ON TRACES OF SOLUTIONS OF LINEAR ELLIPTIC
 SYSTEMS AND THEIR APPLICATION TO THE DIRICHLET PROBLEM

By

J. Chabrowski

The purpose of this article is to investigate the Dirichlet problem with L^{2}. boundary data for elliptic systems of the form

$$
\begin{gather*}
L_{i}\left(u_{1}, \cdots, u_{n}\right)=-\sum_{j=1}^{N} \sum_{\alpha, \beta=1}^{n} D_{a}\left(A_{i j}^{\alpha \beta}(x) D_{\beta} u_{j}\right) \tag{1}\\
+\sum_{j=1}^{N} \sum_{\alpha=1}^{n} B_{i j}^{\alpha}(x) D_{\alpha} u_{j}+\sum_{j=1}^{N} C_{i j}(x) u_{j}=f_{i}(x) \quad(i=1, \cdots, N), \\
u_{i}(x)=\phi_{i}(x) \quad \text { on } \quad \partial Q(i=1, \cdots, N) \tag{2}
\end{gather*}
$$

in a bounded domain $Q \subset R_{n}$ with the boundary ∂Q of the class C^{2}, where $\phi_{i}(i=$ $1, \cdots, N)$ are given functions in $L^{2}(\partial Q)$ and $D_{\alpha}=\frac{\partial}{\partial x_{\alpha}}$. In recent years the Dirichlet problem with L^{2}-boundary data for elliptic equations has attracted attention of several authors (see [2], [3], [8] and [9], where all historical references can be found). The main difficulty in solving the Dirichlet problem with the boundary data in L^{2} arises from the fact that not every function in $L^{2}(\partial Q)$ is the trace of some function belonging to $W^{1,2}(Q)$. Therefore the Dirichlet problem in the L^{2} framework requires a proper formulation of the boundary condition (2). The central result of this work is to give proper meaning to the boundary condition (2) and then solve the Dirichlet problem in a suitable Sobolev space.

The plan of the paper is as follows. Section 1 is devoted to prelimanaries. Section 2 deals with problem of traces for solutions of (1) in $W_{10 \mathrm{c}}^{1,2}(Q)$. In particular, we obtain a sufficient condition for a solution in $W_{1 o c}^{1,2}(Q)$ to have an L^{2}-trace on boundary (see Theorem 2). The result of Section 2 provide the suitable basis for the approach to the Dirichlet problem adopted in this work. In Section 3 we discuss the existence theorem of the Dirichlet problem which is based on an energy estimate. The arguments which we give here are based partially on the references [1], [2] and [7] however they are considerably modified in order to deal with systems.

1. In order to simplify notation we set

$$
G_{i}(x, u, D u)=\sum_{j=1}^{N} \sum_{\alpha=1}^{n} B_{i j}^{\alpha}(x) D_{\alpha} u_{j}+\sum_{j=1}^{N} C_{i j}(x) u_{j}-f_{i}(x)
$$

$(i=1, \cdots, N)$, where $u=\left(u_{1}, \cdots, u_{N}\right), D u=\left(D u_{1}, \cdots, D u_{N}\right)$ and $D u_{i}$ denotes the gradient of the component u_{i}.

Throughout we shall make the following assumptions:
(A) The system (1) is elliptic in Q, that is, there is a positive constant γ such that

$$
\sum_{i, j=1}^{N} \sum_{\alpha, \beta=1}^{n} A_{i j}^{\alpha \beta}(x) \lambda_{i}^{\alpha} \lambda_{j}^{2} \geqq \gamma|\lambda|^{2}
$$

for all $\lambda=\left(\lambda_{i}^{\alpha}\right) \in R_{n N}$ and $x \in Q$. The coefficients $A_{i j}^{\alpha \beta}(x)$ belong to $C^{1}(\bar{Q})$ and moreover
(3) For each α and $\beta A_{i j}^{\alpha \beta}=A_{j i}^{\alpha \beta}(i, j=1, \cdots, N)$ in Q.
(B) The coefficients $B_{i j}^{\alpha}$ and $C_{i j}$ belong to $L^{\infty}(Q)$ and finally f_{i} are in $L^{2}(Q)$ $(i=1, \cdots, N)$.

In the sequel we use the notion of a weak solution involving the Sobolev spaces $W_{10 c}^{1,2}(Q)$ and $W^{1,2}(Q)$.

A vector function $\left\{u_{i}\right\}(i=1, \cdots, N)$ is said to be a weak solution of (1) in Q if $u_{i} \in W_{\text {loc }}^{1,2}(Q)(i=1, \cdots, N)$ and

$$
\begin{equation*}
\int_{Q}\left[\sum_{j=1}^{N} \sum_{\alpha, \beta=1}^{n} A_{i j}^{a \xi}(x) D_{\beta} u_{j} D_{\alpha} v_{i}+G_{i}(x, u, D u) v_{i}\right] d x=0 \tag{4}
\end{equation*}
$$

$(i=1, \cdots, N)$ for every vector function $\left\{v_{i}\right\}(i=1, \cdots N)$ in $W^{1,2}(Q)$ with compact support in Q.

It follows from the regularity of the boundary ∂Q that there is a number $\delta_{0}>0$ such that for $\delta \in\left(0, \delta_{0}\right]$ the domain

$$
Q_{\dot{\delta}}=Q \cap\left\{x ; \min _{y \in \partial Q}|x-y|>\delta\right\}
$$

with the boundary ∂Q_{δ}, possesses the following property: to each $x_{0} \in \partial Q$ there is a unique point $x_{i}\left(x_{0}\right)=x_{0}-\delta \nu\left(x_{0}\right)$, where $\nu\left(x_{0}\right)$ is the outward normal to ∂Q at x_{0}. The above relation gives a one-to-one mapping, of class C^{1} of ∂Q on $\partial Q_{\dot{\delta}}$. The inverse mapping to $x_{0} \rightarrow x_{i}\left(x_{0}\right)$ is given by the formula $x_{0}=x_{i}+\delta \nu_{\delta}\left(x_{i}\right)$, where $\nu_{\delta}\left(x_{\dot{o}}\right)$ is the outward normal to ∂Q at $x_{\dot{\partial}}$.

Let $x_{\dot{\delta}}$ denote an arbitrary point of $\partial Q_{\dot{\partial}}$. For fixed $\delta \in\left(0, \delta_{0}\right]$ let

$$
\begin{aligned}
& A_{\varepsilon}=\partial Q_{o} \cap\left\{x ;\left|x-x_{\dot{b}}\right|<\varepsilon\right\}, \\
& B_{\varepsilon}=\left\{x ; x=\tilde{x}_{\delta}+\delta \nu_{o}\left(\tilde{x}_{\dot{\delta}}\right), \tilde{x}_{\dot{\delta}} \in A_{\varepsilon}\right\},
\end{aligned}
$$

and

$$
\frac{d S_{\delta}}{d S_{0}}\left(x_{\delta}\right)=\lim _{\varepsilon \rightarrow 0} \frac{\left|A_{\varepsilon}\right|}{\left|B_{\varepsilon}\right|},
$$

where $|A|$ denotes the $n-1$ dimensional Hausdorff measure of a set A. Mikailov [7] proved that there is a positive number γ_{0} such that

$$
\begin{equation*}
\gamma_{0}^{-2} \leqq \frac{d S_{\bar{\delta}}}{d S_{0}} \leqq \gamma_{0}^{2} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{i \rightarrow 0} \frac{d S_{i}}{d S_{0}}\left(x_{j}\right)=1 \tag{6}
\end{equation*}
$$

uniformly with respect to $x_{\dot{\delta}} \in \partial Q_{\dot{\delta}}$.
Let $r(x)=$ dist $(x, \partial Q)$ for $x \in \bar{Q}$. According to Lemma 1 in [5], p.382, the distance $r(x)$ belongs to $C^{2}\left(\bar{Q}-Q_{\delta_{0}}\right)$ if \hat{o}_{0} is sufficently small. Denote by $\rho(x)$ the extension of the function $r(x)$ into \bar{Q} satisfying the following properties: $\rho(x)=r(x)$ for $x \in \bar{Q}-Q_{\delta_{0}}, \quad \rho \in C^{2}(\bar{Q}), \quad \rho(x) \geqq \frac{3}{4} \delta_{0}$ in $Q_{\delta_{0}}, \gamma_{1}^{-1} r(x) \leqq \rho(x) \leqq \gamma_{1} r(x)$ in Q for some positive constant $\gamma_{1}, \partial Q_{\dot{0}}=\{x ; \rho(x)=\delta\}$ for $\delta \in\left(0, \delta_{0}\right]$ and finally $\partial Q=\{x ; \rho(x)=0\}$.
2. We commence with a theorem which plays the crucial role in our treatment of the Dirichlet problem. In this theorem we use the surface integrals

$$
\int_{\partial Q}\left|u\left(x_{\delta}(x)\right)\right|^{2} d S_{x} \text { and } \int_{\partial Q_{\delta}}|u(x)|^{2} d S_{x}
$$

for a solution $u=\left(u_{1}, \cdots, u_{N}\right)$ in $W_{l_{0 c}}^{1,2}(Q)$, where the values $u\left(x_{\dot{o}}(x)\right)$ on ∂Q and $u(x)$ on ∂Q_{δ} are understood in the sense of trace ([4], chapter 6). It follows from Lemma 4 in [1] that both integrals are absolutely continuous on [$\left.\delta_{1}, \delta_{0}\right]$ for every $0<\delta_{1}<\delta_{0}$.

Theorem 1. Let $\left\{u_{i}\right\} i=1, \cdots, N$ be a solution of (1) belonging to $W_{\text {loc }}^{1,2}(Q)$; then the following conditions are equivalent

$$
\begin{align*}
& \int_{\partial Q_{\delta}}|u(x)|^{2} d S_{x} \text { is bounded on }\left(0, \delta_{0}\right], \tag{I}\\
& \int_{Q}|D u(x)|^{2} r(x) d x<\infty . \tag{II}
\end{align*}
$$

Proof. To show $I \Rightarrow$ II we use as test functions in (4)

$$
v_{i}(x)=\left\{\begin{array}{cll}
u_{i}(x)(\mu(x)-\delta) & \text { for } & x \in Q_{\dot{\delta}}, \\
0 & \text { for } & x \in Q-Q_{\dot{\delta}},
\end{array}\right.
$$

and on substitution in (4) we obtain

$$
\begin{gathered}
\int_{Q_{\delta}} \sum_{j=1}^{N} \sum_{\alpha, \beta=1}^{n} A_{i j}^{\alpha \beta}(x) D_{\beta} u_{j} D_{\alpha} u_{i}(\rho-\delta) d x+\int_{Q_{\delta}} \sum_{j=1}^{N} \sum_{\alpha, \beta=1}^{n} A_{i j}^{\alpha \beta}(x) D_{\beta} u_{j} u_{i} D_{\alpha} \rho d x \\
+\int_{Q_{\delta}} G_{i}(x, u, D u) u_{i}(\rho-\delta) d x=0, \quad i=1, \cdots, N
\end{gathered}
$$

Let us denote the first two integrals on the left side by T_{i} and K_{i}, respectively. It follows from (A) that

$$
\gamma \int_{Q_{\delta}}|D u(x)|^{2}(\rho(x)-\delta) d x \leqq \sum_{i=1}^{N} T_{i} .
$$

Using (3) and integrating by parts we obtain

$$
\begin{aligned}
\sum_{i=1}^{N} K_{i}= & \frac{1}{2} \int_{Q_{i}}^{N} \sum_{1}^{N} \sum_{\alpha, \beta=1}^{n} A_{i i}^{\alpha \beta}(x) D_{\beta}\left(u_{i}^{2}\right) D_{\alpha} \rho d x \\
& +\frac{1}{2} \int_{Q_{i}} \sum_{i=j=j}^{N} \sum_{\alpha, \beta=1}^{n} A_{i j}^{n}(x) D_{\beta}\left(u_{i} u_{j}\right) D_{\alpha} \rho d x \\
= & -\frac{1}{2} \int_{\partial Q_{i}} \sum_{j=1}^{N} \sum_{\alpha, \beta=1}^{n} A_{i j}^{\alpha \beta}(x) u_{i} u_{j} D_{\alpha} \rho D_{\beta} \rho d S_{x} \\
& -\frac{1}{2} \int_{Q_{i}} \sum_{i j=1}^{N} \sum_{\alpha, \beta=1}^{n} D_{\beta}\left(A_{i j}^{\alpha \beta}(x) D_{\alpha} \rho\right) u_{i} u_{j} d x .
\end{aligned}
$$

It then follows with the help of Young's inequality that

$$
\int_{Q_{\partial}}|D u|^{2}(\rho-\delta) d x \leqq C\left(\int_{Q_{\delta}}|u|^{2} d x+\int_{\partial Q_{\boldsymbol{O}}}|u|^{2} d S_{x}+\int_{Q_{\delta}}|f|^{2} d x\right),
$$

where $|f|^{2}=\sum_{i=1}^{n} f_{i}^{2}, C>0$ depends on n, γ and the bounds of the coefficients $A_{i j}^{\alpha \beta}$, $D_{\beta} A_{i j}^{a \beta}, B_{i j}^{\alpha}$ and $C_{i j}$ and the implication I \Rightarrow II easily follows.

To prove "II \rightarrow I" we first note that (II) implies that $\int_{Q}|u(x)|^{2} d x<\infty$ (Lemma 4 in [1]). From the first part of the proof we have

$$
\begin{gathered}
\frac{1}{2} \int_{\partial Q_{i}} \sum_{i, j=1}^{N} \sum_{\alpha, \beta=1}^{n} A_{i j}^{\alpha \beta} u_{i} u_{j} D_{\alpha} \rho D_{\beta} \rho d x \\
=-\frac{1}{2} \int_{Q_{\sigma}} \sum_{i, j=1}^{N} \sum_{\alpha, \beta=1}^{n} D_{\beta}\left(A_{i j}^{\alpha \beta} D_{\alpha \rho}\right) u_{i} u_{j} d x+\int_{i, j=1} \sum_{\alpha, \beta}^{N} \sum_{Q_{j}}^{n} A_{i j}^{\alpha \beta} D_{\beta} u_{j} D_{\alpha} u_{i}(\rho-\delta) d x
\end{gathered}
$$

$$
+\int_{Q_{i}}^{N} \sum_{i=1}^{N} G_{i}(x, u, D u) u_{i}(\rho-\grave{\delta}) d x
$$

and (I) follows from the ellipticity condition and assumptions (A) and (B).
As an immediate consequence we obtain
Corollary 1. Let $\left\{u_{i}\right\} i=1, \cdots, N$ be a solution of (1). If one of conditions (I) or (II) holds then there exist functions $\phi_{i} \in L^{2}(\partial Q)(i=1, \cdots N)$ and a sequence $\left\{\delta_{\nu}\right\}$ tending to zero such that

$$
\lim _{\nu \rightarrow \infty} \int_{\partial Q} u_{i}\left(x_{\delta_{\nu}}(x)\right) g(x) d S_{x}=\int_{\partial Q} \phi_{i}(x) g(x) d S_{x}
$$

for each $g \in L^{2}(\partial Q)$.
Indeed, we note that

$$
\int_{\partial Q_{\bar{\delta}}} u_{i}(x)^{2} d S_{\delta}=\int_{\partial Q} u_{i}\left(x_{o}(x)\right)^{2} \frac{d S_{\dot{i}}}{d S_{0}} d S_{0}
$$

hence by (5) and (2) $\int_{\partial Q} u_{i}\left(x_{i}(x)\right)^{2} d S_{x}$ is bounded on $\left(0, \delta_{0}\right]$.
Consequently the result follows from the weak compactness of bounded sets in $L^{2}(\partial Q)$.

The main objective of this section is to prove that $\lim _{\delta \rightarrow 0} u_{i}\left(x_{\dot{o}}(x)\right)=\phi_{i}(x) \quad(i=$ $1, \cdots, N)$ in $L^{2}(Q)$. To show this we define

$$
A_{i}(x, u(x))=\sum_{j=1}^{N} \sum_{\alpha, \beta=1}^{n} A_{i j}^{\alpha \beta}(x) u_{j}(x) D_{\alpha} \rho(x) D_{\beta} \rho(x)
$$

$(i=1, \cdots N)$. We need the following lemma.
Lemma 1. Let $\left\{u_{i}\right\}(i=1, \cdots, N)$ be a solution in $W_{i o c}^{1,2}(Q)$ of (1) satisfying one of the conditions (I) or (II) and let $\phi=\left\{\phi_{i}\right\}(i=1, \cdots, N)$ be functions in $L^{2}(\partial Q)$ determined by Corollary 1. Then

$$
\begin{equation*}
\lim _{\partial \rightarrow 0} \int_{\partial Q} A_{i}\left(x_{\delta}(x), u\left(x_{\delta}(x)\right) g(x) d S_{x}=\int_{\partial Q} A_{i}(x, \phi(x)) g(x) d S_{x}\right. \tag{7}
\end{equation*}
$$

$(i=1, \cdots N)$ for each $g \in L^{2}(\partial Q)$.
Proof. It follows from (5) and (I) that the integrals

$$
\int_{\partial Q} A_{i}\left(x_{\bar{\partial}}, u\left(x_{\hat{\partial}}\right)\right)^{2} d S_{x} \quad(i=1, \cdots, N)
$$

are bounded on $\left(0, \delta_{0}\right]$. Hence there exist functions $\Psi_{i} \in L^{2}(\partial Q)(i=1, \cdots, N)$ and a sequence $\left\{\delta_{\nu}\right\}$ tending to zero such that

$$
\lim _{v \rightarrow \infty} \int_{\partial_{Q}} A_{i}\left(x_{\delta_{v}}, u\left(x_{\hat{o}_{\nu}}\right)\right) g(x) d S_{x}=\int_{Q} \Psi_{i}(x) g(x) d S_{x}
$$

$(i=1, \cdots, N)$ for each $g \in L^{2}(\partial Q)$. To prove (7) we shall prove that $\int_{\dot{i} Q} A_{i}\left(x_{\dot{\partial}}, u\left(x_{\dot{\partial}}\right)\right)$ $g(x) d \mathrm{~S}_{x}(i=1, \cdots, N)$ are continuous on $\left[0, \delta_{0}\right]$ and that

$$
\begin{equation*}
\Psi_{i}(x)=A_{i}(x, \phi(x)) \quad(i=1, \cdots, N) \tag{8}
\end{equation*}
$$

almost everywhere on ∂Q. Since $\int_{\delta_{Q}} A_{i}\left(x_{\dot{\delta}}, u\left(x_{\dot{\delta}}\right)\right) g(x) d S_{x}$ are continuous on $\left[\delta_{1}, \delta_{0}\right]$ for each $0<\delta_{1}<\delta_{0}$, it suffices to prove the continuity of these integrals at $\delta=0$. On the other hand we observe that the elements of $C^{1}(\bar{Q})$ restricted to ∂Q are dense in $L^{2}(\partial Q)$, so we may assume that $g=\Phi$ on ∂Q with $\Phi \in C^{1}(\bar{Q})$. Taking

$$
v_{i}(x)= \begin{cases}\Phi(x)(\rho-(x)-\delta) & \text { on } Q_{\grave{\delta}} \\ 0 & \text { on } Q-Q_{\grave{\partial}}\end{cases}
$$

$(i=1, \cdots, N)$ as test functions in (4) and integrating by parts we obtain

$$
\begin{aligned}
& \int_{\partial Q_{\dot{\delta}}} A_{i}(x, u(x)) \Phi(x) d S_{x}=-\int_{Q_{j}}^{N} \sum_{j=1}^{N} \sum_{\alpha, \beta=1}^{n} D_{\beta}\left(A_{i j}^{\alpha \beta} D_{\alpha} \rho \Phi\right) u_{j} d x \\
& +\int_{Q_{j}} \sum_{j=1}^{N} \sum_{\alpha, \beta=1}^{n} A_{i j}^{\alpha \beta} D_{\beta} u_{j} D_{\alpha} \Phi(\rho-\delta) d x+\int_{\mathbb{Q}_{\dot{\delta}}} G_{i}(x, u, D u) \Phi(\rho-\delta) d x
\end{aligned}
$$

$(i=1, \cdots, N)$. The desired continuity easily follows from (6). In order to prove (8) we note that for each $g \in C(\bar{Q})$ we have

$$
\begin{aligned}
& \left|\int_{\partial Q} A_{i}\left(x_{\delta_{\nu}}, u\left(x_{\delta_{\nu}}\right)\right) g(x) d S_{x}-\int_{\partial Q} A_{i}(x, \phi(x)) g(x) d S_{x}\right| \\
\leqq & \left|\int_{\partial Q} A_{i}\left(x_{\delta_{\nu}}, u\left(x_{\delta_{\nu}}\right)\right) g(x) d S_{x}-\int_{\partial Q} \sum_{j=1}^{N} \sum_{\alpha, \beta=1}^{n} A_{i j}^{\alpha \beta}(x) u_{j}\left(x_{\delta_{\nu}}\right) D_{\alpha} \rho(x) g(x) d S_{x}\right| \\
+ & \left|\int_{\partial Q} \sum_{j=1}^{N} \sum_{\alpha, \beta=1}^{n} A_{i j}^{\alpha \beta}(x) u_{j}\left(x_{\delta_{\nu}}\right) D_{\alpha} \rho(x) D_{\beta} \rho(x) g(x) d S_{x}-\int_{\partial Q} A_{i}(x, \phi(x)) g(x) d S_{x}\right| \\
= & T_{i}+K_{i} \quad(i=1, \cdots, N)
\end{aligned}
$$

We may also assume that $\left\{\delta_{y}\right\}$ is a subsequence appearing in Corollary 1. Using the Schwarz inequality we have

$$
\begin{aligned}
&\left|T_{i}\right| \leqq \sup _{j, 0<\delta \delta_{\delta}, \nu}\left|\sum_{\alpha, \beta} A_{i j}^{\alpha \beta}\left(x_{\delta}\right) D_{\alpha} \rho\left(x_{\delta}\right) D_{\beta} \rho\left(x_{\bar{\delta}}\right)-\sum_{\alpha, \beta} A_{i j}^{\alpha \beta}(x) D_{\alpha} \rho(x) D_{\beta} \rho(x)\right| \\
& \times\left.\times \int_{\partial Q}\left|u\left(x_{j}\right)\right|^{2} d S_{x}\right]^{1 / 2}\left[\int_{\partial Q} \Psi^{2} d S_{x}\right]^{1 / 2} N^{1 / 2} .
\end{aligned}
$$

Consequently by the uniform continuity of $\sum_{\alpha, \beta=1}^{n} A_{i j}^{\alpha \beta}(x) D_{\alpha} \rho(x) D_{\beta} \rho(x)(i, j=1, \cdots, N)$ on \bar{Q},

$$
\lim _{i_{i} \rightarrow 0} T_{i}=0 \quad(i=1, \cdots, N) .
$$

On the other hand by the weak convergence of $u_{i}\left(x_{\dot{\delta}_{\imath}}\right)$ to ϕ_{i} in $L^{2}(\partial Q)$ we see that

$$
\lim _{i_{i} \rightarrow 0} K_{i}=0 \quad(i=1, \cdots, N)
$$

and this completes the proof.
We are now in a position to prove that $\lim _{\dot{i} \rightarrow 0} u_{i}\left(x_{o}(x)\right)=\phi_{i}(x)$ in $L^{2}(\partial Q)$.
For $\delta \in\left(0, \delta_{0}\right]$ we define the mapping $x^{\delta}: \stackrel{\delta \rightarrow 0}{\bar{Q}} \rightarrow \bar{Q}_{\delta, 2}$ by

$$
x^{\bar{\delta}}(x)= \begin{cases}x & \text { for } \quad x \in Q_{\dot{\delta}}, \\ y_{\dot{\delta}}+\frac{1}{2}\left(x-y_{\bar{\delta}}\right) & \text { for } \quad x \in \bar{Q}-Q_{\bar{\delta}},\end{cases}
$$

where $y_{\dot{\delta}}$ denotes the nearest point on $\partial Q_{\dot{o}}$ to x. Thus $x^{\bar{o}}(x)=x_{\delta, 2}(x)$ for each $x \in \partial Q$. Moreover x^{0} is uniformly Lipschitz continuous. Note that if $u \in W_{\text {ioc }}^{1,2}(Q)$, then $u\left(x^{\hat{b}}\right) \in W^{1,2}(Q)$.

Theorem 2. Let $\left\{u_{i}\right\}(i=1, \cdots, N)$ be a solution in $W_{\text {ioc }}^{12^{2}}(Q)$ of (1) satisfying one of the conditions (I) or $(I I)$. Let $\phi_{i}(i=1, \cdots, N)$ be functions in $L^{2}(\partial Q)$ determined by Corollary 1. Then

$$
\lim _{\partial \rightarrow 0} u_{i}\left(x_{\partial}(x)\right)=\phi_{i}(x) \quad(i=1, \cdots, N) \text { in } L^{2}(\partial Q) .
$$

Proof. We begin by showing that $\lim _{\dot{j} \rightarrow 0} A_{i}\left(x_{\dot{j}}, u\left(x_{\dot{o}}\right)\right)=A_{i}(x, \phi(x))(i=1, \cdots, N)$ in $L^{2}(\partial Q)$. Indeed, for $\Psi \in W^{1,2}(Q)$ we have

$$
\begin{gathered}
\int_{\partial Q} A_{i}(x, \phi(x)) \Psi(x) d S_{x}=-\int_{Q} \sum_{j=1}^{N} \sum_{\alpha, \beta=1}^{n} D_{\beta}\left(A_{i j}^{\alpha \beta} D_{\alpha} \rho \Psi\right) u_{j} d x \\
+\int_{Q} \sum_{j=1}^{N} \sum_{\alpha, \beta=1}^{n} A_{i j}^{\alpha \beta}(x) D_{\beta} u_{j} D_{\alpha} \Psi \rho d x+\int_{Q} G_{i}(x, u, D u) \Psi \rho d x \\
\equiv \int_{i}(\Psi) d x
\end{gathered}
$$

$(i=1, \cdots, N)$. As $A_{i}\left(x^{i}, u\left(x^{b}\right)\right) \in W^{1,2}(Q)$, we have

$$
\begin{gathered}
\int_{\partial Q} A_{i}(x, \phi(x)) A_{i}\left(x^{\delta}, u\left(x^{\hat{\sigma}}\right)\right) d S_{x}=\int_{Q-Q_{i}} F_{i}\left(A_{i}\left(x^{\bar{i}}, u\left(x^{\delta}\right)\right)\right) d x \\
+\int_{Q_{0}} F_{i}\left(A_{i}(x, u(x))\right) d x
\end{gathered}
$$

We show that

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \int_{Q-Q_{\delta}} F_{i}\left(A_{i}\left(x^{\delta}, u\left(x^{\delta}\right)\right)\right) d x=0 \tag{9}
\end{equation*}
$$

and that

$$
\begin{equation*}
\lim _{\dot{\delta} \rightarrow 0} \int_{\mathbb{Q}_{\bar{\delta}}} F_{i}\left(A_{i}(x, u(x))\right) d x=\lim _{\delta \rightarrow 0}| | A_{i}\left(x^{\bar{\delta}}, u\left(x^{\delta}\right)\right) \|_{2}^{2} \tag{10}
\end{equation*}
$$

so that

$$
\begin{aligned}
\| A_{i}\left(x, \phi(x) \|_{2}^{2}\right. & =\lim _{\delta \rightarrow 0} \int_{\partial Q} A_{i}(x, \phi(x)) A_{i}\left(x^{\bar{\delta}}, u\left(x^{\delta}\right)\right) d S_{x} \\
& =\lim _{\delta \rightarrow 0}\left\|A_{i}\left(x^{\tilde{\delta}}, u\left(x^{\bar{j}}\right)\right)\right\|_{2}^{2}
\end{aligned}
$$

as $x^{\partial}(x)=x_{\dot{\delta} 2}(x)$ on ∂Q. Therefore the claim will follow from the uniform convexity of $L^{2}(\partial Q)$.

Setting

$$
v_{i}(x)= \begin{cases}A_{i}(x, u(x))(\rho(x)-\delta) & \text { for } x \in Q_{\dot{\delta}} \\ 0 & \text { for } x \in Q-Q_{\dot{\delta}}\end{cases}
$$

in equation (4), we have

$$
\begin{gathered}
\lim _{\dot{\delta} \rightarrow 0} \int_{Q_{\dot{j}}} F_{i}\left(A_{i}(x, u(x)) d x=\lim _{\delta \rightarrow 0}\left\{-\int_{Q_{\dot{\delta}}} \sum_{j=1}^{N} \sum_{\alpha, \beta=1}^{n} D_{\beta}\left(A_{i j}^{\alpha \beta} D_{\alpha} \rho A_{i}(x, u(x)) u_{j} d x\right.\right.\right. \\
\left.+\int_{Q_{\delta}} \sum_{j=1}^{N} \sum_{\alpha, \beta=1}^{n} A_{i j}^{\alpha \beta} D_{\beta} u_{j} D_{\alpha} A_{i}(x, u(x))(\rho-\delta) d x+\int_{Q_{\delta}} G_{i}(x, u, D u) A_{i}(x, u(x))(\rho-\delta) d x\right\} \\
=\lim _{\delta \rightarrow 0}\left\{-\int_{Q_{\delta}} \sum_{j=1}^{N} \sum_{\alpha, \beta=1}^{n} D_{\beta}\left(A_{i j}^{\alpha \beta} D_{\alpha} \rho A_{i}(x, u(x))\right) u_{j} d x\right. \\
\left.-\int_{Q_{\delta}} \sum_{j=1}^{N} \sum_{\alpha, \beta=1}^{n} A_{i j}^{\alpha \beta} D_{\beta} u_{j} A_{i}(x, u(x)) D_{\alpha} \rho d x\right\} \\
=\lim _{\dot{\delta} \rightarrow 0}\left\{-\int_{Q_{\dot{\delta}}} \sum_{j=1}^{N} \sum_{\alpha, \beta=1}^{n} D_{\beta}\left(A_{i j}^{\alpha \beta} u_{j} D_{\alpha} \rho A_{i}(x, u(x))\right) d x\right\} \\
=\lim _{\delta \rightarrow 0} \int_{\partial} A_{i}(x, u(x))^{2} d S_{x} .
\end{gathered}
$$

It remains to prove (9). Note that by (A), (B) and the Young inequality we have

$$
\begin{aligned}
& \mid F_{i}\left(A_{i}\left(x_{\dot{\delta}}, u\left(x_{\dot{\delta}}\right)\right) \mid \leqslant C\left[\left|D u (x) \left\|u (x) \left|+\left|u\left(x_{\delta}\right) \| u(x)\right|+\right.\right.\right.\right.\right. \\
+ & \left|D u\left(x_{\delta}\right)\right||D u(x)| \rho+\left|D u(x)\left\|u\left(x_{\dot{\delta}}\right)\left|\rho+f(x) \| u\left(x_{\dot{\delta}}\right)\right| \rho\right]\right.
\end{aligned}
$$

for some positive constant C independent of δ. Applying Lemmas 2, 3, 4, 5 and 6 from [2] (or Lemmas $8,9,10,11$ and 12 in [1]) we easily deduce that (9) holds and this completes the first part of the proof.

It follows from the continuity of $A_{i j}^{\alpha \beta}$ on \bar{Q} and the boundedness of $u_{i}\left(x_{i}\right)$ in $L^{2}(\partial Q)$ that

$$
\lim _{\delta \rightarrow 0} \int\left[A_{i}\left(x, u\left(x_{\dot{\partial}}\right)\right)-A_{i}\left(x_{\dot{\partial}}, u\left(x_{\dot{\partial}}\right)\right)\right]^{2} d S_{x}=0 \quad(i=1, \cdots, N)
$$

and therefore

$$
\lim _{\partial \rightarrow 0} \int\left[A_{i=}\left(x, u\left(x_{\delta}\right)\right)-A_{i}(x, \phi(x))\right]^{2} d S_{x}=0 \quad(i=1, \cdots, N) .
$$

Let $A_{i j}(x)=\sum_{\alpha, \beta=1}^{n} A_{i j}^{\alpha \beta}(x) D_{\alpha} \rho(x) D_{\beta} \rho(x)$. Since $|D \rho(x)|=1$ on ∂Q, the matrix $\left\{A_{i j}(x)\right\}$ is positively definite on ∂Q. Denote by $\left\{A_{i j}^{-1}(x)\right\}$ the inverse matrix to $\left\{A_{i j}(x)\right\}$, where $x \in \partial Q$. Consequently for each i and j we have

$$
\left.\lim _{\dot{i} \rightarrow 0} \int_{\partial Q} \sum_{k=1}^{N} A_{i j}^{-1}(x) A_{j k}(x) u_{k}\left(x_{\dot{\delta}}\right)-\sum_{k=1}^{N} A_{i j}^{-1}(x) A_{j k}(x) \phi_{k}(x)\right]^{2} d S_{x}=0
$$

Hence

$$
\begin{gathered}
\lim _{i \rightarrow 0} \int_{\partial \bar{Q}}\left[u_{i}\left(x_{j}\right)-\phi_{i}(x)\right]^{2} d S_{x}=\lim _{\delta \rightarrow 0}\left[\int _ { i Q } \left[\sum_{j, k=1}^{N} A_{i j}^{-1}(x) A_{j k}(x) u_{k}\left(x_{\dot{j}}\right)-\right.\right. \\
\left.-\sum_{j, k=1}^{N} A_{i j}^{-1}(x) A_{j k}(x) \phi(x)\right]^{2} d S_{x}=0
\end{gathered}
$$

and this completes the proof.
3. Let us introduce the following function space

$$
\widetilde{W}^{1,2}(Q)=\left\{u ; u \in W_{1 o c}^{1,2}(Q), \int_{Q}|D u(x)|^{2} r(x) d x+\int_{Q}|u(x)|^{2} d x<\infty\right\}
$$

Theorem 3 justifies the following approach to the Dirichlet problem for the system (1).

Let $\phi=\left(\phi_{1}, \cdots, \phi_{N}\right)$ with $\phi_{i} \in L^{2}(\partial Q)(i=1, \cdots, N)$. A weak solution $u=\left(u_{1}, \cdots, u_{N}\right)$ of (1) with $u_{i} \in \widetilde{W}^{1,2}(Q)(i=1, \cdots, N)$ is a solution of the Dirichlet problem with the boundary condition (2) if

$$
\begin{equation*}
\lim _{\dot{i} \rightarrow 0} \int_{\partial \mathcal{Q}}\left[u_{i}\left(x_{\dot{o}}\right)-\phi_{i}(x)\right]^{2} d S_{x}=0 \tag{11}
\end{equation*}
$$

$(i=1, \cdots, N)$.

As it stands this Dirichlet problem need not have a solution, however we shall prove that the Dirichlet problem for a modified system

$$
\left(1_{\lambda}\right) \quad L_{i}\left(u_{1}, \cdots, u_{N}\right)+\lambda u_{i}=f_{i} \text { in } Q \quad(i=1, \cdots, N)
$$

has a unique solution in $W^{1,2}(Q)$ provided the real parameter λ is sufficiently large. The existence theorem is based on the following energy estimate.

Theorem 3. There exist positive constants λ_{0}, C and d such that if $u=\left\{u_{i}\right\}$ is a solution in $\widetilde{W}^{1,2}(Q)$ of $\left(1_{2}\right)$, (2) for $\lambda \geqslant \lambda_{0}$ then

$$
\begin{gathered}
\int_{Q}|D u(x)|^{2} r(x) d x+\int_{Q}|u(x)|^{2} r(x) d x+\sup _{0<\sigma<d_{\partial Q_{0}}} \int_{\left.Q(x)\right|^{2} d S_{x} \leqslant} \quad \leqslant C\left[\int_{Q}|f(x)|^{2} d x+\int_{\partial Q}|\phi(x)|^{2} d S_{x}\right]
\end{gathered}
$$

where $f=\left(f_{1}, \cdots, f_{N}\right)$.
Proof. Taking

$$
v_{i}(x)= \begin{cases}u_{i}(x)(\rho(x)-\delta) & \text { on } Q_{\dot{\delta}}, \\ 0 & \text { on } Q-Q_{\delta},\end{cases}
$$

$(i=1, \cdots, N)$ as test function we obtain

$$
\begin{gather*}
\int_{Q_{i}} \sum_{i, j=1}^{N} \sum_{\alpha, \beta=1}^{n} A_{i j}^{q \beta}(x) D_{\alpha} u_{i} D_{\beta} u_{j}(\rho-\grave{\delta}) d x+\lambda \int_{Q_{\delta}}|u|^{2}(\rho-\delta) d x= \tag{12}\\
=\frac{1}{2} \int_{\partial Q_{i}} \sum_{i=1}^{n} A_{i}(x, u) u_{i} d S_{x}+\frac{1}{2} \int_{Q_{i}} \sum_{i, j=1}^{n} \sum_{\alpha, \beta=1}^{n} D_{\beta}\left(A_{i j}^{\alpha \beta} D_{\alpha \beta} \rho\right) u_{i} u_{j} d x- \\
-\int_{Q_{i}} \sum_{i=1}^{n} G_{i}(x, u, D u) u_{i}(\rho-\delta) d x .
\end{gather*}
$$

It follows from (11), that

$$
\lim _{\delta \rightarrow 0} \int_{\partial \dot{ }} \sum_{i=1}^{n} A_{i}\left(x_{i}, u\left(x_{i}\right)\right) u_{i}\left(x_{i}\right) d S_{x}=\int_{Q} \sum_{i=1}^{n} A_{i}(x, \phi(x)) \dot{\phi}_{i}(x) d S_{x} .
$$

Hence letting $\delta \rightarrow 0$ in (11) we obtain

$$
\begin{equation*}
\int_{Q}|D u|^{2} r d x+\lambda \int_{Q}|u|^{2} \rho d x \leqslant C_{1}\left[\int_{Q}|f|^{2} d x+\int_{\partial Q}|\phi|^{2} d S_{x}+\int_{Q}|u|^{2} d x\right] \tag{13}
\end{equation*}
$$

where $C_{1}>0$ is a constant depending on n, γ and the bounds of the coefficients. It is obvious that (12) also implies that for every $0<d<\delta_{0}$

$$
\begin{equation*}
\sup _{0<0<d_{d Q_{i}}}|u|^{2} d S_{x} \leqslant C_{2}\left[\int_{Q}|D u|^{2} r d x+(\lambda+1) \int_{Q} u^{2} \rho d x \int_{Q}|f|^{2} d x\right], \tag{14}
\end{equation*}
$$

where $C_{2}>0$ is constant of the same nature as C_{1}. Combining (13) and (14) we get

$$
\begin{aligned}
& \int_{Q}|D u|^{2} r d x+\lambda \int_{Q}|u|^{2} \rho d x+\sup _{0<\delta \delta S_{\partial Q_{B}}}|u|^{2} d S_{x} \leqslant \\
& \quad \leqslant C_{B}\left[\int_{\partial Q}|\phi|^{2} d S_{x}+\int_{Q}|f|^{2} d x+\int_{Q}|u|^{2} d x\right]
\end{aligned}
$$

for some positive constant C_{3}. Finally note that

$$
\int_{Q}|u|^{2} d x \leqslant d \sup _{0<0 \leq d} \int_{\partial Q_{j}}|u|^{2} d S_{x}+\frac{1}{m_{d}} \int_{Q}|u|^{2} \rho d x
$$

where $m_{d}=\inf _{Q_{d}}(x)$, hence taking d sufficiently small and λ sufficiently large the result follows.

To proceed further we equip $\widetilde{W}^{1,2}(Q)$ with a norm defined by

$$
\|u\|_{\tilde{W}^{1}, 2}^{2}=\int_{Q}|u|^{2} d x+\int_{Q}|D u|^{2} r d x .
$$

Theorem 5. Let $\lambda \geqslant \lambda_{0}$. Then for every $\phi=\left\{\phi_{i}\right\}$ with $\phi_{i} \in L^{2}(\partial Q)(i=1, \cdots, N)$ there exists a unique solution of the Dirichlet problem $\left(1_{\lambda}\right)$, (2) in $\widetilde{W}^{1,2}(Q)$.

Proof. The proof is similar to that of Theorem 6 in [2]. Let $\phi^{m}=\left(\phi_{1}^{m}, \cdots, \phi_{N}^{m}\right)$ be a sequence of functions with components in $C^{1}(\partial Q)$ and such that $\lim _{m \rightarrow \infty} \int_{\partial Q}\left|\phi^{m}-\phi\right|^{2}$ $d S_{x}=0$. Let u_{m} be a solution of the Dirichlet problem

$$
\begin{aligned}
& L_{i}\left(u_{i}, \cdots, u_{N}\right)+\lambda_{i} u_{i}=f_{i} \text { in } Q \\
& u_{i}=\phi_{i}^{m} \text { on } \partial Q \quad(i=1, \cdots, N)
\end{aligned}
$$

in $W^{1,2}(Q)$ ([10], Chap. 5, p. 133). Here we may assume that λ_{0} is sufficiently large that the theorems on the existence of solutions in $W^{1,2}(Q)$ are applicable. It follows from the energy estimate that $\lim _{m \rightarrow \infty} u_{m}=u$ in $\widetilde{W}^{1,2}$ and u is a weak solution of $\left(1_{1}\right)$. According to Theorem 2 there exist $\Psi=\left(\Psi_{1}, \cdots, \Psi_{N}\right)$ with $\Psi_{i} \in L^{2}(\partial Q)$ such that

$$
\lim _{\dot{i} \rightarrow 0} \int_{\partial Q}\left[u_{i}\left(x_{\dot{\partial}}\right)-\Psi_{i}(x)\right]^{2} d S_{x}=0 \quad(i=1, \cdots, N)
$$

It remains to show that $\phi_{i} \equiv \Psi_{i}(i=1, \cdots, N)$ almost everywhere on ∂Q, the proof of which is routine.

We close by pointing out that the linear function G_{i} can be replaced by a non-linear function satisfying the Carathéodory conditions and the estimate

$$
\left|G_{i}(x, u, D u)\right| \leqslant C[|u|+|D u|+f(x)], \quad(i=1, \cdots, N)
$$

where f is a non-negative function in $L^{2}(Q)$ and $C>0$ is a constant. Under this assumption one can easily prove the existence result analogous to Theorem 3 in [4].

References

[1] Chabrowski, J., Thompson, B., On traces of solutions of semi-linear partial differential equation of elliptic type, Ann. Polon. Math. 42 (1982) 47-73.
[2] Chabrowski, J., Thompson, H.B., On the boundary values of the solutions of linear elliptic equations, Bull. Austral. Math. Soc. 27 (1983) 1-30.
[3] Chabrowski, J., Note on the Dirichlet problem with L^{2}-boundary data, Manuscripta Math. 40 (1982) 91-108.
[4] Chabrowski, J., On the Dirichlet problem for a semi-linear elliptic equation with L^{2}-boundary data, Math. Z. 187 (1984) 171-183.
[5] Gilbarg, D., Trudinger, N.S., Elliptic partial differential equations of second order, Grundlehren der mathematischen Wissenschaften 224, Berlin, Heidelberg, New York: Springer-Verlag, 1977.
[6] Kufner, A., John, O., Fučik, S., Function spaces, Noordhoff, Leyden, Prague: Academia, 1977.
[7] Mikailov, V.P., Boundary values of the solutions of elliptic equations in domains with a smooth boundary, Mat. Sb. 101 (143) (1976) 163-188.
[8] Mikailov, V.P., The Dirichlet problem for a second order elliptic equation, Differential'nye Uravnenija 12 (1976) 1877-1891.
[9] Mikailov, V.P., On the boundary values of the solutions of elliptic equations, Appl. Math. Optim. 6 (1980) 193-199.
[10] Morrey, Ch.B., Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen Band 130, Berlin, Heidelberg, New York: Springer-Verlag (1966).

Department of Mathematics, University of Queensland, St. Lucia, Qld. 4067,
Australia.

