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ON TRACES OF SOLUTIONS OF LINEAR ELLIPTIC

SYSTEMS AND THEIR APPLICATION TO

THE DIRICHLET PROBLEM

By

J. Chabrowski

The purpose of thisarticleis to investigate the Dirichletproblem with U

boundarv data for elliDticsystems of the form

(1)

+ Z 2 BUx)DaUj + 2 Cij(x)Uj=fix) (i= l,'-,N)

(2) Ui(x) = <fn(x) on SQ(j = l,---,iV)

in a bounded domain QczRn with the boundary dQ of the class C2, where <f>t(i=

1, ･･ ･ ,N) are given functions in L2(dQ) and Da―~―. In recent years the Dirich-
oxa

let problem with D -boundary data for elliptic equations has attracted attention of

several authors (see [2], [3], [8] and [9], where all historical references can be

found). The main difficulty in solving the Dirichlet problem with the boundary

data in U arises from the fact that not every function in D(dQ) is the trace of

some function belonging to Wl-2(Q). Therefore the Dirichlet problem in the L2-

framework requires a proper formulation of the boundary condition (2). The

central result of this work is to give proper meaning to the boundary condition

(2) and then solve the Dirichlet problem in a suitable Sobolev space.

The plan of the paper is as follows. Section 1 is devoted to prelimanaries.

Section 2 deals with problem of traces for solutions of (1) in W＼-0＼{Q).In particular,

we obtain a sufficient condition for a solution in W＼ol(Q) to have an L2-trace on

boundary (see Theorem 2). The result of Section 2 provide the suitable basis for

the approach to the Dirichlet problem adopted in this work. In Section 3 we

discuss the existence theorem of the Dirichlet problem which is based on an energy

estimate. The arguments which we give here are based partially on the references

[11 [2] and [7] however they are considerably modified in order to deal with systems.
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In order to simplify notation we set

d{x, u, Du) ―
N

t BUx
N

)DaUj+Hl Cij(x)Uj-fi(x)

(i=l, ･ ･ ･ ,N), where u = (ut, ■･■,uN), Du = (Dui, ･ ･ ■

dient of the component u%.

DuN) and Dui denotes the gra

Throughout we shall make the following assumptions:

(A) The system (1) is ellipticin Q, that is, there is a positive constant j

such that

for all 2.=(Xt)£RnN and xqQ.

over

The coefficientsA$(x) belong to O(Q) and more-

( 3) For each a and /3Afj = A;{ (i,j = l, ■■■,N) in Q.

(B) The coefficientsBlj and dj belong to L°°(Q)and finally ft are in L＼Q)

(i=l, ･･･,#)■

In the sequel we use the notion of a weak solution involving the Sobolev

spaces WloKQ) and W^＼Q).

A vector function {ui}(i= l, ･･･ ,N) is said to be a weak solution of (1) in Q

if ≪* PFfcKQ) (*= 1,･･･ ,iV) and

(4) [＼Z t AfltoDpUjDaVi + Giix, u, Du)v <
~Ua?=O

(i=l,---,JV) for every vector function {vt} (i= l,- ･ -N) in WU＼Q) with compact

support in Q.

It follows from the regularity of the boundary dQ that there is a number

<50>0 such that for <5(0, <50]the domain

Qs=Qf＼{x; min ＼x-y＼>8}

with the boundary 8QS> possesses the following property: to each xosdQ there

is a unique point Xi(xo)=x0―8v(xo),where v(x0)is the outward normal to dQ at

x0. The above relation gives a one-to-one mapping, of class C1 of dQ on 8QS-

The inverse mapping to x0 -> xd(x0)is given by the formula xo=xs+8vs(x3)t where

vs(xs)is the outward normal to dQ at a?*.

Let Xi denote an arbitrary point of 8QS- For fixed <5e(0,80]let

At=dQan{x; ＼x-xs＼<e},

Be = {x: x = xd+8vs(x5), xsgA.＼,
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where ＼A＼denotes the n ―1 dimensional Hausdorff measure of a set A. Mikailov

[7] proved that there is a positive number r<>such that

(5)

and

(6)

r° =dS0
= r°

lim

<s-+o

=1

uniformly with respect to xd dQs-

Let r(#) = dist (x, dQ) for xeQ. According to Lemma 1 in [5], p. 382, the

distance r(x) belongs to CZ(Q―Qs0) if o0 is sufficently small. Denote by p(x) the

extension of the function r{x) into Q satisfying the following properties : p(x) = r(x)

for xeQ-QSo, Pe<?(Q), P{x)^ in Q≫o,r^K^^pW^jiKx) in Q forsome posi

tive constant Tu dQ3 = {x; P(x)=5} for <5e(0,80] and finally dQ={x; o(x)=0}.

2. We commence with a theorem which plays the crucial role in our treat-

ment of the Dirichlet problem. In this theorem we use the surface integrals

[＼u(xa(x))＼2dSx
and

＼＼u(x)＼2dSx

for a solution u―(uu- ･･,uN) in W＼-O＼(Q),where the values u(xs(x))on dQ and u(x)

on dQs are understood in the sense of trace ([4], chapter 6). It follows from

Lemma 4 in [1] that both integrals are absolutely continuous on [<5lt<50]for every

Theorem 1. Let {ut}i = l,---,N be a solution of (1) belonging to W}££Q);

then the following conditions are equivalent

(I)

(II)

3Q&

u(x)＼2dSx is bounded on (0, <50]

＼＼Du(x)＼2r(x)dx
<oc.

Q

Proof . To show I 4>II we use as test functions in (4)
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(Ui(x)((j(x)―d) for xsQs,

Vi(x) = ＼

{ 0 for xeQ-Qs

and on substitution in (4) we obtain

f N

I'-1-
£ Az$(x)DfiujDaUi(p-5)dx + ＼Z S AflWDpUjUtDapdx

+ ＼Gi(x,u, Du)Ui{p―8)dx =o, =1.---.N

Let us denote the firsttwo integrals on the left side by Ti and Ki} respectively

It follows from (A) that

'
＼Du(x)＼2{p(x)-S)dx^fiTi

7= 1

Using (3) and integrating by parts we obtain

ZKi=＼-[Jt tA"d(x)D?{u$)DaPdx

･H £ S A%(x)D£utuJ)DaPdx

1 f N n
2 AaMx)UiUjDapDfipdSx

1 ≪,£=!

l r N
2 D^Afj(x)Dap)uiUjdx.
,0=1

It then follows with the heir)of Young's ineaualitv that

＼＼Du＼＼p-d)dx^c([＼u＼2dx +
^＼u＼2dSx

+
^＼f＼2dx)

where |/|2= E fh C>0 depends on n, y and the bounds of the coefficientsAtf

DpAfj, Bij and Qj and the implication I^>II easily follows.

To prove "II―>I" we firstnote that (II)implies that

4 in [1]). From the firstpart of the proof we have

ii

―
(

S S AfjUiUjDapDt,pdx

＼＼u(x)＼2dx<oo(Lemma

Q

£
T, DB(AfjDap)uiujdx +

[
L E AfjD^ujDaulp-d)dx

i,j=＼a,,3=1 J i,J=lo, =̂l
Qs
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+ ＼IlGi(x, u, Du)Ui{p―8)dx

qT1
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and (I) follows from the ellipticity condition and assumptions (A) and (B).

As an immediate consequence we obtain

Corollary 1. Let {iti}i = l, ･ ･･ ,N be a solution of (1). // one of conditions (I)

or (II) holds then there exist functions <pi£L2(dQ) (i ―l,---N) and a sequence {8V}

tending to zero such that

]im＼ui(xdv(x))g(x)dSx=＼<pi(x)g(x)dSa;

for each gsL＼dQ).

Indeed, we note that

hence by (5) and (2) ＼ui(

sQb

Ui{xf dSs =
[ui(xs(x)y^dS0

4> dSo

xd(x)YdSx is bounded on (0, 80].

Consequently the result follows from the weak compactness of bounded sets in

L＼dQ).

The main objective of this section is to prove that lim Ui(xi(x))= <j>i(x)(i=
5->0

1,･･･ ,N) in L＼Q). To show this we define

a

Alx, w(aO)= S
£

Afj(x)uj{x)Dap{x)D^{x)
.7=1≪,i9=l

=1, ･･-N). We need the following lemma.

Lemma 1. Let {ui} (i = l, ･･ ･ ,N) be a solution in W＼ol(Q) of (1) satisfying one

of the conditions (/) or (II) and let 0 = {0i} (i= l, ･･■,N) be functions in L2(dQ)

determined by Corollary 1. Then

(7) lim＼Ai(xs(x), u(xs(x))g(x)dSx = ＼Ai(x, <p(x))g(x)dSx

30 BQ

(i=l,---N) for each geL2(3Q).

Proof. It follows from (5) and (I) that the integrals

[At(xh
u{xs)fdSx (i= l,---,N)

*Q

are bounded on (0, <50]- Hence there exist functions Wi£L2(dQ) (i=l, ･･ ･ ,N) and a

sequence {<5J tending to zero such that
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c
HmlAiO^, u(xs))g(x)dSx =

(i = l, ･･ ･ ,N) for each gzD(dQ). To prove (7)

Wi{x)g(x)dSx

we shall prove that

g(x)dSx (i= l, ･･･,N) are continuous on [0, <50]and that

(8) Wi(x)= Ai(x, <j>{x)) (i= l,...,N)

almost everywhere on dQ. Since lAi(#≪,u(xs))g(x)dSx are continuous on [<5i,<50]

for each 0<<5i<<50,it suffices to prove the continuity of these integrals at 5―0.

On the other hand we observe that the elements of O(Q) restricted to dQ are

dense in L2(3Q), so we may assume that g=0 on dQ with 0eC1(Q). Taking

(i

<fr{x)(p ― {x) ― $) on

0 on

Q≫,

Q-Qs

= 1, ･･･,N) as test functions in (4) and integrating by parts we obtain

[Ai(x,
u(x))0(x)dSx=-[jt 2 D*(A"ADapQ)ujdx

3QS Qi

u, Du)0(p―8)dx

(i=l, ･･-,JV). The desired continuity easily follows from (6). In order to prove

(8) we note that for each gsCOQ) we have

IT
lAiOci , u(xs))g(x)dSx

jso

If
^ ＼Ai(xi , u(xs))g(x)dSx

li

^Ai(x,
<j>(x))g{x)dSx

-＼t t AH{x)uj{xa)DaP{x)g{x)dSx

+
|f£ £ Afj(x)uj(xdv)Dap(x)D^(x)g(x)dSx-[Ai(x,

<j>{x))g{x)dSx

We may also assume that {8V}is a subsequence appearing in Corollary 1. Using

the Schwarz inequality we have

Ti＼^ sup

j,O<S£d
2 A^(xs)Dap(xd)D^p(xs)~ZA^(x)DaP(x)D,p(x)

x|~Ji≪(*,)i8ds*TT ^w*dsxT2Ni/2
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n
Consequently by the uniform continuity of 2 AfXx)Dap{x)D^p(x) {i,j = l, ■･■,N)

on Q,

lira Tt=0 (i= l,-'-,N).

On the other hand by the weak convergence of Ui(x&) to <jnin L＼dQ) we see that

lim Ki=0 (i=l,---,N)

and this completes the proof.

We are now in a position to prove that lim Ui(xd{x))= (hi{x)in L＼dQ).
S-M)

For 8e(0, <50]we define the mapping xs:

X

Q-^Qs/2 by

for x Qd

yi+―(x-yt) for xzQ-Q5,

where ys denotes the nearest point on 3QS to x. Thus x＼x)=xi/1{x) for each

xeBQ. Moreover xd is uniformly Lipschitz continuous. Note that if uqW＼'0＼(Q),

then u{xs)£Wl<＼Q).

Theorem 2. Let {Ui} (i= l, ･■･ ,N) be a solution in W＼&(Q) of (1) satisfying

one of the conditions (/) or (II). Let <ju(i = l, ■■■,N) be functions in L2(dQ) deter-

mined by Corollary 1. Then

lim Ui(x&{x))=<j)i{x) (i = l,---,N) in L＼dQ).

Proof.

in L＼dQ).

We begin by showing that lim Ai(xs, u(x3))-Ai(x, 6{x)) (f= l, ･･･,N)

Indeed, for WeW^HQ) we have

[At(x,
0(x))W(x)dSx=-[

jt
L D^AfjDap＼)Ujdx

+
＼Z

Z Afl(x)DfiUjDaWpdx +
[Gi(x,

u, Du)WPdx

=
＼Fi(J)dx

(≫= 1, ･ ･･ ,N). As Ai(xs, u(xd))G W'-XQ), we have

＼Ai(x,
<j)(x))Ai{xs,u(xd))dSx=[Fi(Ai(xd, u{xs)))dx

SQ Q-Qe

+ ＼Fi(Ai(x, u{x)))dx.
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(9)

and that

(10)

so that

lim

≪-≫0

J. Chabrowski

lim
[Fi(Ai{x＼

Q-Qt

u(x5)))dx=Q

[Fi(Ai(x,
u(x)))dx = lim＼＼Ai(x＼ u(xs))＼＼i,

＼＼Ai(x, <f>(x)＼＼l= lim[Ai(x <j>(x))Ai(x'°,u(x5))dSx

= lim＼＼Ai(x＼ u(xs))＼＼l

as xi{x)=xi/i{x) on dQ. Therefore the claim will follow from the uniform con-

vexity of L＼dQ).

Setting

[Ai(x, u(x)){p{x)―5) for xsQ5

Vi(x)=
＼

[0 for x Q-Q3

in eanation (4). we have

p N

I'-1

lim＼Fi(Ai(x, u(x))dx = lim＼

Qs

-I

21 Aai?DfiUjDaAi(x, u{x)){p
a,fl=l

{C N- ＼z

Qs

r n

it/'1 a

( C N= Hm - ＼Z

Qs

N
n

E 2 Dp(AfjDapAi(x, u(jc))i*jdx

i=l ≪,iS=l

―8)dx + ＼Gi(x, u, Du)Ai(x, u(x)){p―d)dx＼

Qs

It remains to prove (9)

have

n
S D({Az$DapAi(x, u(x)))Ujdx

n "I
2 AfjD^UjAxix, u(x))Dapdx＼

S D?(AfjUjDapAi(x, u{x)))dx＼

=lim＼Ai(x, u{x)fdSx
≪-≫0J

SQa

Note that by (A),(B) and the Young inequalitywe

＼Fi(At(x9, u(xa))＼<C[＼Du(x)＼＼u(x)＼ + ＼u(xs)＼＼u(x)＼+

+ ＼Du(xs)＼＼Du(x)＼P+＼Du(x)＼＼u(xs)＼p+f(x)＼＼u(x3)＼p-],
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for some positive constant C independent of 8. Applying Lemmas 2, 3, 4, 5 and

6 from [2] (or Lemmas 8, 9, 10, 11 and 12 in [1]) we easily deduce that (9) holds

and this completes the firstpart of the proof.

It follows from the continuity of Atf on Q and the boundedness of Ui(xs) in

L2(dQ) that

and therefore

limf[Ai(ar, u(x≫))-Ai(xa, u(xs))TdSx=O (* = 1, ･･-,#)

limf["Ai(x, u{xs))-Ai(x, $(x))~＼2dSx=0 (i = l,---,N).

Let Aij(x)=
fi Afj(x)Dap(x)Dpp(x). Since ＼Dp{x)＼=l

on dQ, the matrix {Aij(x)} is

positivelydefiniteon dQ. Denote by {A^{x)} the inverse matrix to {Aij(x)},where

xg8Q. Consequently for each i and / we have

Hence

limf
£

A£(x)Ajk(x)u]c(xd)-'tATj(x)Aj!c(x)<J>!c(x)]2dSx = 0
5-≫0J fc=l fc=l J

lim＼[Mi(a?≪)-^(a?)]2dSa!=limf[ S A7/(^y^K(^)-

- S Arj{x) Ajk(x)<p(x)]"dSx=0

and this completes the proof.

3
Let us introduce the following function space

Wl'%Q) = {u; uzWl-XQ),
＼＼Du(x)Mx)dx+

Q

＼＼u(x)＼2dx<oo}

Q

Theorem 3 justifies the following approach to the Dirichlet problem for the system

(1).

Let 0=(0i, ･ ･ ･ ,<£n)with <j>i£L＼dQ) (i―l, ･ ■■,N). A weak solution u = (ulf- ･ ･ ,uN)

of (1) with Ui£Wu＼Q) (i―l,---,N) is a solution of the Dirichlet problem with

the boundary condition (2) if

(11) lim
f
lut(x≫) - <pi(x)YdSx=0

s-*oJ
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As it stands this Dirichlet problem need not have a solution, however we

shall prove that the Dirichlet problem for a modified system

(1;) Li(uu ･■･,uN)+^ui = fi in Q (i= l,---,N)

has a unique solution in Wl<＼Q) provided the real parameter X is sufficiently

large. The existence theorem is based on the following energy estimate.

Theorem 3. There exist positive constants l0, C and d such that if u = {Ui}

is a solution in WU＼Q) of (1,),(2) for X>Xn then

[＼Du{x)＼2r(x)dx+ [＼u(x)＼2r(x)dx-V
sup

[＼u(x)＼2dSx^

J J a<s<dJ
Q Q dQs

<C^＼f(x)＼2dx + ^(x)＼2dS^,

where /=(/i,-- ■,/n)-

(*■=

Proof. Taking

Ui(x)(p(x)-5)on Qs,

0 on Q-Qs,

1, ･･ ･ ,N) as test function we obtain

(12)
f N

t3-1
°

2 A:

n r
2 Afj{x)DauiD^u1{p-d)dx-JrA＼ ＼u＼＼p-S)dx =
.0=1 ' J

n
2 Ai(x, u)UidSx +

i

-M Z t D^AlpaP)uiUjdx

2 Gi(x, u, Du)ui(p―5)dx.
i=l

It follows from (11), that

lim＼ jt Ai(xs, u(xs))ui(xs)dSx=＼

≪-≫oJi=i J
SQ Q

Hence letting <5-≫0in (11) we obtain

x, d>(x))(hi(x)dSx

(13)

Q Q Q 3Q Q

where d>0 is a constant depending on n, j and the bounds of the coefficients.

It is obvious that (12) also implies that for every 0<d<80



(14)
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sup＼|≪|2<iSa:<C2
0<S<dJ

[(|Dm|v^+(^+1)Uv^(i/I2^1

Q Q Q
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where C2>0 is constant of the same nature as d. Combining (13) and (14) we

set

f f f
＼＼Du＼2rdx+X＼＼u＼2pdx + sup ＼＼u＼2dSx^

Q Q sq3

^Cs＼＼＼<p＼2dSx+＼＼f＼*dx +
＼＼u＼2dx]

for some positive constant C3 Finally note that

f f If
＼＼u＼2dxKdsup＼＼u＼zdSx-＼＼＼u＼2pdx,
J <s<s<,aj ma jQ sQs Q

where ma―mi (x), hence taking d sufficientlysmall and A sufficientlylarge the
Qa

result follows.

To proceed further we equip W^＼Q) with a norm defined by

＼u＼＼2fru2=＼＼u＼2dx+＼ ＼Dn＼2rdx.

Q Q

Theorem 5. Let X>X0. Then for every $ = {<jn}with ^L2(8Q) (i= l,---,N)

there existsa unique solution of the Dirichlet problem (1A (2) in WU2(Q).

Proof. The proof is similar to that of Theorem 6 in [2]. Let <pm = (^, ･･ ･ ,#v)

be a sequence of functions with components in Q(dQ) and such that lim ＼＼<pm―(f>＼2

m-><x>J
SQ

dSx=O. Let um be a solution of the Dirichlet problem

Li(ui, ■■■,uN) + /tiUi= fi in Q

Ui=<j>? on dQ (i=l,---,N)

in WU＼Q) ([10], Chap. 5, p. 133). Here we may assume that Xo is sufficiently

large that the theorems on the existence of solutions in WhZ(Q) are applicable.

It follows from the energy estimate that lim um=u in W1-2 and u is a weak solu-

tion of (1,). According to Theorem 2 there exist ＼ = (＼,,■■■,＼N) with Wt L＼dQ)

limf[≪t(a?,)-?ri(a;)]8dS*=0 (x= l, ･･･,N).
5-≫0J

It remains to show that 4>i= Wi (i= l,--,N) almost everywhere on dQ, the proof

of which is routine.
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We close by pointing out that the linear function Gi can be replaced by a

non-linear function satisfying the Caratheodory conditions and the estimate

＼Gi(x,u, Du)＼^C[＼u＼+ ＼Du＼+f(x)], (i= l,---,N)

where / is a non-negative function in L2(Q) and C>0 is a constant. Under this

assumption one can easily prove the existence result analogous to Theorem 3 in

[4].
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