bj.

Lemma 3.2. Let x: A/-^Sfa)cF& be the k-th standard minimal immersion

of a compact irreducible symmetric space M. Then

(1) the j-th fundamental form Bj is a K-homomorphism,

Bj: SKTeKM) ―> 0{K(M).

(2) Vk admits the following orthogonal direct sum decomposition

Vk=Rf0+TeKM+Oh(M)+ - +0?K(A/),

where d is the degree of xk.

(3) Let elf■■■, em bean orthonormal frame of TeKM. Put r=^"Li ei~S'2(TeKM),

then

(3.9) Ker BjZDr-Sj ＼TeKM), j^2.

Proof. (1) holds by (3.5).

It is easy to see that xk{M) is not contained in any totally geodesic sub-

manifold in S?(k＼ Then (2) is a direct consequence of a Theorem of J. Erbacher

[3].
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Let Eu ･■･,£, be a local orthonormal frame field around o=eK, such that

Ei＼eK=^i. Since xk is a minimal immersion, we have 2
2
B2{Ei, £f)=0. This

irnnlie0, R *vw-n AaS11 P tK^ v>?≫ R rfi1. ... fi1. F. F."＼― 0 i>0 Then bv

(3.4), we have

This proves (3.9).

^Bj+!i(EkQ, Ekv ■■･, Ekj, Eiy Et)=0

Q.E.D.

4. Proof of our Theorem

In this section we prove our Theorem stated in the introduction. For this

we need some results about representation of the special unitary group SU(n+l).

First we explain the notations.

We denote by Pnp^ the complex vector space of allhomogeneous polynomials

of type (p, q) on Cn+1. Let C°°{Cn+1,C) be the space of all complex valued C°°

functions on Cn+1. We denote by D the Laplace-Beltrami operator of C°°(Cn+1,C).

Then D can be written as

We put Hr£ql={f^P^; Df=0} and r=S"=i1 zWePZt1-

Let f)be the space of all diagonal matrices in the Lie algebra §u(n+l) of

SU(n+l). Since §u(n+l) is a compact semisimple Lie algebra and I)is a maximal

abelian subalgebra of§u(n+l), f)cis a Cartan subalgebra of (gu(n+l))c=§I(n+l).

We define lu ･■･,Xn^if by

/(-DU2x1 _ 0 v

^ 0 '(-l)1/2xn+1 I

and fix the following lexicographic order in i)*

We define an action of SU(n+l) on C~(Cn+1, C) by

(a-/)(Z)=/((T-1-Z), ZeC", g^G.

It can easily be seen that Pl+q{ and //p,"^1are Sf/(w+l)-invariant subspaces of

C°°(Cn+1,C). Furthermore we have the following:

Theorem. 4.1. ([61, §.14)

ifjn +l If

Hiy + r-Pltlt-i (direct sum), if

(P, q)=(0, 0), (i, 0), (0, 1)

otherwise.
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(2) //p,V is an SU{n-＼-l)-ir'reducible subspace of C°"(Cn+＼ C) with highest weight

From now on we employ the following notations;

G=SU(n+l)

K=S(U(l)xU(n))
rr 1/detff 0 1 ... ,1

m[;°. ]=-**･>}

n=§:t(n+ l)={ZeMB+1(C); tX+X=Q, traceX=Q}

1=([ ° °1; XsMJ,C), traceX=0, 'A*-KV=o}

(f(-D≫'.r,. 0 .

[[ 0 '(-l)utxn+j J

I)

0

(-i)1/2.r2

(-l)1/2*n+l

X; 1',,+ lSft, -Y,+ ･･･ -f.V,M.1 = O

Then G/K is identifiedwith CPn in a natural way, and (G, K) is a Rieman-

nian symmetric pair corresponding to CPn. g,f and t are Lie algebrasof G, K

and L respectively.We define2!u･･･, X'nel/*by

%.

0

(-l)1/2.t2

( 1) Xn+1

xtJ-u l<i^n ,

and fix the following lexicographic order in (j'*

It is well-known that the /2-theigen-space Vk of Jcpn is G-isomorphic with

the subspace Hnk;kxf＼C^{Cn^1,It) of Hnk＼x through the Hopf fibration k : S27l+1

―>CPn, where C°°(Cn+1,R) denotes the space of all real valued C°°functions on

Cn+1. By Theorem 4.1 (Vk)c is an irreducible G-module with highest weight

k＼/.＼-xn+i).

We denote by i≫the orthogonal complement of ! in q with respect to the

Killing form of o. Precisely
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We identifyp with TeK(CPn) in a usual manner. As the base of p we take the

followingone;

where ELj is a matrix unit of which {i, 7)-component is 1 and other components

are 0. We put

Z^Xi-i-iy^Yi, Z^Xi+i-iy^Yt, l^i^n,

then Zu ■■･, Zn, Zx, ■■■, Zn forms a base of pc over C. Let z＼ ■■■, z" be the

usual complex coordinate functions on Cn, and z＼ ･■･, z" be their complex

conjugate functions. Let S(#C)=J}J=O SJ＼pc) be the symmetric algebra of pc. We

identify L with SU(n) canonically. Then SU(n) acts on p as a subgroup of the

linear isotropy group K. Extend this action to S(pc) in a usual manner. Let

P(Cn)=Y,cj=oPj be the polynomial algebra in 2n-variables z＼ ■■■, zn, z＼ ■■■, z11.

Then we have

Lemma 4.2. There exists a

such thatAZi)=zl and f(Zi)=zi.

SU(n).

graded algebra isomorphism /: S(pc)―*P(Cn)

Furthermore f commutes with the action of

Proof. About the first half of the Lemma we refer to [5], p. 428. We

remark that / carries the element Z＼l■■■Z)?Z{1 ■■･Z}nn^S(pc) to {zr)h ■■■(zn)in

{zl)h--{zn)Jn^P{Cn).

We will prove that f＼Sl(pc) commutes with the action of SU(n). Then by

the definition of the action of SU(n) on S(pc) and on P(Cn) and by the above

remark, we can see that / commutes with the action of SU(ri). We identify

0=(Gij)i<i j'in^SU(n) with ( )gL. Since the linear isotropy action a on jj
＼U (7 /

is Ad (a), we have

a-Zi = Ad WXi-t-l)1'* Ad (o)Yt

n

OjiZj

a-Zt=Ad(ff)^+(-l)1/2 AdC^F^
&
ajiZj

On the other hand -we have.
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n
O'Zi = Zi°G'1― S djiZj

n

j=l

So /|S](i)c)commutes with the action of SU(n). Q. E. D.

By the above Lemma Ss(pc)is S£/(n)-isomorphic with Pj=J]p+q=j Pnp,q. We

identify Sj(pc) with Ps under /.

As we showed in §.3, Bj is a /f-homomorphism, a fortiori L-homomorphism

of SJ(P) into Vk. There exists a unique extension Bc5 of Bj} Bcj: (Sj(P))c^(Vk)c,

which is also an L-homomorphism. Since (Sj(p))c is L-isomorphic with Sj(X>c),

we have an L-homomorphism

Bry. Sj(Pc)= S PnP,q―>(Vk)c.
P+Q.=J

Now we apply Theorem 4.1 to S£/(n)-module -Pp,g,then we have

(4.1) Pl^HU+r-Pl-u,-!.

By Lemma 3.2 (3), we can easily obtain

(4.2) Bftr-Pl-^-^O.

So we get

Since H%,q is S£/(n)-irreducible, B°j＼H.np,qis zero or an isomorphism. We denote

by / the set of all indices (p, q) such that BCj＼HnV)CLis an isomorphism. Then

we have

(4.3) (0{K(CPn))c= 2 B%Hl,q).
P+Q=j,(p,g)e/

Let d be the degree of the &-th standard isometric minimal immersion of CPn.

Then by Lemma 3.2 (2), we have

(4.4) (Vk)c=Cf0+pc+(Oh(CPn))c+ - +(CreK(CPn))c .

Since /0 is a K-fixed, a fortiori L-flxed vector, Cf0 is an irreducible L-module

with highest weight 0. Hence Cf0 is S£/(n)-isomorphic with H1,O, pc=S1(p ) is

SLr(n)-isomorphic with //",0+^o,i by Theorem 4.1 (applied to S£/(n)-modules

P",o and Po.i) and Lemma 4.2. Therefore we have the following direct sum

decomposition of {Vk)c into S£/(n)-irreducible subspaces by (4.3) and (4.4)

(4.5) (FT
j=2 Vp.?)ej, p+Q=i /
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We see that maxiPi^&I(p-＼-q)=dby (4.3). Using a Proposition of Ikeda and

Taniguchi ([4], p. 50),we can show that d―2k. But we give here another

proof. First we show the following:

Lemma 4.3. d is not lessthan 2k.

Proof. We denote by exp tH the one parameter subgroup in L generated

by H(eV- For the non-zero element v=(z2)k(zn+1)ke(Fk)cand for any

H=

0

(-1)1/2X2

(_iy/2r

we have

H- v= d/dt |J=oexp tH- v

= d/dt |J=o(g<-1)1/2^P)*(g-<-1>1/2^+iJz*+1)*

= k((-iy/2x2z2)(z2)k-1-k((-l)1/2xn+1zn+1)(zn+1)k-1

=(-iy>2KX{-xnxH)-v.

Let 7Tp,g:(Vk)c-*Hp,q be the projection with respect to the decomposition (4.5).

Then there exists a pair (p, q)^I such that 7zrp,g(y)^O.Since 7ip,qis an SU(n)-

homomorphism we have

H-7rp.q(v)=7up.q(H-v)=(-iy'sk(X[-XrnXH)7cp.q(v).

Then

k{X[-X'n)= 2kX[+ kX'2+ - kX'n-!

is a weight of the 5f/(n)-module i/J>g. Since the highest weight of Hp,q is

equal to

pX[-qX'n=(p+q)X[+qX!t+ ■■■+qXfn-lt

we have

2k^p+q^maxCp.q,f=i<J>+q)=d. Q. E. D.

To prove our Theorem, we have only to show the following:

Lemma 4.4. d is not greater than 2k.

Proof. Let A [resp. M] be the set of all weights of (Vk)c as representation

of G [resp. L] and Vx,2.^A, [resp. V^, /ieM] be the corresponding weight

spaces. Then we have two weight space decompositions of (Vk)c

(4.6)
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It is easily seen that A＼lfis contained in M for any 2.<bA and VxdViw. So

for every weight /igM there exists 1<elA such that Z＼t)'=fi.Otherwise Vf_,cannot

be contained in S^eJ Vx, which is a contradiction.

Put <Xi―li―Ai+i,lfgifgn. Then it is well-known that every weight l^A

can be written in the following form

(4.7)
n

^=^0― 2 m,i(Xi

i=l

where A0―k(A1―2n+1) and Mj's are nonegative integers.

Let (p, q) be a pair in /. We choose X―1Q―Y%=i m-ictisuch that

Then we have

(4.8) w
(n ＼

i=l /

n-1
=(k+}n1―m2―mn)/i'1+J^(k+mi--mi+1+rnn)Xi

i=2

By the definition of X we have

(4.9) k+m1―m2―mn=p+q.

Let Sai be the reflection of I)* with respect to ax. Then Sai is an element of

the Weyl group of g. We get by a simple computation

Sa,(X)=A0―(k―m1+m2)a1― S Midi.

Since A is invariant under the Weyl group, Sai(X) must be contained in A, and

hence

This and (4.9)imply that

2k^p+q , for any (p, q)^I.

So the Lemma is proved. Q. E. D.
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