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IMMERSIONS OF COMPLEX PROJECTIVE
SPACES INTO SPHERES
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1. Introduction.

Let (M™, g) be an irreducible symmetric space of compact type, and 4 be
the Laplace-Beltrami operator of (M, g) acting on C*= functions. We denote by
A, the k-th eigen-value of 4, 0=2,<1,< -, and by V* the corresponding eigen-
space.

For each k=1, an orthonormal base of V* defines the standard isometric
minimal immersion x, of (M, (4,/m)g) into the unit hypersphere in V* centered
at the origin. do Carmo and Wallach [2] showed that the standard minimal
immersion x, of the sphere S7 with constant sectional curvature c¢=n/k(n-+1)
into a unit sphere of dimension m(k)=(2k+n—1)(k+n—2)!/k(n—1)1—1 has degree
k (cf. §3, about the definition of the degree). Every homogeneous harmonic
polynomial of degree %2 on R"*' induces a harmonic function on S® by restriction.
Such a function just belongs to V* Conversely every function in V* is obtained
in this way. So the degree of x,: ST —SP® is equal to the (algebraic) degree
of the polynomials.

Wallach says [8], without proof, that the standard minimal immersion x, of
complex projective space CP}, n=2, of constant holomorphic sectional curvature
h=2n/(n+1) into S{"*»- has degree 2. Let rx: S**'—CP" be the Hopf fib-
ration, where we consider S*"*' as the unit hypersphere in C"*' with respect
to the standard Hermitian product. A complex valued homogeneous polynomial
J on C**' of 2n+2 variables z,, -+, Zys1, 21, =+, Zns: Is said to be of type (p, q)
when f satisfies

Sflezy, -, czns, CZy, *y CZnsy)
=cPC (21, =, Zna1, 21, s Zn11),
CEC: (ZI; Tty Z7L+1)ECYTH—1 ’

or in short
fcZ)=c?¢*[(Z), cC, Z=Cr*,
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Every real valued homogeneous harmonic polynomial on C™*' of type (&, &)
induces a harmonic function on CP" through n. Such a function belongs to V&
Conversely every function in V* is obtained in this way [1]. In this paper we
show the following :

THEOREM. Let x, be the standard minimal immersion of CPI, nz=2, of
constant holomorphic sectional curvature h=2n/k(n-+k) into a unit sphere Sy,
where

m(k)=n(n+2k)(n+1)n+2) -+ (n+k—1)%/(R1)*—1.

Then x, has degree 2k.

From our Theorem the (geometric) degree of x,: CP%—SP® coincides with
the (algebraic) degree of the polynomials on C"*' which induce the functions in
VE

The author is grateful to Professors. T. Takahashi and R. Takagi for their
heartly guidances.

2. The standard minimal immersions

In this section we define the standard minimal immersions of a compact
irreducible symmetric space. We refer to do Carmo.and Wallach [2] for details.

Let (M™, g) be an irreducible symmetric space of compact type, and V* the
eigen-space of J¢' corresponding the k-th eigen-value 2,. We define the L°-
inner product ( , ) on VF by

(f, h):SM fhdp, f, heV*E.

For simplicity, we normalize the canonical measure dyg of (M, g) in such a way
that Su dp=dim. V*=m(k)+1. An orthonormal base fo, /1, ***, fmce of V* defines

naturally a mapping x, of M into R™®+ Let (G, K) be a symmetric pair
corresponding to M so that M=G/K. Then G acts on V* as a group of or-
thogonal transformations by

@.1) (G- HYP)=fo7p), a=CG, peM.

The irreducibility of the linear isotropy action of & and the G-invariance of the
metric g guarantees that x, is an isometric immersion of (M™, ¢*g) into R™®*!
for some constant ¢>0. A Theorem of T. Takahashi [7] implies that v, is an
isometric minimal immersion of (M, ¢?¢) into a sphere of radius c(m/4,)'"* where
m=dim. M. Since there exists an orthogonal matrix (o;7oss j<mcp such that
o-f;=27F ¢,;f; for each c=G, we have
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mk) m (k) . mk) N

(2.2) ]2;:) Aot K)= ,}:‘6 (o-f)HeK)= ]2_‘:) fieK).
Integrating right and left hand sides of (2.2) on M, we obtain
23 mé(e) L _ m_(»_l\z) R
(2.3) S faem+1=E e 1), du

mik)

=("S Fite- FO)m()+1).

j=0
So we obtain

m k)
2.4) 12"3 fie-K)=1.

(2.2) and (2.4) show that x,(M) is contained in the unit sphere in R™P+!
centered at the origin, hence we get ¢=(1,/m)”%. We shall call this isometric
minimal immersion x, of (M, (1,/m)g) into SP® the k-th standard minimal
immersion of M.

The standard minimal immersion can be described in another words as
follows. Take an orthonormal base ¢y, ¢;, -+, e cs 0f B ®* such that e,=x,(e- K)
=(fole-K), -+, fmule-K)). Let A be an isometry of V* into R™®*! guch that
A(f)=e;, j=0, 1, --- m(k). Let G act on R™®* g0 that A is a G-isomorphism.
Then by a simple computation we get

(2.5) xo-K)=Alo-fy), o€G.

Since A is an isometry, we can consider x, as an isometric minimal immersion
of (M, (A,/m)g) into a unit hypersphere in V * defined by

(2.6) x(o-K)=0-f,, o&G.

Hereafter we take the standard minimal immersions in the latter sense.

3. Degree of an equivariant isometric immersions

In this section we define the higher fundamental forms and the degree of
an equivariant isometric immersion.

Let x: M”‘—»JV[””‘Z(C) be an isometric immersion of a Riemannian homogene-
ous space M=G/K into a space of constant curvature ¢. Such an immersion x
is said to be equivariant, if there exists a continuous homomorphism o of G
into the isometry group 1(1\71) of NNI:]\'/VI"”‘I(C) such that

(3.1 wo-py=plo)-x(p), peEM, o&i.

It is easily seen that the standard minimal immersion in §.2 are naturally

equivariant.
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Let B,;, be the second fundamental form of x at p&M, and OK(M) be the
linear span of Image B,, in the normal space N,(M) of the immersion x at
peM. Because of the equivariance of x, \J,cyO3M) has the structure of a
subbundle of the normal bundle N(M). The orthogonal projection Ny ,: N(M)
—(03(M))* at each point p=M defines a differentiable homomorphism N,: N(M)
— N(M). We define the third fundamental form Bs, at peM by
(3.2) Byp(u, v, wy=[(DBy)(u, v, w)1"*?, u, v, weT,M,

where DB, is the covariant derivative of van der Waerden-Bortolotti of B,.
Inductively we define O(M) as the linear span of Image Bj,, N;, as the or-
thogonal projection N,(M)—(O¥M)+ - +04M))*, and Bj.,, by

(3.3) Bj+!|p(uh Tt uj+1):[(DBj)(u1, ty uj+1>:]Nj|p y Uy oy, uj+IETpM-

By the following Lemma 3.1, \J,cyOi(M) has the structure of a subbundle of
N(M) and we can define N; and the higher fundamental forms Bj., on M
inductively. We can express B, using the Riemannian connection Vin M as
follows. We extend N, , to T,M by putting N;,(T,M)=0. Then

(3.4) BJ'H‘p(uh T uj+1):[f/U1(Bj(U2» Sty U.J'-H))]Njw ’
where U, -+, Ujy, are local extensions of uy, =+, s

LEMMA 3.1. Let x: M™—M™*c) be an equivariant isometric immersion of
a Riemannian homogeneons space M=G/K into a space of constant cnrvature c.

Then
(1) B, is G-invariant and commutes with plo).

(3.5) Bjis.p(0 -1y, =, 0 u)=p(0) Bjip(uy, -, uy),
0(0)-Oi(M)=03.,(M), o€GC.
(3.6) Njep(o)=p(o)N;, c€GC.
(2) Bj; is a symmetric C>(M) multilinear mapping,
Bj:w/m_x_ag(M)—» N(M).

j-times
PrOOF. We prove (3.5) and (3.6) by induction on j. From (3.1 we get
Xxia-p0 U=p(0) Xy, 0EG, usTyM.
Since ¢ and p(o) are isometries of M and A7I, we have
Baop(0- s, 0 1)=Vigu 550 Us— 14V g.0,0 - Uy
=V pcr3-0,0(0) 25Uy — 250V, Uy
=0(0) Vg 26 Us— 0(0) - 25V, U,
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=p(0) Bup(uy, ).
Then we get
0(@)- O(M)=03.,(M) .

Since p(o) induces an isometry of N (M) to N,.,(M), we get
Nogpepl0)=p(0)eNyp, o€CG, peEM.

Suppose that (3.5) and (3.6) are valid for j=2, 3, ---, k. Then by (3.4), (3.5) and
(3.6), we have

Bkﬂmp(ff'llu o, O Upey)
=[Vseoou,0(0) By(Us, -+, Uy )"
=[0(0) Vs, Ba(Us, -, Upr)1"*

=0(0) [V, Ba(Us, -, Ups)1"*

=p(0)-Byi(uy, ) Uper)

From this we get
0(a)- O (M)y=08NM).

(3.6) for j=Fk-+1 is easily verified.

Let ¢, ---, ¢}, be a local orthonormal frame field, such that it spans Oy(M)
at each point around the origin o=¢K, r=1, where we mean OXM)=x(T,M).
Then B, ,(U,, -+, Uy, j=3, can be written in the following form by C* functions

(r
%

(37) Bj—l(U‘z: ) Uj>:§UZBj'2(U3J ) U])
gLy (1) H(T)

Differentiating both sides of (3.7) with respect to U,, we obtain

(3.8) Ty, (Bi-i(Us, -, U=V Ve, B Uy, -, Uy)
5OR Jj-2 s(r) -
& & Wermer= 2 2 f00ea).

Since the second and third term of the right hand side of (3.8) is contained in
the kernel of N;, (3.4) and (3.8) imply

BAU,, -+, Up=[Vy,(Vy,(B;-oUs, -, Up»1™7-.

Obviously (2) is true for j=2, 3 by the equation of Coddazzi. So we assume
(2) is true for j—1, j=4. Since Mis a space of constant curvature, we have
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Vo, V0, Bios(Us, -, U=V N By Uy, -, Uy
~ Vw085 Us, -+, U))
=R(U,, U)B;_U,, -, U,
=c({Uy, BjoUs, -, UyU,—<Uy, B;ofUs, -, Up>Us)
=0.
We operate N;., on the above equation. Then we get
BiU,, Uy, U, -+, Up=B{U,, Uy, Uy, ---, Uy).

Hence by induction hypothesis, (2) is als true for j. Q.E.D.

We call degree of x the first integer d such that By ,#0, By ,=0 at some
point p=M. It is obvious that the above definition of degree is independent of
the choice of p.

Now we confine our consideration to the standard minimal immersions of an
irreducible symmetric space M=G/K of compact type. We regard 0i,(M) as a
subspace in V* in a natural manner. Let S{(T,xM) be the j-fold symmetric
power of T.xM. We extend the linear isotropy action of K on S/(T.xM) in a
natural manner. Since Bj.x is a symmetric multilinear form by Lemma 3.1 (2),
we extend this to a linear map of S/(T.xM) to Oix(M), and denote it also by B,

LEMMA 3.2. Let x: M—Sr®CVE be the k-th standard minimal immersion
of a compact irreducible symmetric space M. Then
(1) the j-th fundamental form Bj; is a K-homomorphism,

lij . Sj<TeKA/[) —_—> O'g]((ﬂf) .
(2) V* admits the following orthogonal direct sum decomposition
Vi=Rf A Tox M40 (M)+ -+ +02x (M),

where d is the degree of x,.
(3) Let ey, -, en bz an orthonormal frame of TexM. Put r=X1%, ei=S(T,xM),
then

(39) Ker ,BjD?"Sj 2(T¢[{A']) N _]_/__.2 .

ProoF. (1) holds by (3.5).
It is easy to see that x,(M) is not contained in any totally geodesic sub-
manifold in S™*. Then (2) is a direct consequence of a Theorem of J. Erbacher

[31
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Let E,, -, E,, be a local orthonormal frame field around o==¢K, such that
Eiex=e;. Since x, is a minimal immersion, we have 27, By(E;, E;))=0. This
implies B(r)=0. Assume that 3%, Bj.(E:,, -, Eij, Eiy ED—0, j20. Then, by

(3.4), we have
gBHR(Ekm Eklr AR Ekj; Ei; EL)ZO

This proves (3.9). Q.E.D.

4. Proof of our Theorem

In this section we prove our Theorem stated in the introduction. For this
we need some results about representation of the special unitary group SU(n-+1).
First we explain the notations.

We denote by P3f! the complex vector space of all homogeneous polynomials
of type (p, ¢) on C™*. Let C=(C™**, C) be the space of all complex valued C*
functions on C**'. We denote by D the Laplace-Beltrami operator of C=(C™*?, ).

Then D can be written as
D=—4'"S 52/32197".
i=1

We put HiZ={fePyil; Df=0} and r=>27%1 2’z Pp{.

Let § be the space of all diagonal matrices in the Lie algebra su(n+1) of
SU(n~+1). Since gu(n+1) is a compact semisimple Lie algebra and Y is a maximal
abelian subalgebra of 8u(rn-+1), §¢ is a Cartan subalgebra of (su(n-1))°=8{(n-1).
We define A, -+, L,€4* by

(—1ix, 0
4
0 (—=D"2xp4

and fix the following lexicographic order in §*

):xi, 1<iZn+1, xy, -, xan R

21>22> >>2n>0>]kn+1
We define an action of SU(n-+1) on C=(C™*, C) by
(0-fN2D)y=fo™2Z), ZeC", aEG.

It can easily be seen that P7’! and H3! are SU(n--1)-invariant subspaces of
C(C"*, ). Furthermore we have the following:

THEOREM. 4.1. ([6], §.14)
HyY, if (p, 9=(0, 0), (1, 0), (0, D,

Hyltr-P3El oy (divect sum), if otherwise.

(1) Pg.t;:~{
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(2) HuY is an SU(n-+1)-irreducible subspace of C(C "%, C) with highest weight
Plr—(]lnﬂ-

From now on we employ the following notations;

G=SUn+1)

K:awnxUmnzﬂlkf“’g];anmﬁ

L:{[é 2];gesUmﬁ

g=8n+1)={Xc M, (C); ‘X+X=0, trace X=0}

J[ —trace X 0

=1 0 X

];XGMAQJX+X:®

1:{[ 00 ]; Xe=M(C), trace X=0, *X-+ .X_":O}

0 X
(—1)V2x, 0
f):{ " DXy, K ER, x4 e »ifx,m:OJ-
0 (=D x 544
0
(—=1)2x,
I),: . s Xay ,'\',,+[Eia, -\"2_{_ —}‘X,H,l:()
G [

Then G/K is identified with CP”" in a natural way, and (G, X) is a Rieman-
nian symmetric pair corresponding to CP". ¢, f and [ are Lie algebras of G,
and L respectively. We define 4, -+, 2,0’ by

0
(=D"ex,

(D,
and fix the following lexicographic order in (’*
A2 o > 2> 0> 25 .
It is well-known that the k-th eigen-space V* of J*" is G-isomorphic with
the subspace HRHANC(C"*Y, R) of HEY' through the Hopf fibration z: S***!
—CP™ where C=(C"™, R) denotes the space of all real valued C* functions on
C™+!, By Theorem 4.1 (V*)° is an irreducible G-module with highest weight
k(zl'__Zer'I)'

We denote by § the orthogonal complement of ¥ in g with respect to the
Killing form of g. Precisely
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We identify p with T.x(CP™) in a usual manner. As the base of p we take the
following one;

Xi=E i~ Eiy, YVi=(=DVE i, HEi), 1520,

where E; ; is a matrix unit of which (i, j)-component is 1 and other components
are 0. We put

Zi=X;—(—D"*Y,, Z—i:Xi_!'(_l)”z)ri, 1=i=n,

then Z,, -, Zu, Z,, ---, Z, forms a base of p° over C. Let z!, ---, z* be the
usual complex coordinate functions on C*, and Zz', -+, z" be their complex
conjugate functions. Let S(p€)=21%, S(p°) be the symmetric algebra of p°. We
identify L with SU(n) canonically. Then SU(n) acts on p as a subgroup of the
linear isotropy group K. Extend this action to S(p€) in a usual manner. Let
P(C")=3>7.,P; be the polynomial algebra in 2n-variables z', -+, z*, 2%, -+, Z".
Then we have

LEMMA 4.2. There exists a graded algebra isomorphism f: S(p€)— P(C")
such that f(Z)=2z" and ,/(Z—i):?. Furthermore [ commutes with the action of
SU(n).

Proor. About the first half of the Lemma we refer to [5], p. 428. We
remark that f carries the element Z't... ZnZ] ... ZineS(hC) to (29 - (z7)'"
EY1 - @Y e Pen).

We will prove that f|S'(»°) commutes with the action of SU(n). Then by
the definition of the action of SU(n) on S(p°) and on P(C*) and by the above
remark, we can see that f commutes with the action of SU(n). We identify

0=(04)151. 75, =SU) with ( L

0 .. . . ,
0 o )CL. Since the linear isotropy action ¢ on p

is Ad (o), we have

o-ZL-:Ad(o)XL-~—(——1)”2Ad(o)}"i:j);; 302y,

0- 7 =Ad (o)X, -H(—1)" Ad ()Y = 3 0,2,
=1

On the other hand we have
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So f|S'(p°) commutes with the action of SU(n). Q.E.D.

By the above Lemma S/ (p€) is SU(n)-isomorphic with P;=3),.4=; Pp. We
identify S/(»°) with P; under f.

As we showed in §.3, B; is a K-homomorphism, a fortiori L-homomorphism
of S(p) into V*. There exists a unique extension B of Bj, B : (S/(p)°—(VH),
which is also an L-homomorphism. Since (S/(p))¢ is L-isomorphic with S/(»°),
we have an L-homomorphism

BG: S(p%)= 3 P, —> (VH°.
pg=j

Now we apply Theorem 4.1 to SU(n)-module P}, then we have

»y

4.1) P =H3 47 Phoi g1
By Lemma 3.2 (3), we can easily obtain
(4.2) B?(T/'P;’J—l,q—l):o-

So we get
C n — C n
5,3, P3)=, 3, B0
Since Hp , is SU(n)-irreducible, BS|H5,, is zero or an isomorphism. We denote

by I the set of all indices (p, ¢) such that BY|H7} , is an isomorphism. Then
we have

(4.3) (0ig(CP ">>C=p > BYHE. .

+9=7. (P, OEI

Let d be the degree of the k-th standard isometric minimal immersion of CP™.
Then by Lemma 3.2 (2), we have

(4.4) (VBC=Cfy+p (03 (CP™) + - +(0&(CP™)° .

Since f, is a K-fixed, a fortiori L-fixed vector, Cf, is an irreducible L-module
with highest weight 0. Hence Cf, is SU(n)-isomorphic with H7 ,, p°=Sp®) is
SU(n)-isomorphic with H7% ,+H?%, by Theorem 4.1 (applied to SU(n)-modules
P7, and P?,) and Lemma 4.2. Therefore we have the following direct sum
decomposition of (V*)¢ into SU(n)-irreducible subspaces by (4.3) and (4.4)

45) (VA=Y ot HL o H L+ 2 (3 1),

(p.DETL, prg=J

Jj=2



Degree of the standard isometric minimal immersions 143

We see that max(pger(p+¢)=d by (4.3). Using a Proposition of Ikeda and
Taniguchi ([4], p. 50), we can show that d=2k. But we give here another
proof. First we show the following :

LEMMA 4.3. d is not less than 2k.

Proor. We denote by exptH the one parameter subgroup in L generated
by Hel. For the non-zero element v=(z%)*(z**)*=(V *)¢ and for any

(=17,

- (_1)1/2]{1”1
we have
H-yv=d/dt),exptH-v

=d/dt| ootV F2tF2) k(gm0 Ean st pntyk
=k(—=D"2x,2)(2)* 1 — B((— 12 xgs12™ 1 )(2" )R
=(—D"2 k(A —2)H) v .

Let mpq: (VEYY—H? , be the projection with respect to the decomposition (4.5).

Then there exists a pair (p, ¢)=I such that =, ,(v)#0. Since 7, is an SUn)-
homomorphism we have
H-mp, )= p,o(H v)=(—1)"* k(A — A ) H)7 p,o(V) .

Then

k(A—22)=2k A +RAz+ -+ Ay
is a weight of the SU(n)-module H7, Since the highest weight of H3 , is
equal to

PA—qa=(p+ DA+ g+ -+ +qhh-1,

we have

2k=ptg=maxp peptg=d. Q.E.D.

To prove our Theorem, we have only to show the following :
LEMMA 44. d is not greater than 2k.

Proor. Let A [resp. M] be the set of all weights of (V*)¢ as representation
of G [resp. L] and 171, ied, [resp. I”N}#, p£€M] be the corresponding weight

spaces. Then we have two weight space decompositions of (V *)¢

46) (V=2 V=3 7,.

Hem
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It is easily seen that 2|9 is contained in M for any 1€4 and V., %,n,, So
for every weight p&M there exists A€ A such that 2|§=y. Otherwise V, cannot

be contained in 3,24 171, which is a contradiction.
Put @;=2;— 241, 1=i=<n. Then it is well-known that every weight i1/
can be written in the following form

4.7 VESVISS EHJ Mits ,

i=1

where 1,=k(A,—1,+;) and m;’s are nonegative integers.
Let (p, ¢) be a pair in I. We choose 1=1,—X %, m;a; such that

Y =pA—qla=p+QU+gA+ - +qn-s.

Then we have

(4.8) 21y =(2— 2__;1 miai)lb’
= 3 (k—mleu| V)

=(k +ml~nu—mn)li—%ni)(ia+mi~mi+1+mn)2i .

By the definition of 2 we have

4.9) E+mi—my—muy=p-+q.

Let S,, be the reflection of §)* with respect to @;. Then Sg, is an element of
the Weyl group of g. We get by a simple computation

S (D=2~ (k—m,+my)a,— Z:)z mi; .

Since A is invariant under the Weyl group, S,,(2) must be contained in /, and
hence

E—m,+m,=0.
This and (4.9) imply that

2k=p+q, for any (p, Q=1.

So the Lemma is proved. Q.E.D.
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