ON TRACES OF SOLUTIONS OF LINEAR ELLIPTIC SYSTEMS AND THEIR APPLICATION TO THE DIRICHLET PROBLEM

By

J. CHABROWSKI

The purpose of this article is to investigate the Dirichlet problem with L^2 boundary data for elliptic systems of the form

(1)

$$L_{i}(u_{1}, \cdots, u_{n}) = -\sum_{j=1}^{N} \sum_{\alpha,\beta=1}^{n} D_{a}(A_{ij}^{\alpha\beta}(x)D_{\beta}u_{j})$$

$$+\sum_{j=1}^{N} \sum_{\alpha=1}^{n} B_{ij}^{\alpha}(x)D_{\alpha}u_{j} + \sum_{j=1}^{N} C_{ij}(x)u_{j} = f_{i}(x) \quad (i=1,\cdots,N),$$
(2)

$$u_{i}(x) = \phi_{i}(x) \quad \text{on} \quad \partial Q(i=1,\cdots,N)$$

in a bounded domain $Q \subset R_n$ with the boundary ∂Q of the class C^2 , where $\phi_i(i=1,\dots,N)$ are given functions in $L^2(\partial Q)$ and $D_{\alpha} = \frac{\partial}{\partial x_{\alpha}}$. In recent years the Dirichlet problem with L^2 -boundary data for elliptic equations has attracted attention of several authors (see [2], [3], [8] and [9], where all historical references can be found). The main difficulty in solving the Dirichlet problem with the boundary data in L^2 arises from the fact that not every function in $L^2(\partial Q)$ is the trace of some function belonging to $W^{1,2}(Q)$. Therefore the Dirichlet problem in the L^2 -framework requires a proper formulation of the boundary condition (2). The central result of this work is to give proper meaning to the boundary condition (2) and then solve the Dirichlet problem in a suitable Sobolev space.

The plan of the paper is as follows. Section 1 is devoted to prelimanaries. Section 2 deals with problem of traces for solutions of (1) in $W_{\text{loc}}^{1,2}(Q)$. In particular, we obtain a sufficient condition for a solution in $W_{\text{loc}}^{1,2}(Q)$ to have an L^2 -trace on boundary (see Theorem 2). The result of Section 2 provide the suitable basis for the approach to the Dirichlet problem adopted in this work. In Section 3 we discuss the existence theorem of the Dirichlet problem which is based on an energy estimate. The arguments which we give here are based partially on the references [1], [2] and [7] however they are considerably modified in order to deal with systems.

Received May 31, 1985.

1. In order to simplify notation we set

$$G_{i}(x, u, Du) = \sum_{j=1}^{N} \sum_{\alpha=1}^{n} B_{ij}^{\alpha}(x) D_{\alpha} u_{j} + \sum_{j=1}^{N} C_{ij}(x) u_{j} - f_{i}(x)$$

 $(i=1,\dots,N)$, where $u=(u_1,\dots,u_N)$, $Du=(Du_1,\dots,Du_N)$ and Du_i denotes the gradient of the component u_i .

Throughout we shall make the following assumptions:

(A) The system (1) is elliptic in Q, that is, there is a positive constant γ such that

$$\sum\limits_{i,j=1}^{N}\sum\limits_{lpha,eta=1}^{n}A_{ij}^{lphaeta}(x)\lambda_{i}^{lpha}\lambda_{j}^{eta}{\geq}\gamma|\lambda|^{2}$$

for all $\lambda = (\lambda_i^a) \in R_{nN}$ and $x \in Q$. The coefficients $A_{ij}^{a\beta}(x)$ belong to $C^1(\bar{Q})$ and moreover

(3) For each α and $\beta A_{ij}^{\alpha\beta} = A_{ji}^{\alpha\beta}$ $(i, j=1, \dots, N)$ in Q.

(B) The coefficients B_{ij}^{α} and C_{ij} belong to $L^{\infty}(Q)$ and finally f_i are in $L^2(Q)$ $(i=1,\dots,N)$.

In the sequel we use the notion of a weak solution involving the Sobolev spaces $W_{loc}^{1,2}(Q)$ and $W^{1,2}(Q)$.

A vector function $\{u_i\}$ $(i=1,\dots,N)$ is said to be a weak solution of (1) in Q if $u_i \in W_{\text{loc}}^{1,2}(Q)$ $(i=1,\dots,N)$ and

(4)
$$\int_{Q} \left[\sum_{j=1}^{N} \sum_{\alpha,\beta=1}^{n} A_{ij}^{\alpha\beta}(x) D_{\beta} u_{j} D_{\alpha} v_{i} + G_{i}(x, u, Du) v_{i} \right] dx = 0$$

 $(i=1,\dots,N)$ for every vector function $\{v_i\}$ $(i=1,\dots,N)$ in $W^{1,2}(Q)$ with compact support in Q.

It follows from the regularity of the boundary ∂Q that there is a number $\delta_0 > 0$ such that for $\delta \in (0, \delta_0]$ the domain

$$Q_{\delta} = Q \cap \{x ; \min_{y \in \delta Q} |x - y| > \delta\}$$

with the boundary ∂Q_{δ} , possesses the following property: to each $x_0 \in \partial Q$ there is a unique point $x_{\delta}(x_0) = x_0 - \delta \nu(x_0)$, where $\nu(x_0)$ is the outward normal to ∂Q at x_0 . The above relation gives a one-to-one mapping, of class C^1 of ∂Q on ∂Q_{δ} . The inverse mapping to $x_0 \to x_{\delta}(x_0)$ is given by the formula $x_0 = x_{\delta} + \delta \nu_{\delta}(x_{\delta})$, where $\nu_{\delta}(x_{\delta})$ is the outward normal to ∂Q at x_{δ} .

Let x_{δ} denote an arbitrary point of ∂Q_{δ} . For fixed $\delta \in (0, \delta_0]$ let

$$\begin{aligned} A_{\varepsilon} &= \partial Q_{\delta} \cap \{x \; ; \; |x - x_{\delta}| < \varepsilon \}, \\ B_{\varepsilon} &= \{x \; ; \; x = \tilde{x}_{\delta} + \delta \nu_{\delta}(\tilde{x}_{\delta}), \; \tilde{x}_{\delta} \in A_{\varepsilon} \}, \end{aligned}$$

and

$$\frac{dS_{\delta}}{dS_0}(x_{\delta}) = \lim_{\varepsilon \to 0} \frac{|A_{\varepsilon}|}{|B_{\varepsilon}|},$$

where |A| denotes the n-1 dimensional Hausdorff measure of a set A. Mikailov [7] proved that there is a positive number γ_0 such that

(5)
$$\gamma_0^{-2} \leq \frac{dS_\delta}{dS_0} \leq \gamma_0^{-2}$$

and

$$\lim_{\delta \to 0} \frac{dS_{\delta}}{dS_0}(x_{\delta}) = 1$$

uniformly with respect to $x_{\delta} \in \partial Q_{\delta}$.

Let $r(x) = \text{dist}(x, \partial Q)$ for $x \in \overline{Q}$. According to Lemma 1 in [5], p. 382, the distance r(x) belongs to $C^2(\overline{Q}-Q_{\delta_0})$ if δ_0 is sufficiently small. Denote by $\rho(x)$ the extension of the function r(x) into \overline{Q} satisfying the following properties: $\rho(x)=r(x)$ for $x \in \overline{Q}-Q_{\delta_0}$, $\rho \in C^2(\overline{Q})$, $\rho(x) \ge \frac{3}{4}\delta_0$ in Q_{δ_0} , $\gamma_1^{-1}r(x) \le \rho(x) \le \gamma_1 r(x)$ in Q for some positive constant γ_1 , $\partial Q_{\delta} = \{x; \rho(x) = \delta\}$ for $\delta \in (0, \delta_0]$ and finally $\partial Q = \{x; \rho(x) = 0\}$.

2. We commence with a theorem which plays the crucial role in our treatment of the Dirichlet problem. In this theorem we use the surface integrals

$$\int_{\partial Q} |u(x_{\delta}(x))|^2 dS_x \quad \text{and} \quad \int_{\partial Q_{\delta}} |u(x)|^2 dS_x$$

for a solution $u = (u_1, \dots, u_N)$ in $W_{\text{loc}}^{1,2}(Q)$, where the values $u(x_{\delta}(x))$ on ∂Q and u(x) on ∂Q_{δ} are understood in the sense of trace ([4], chapter 6). It follows from Lemma 4 in [1] that both integrals are absolutely continuous on $[\delta_1, \delta_0]$ for every $0 < \delta_1 < \delta_0$.

THEOREM 1. Let $\{u_i\}$ $i=1, \dots, N$ be a solution of (1) belonging to $W_{loc}^{1,2}(Q)$; then the following conditions are equivalent

(I)
$$\int_{\partial Q_{\delta}} |u(x)|^2 dS_x \text{ is bounded on } (0, \delta_0],$$

(II)
$$\int_{Q} |Du(x)|^2 r(x) dx < \infty.$$

PROOF. To show $I \Rightarrow II$ we use as test functions in (4)

$$v_i(x) = \begin{cases} u_i(x)(\mu(x) - \delta) & \text{for } x \in Q_\delta, \\ 0 & \text{for } x \in Q - Q_\delta \end{cases}$$

and on substitution in (4) we obtain

$$\begin{split} & \int_{Q_{\delta}} \sum_{j=1}^{N} \sum_{\alpha,\beta=1}^{n} A_{ij}^{\alpha\beta}(x) D_{\beta} u_{j} D_{\alpha} u_{i}(\rho-\delta) dx + \int_{Q_{\delta}} \sum_{j=1}^{N} \sum_{\alpha,\beta=1}^{n} A_{ij}^{\alpha\beta}(x) D_{\beta} u_{j} u_{i} D_{\alpha} \rho dx \\ & + \int_{Q_{\delta}} G_{i}(x, u, Du) u_{i}(\rho-\delta) dx = 0, \qquad i=1,\cdots,N. \end{split}$$

Let us denote the first two integrals on the left side by T_i and K_i , respectively. It follows from (A) that

$$\sum_{Q_{\delta}} |Du(x)|^2 (\rho(x) - \delta) dx \leq \sum_{i=1}^N T_i.$$

Using (3) and integrating by parts we obtain

$$\begin{split} \sum_{i=1}^{N} K_{i} &= \frac{1}{2} \int_{Q_{\delta}}^{N} \sum_{i=1}^{n} \sum_{\alpha,\beta=1}^{n} A_{ii}^{\alpha\beta}(x) D_{\beta}(u_{i}^{2}) D_{\alpha} \rho dx \\ &+ \frac{1}{2} \int_{Q_{\delta}}^{N} \sum_{i,j=1}^{N} \sum_{\alpha,\beta=1}^{n} A_{ij}^{\alpha\beta}(x) D_{\beta}(u_{i}u_{j}) D_{\alpha} \rho dx \\ &= -\frac{1}{2} \int_{Q_{\delta}}^{N} \sum_{i,j=1}^{N} \sum_{\alpha,\beta=1}^{n} A_{ij}^{\alpha\beta}(x) u_{i}u_{j} D_{\alpha} \rho D_{\beta} \rho dS_{x} \\ &- \frac{1}{2} \int_{Q_{\delta}}^{N} \sum_{i,j=1}^{N} \sum_{\alpha,\beta=1}^{n} D_{\beta}(A_{ij}^{\alpha\beta}(x) D_{\alpha} \rho) u_{i}u_{j} dx \,. \end{split}$$

It then follows with the help of Young's inequality that

$$\int_{Q_{\delta}} |Du|^{2}(\rho-\delta)dx \leq C\left(\int_{Q_{\delta}} |u|^{2}dx + \int_{\delta Q_{\delta}} |u|^{2}dS_{x} + \int_{Q_{\delta}} |f|^{2}dx\right),$$

where $|f|^2 = \sum_{i=1}^n f_i^2$, C > 0 depends on n, γ and the bounds of the coefficients $A_{ij}^{\alpha\beta}$, $D_{\beta}A_{ij}^{\alpha\beta}$, B_{ij}^{α} and C_{ij} and the implication I \Rightarrow II easily follows. To prove "II \rightarrow I" we first note that (II) implies that $\int_Q |u(x)|^2 dx < \infty$ (Lemma

4 in [1]). From the first part of the proof we have

$$\frac{1}{2} \int_{\delta} \int_$$

On traces of solutions of linear elliptic systems

$$+ \int_{Q_{\delta}} \sum_{i=1}^{N} G_{i}(x, u, Du) u_{i}(\rho - \delta) dx$$

and (I) follows from the ellipticity condition and assumptions (A) and (B).

As an immediate consequence we obtain

Corollary 1. Let $\{u_i\}$ $i=1, \dots, N$ be a solution of (1). If one of conditions (I) or (II) holds then there exist functions $\phi_i \in L^2(\partial Q)$ $(i=1,\dots,N)$ and a sequence $\{\delta_v\}$ tending to zero such that

$$\lim_{\nu \to \infty} \int_{\partial Q} u_i(x_{\delta_{\nu}}(x))g(x)dS_x = \int_{\partial Q} \phi_i(x)g(x)dS_x$$

for each $g \in L^2(\partial Q)$.

Indeed, we note that

$$\int_{\partial Q_{\delta}} \mathcal{U}_{i}(x)^{2} dS_{\delta} = \int_{\partial Q} \mathcal{U}_{i}(x_{\delta}(x))^{2} \frac{dS_{\delta}}{dS_{0}} dS_{0}$$

hence by (5) and (2) $\int_{\delta Q} u_i(x_{\delta}(x))^2 dS_x$ is bounded on $(0, \delta_0]$.

Consequently the result follows from the weak compactness of bounded sets in $L^2(\partial Q)$.

The main objective of this section is to prove that $\lim_{\delta \to 0} u_i(x_\delta(x)) = \phi_i(x)$ $(i = 1, \dots, N)$ in $L^2(Q)$. To show this we define

$$A_i(x, u(x)) = \sum_{j=1}^N \sum_{\alpha,\beta=1}^n A_{ij}^{\alpha\beta}(x) u_j(x) D_{\alpha}\rho(x) D_{\beta}\rho(x)$$

 $(i=1,\cdots N)$. We need the following lemma.

Lemma 1. Let $\{u_i\}$ $(i=1,\dots,N)$ be a solution in $W_{\text{loc}}^{1,2}(Q)$ of (1) satisfying one of the conditions (I) or (II) and let $\phi = \{\phi_i\}$ $(i=1,\dots,N)$ be functions in $L^2(\partial Q)$ determined by Corollary 1. Then

(7)
$$\lim_{\delta \to 0} \int_{\delta Q} A_i(x_{\delta}(x), \ u(x_{\delta}(x))g(x)dS_x = \int_{\delta Q} A_i(x, \ \phi(x))g(x)dS_x$$

 $(i=1,\cdots N)$ for each $g \in L^2(\partial Q)$.

Proof. It follows from (5) and (I) that the integrals

$$\int_{\partial Q} A_i(x_{\delta}, u(x_{\delta}))^2 dS_x \qquad (i=1,\cdots,N)$$

are bounded on $(0, \delta_0]$. Hence there exist functions $\Psi_i \in L^2(\partial Q)$ $(i=1, \dots, N)$ and a sequence $\{\delta_i\}$ tending to zero such that

$$\lim_{\nu \to \infty} \int_{\delta Q} A_i(x_{\delta_{\nu}}, \ u(x_{\delta_{\nu}}))g(x)dS_x = \int_{Q} \Psi_i(x)g(x)dS_x$$

 $(i=1,\dots,N)$ for each $g \in L^2(\partial Q)$. To prove (7) we shall prove that $\int_{\delta Q} A_i(x_{\delta}, u(x_{\delta})) g(x) dS_x$ $(i=1,\dots,N)$ are continuous on $[0, \delta_0]$ and that

(8)
$$\Psi_i(x) = A_i(x, \phi(x)) \qquad (i=1, \cdots, N)$$

almost everywhere on ∂Q . Since $\int_{\delta Q} A_i(x_{\delta}, u(x_{\delta}))g(x)dS_x$ are continuous on $[\delta_1, \delta_0]$ for each $0 < \delta_1 < \delta_0$, it suffices to prove the continuity of these integrals at $\delta = 0$. On the other hand we observe that the elements of $C^1(\bar{Q})$ restricted to ∂Q are dense in $L^2(\partial Q)$, so we may assume that $g = \Phi$ on ∂Q with $\Phi \in C^1(\bar{Q})$. Taking

$$v_i(x) = \begin{cases} \Phi(x)(\rho - (x) - \delta) & \text{on } Q_\delta, \\ 0 & \text{on } Q - Q_\delta, \end{cases}$$

 $(i=1,\cdots,N)$ as test functions in (4) and integrating by parts we obtain

$$\int_{\partial Q_{\delta}} A_{i}(x, u(x))\Phi(x)dS_{x} = -\int_{Q_{\delta}} \sum_{j=1}^{N} \sum_{\alpha,\beta=1}^{n} D_{\beta}(A_{ij}^{\alpha\beta}D_{\alpha}\rho\Phi)u_{j}dx$$
$$+ \int_{Q_{\delta}} \sum_{j=1}^{N} \sum_{\alpha,\beta=1}^{n} A_{ij}^{\alpha\beta}D_{\beta}u_{j}D_{\alpha}\Phi(\rho-\delta)dx + \int_{Q_{\delta}} G_{i}(x, u, Du)\Phi(\rho-\delta)dx$$

 $(i=1,\dots,N)$. The desired continuity easily follows from (6). In order to prove (8) we note that for each $g \in C(\overline{Q})$ we have

$$\begin{split} & \left| \int_{\delta Q} A_i(x_{\delta_{\nu}}, \ u(x_{\delta_{\nu}}))g(x)dS_x - \int_{\delta Q} A_i(x, \ \phi(x))g(x)dS_x \right| \\ & \leq \left| \int_{\delta Q} A_i(x_{\delta_{\nu}}, \ u(x_{\delta_{\nu}}))g(x)dS_x - \int_{\delta Q} \sum_{j=1}^{N} \sum_{\alpha,\beta=1}^{n} A_{ij}^{\alpha\beta}(x)u_j(x_{\delta_{\nu}})D_a\rho(x)g(x)dS_x \right| \\ & + \left| \int_{\delta Q} \sum_{j=1}^{N} \sum_{\alpha,\beta=1}^{n} A_{ij}^{\alpha\beta}(x)u_j(x_{\delta_{\nu}})D_a\rho(x)D_{\beta}\rho(x)g(x)dS_x - \int_{\delta Q} A_i(x, \ \phi(x))g(x)dS_x \right| \\ & = T_i + K_i \qquad (i=1,\cdots,N) \end{split}$$

We may also assume that $\{\delta_{\nu}\}$ is a subsequence appearing in Corollary 1. Using the Schwarz inequality we have

$$egin{aligned} |T_i| &\leq \sup_{j, \mathfrak{o} < \delta \leq \delta_y} \left| \sum_{lpha, eta} A_{ij}^{lphaeta}(x_{\delta}) D_{lpha}
ho(x_{\delta}) D_{eta}
ho(x_{\delta}) - \sum_{lpha, eta} A_{ij}^{lphaeta}(x) D_{lpha}
ho(x) D_{eta}
ho(x)
ight| \ & imes \left[\int_{\delta oldsymbol{Q}} |u(x_{\delta})|^2 dS_x
ight]^{1/2} \!\! \left[\int_{\delta oldsymbol{Q}} \!\! arpsi^2 dS_x
ight]^{1/2} \!\! N^{1/2}. \end{aligned}$$

Consequently by the uniform continuity of $\sum_{\alpha,\beta=1}^{n} A_{ij}^{\alpha\beta}(x) D_{\alpha}\rho(x) D_{\beta}\rho(x)$ $(i, j=1, \dots, N)$ on \bar{Q} ,

$$\lim_{\delta_{\nu}\to 0} T_i=0 \qquad (i=1,\cdots,N).$$

On the other hand by the weak convergence of $u_i(x_{\delta_u})$ to ϕ_i in $L^2(\partial Q)$ we see that

$$\lim_{\delta_{\nu}\to 0} K_i = 0 \qquad (i=1,\cdots,N)$$

and this completes the proof.

We are now in a position to prove that $\lim_{\delta \to 0} u_i(x_\delta(x)) = \phi_i(x)$ in $L^2(\partial Q)$. For $\delta \in (0, \delta_0]$ we define the mapping $x^\delta : \overline{Q} \to \overline{Q}_{\delta/2}$ by

$$x^{\delta}(x) = \begin{cases} x & \text{for } x \in Q_{\delta}, \\ \\ y_{\delta} + \frac{1}{2}(x - y_{\delta}) & \text{for } x \in \bar{Q} - Q_{\delta}, \end{cases}$$

where y_{δ} denotes the nearest point on ∂Q_{δ} to x. Thus $x^{\delta}(x) = x_{\delta/2}(x)$ for each $x \in \partial Q$. Moreover x^{δ} is uniformly Lipschitz continuous. Note that if $u \in W_{loc}^{1,2}(Q)$, then $u(x^{\delta}) \in W^{1,2}(Q)$.

Theorem 2. Let $\{u_i\}$ $(i=1, \dots, N)$ be a solution in $W_{\text{loc}}^{i,2}(Q)$ of (1) satisfying one of the conditions (I) or (II). Let ϕ_i $(i=1, \dots, N)$ be functions in $L^2(\partial Q)$ determined by Corollary 1. Then

$$\lim_{\delta \to 0} u_i(x_\delta(x)) = \phi_i(x) \qquad (i=1,\cdots,N) \text{ in } L^2(\partial Q).$$

Proof. We begin by showing that $\lim_{\delta \to 0} A_i(x_{\delta}, u(x_{\delta})) = A_i(x, \phi(x))$ $(i=1, \dots, N)$ in $L^2(\partial Q)$. Indeed, for $\Psi \in W^{1,2}(Q)$ we have

$$\int_{\partial Q} A_i(x, \phi(x))\Psi(x)dS_x = -\int_Q \sum_{j=1}^N \sum_{\alpha,\beta=1}^n D_\beta (A_{ij}^{\alpha\beta} D_\alpha \rho \Psi) u_j dx$$
$$+ \int_Q \sum_{j=1}^N \sum_{\alpha,\beta=1}^n A_{ij}^{\alpha\beta}(x) D_\beta u_j D_\alpha \Psi \rho dx + \int_Q G_i(x, u, Du)\Psi \rho dx$$
$$\equiv \int F_i(\Psi) dx$$

 $(i=1,\cdots,N). \quad \text{As } A_i(x^{\delta}, u(x^{\delta})) \in W^{1,2}(Q), \text{ we have}$ $\int_{\delta Q} A_i(x, \phi(x)) A_i(x^{\delta}, u(x^{\delta})) dS_x = \int_{Q-Q_{\delta}} F_i(A_i(x^{\delta}, u(x^{\delta}))) dx$ $+ \int_{Q_{\delta}} F_i(A_i(x, u(x))) dx.$

We show that

(9)
$$\lim_{\delta \to 0} \int_{Q-Q_{\delta}} F_i(A_i(x^{\delta}, u(x^{\delta}))) dx = 0$$

and that

(10)
$$\lim_{\delta \to 0} \int_{Q_{\delta}} F_i(A_i(x, u(x))) dx = \lim_{\delta \to 0} ||A_i(x^{\delta}, u(x^{\delta}))||_2^2,$$

so that

$$egin{aligned} &||A_i(x, \ \phi(x))||_2^2 = \lim_{\delta o 0} \int\limits_{\delta Q} A_i(x, \ \phi(x)) A_i(x^\delta, \ u(x^\delta)) dS_x \ &= \lim_{\delta o 0} ||A_i(x^\delta, \ u(x^\delta))||_2^2, \end{aligned}$$

as $x^{\delta}(x) = x_{\delta/2}(x)$ on ∂Q . Therefore the claim will follow from the uniform convexity of $L^2(\partial Q)$.

Setting

$$v_i(x) = \begin{cases} A_i(x, u(x))(\rho(x) - \delta) & \text{for } x \in Q_\delta \\ 0 & \text{for } x \in Q - Q_\delta \end{cases}$$

in equation (4), we have

$$\begin{split} \lim_{\delta \to 0} & \int_{Q_{\delta}} F_{i}(A_{i}(x, \ u(x)))dx = \lim_{\delta \to 0} \left\{ -\int_{Q_{\delta}} \sum_{j=1}^{N} \sum_{\alpha, \beta=1}^{n} D_{\beta}(A_{ij}^{\alpha\beta} D_{\alpha} \rho A_{i}(x, \ u(x)))u_{j}dx \right. \\ \left. + \int_{Q_{\delta}} \sum_{j=1}^{N} \sum_{\alpha, \beta=1}^{n} A_{ij}^{\alpha\beta} D_{\beta} u_{j} D_{\alpha} A_{i}(x, \ u(x))(\rho - \delta) dx + \int_{Q_{\delta}} G_{i}(x, \ u, \ Du) A_{i}(x, \ u(x))(\rho - \delta) dx \right\} \\ &= \lim_{\delta \to 0} \left\{ -\int_{Q_{\delta}} \sum_{j=1}^{N} \sum_{\alpha, \beta=1}^{n} D_{\beta}(A_{ij}^{\alpha\beta} D_{\alpha} \rho A_{i}(x, \ u(x)))u_{j} dx \right. \\ &\left. - \int_{Q_{\delta}} \sum_{j=1}^{N} \sum_{\alpha, \beta=1}^{n} A_{ij}^{\alpha\beta} D_{\beta} u_{j} A_{i}(x, \ u(x)) D_{\alpha} \rho dx \right\} \\ &= \lim_{\delta \to 0} \left\{ -\int_{Q_{\delta}} \sum_{j=1}^{N} \sum_{\alpha, \beta=1}^{n} D_{\beta}(A_{ij}^{\alpha\beta} u_{j} D_{\alpha} \rho A_{i}(x, \ u(x)))dx \right\} \\ &= \lim_{\delta \to 0} \left\{ -\int_{Q_{\delta}} \sum_{j=1}^{N} \sum_{\alpha, \beta=1}^{n} D_{\beta}(A_{ij}^{\alpha\beta} u_{j} D_{\alpha} \rho A_{i}(x, \ u(x)))dx \right\} \\ &= \lim_{\delta \to 0} \left\{ -\int_{Q_{\delta}} \sum_{j=1}^{N} \sum_{\alpha, \beta=1}^{n} D_{\beta}(A_{ij}^{\alpha\beta} u_{j} D_{\alpha} \rho A_{i}(x, \ u(x)))dx \right\} \\ &= \lim_{\delta \to 0} \left\{ -\int_{Q_{\delta}} \sum_{j=1}^{N} \sum_{\alpha, \beta=1}^{n} D_{\beta}(A_{ij}^{\alpha\beta} u_{j} D_{\alpha} \rho A_{i}(x, \ u(x)))dx \right\} \\ &= \lim_{\delta \to 0} \left\{ -\int_{Q_{\delta}} \sum_{j=1}^{N} \sum_{\alpha, \beta=1}^{n} D_{\beta}(A_{ij}^{\alpha\beta} u_{j} D_{\alpha} \rho A_{i}(x, \ u(x)))dx \right\} \\ &= \lim_{\delta \to 0} \left\{ -\int_{Q_{\delta}} \sum_{j=1}^{N} \sum_{\alpha, \beta=1}^{n} D_{\beta}(A_{ij}^{\alpha\beta} u_{j} D_{\alpha} \rho A_{i}(x, \ u(x)))dx \right\} \\ &= \lim_{\delta \to 0} \left\{ -\int_{Q_{\delta}} \sum_{j=1}^{N} \sum_{\alpha, \beta=1}^{n} D_{\beta}(A_{ij}^{\alpha\beta} u_{j} D_{\alpha} \rho A_{i}(x, \ u(x)))dx \right\} \\ &= \lim_{\delta \to 0} \left\{ -\int_{Q_{\delta}} \sum_{j=1}^{N} \sum_{\alpha, \beta=1}^{n} D_{\beta}(A_{ij}^{\alpha\beta} u_{j} D_{\alpha} \rho A_{i}(x, \ u(x)))dx \right\} \\ &= \lim_{\delta \to 0} \left\{ -\int_{Q_{\delta}} \sum_{j=1}^{N} \sum_{\alpha, \beta=1}^{n} D_{\beta}(A_{ij}^{\alpha\beta} u_{j} D_{\alpha} \rho A_{i}(x, \ u(x)))dx \right\}$$

It remains to prove (9). Note that by (A), (B) and the Young inequality we have

$$|F_i(A_i(x_{\delta}, u(x_{\delta}))| \leq C[|Du(x)||u(x)| + |u(x_{\delta})||u(x)| + |Du(x_{\delta})||Du(x)|\rho + |Du(x)||u(x_{\delta})|\rho + f(x)||u(x_{\delta})|\rho],$$

for some positive constant C independent of δ . Applying Lemmas 2, 3, 4, 5 and 6 from [2] (or Lemmas 8, 9, 10, 11 and 12 in [1]) we easily deduce that (9) holds and this completes the first part of the proof.

It follows from the continuity of A_{ij}^{as} on \bar{Q} and the boundedness of $u_i(x_{\delta})$ in $L^2(\partial Q)$ that

$$\lim_{\delta \to 0} \int_{\partial Q} \left[A_i(x, u(x_{\delta})) - A_i(x_{\delta}, u(x_{\delta})) \right]^2 dS_x = 0 \qquad (i = 1, \cdots, N)$$

and therefore

$$\lim_{\delta \to 0} \iint_{\delta Q} \left[A_i(x, u(x_{\delta})) - A_i(x, \phi(x)) \right]^2 dS_x = 0 \qquad (i = 1, \cdots, N).$$

Let $A_{ij}(x) = \sum_{\alpha,\beta=1}^{n} A_{ij}^{\alpha\beta}(x) D_{\alpha} \rho(x) D_{\beta} \rho(x)$. Since $|D\rho(x)| = 1$ on ∂Q , the matrix $\{A_{ij}(x)\}$ is positively definite on ∂Q . Denote by $\{A_{ij}^{-1}(x)\}$ the inverse matrix to $\{A_{ij}(x)\}$, where $x \in \partial Q$. Consequently for each *i* and *j* we have

$$\lim_{\delta \to 0} \int_{\delta Q} \sum_{k=1}^{N} A_{ij}(x) A_{jk}(x) u_k(x_{\delta}) - \sum_{k=1}^{N} A_{ij}(x) A_{jk}(x) \phi_k(x) \Big]^2 dS_x = 0$$

Hence

$$\lim_{\delta \to 0} \int_{\partial Q} [u_i(x_{\delta}) - \phi_i(x)]^2 dS_x = \lim_{\delta \to 0} \int_{\partial Q} \left[\sum_{j,k=1}^N A_{ij}^{-1}(x) A_{jk}(x) u_k(x_{\delta}) - \sum_{j,k=1}^N A_{ij}^{-1}(x) A_{jk}(x) \phi(x) \right]^2 dS_x = 0$$

and this completes the proof.

3. Let us introduce the following function space

$$\widetilde{W}^{1,2}(Q) = \{ u \; ; \; u \in W^{1,2}_{\text{loc}}(Q), \; \int_{Q} |Du(x)|^2 r(x) dx + \int_{Q} |u(x)|^2 dx < \infty \}$$

Theorem 3 justifies the following approach to the Dirichlet problem for the system (1).

Let $\phi = (\phi_1, \dots, \phi_N)$ with $\phi_i \in L^2(\partial Q)$ $(i=1, \dots, N)$. A weak solution $u = (u_1, \dots, u_N)$ of (1) with $u_i \in \widetilde{W}^{1,2}(Q)$ $(i=1, \dots, N)$ is a solution of the Dirichlet problem with the boundary condition (2) if

(11)
$$\lim_{\delta \to 0} \int_{\partial Q} [u_i(x_{\delta}) - \phi_i(x)]^2 dS_x = 0$$

 $(i=1,\cdots,N).$

J. Chabrowski

As it stands this Dirichlet problem need not have a solution, however we shall prove that the Dirichlet problem for a modified system

$$(1_{\lambda}) \quad L_i(u_1,\cdots,u_N) + \lambda u_i = f_i \text{ in } Q \qquad (i=1,\cdots,N)$$

has a unique solution in $W^{1,2}(Q)$ provided the real parameter λ is sufficiently large. The existence theorem is based on the following energy estimate.

THEOREM 3. There exist positive constants λ_0 , C and d such that if $u = \{u_i\}$ is a solution in $\widetilde{W}^{1,2}(Q)$ of (1_2) , (2) for $\lambda \ge \lambda_0$ then

$$\begin{split} & \int_{Q} |Du(x)|^2 r(x) dx + \int_{Q} |u(x)|^2 r(x) dx + \sup_{0 < \delta < d} \int_{\delta Q_{\delta}} |u(x)|^2 dS_x \leqslant \\ & \leqslant C \Big[\int_{Q} |f(x)|^2 dx + \int_{\delta Q} |\phi(x)|^2 dS_x \Big], \end{split}$$

where $f = (f_1, \cdots, f_N)$.

PROOF. Taking

$$v_i(x) \!=\! \begin{cases} \! u_i(x)(\rho(x)\!-\!\delta) & \text{on} \quad Q_\delta\,, \\ \! 0 & \text{on} \quad Q\!-\!Q_\delta \end{cases}$$

 $(i=1,\cdots,N)$ as test function we obtain

(12)
$$\int_{\mathcal{Q}_{\delta}} \sum_{i,j=1}^{N} \sum_{\alpha,\beta=1}^{n} A_{ij}^{\alpha\beta}(x) D_{\alpha} u_{i} D_{\beta} u_{j}(\rho-\tilde{o}) dx + \lambda \int_{\mathcal{Q}_{\delta}} |u|^{2} (\rho-\delta) dx =$$
$$= \frac{1}{2} \int_{\delta} \sum_{i=1}^{n} A_{i}(x, u) u_{i} dS_{x} + \frac{1}{2} \int_{\mathcal{Q}_{\delta}} \sum_{i,j=1}^{n} \sum_{\alpha,\beta=1}^{n} D_{\beta} (A_{ij}^{\alpha\beta} D_{\alpha} \rho) u_{i} u_{j} dx -$$
$$- \int_{\mathcal{Q}_{\delta}} \sum_{i=1}^{n} G_{i}(x, u, Du) u_{i}(\rho-\delta) dx.$$

It follows from (11), that

$$\lim_{\delta \to 0} \int_{\delta Q} \sum_{i=1}^{n} A_{i}(x_{\delta}, u(x_{\delta})) u_{i}(x_{\delta}) dS_{x} = \int_{Q} \sum_{i=1}^{n} A_{i}(x, \phi(x)) \phi_{i}(x) dS_{x}.$$

Hence letting $\delta \rightarrow 0$ in (11) we obtain

(13)
$$\int_{Q} |Du|^2 r dx + \lambda \int_{Q} |u|^2 \rho dx \leqslant C_1 \Big[\int_{Q} |f|^2 dx + \int_{\delta Q} |\phi|^2 dS_x + \int_{Q} |u|^2 dx \Big],$$

where $C_1 > 0$ is a constant depending on n, γ and the bounds of the coefficients. It is obvious that (12) also implies that for every $0 < d < \delta_0$

(14)
$$\sup_{0<\delta<\mathfrak{a}_{\delta}} \int_{\mathfrak{a}_{\delta}} |u|^2 dS_x \leqslant C_2 \bigg[\int_{Q} |Du|^2 r dx + (\lambda+1) \int_{Q} u^2 \rho dx \int_{Q} |f|^2 dx \bigg],$$

where $C_2 > 0$ is constant of the same nature as C_1 . Combining (13) and (14) we get

$$\begin{split} & \int_{Q} |Du|^2 r dx + \lambda \int_{Q} |u|^2 \rho dx + \sup_{0 < \delta \le d} \int_{\partial Q_{\delta}} |u|^2 dS_x \leqslant \\ & \leqslant C_3 \bigg[\int_{\partial Q} |\phi|^2 dS_x + \int_{Q} |f|^2 dx + \int_{Q} |u|^2 dx \bigg] \end{split}$$

for some positive constant C_3 . Finally note that

$$\int_{Q} |u|^2 dx \leqslant d \sup_{0 < \delta \leq d} \int_{Q_\delta} |u|^2 dS_x + \frac{1}{m_d} \int_{Q} |u|^2 \rho dx,$$

where $m_d = \inf_{Q_d} (x)$, hence taking d sufficiently small and λ sufficiently large the result follows.

To proceed further we equip $\widetilde{W}^{1,2}(Q)$ with a norm defined by

$$||u||_{\widetilde{W}^{1,2}}^2 = \int_Q |u|^2 dx + \int_Q |Du|^2 r dx.$$

THEOREM 5. Let $\lambda \ge \lambda_0$. Then for every $\phi = \{\phi_i\}$ with $\phi_i \in L^2(\partial Q)$ $(i=1, \dots, N)$ there exists a unique solution of the Dirichlet problem (1_i) , (2) in $\widetilde{W}^{1,2}(Q)$.

PROOF. The proof is similar to that of Theorem 6 in [2]. Let $\phi^m = (\phi_1^m, \dots, \phi_N^m)$ be a sequence of functions with components in $C^1(\partial Q)$ and such that $\lim_{m\to\infty} \int_{\delta Q} |\phi^m - \phi|^2 dS_x = 0$. Let u_m be a solution of the Dirichlet problem

$$L_i(u_i, \dots, u_N) + \lambda_i u_i = f_i \text{ in } Q$$
$$u_i = \phi_i^m \text{ on } \partial Q \quad (i = 1, \dots, N)$$

in $W^{1,2}(Q)$ ([10], Chap. 5, p.133). Here we may assume that λ_0 is sufficiently large that the theorems on the existence of solutions in $W^{1,2}(Q)$ are applicable. It follows from the energy estimate that $\lim_{m\to\infty} u_m = u$ in $\widetilde{W}^{1,2}$ and u is a weak solution of (1_{λ}) . According to Theorem 2 there exist $\Psi = (\Psi_1, \dots, \Psi_N)$ with $\Psi_i \in L^2(\partial Q)$ such that

$$\lim_{\delta \to 0} \int_{\partial Q} [u_i(x_\delta) - \Psi_i(x)]^2 dS_x = 0 \qquad (i = 1, \cdots, N).$$

It remains to show that $\phi_i \equiv \Psi_i$ $(i=1,\dots,N)$ almost everywhere on ∂Q , the proof of which is routine.

We close by pointing out that the linear function G_i can be replaced by a non-linear function satisfying the Carathéodory conditions and the estimate

$$|G_i(x, u, Du)| \leq C[|u| + |Du| + f(x)], \quad (i=1, \cdots, N)$$

where f is a non-negative function in $L^2(Q)$ and C>0 is a constant. Under this assumption one can easily prove the existence result analogous to Theorem 3 in [4].

References

- Chabrowski, J., Thompson, B., On traces of solutions of semi-linear partial differential equation of elliptic type, Ann. Polon. Math. 42 (1982) 47-73.
- [2] Chabrowski, J., Thompson, H.B., On the boundary values of the solutions of linear elliptic equations, Bull. Austral. Math. Soc. 27 (1983) 1-30.
- [3] Chabrowski, J., Note on the Dirichlet problem with L²-boundary data, Manuscripta Math. 40 (1982) 91-108.
- [4] Chabrowski, J., On the Dirichlet problem for a semi-linear elliptic equation with L²-boundary data, Math. Z. 187 (1984) 171-183.
- [5] Gilbarg, D., Trudinger, N.S., Elliptic partial differential equations of second order, Grundlehren der mathematischen Wissenschaften 224, Berlin, Heidelberg, New York: Springer-Verlag, 1977.
- [6] Kufner, A., John, O., Fučik, S., Function spaces, Noordhoff, Leyden, Prague: Academia, 1977.
- [7] Mikailov, V.P., Boundary values of the solutions of elliptic equations in domains with a smooth boundary, Mat. Sb. 101 (143) (1976) 163-188.
- [8] Mikailov, V.P., The Dirichlet problem for a second order elliptic equation, Differential'nye Uravnenija 12 (1976) 1877-1891.
- [9] Mikailov, V.P., On the boundary values of the solutions of elliptic equations, Appl. Math. Optim. 6 (1980) 193-199.
- [10] Morrey, Ch.B., Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen Band 130, Berlin, Heidelberg, New York: Springer-Verlag (1966).

Department of Mathematics, University of Queensland, St. Lucia, Qld. 4067, Australia.