REMARKS ON d-GONAL CURVES

By

Naonori ISHII

§ 0. Introduction.

Let M be a compact Riemann surface and f be a meromorphic function on M. We denote the principal divisor associated to f by (f) and the polar divisor of f by $(f)_{\infty}$. If $d=$ degree of the divisor $(f)_{\infty}$, we call f a meromorphic function of degree d. If d is the minimal integer in which a non-trivial meromorphic function f of degree d exists on M, then we call M a d-gonal curve. In this case the complete linear system $\left|(f)_{\infty}\right|$ has projective dimension one. Moreover if f defines a cyclic covering $M \rightarrow \boldsymbol{P}_{1}$ over a Riemann sphere \boldsymbol{P}_{1}, then we call M a cyclic d-gonal curve.

Now we assume that M is a p-gonal curve of genus g with a prime number p. Then Namba has shown that M has a unique linear system g_{p}^{1} of projective dimension one and degree p provided $g>(p-1)^{2}$ ([6]). For example if M is defined by an equation $y^{p}-\left(x-a_{1}\right)^{r_{1}} \cdots\left(x-a_{s}\right)^{r_{s}}=0$ with $\left(p, r_{i}\right)=1$, $\Sigma r_{i} \equiv 0(\bmod p)$ and $s \geqq 2 p+1$, then M is p-gonal and having a unique $g_{p}^{1}([7])$.

In this paper we treat a compact Riemann surface M defined by an equation ;

$$
\begin{aligned}
& y^{d}-\left(x-a_{1}\right)^{r_{1}} \cdots\left(x-a_{s}\right)^{r_{s}}=0 \\
& \text { with } \quad \sum r_{i} \equiv 0 \bmod d \text { and } 1 \leqq r_{i}<d,
\end{aligned}
$$

where d is not necessarily a prime number.
In $\S 2$, we will show that M is d-gonal with the function x of degree d if there are enough r_{i} 's relatively prime to p for each prime number p dividing d. In this case we call M a cyclic d-gonal curve. We will also show that M has a unique g_{d}^{1} if there are more sufficient such r_{i} 's as above ($\S 2$).

In $\S 3$, let M be a cyclic d-gonal curve defined by $*$) having a unique g_{d}^{1} and M^{\prime} be a compact Riemann surface defined by $y^{d}-\left(x-b_{1}\right)^{t_{1}} \cdots\left(x-b_{s}\right)^{t_{s}}=0$. We will study the relations among a_{i}, b_{i}, r_{i} and $t_{i}(1 \leqq i \leqq s)$ in the case M and M^{\prime} are conformaly equivalent. Namba [7] and Kato [5] have already studied this problem in the case d is a prime number. We will give similar results for an arbitrary d (§3).

[^0]In $\S 4$, we consider a covering map $\pi^{\prime}: M^{\prime} \rightarrow M$, where M is a cyclic d-gonal curve with a unique g_{d}^{1} and M^{\prime} is a d^{\prime}-gonal curve. In the case $d=d^{\prime}$, we can apply the same methods in [3], and we will see that M^{\prime} is also cyclic d-gonal. Moreover if π^{\prime} is normal and $d=d^{\prime}$, then the covering group of π^{\prime} is isomorphic to cyclic, dehedral, tetrahedral, octahedral or icosahedral. For a general case $d \leqq d^{\prime}$, we will show some relations between d and d^{\prime} (§4).

In $\S 5$, we will give some remarks about coverings $M \rightarrow N$ with a cyclic d-gonal curve M having a unique g_{d}^{1}.

Finally we determine the equation $*$), which defines the curve M (with a unique $\left.g_{d}^{1}\right)$ having an automorphism $V(\notin\langle T\rangle)$ of order N, where T is the automorphism defined by $T^{*} x=x$ and $T^{*} y=e^{2 \pi i / d} y$ (§6).

§ 1. Preliminaries

At first we give several results on the existence of meromorphic functions on a compact Riemann surface M of genus g following Accola and Namba.

Lemma 1.1. (Accola [1]) Let M be a compact Riemann surface of genus g. Let f_{1} and f_{2} be two meromorphic functions on M of degree n_{1} and n_{2} respectively. If f_{1} and f_{2} generate the full field $\boldsymbol{C}(M)$ of meromorphic functions on M, then $g \leqq\left(n_{1}-1\right)\left(n_{2}-1\right)$.

The following lemma by Namba is easily obtained from Lemma 1.1.
Lemma 1.2 (Namba [6]) Let M be a compact Reemann surface of genus g and f be a meromorphic function of degree p on M with a prime number p.
(1) If h is a meromorphic function of degree n on M satisfying $(p-1)(n-1) \leqq g-1$, then p divides n and $h=r(f)$, where $r(x)$ is a rational function of degree n / p.
(2) If $(p-1)^{2} \leqq g-1$, then M is p-gonal and having a unique linear system g_{p}^{1} of degree p and dimension 1 .

Proof. (1) By lemma 1.1, the subfield $\boldsymbol{C}(f, g)$ of $\boldsymbol{C}(M)$ generated by f and h is not equal to $\boldsymbol{C}(M)$. As $p=[\boldsymbol{C}(M): C(f)]$ is a prime number, $\boldsymbol{C}(f)=\boldsymbol{C}(f, g)$. (2) If h is any meromorphic function of degree p, then $\boldsymbol{C}(h)=\boldsymbol{C}(f)$ by (1).

Next we give some results concerning covering maps. Let $\pi: M^{\prime} \rightarrow M$ be an arbitrary covering with compact Riemann surfaces M and M^{\prime}. For a divisor $D=\sum n_{i} Q_{i}\left(n_{i} \in \mathcal{Z}, Q_{i} \in M^{\prime}\right)$ we define a divisor $N m_{\pi} D=N m D$ by $\Sigma n_{i} \pi\left(Q_{i}\right)$. On
the other hand, for a meromorphic function f on M^{\prime} we denote by $N m[f]$ the meromorphic function on M obtained by the norm map $N m: \boldsymbol{C}\left(M^{\prime}\right) \rightarrow \boldsymbol{C}(M)$. It is well known that the equation of principal divisors $N m_{\bar{\pi}}(f)=(N m[f])$ holds ([2]). When the divisor $N m(f)$ is trivial, we can choose a constant c such that the divisor $N m(f+c)$ is non trivial. This means that $d^{\prime} \geqq d$ if M^{\prime} and M are d^{\prime}-gonal and d-gonal respectively.

When M and M^{\prime} are both d-gonal, we have the following lemma:
Lemma 1.3 (Ishii [3]) Let $\pi^{\prime}: M^{\prime} \rightarrow M$ be a covering map that both M and M^{\prime} are d-gonal. Then;
(1) there exists a covering map $\pi: \boldsymbol{P}_{1}^{\prime} \rightarrow \boldsymbol{P}_{1}$ with Riemann spheres $\boldsymbol{P}_{1}^{\prime}$ and \boldsymbol{P}_{1} satisfying the following diagram;

where ψ^{\prime} is a morphism of degree d,
(2) if M^{\prime} has a unique g_{d}^{1} and π^{\prime} is normal, then π is also normal and $\operatorname{Gal}\left(M^{\prime} / M\right) \cong \operatorname{Gal}\left(\boldsymbol{P}_{1}^{\prime} / \boldsymbol{P}_{1}\right)$ (i.e., cyclic, dehedral, tetrahedral, octahedral, or isosahedral).
§ 2.
Let M be a compact Riemann surface of genus g that has two meromorphic functions h and h^{\prime} of degree d and d^{\prime} respectively. Let $\boldsymbol{C}\left(h, h^{\prime}\right)$ be a subfield of $\boldsymbol{C}(M)$ generated by h and h^{\prime}, and \tilde{M} be the compact Riemann surface of genus \tilde{g} whose function field is isomorphic to $\mathbb{C}\left(h, h^{\prime}\right)$. Put $\left[\boldsymbol{C}(M): \mathbb{C}\left(h, h^{\prime}\right)\right]=t$. Then \tilde{M} has meromorphic functions of degree d / t and d^{\prime} / t induced by h and h^{\prime} respectively. By Lemma 1.1 we have ;

Lemma 2.1. $\tilde{g} \leqq(d / t-1)\left(d^{\prime} / t-1\right)$.
From now on we assume;
M is defined by the equation $*$), T is the automorphism of M defined by $(x, y) \longmapsto \rightarrow\left(x, \zeta_{d} y\right)$, where $\zeta_{d}=\exp (2 \pi i / d)$, and h is the canonical map $M \rightarrow M /\langle T\rangle=\boldsymbol{P}_{1}$.

We denote by g_{k} the genus of the quotient compact Riemann surface $M /\left\langle T^{k}\right\rangle$ for a positive integer k dividing d and $k \neq d$. Moreover if $k=q$ is a prime
number, we denote by s_{q} the number of branch points of the canonical map $M /\left\langle T^{q}\right\rangle \rightarrow M /\langle T\rangle \cong \boldsymbol{P}_{1} . \quad s_{q}$ is equal to the number of r_{i} 's prime to q and we have $g_{q}=(q-1)\left(s_{q}-2\right) / 2\left(\because \Sigma r_{i} \equiv 0 \bmod d\right)$.

Lemma 2.2. Assume that M has a meromorphic function h^{\prime} of degree d^{\prime}. Let q_{0} be the smallest prime number dividing G.C.D. $\left(d, d^{\prime}\right)=\left(d, d^{\prime}\right)$. If d^{\prime} satisfies the inequalities:

$$
\begin{aligned}
& \left.g_{q}>\left(d / q_{0}-1\right)\left(d^{\prime} / q_{0}-1\right) \cdots \cdots \cdots * *\right) \\
& \text { for any prime } q \text { dividing G.C.D. }\left(d, d^{\prime}\right),
\end{aligned}
$$

then $t=d$ or 1 . Especially when $\left(r_{i}, d\right)=1$ for all $1 \leqq i \leqq s, t=d$ or 1 provided $g_{q_{0}}>\left(d / q_{0}-1\right)\left(d^{\prime} / q_{0}-1\right)$.

Proof. Assume $t \neq d, 1$. As $\left\langle T^{d / l}\right\rangle$ is a unique subgroup of order t in $\langle T\rangle, \tilde{M}$ should be isomorphic to $M /\left\langle T^{d / t}\right\rangle$ and $\tilde{g}=g_{d / l}$. For any prime number q dividing $d / t(\neq 1)$, we have $\left\langle T^{q}\right\rangle \supset\left\langle T^{d / t}\right\rangle$ and $\tilde{g}-1 \geqq g_{q}-1 \geqq\left(d / q_{0}-1\right)\left(d^{\prime} / q_{0}-1\right)$ $\geqq(d / t-1)\left(d^{\prime} / t-1\right)$. This contradicts to Lemma 2.1. If $\left(r_{i}, d\right)=1$ for all $i=1, \cdots, s$, then $s=s_{q}=s_{q_{0}}$ and $g_{q} \geqq g_{q_{0}}$ for any prime number q dividing $\left(d, d^{\prime}\right)$. Thus the latter part of this lemma is reduced to the first part.

Proposition 2.3. Assume M is a compact Riemann surface of genus g defined by the equation *). Let d^{\prime} be a positive integer satisfying the inequalities **) in lemma 2.2 and $(d-1)\left(d^{\prime}-1\right) \leqq g-1$. Then;
(1) If d does not divide d^{\prime}, then there is no meromorphic function of degree d^{\prime}.
(2) If d divides d^{\prime}, then every meromorphic function h^{\prime} of degree d^{\prime} is obtained by $r(h)$, where r is some rational function of degree d^{\prime} / d and h is the canonical map $M \rightarrow M /\langle T\rangle$.

Proof. Let h^{\prime} be a meromorphic function of degree $d^{\prime} .(d-1)\left(d^{\prime}-1\right) \leqq g-1$ means $t \neq 1$ by lemma 1.1. Thus $\boldsymbol{C}\left(h, h^{\prime}\right)=\boldsymbol{C}(h)$ by lemma 2.2 and $h^{\prime}=r(h)$ for some rational function r.

Remark. If $d=p$ is a prime number, this proposition is exactly same as Lemma 1.2(1).

Theorem 2.4. Let M be a compact Riemann surface of genus g defined by *) and q_{0} be the smallest prime number dividing d.
(1) Assume $(d-1)(d-2) \leqq g-1$ and $\left(d / q_{0}-1\right)\left(d / q_{0}-2\right) \leqq g_{q}-1$ for any prome q dividing d. Then M is d-gonal.
(2) Assume $(d-1)^{2} \leqq g-1$ and $\left(d / q_{0}-1\right)^{2} \leqq g_{q}-1$ for any prime q dividing d. Then M is d-gonal and having a unique g_{d}^{1}.

Proof. (1) Assume that there is a meromorphic function h^{\prime} of degree d^{\prime} with $d^{\prime} \leqq d-1$. By $(d-1)(d-2) \leqq g-1$ and lemma 1.1, $t=[\boldsymbol{C}(M): \boldsymbol{C}(h, h)] \neq 1$. As $t \mid\left(d, d^{\prime}\right)$ and $d^{\prime}<d$, we have $d^{\prime} \leqq d-t$. Thus $d^{\prime} / q_{0} \leqq d / q_{0}-1$ and $\left(d / q_{0}-1\right)\left(d^{\prime} / q_{0}-1\right) \leqq\left(d / q_{0}-1\right)\left(d / q_{0}-2\right) \leqq g_{q}-1$ for any prime number q dividing d. Hence the assumptions in Proposition 2.3 are satisfied. This is a contradiction. (2) Let h^{\prime} be a meromorphic function of degree d. By the same way as in (1) and Proposition 2.3(2), we have $\boldsymbol{C}\left(h, h^{\prime}\right)=\boldsymbol{C}(h)$. Thus M has a unique g_{d}^{1}.

When $\left(r_{i}, d\right)=1$ for all $i=1, \cdots, s$, we can restate Theorem 2.4 as follows;
THEOREM 2.4^{\prime}. (1) If $(d-1)(d-2) \leqq g-1$ and $\left(d / q_{0}-1\right)\left(d / q_{0}-2\right) \leqq g_{q_{0}}-1$, then M is d-gonal.
(2) If $(d-1)^{2} \leqq g-1$ and $\left(d / q_{0}-1\right)^{2} \leqq g_{q_{0}}-1$, then M is d-gonal and having a unique g_{d}^{1}.

Proof. Use the latter part of Lemma 2.2.
Example 2.5. Let M be a compact Riemann surface defined by $y^{4}-x\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right)\left\{\left(x-a_{4}\right)\left(x-a_{5}\right)\left(x-a_{6}\right)\left(x-a_{7}\right)\right\}^{2}=0$, where $a_{i}(1 \leqq i \leqq 7)$ are distinct non-zero numbers, then $g=7$. Put $N=M /\left\langle T^{2}\right\rangle . N$ is defined by $y^{2}-x\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right)=0$, i.e., $g_{2}=1$. M satisfies the conditions of Theorem 2.4(1), and then M is 4-gonal. On the other hand M has infinitely many g_{4}^{1}. In fact if g_{2}^{1} and $g_{2}^{1^{\prime}}$ are two distinct linear systems on N, then $\pi^{*} g_{2}^{1}$ and $\pi^{*} g_{2^{\prime \prime}}$ are distinct linear systems of degree 4 and dimension 1 on M, where $\pi: M \rightarrow N$ is a canonical map. Thus M has infinitely many g_{4}^{1}.

Example 2.6. For prime numbers p and q with $p \geqq q$, let M be defined by
 $1 \leqq i \leqq s$. If s satisfies $s \geqq 2 p q-1$ and $(p-1)(p-2)<(q-1)(s-2) / 2$, then M is $p q$-gonal. If s satisfies $s \geqq 2 p q+1$ and $(p-1)^{2}<(q-1)(s-2) / 2$, then M is $p q$-gonal and having a unique $g_{p q}^{1}$.

Proof. These results are easily from $g=(p q-1)(s-2) / 2, g_{p}=(p-1)(s-2) / 2$, $g_{q}=(q-1)(s-2) / 2$, and Theorem 2.4'.

Example 2.7. Let M be defined by $y^{4}-x^{2}\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right)=0$, where a_{1}, a_{2}, a_{3} are distinct non-zero numbers. The covering map $x: M \rightarrow \boldsymbol{P}_{1}$ is
completely ramified at A_{1}, A_{2}, A_{3} and Q with $x\left(A_{i}\right)=a_{i}(i=1,2,3)$ and $x(Q)=\infty$ respectively. Also x is ramified at two points P_{1} and P_{2} with ramification index 2 and $x\left(P_{1}\right)=x\left(P_{2}\right)=0$. Thus $g=4(<(4-1)(4-2))$ and $g_{2}=1$. Then this M does not satisfy the conditions in Theorem 2.4(1). In fact M is trigonal with a principal divisor $(x / y)=P_{1}+P_{2}+Q-A_{1}-A_{2}-A_{3}$, and not a hyperelliptic curve by Lemma 1.2(1).

Remark. M in Example 2.7 does not satisfy the condition of Lemma 1.2(2) for $p=3$. But M has unique g_{3}^{1}, because M has a canonical divisor $(d x / y)=$ $2 A_{1}+2 A_{2}+2 A_{3}$ and by [4] (III. 8.7).

§ 3.

In the following sections we give some applications of our results in $\S 2$. At first we will prove the following Theorem, which have been obtained by Namba [7] and improved by Kato [5] in the case $d=p$ a prime number.

Theorem 3.1. Let M and M^{\prime} be defined by the following equations;

$$
\left.y^{d}-\left(x-a_{1}\right)^{r_{1}} \cdots\left(x-a_{s}\right)^{r_{s}}=0 \ldots \ldots \ldots \ldots . \operatorname{i}\right)
$$

and

$$
\left.\tilde{y}^{d}-\left(\tilde{x}-b_{1}\right)^{t_{1}} \cdots\left(\tilde{x}-b_{s}\right)^{t_{s}}=0 \quad \cdots \ldots \ldots \ldots \cdot \mathrm{Cii}\right)
$$

respectively, where $1 \leqq r_{i} \leqq d-1,1 \leqq t_{i} \leqq d-1, \quad \sum r_{i} \equiv \Sigma t_{i} \equiv 0 \bmod d$. Assume M satisfies the conditions in Theorem 2.4(2), and M and M^{\prime} are birationally equivalent. Then, by changing the indeces suitably, we have;
(1) there exists $A \in \operatorname{Aut}\left(\boldsymbol{P}_{1}\right)$ satisfying $b_{i}=A a_{i}(1 \leqq i \leqq s)$, and

$$
\#\left\{\left\{\begin{array}{ll}
\operatorname{ord}_{p} t_{i}=\operatorname{ord}_{p} r_{i} & \text { if } \quad \operatorname{ord}_{p} r_{i}<\operatorname{ord}_{p} d \quad \text { or } \\
\operatorname{ord}_{p} t_{i} \geqq \operatorname{ord}_{p} d & \text { if } \quad \operatorname{ord}_{p} r_{i} \geqq \text { ord }_{p} d \quad(1 \leqq i \leqq s)
\end{array}\right.\right.
$$

for each prime number p dividing d.
(2) if $\left(r_{1}, d\right)=1$, then $r_{1} / t_{1} \in(Z / d Z)^{\times}$and $\left(r_{1} / t_{1}\right) t_{i} \equiv r_{i} \bmod d(1 \leqq i \leqq s)$.
(3) if d is square free, then $r_{1} t_{i} \equiv t_{1} r_{i} \bmod d(2 \leqq i \leqq s)$.

Proof. (1) The proof owes to the uniqueness of g_{d}^{1} (Theorem 2.4(2)), and goes almost same way as in the proof of Theorem 1.1 in [6]. Let $\varphi: M \rightarrow M^{\prime}$ be the birational map. As M has unique g_{d}^{1}, there exists $A \in A u t \boldsymbol{P}_{1}$ satisfying a commutative diagram;

Thus we may assume $A a_{i}=b_{i}$ for $i=1, \cdots, s$. Let $M^{\prime \prime}$ be a curve defined by $z^{d}-\left(u-A^{-1} b_{1}\right)^{t_{1}} \cdots\left(u-A^{-1} b_{s}\right)^{t_{s}}=0$ and $\psi_{A}=\psi$ be a birational map from M^{\prime} to $M^{\prime \prime}$ defined by $(\tilde{x}, \tilde{y}) \rightarrow(u, z)=\left(A^{-1} \tilde{x}, c \tilde{y} /(\tilde{x}-\gamma)^{k^{\prime}}\right)$, where c is a suitable constant, $\gamma=A(\infty)$ and $k^{\prime}=\left(\Sigma t_{\nu}\right) / d([6])$. Put $w=z \cdot \psi \cdot \varphi$, which is a meromorphic function on M. Then M is also defined by

$$
\left.w^{d}-\left(x-a_{1}\right)^{t_{1}} \cdots\left(x-a_{s}\right)^{t_{s}}=0 \cdots \cdots \cdots \cdots \mathrm{i}^{\prime}\right) .
$$

As both \mathbf{i}) and i^{\prime}) define the ramification type of the same cyclic covering $x: M \rightarrow P_{1}$, we can see \#) by considering a covering map $M /\left\langle T^{p^{\circ r d} p^{d}}\right\rangle \rightarrow P_{1}$ induced by x.
(2), (3) Put $v=w^{r_{1}} / y^{t_{1}}$, then we have;

$$
\left.v^{d}-\left(x-a_{2}\right)^{r_{1} t_{2}-r_{2} t_{1} \cdots}\left(x-a_{s}\right)^{r_{1} t_{s}-r_{s} t_{1}}=0 \cdots \cdot \mathrm{iii}\right) .
$$

Put $[\boldsymbol{C}(M): \boldsymbol{C}(x, v)]=t$. As $\boldsymbol{C}(M) \supset \boldsymbol{C}(x, v) \supset \boldsymbol{C}(x)$ are cyclic extensions, $v^{d / t}$ is in $\boldsymbol{C}(x)$ and $r_{1} t_{i}-t_{1} r_{i} \equiv 0 \bmod t(2 \leqq i \leqq s)$ by iii). Moreover we can see that s numbers $\left(r_{1} t_{i}-t_{1} r_{i}\right) / t(2 \leqq i \leqq s)$ and d / t have no common divisor and G.C.D. $\left(r_{1}, t_{1}, d\right)=\left(r_{1}, t_{1}, d\right)$ divides t. On the other hand $\boldsymbol{C}(x, v)$ is the function field of the curve $M /\left\langle T^{d / t}\right\rangle$. Assume $d \neq t$, and take a prime number q dividing d / t. Then the curve $M /\left\langle T^{q}\right\rangle$ is defined by the following two equations simultaneously ;

$$
\left.y^{q}-\left(x-a_{1}\right)^{r_{1}} \cdots\left(x-a_{s}\right)^{r_{s}}=0 \cdots \cdots \cdots \cdots \cdots \cdots \cdot \mathrm{~A}\right)
$$

and

$$
\left.v^{q}-\left(x-a_{2}\right)^{\left(r_{1} t_{2}-r_{2} t_{1}\right) / t} \cdots\left(x-a_{s}\right)^{\left(r_{1} t_{s}-r_{s} t_{1}\right) / t}=0 \cdots \mathrm{~B}\right) .
$$

Now we will show $r_{1} \neq 0 \bmod q$. In fact this is obvious when $\left(r_{1}, d\right)=1$. Next we consider the case d is square free. From \#) we have ($\left.r_{1}, t_{1}, d\right)=\left(r_{1}, d\right)$. As d is square free and $\left(r_{1}, t_{1}, d\right) \mid t,\left(d / t, r_{1}, d\right)=\left(d / t, r_{1}\right)=1$ and $\left(r_{1}, q\right)=1$. Thus a_{1} is a branch point of the covering $x: M /\left\langle T^{q}\right\rangle \rightarrow \boldsymbol{P}_{1}$ by A). But this contradicts to B). So we have $t=d$ and

$$
r_{1} t_{i}-t_{1} r_{i} \equiv 0 \bmod d \quad(2 \leqq i \leqq s) .
$$

When $\left(r_{1}, d\right)=1$, then $\left(t_{1}, d\right)=1$ by \#, and we get (2).
Remark. Conversely if there exists $A \in \operatorname{Aut}\left(\boldsymbol{P}_{1}\right)$ as in (1) and we have $\left(r_{1} / t_{1}\right) t_{i} \equiv r_{i} \bmod d(2 \leqq i \leqq s)$, then M and M^{\prime} are birationally equivalent ([6]).
§4.
Next we consider a covering map $\pi^{\prime}: M^{\prime} \rightarrow M$ with a cyclic d-gonal curve M defined by *) of genus g and a d^{\prime}-gonal curve M^{\prime} of genus g^{\prime}.

Theorem 4.1. Assume $d=d^{\prime}$. Then;
(1) M^{\prime} is also a cyclic d-gonal curve.
(2) If M satisfies the conditions of Theorem 2.4(2) aud π^{\prime} is normal, then the Galois group af π^{\prime} is cyclic, dehedral, tetrahedral, octahedral or isosahedral.

Proof. (1) Easily from Lemma 1.3(1). (2) Let T (resp. T^{\prime}) be the automorphism of order d on M (resp. M^{\prime}) as in $\S 2$. By the commutative diagram in Lemma 1.3 and the uniqueness of g_{d}^{1} on M we may assume that T^{\prime} induces T. For each prime number q dividing d, we have a commutative diagram;

Let g_{q}^{\prime} be genus of $M^{\prime} /\left\langle T^{\prime q}\right\rangle$. As $g \leqq g^{\prime}$ and $g_{q} \leqq g_{q}^{\prime}, M^{\prime}$ is also satisfying the conditions in Theorem 2.4(2). Then M^{\prime} has a unique g_{d}^{1}. By Lemma 1.3(2) we have our results.

Theorem 4.2. Assume $d \leqq d^{\prime}$. If d and d^{\prime} satisfy the conditions of Proposition 2.3. on M, then d divides d^{\prime}.

Proof. Let D^{\prime} be a positive divisor of degree d^{\prime} on M^{\prime} such that $\left|D^{\prime}\right|$ has projective dimension 1. Assume $N m_{n} D^{\prime}$ has some common point with $N m_{n} E$ for each $E \in\left|D^{\prime}\right|$. Then each $E \in\left|D^{\prime}\right|$ has some common point with $\pi^{*} N m D^{\prime}$. On the other hand if E and E^{\prime} in $\left|D^{\prime}\right|$ have common points, then $E=E^{\prime}$ by the minimality of d^{\prime}. Hence $\left|D^{\prime}\right|$ should be a finite set. This is a contradiction. Thus there is a meromorphic function h of degree d^{\prime} on M^{\prime} and $N m[h]$ is also of degree d^{\prime} on M^{\prime}. By Proposition 2.3 we have $d \mid d^{\prime}$.

COROLLARY 4.3. Let $\pi^{\prime}: M^{\prime} \rightarrow M$ be an unramified covering of degree q with a cyclic p-gonal curve M of genus g, where p and q are distinct prime numbers. Assume $g>p^{2} q-2 p+1$. Then;
(a) M^{\prime} is a pq-gonal curve with a unique $g_{p q}^{1}$.
(b) Let $\psi: M^{\prime} \rightarrow \boldsymbol{P}_{1}^{\prime}$ be the covering map defined by $g_{p q}^{1}$ in a), then;
(b-i) ψ is not cyclic (i.e., M^{\prime} is not a cyclic pq-gonal curve).
(b-ii) if $p \nmid q-1$, then ϕ is not normal.

Proof. (a) Let $h: M \rightarrow \boldsymbol{P}_{1}$ be the covering map of degree p, then $h \circ \pi^{\prime}$ is a meromorphic function of degree $p q$ on M^{\prime}. For $g>p^{2} q-2 p+1>(p q-1)(p-1)$, M^{\prime} is $p m$-gonal ($1 \leqq m \leqq q-1$) or $p q$-gonal by Theorem 4.2. (see the remark of Proposition 2.3). Now we assume that M^{\prime} is $p q$-gonal. Let ψ be a meromorphic function of degree $p q$ on M^{\prime}. Put $K=\boldsymbol{C}\left(\psi, h \circ \pi^{\prime}\right)$ and $\left[\boldsymbol{C}\left(M^{\prime}\right): K\right]=t$. As the genus g^{\prime} of M^{\prime} is $q(g-1)+1$, we have $g^{\prime}>(p q-1)^{2}$ and $t \neq 1$. Consider the following diagram;
$\boldsymbol{C}\left(M^{\prime}\right) \supset K \supset \boldsymbol{C}(\psi)$
\cup
$\boldsymbol{C}(M) \supset \boldsymbol{C}\left(h \circ \pi^{\prime}\right)$.

If $t=q$, then $\left[K: C\left(h \circ \pi^{\prime}\right)\right]=p$ and genus of $K=g\left(\because \pi^{\prime}\right.$ is unramified and $(p, q)=1)$. For $g>(p-1)^{2}, K=\boldsymbol{C}\left(h \circ \pi^{\prime}\right)$. This is a contradiction. If $t=p$, then $K \supset C\left(h \circ \pi^{\prime}\right)$ is an unramified extension. As $C\left(h \circ \pi^{\prime}\right)$ is of genus 0 , this is a contradiction. Thus we have $t=p q$ and M^{\prime} has a unique $g_{p q}^{1}$. If M^{\prime} is $p m$-gonal $(1 \leqq m \leqq q-1)$ and ψ is a meromorphic function of degree $p m$ on M^{\prime}, then $\left[\boldsymbol{C}\left(M^{\prime}\right): \boldsymbol{C}\left(\psi, h \circ \pi^{\prime}\right)\right]=p$ by $(p, q)=1$ and $g^{\prime}>(p m-1)(p q-1)$. This is a contradiction.
(b-i) We may assume $h \circ \pi^{\prime}=\psi$ by (a). If ψ is cyclic, then there exists an automorphism T^{\prime} on M^{\prime} of order p, and we have a commutative diagram;

For $(p, q)=1, \pi$ is unramified. This is a contradiction. (b-ii) Assume ψ is normal with galois group G. If $p<q$ and $p \nmid q-1$, it is well known that G is cyclic. But this can not be happened by (a). If $p>q$, then G has a unique normal subgroup $\left\langle T^{\prime}\right\rangle$ of index q generated by T^{\prime}. Thus we have a same commutative diagram as in the proof of (b-i). This is also a contradiction.

§ 5.

We consider a covering $\pi^{\prime}: M \rightarrow N$, where M is cyclic d-gonal and N is e-gonal. Put $\operatorname{deg} \pi=n$ and $d^{\prime}=n e$.

Theorem 5.1. Assume d and d^{\prime} satisfy the conditions of Proposition 2.3. Then e divides d. Moreover if $u: M \rightarrow M /\left\langle T^{d / e}\right\rangle$ is the canonical map, then there exists a covering map $v: M /\left\langle T^{d / e}\right\rangle \rightarrow N$ satisfying $\pi^{\prime}=v \circ u$. Especially when $d=d^{\prime}=n e, N$ is isomorphic to $M /\left\langle T^{d / e}\right\rangle$.

Proof. Let $\psi_{N}: N \rightarrow \tilde{P}_{1}$ be the covering over Riemann sphere $\tilde{\boldsymbol{P}}_{1}$ of degree e. Then $\psi_{N} \pi^{\prime}$ is a meromorphic function on M of degree $d^{\prime}=n e$. By Proposition 2.3, d divides $n e=d^{\prime}$, and we have a commutative diagram;

with a rational function $\tilde{\pi}$ of degree d^{\prime} / d and the canonical map h. The function fields $\boldsymbol{C}(N)$ and $\boldsymbol{C}\left(\boldsymbol{P}_{1}\right)$ are linearly independent over $\boldsymbol{C}\left(\tilde{\boldsymbol{P}}_{1}\right)$ for the minimality of e. Then there exists a e-gonal curve \tilde{M} with a function field $\boldsymbol{C}(\tilde{M})$ isomorphic to $\boldsymbol{C}\left(\boldsymbol{P}_{1}\right) \underset{c\left(\tilde{\boldsymbol{P}}_{1}\right)}{ } \boldsymbol{C}(N)$. By the universal property of $\boldsymbol{C}(\tilde{M})$ we have the following commutative diagram;

where $\operatorname{deg} \tilde{\phi}=e$ and $\operatorname{deg} \tilde{\pi}=n e / d$. We can see that e divides d. As h is a cyclic extension, $\tilde{M} \cong M /\left\langle T^{d / e}\right\rangle$.

Example 5.2. Let M be the cyclic $p q$-gonal curve defined in Example 2.6 with $p \geqq q, s \geqq 2 p q+1$ and $(p-1)^{2}<(q-1)(s-2) / 2$. Then any covering $\pi: M \rightarrow N$ of degree p (resp. q) with a q (resp. p)-gonal curve N is birational to the
 $\left.y^{p}-\left(x-a_{1}\right)^{r_{1}} \cdots\left(x-a_{s}\right)^{r_{s}}=0\right)$.

$\S 6$.

Let M be a cyclic d-gonal curve with a unique g_{d}^{1} defined by

$$
\begin{aligned}
& \left.y^{d}-\left(x-a_{1}\right)^{r_{1}} \cdots\left(x-a_{s}\right)^{r_{s}}=0, \quad \sum r_{i} \equiv 0 \bmod d, \cdots \cdots *\right) \\
& \left(r_{i}, d\right)=1 \text { for all } i \text {, here we can take } \infty \text { as one of } a_{i} \text { 's. }
\end{aligned}
$$

Let T be the automorphism of order d as in $\S 2$, and $\psi: M \rightarrow M /\langle T\rangle$ be the canonical map. We will determine the equation $*$), which defines M having an automorphism $V(\notin\langle T\rangle)$ of order N.

For the uniqueness of g_{d}^{1}, we have $V\langle T\rangle V^{-1}=\langle T\rangle$ and V induces an automorphism \tilde{V} on $M /\langle T\rangle=\boldsymbol{P}_{1}(x)$. Let $\boldsymbol{C}(x)$ and $\boldsymbol{C}(u)$ be the function fields of $M /\langle T\rangle$ and $M /\langle V, T\rangle$ respectively. Then $\pi^{\prime}: M /\langle T\rangle \rightarrow M /\langle T, V\rangle$ is a cyclic covering of order $N^{\prime}\left(N^{\prime} \mid N\right)$ and we may assume $\pi^{\prime *} u=x^{N^{\prime}}$.

Before considering generally, we study the following two cases;

$$
\text { Case 1) }\langle T\rangle \cap\langle V\rangle=\langle T\rangle, \quad \text { Case 2) }\langle T\rangle \cap\langle V\rangle=\{1\} .
$$

Case 1) $\langle T\rangle \cap\langle V\rangle=\langle T\rangle$
We can see that $d \mid N$ and $N^{\prime}=N / d$. We may assume $V^{N / d}=T$ and $\tilde{V}^{*} x=\zeta^{\prime} x$ with a primitive N^{\prime}-th root ζ^{\prime} of 1 . We denote the set \{fixed point of $\tilde{V}\}$ by $F(\tilde{V})$. Then $\# F(\tilde{V})=2$.

Case 1-a) $\# F(\tilde{V}) \cap\left\{a_{1}, \cdots, a_{s}\right\}=2$
We may assume that two elements of the above set are $a_{s-1}=0$ and $a_{s}=\infty$. As \tilde{V} acts on $\left\{a_{1}, \cdots, a_{s-2}\right\}$ faithfully, M can be defined by;
A)

$$
\begin{aligned}
& y^{d}=x\left\{\prod_{t=1}^{k} \prod_{j=1}^{N / d}\left(x-\zeta^{\prime j-1} c_{t}\right)^{m_{N / d} \cdot(t-1)+j}\right\}, \\
& 1+\sum_{t=1}^{k} \sum_{j=1}^{N / d} m_{N / d \cdot(t-1)+j} \neq 0 \bmod d,
\end{aligned}
$$

where $\left(m_{*}, d\right)=1$, and $c_{t}(\neq 0)$ are distinct complex numbers satisfying

$$
\left\{\zeta^{\prime j-1} c_{t} \mid 1 \leqq j \leqq N / d\right\} \cap\left\{\zeta^{\prime j-1} c_{s} \mid 1 \leqq j \leqq N / d\right\}=\emptyset \quad \text { for } \quad t \neq s
$$

By acting V^{*} on both sides of A), we have;
B)

$$
\left(T^{*} y\right)^{d}=\zeta^{\prime M}\left\{\prod_{t=1}^{k} \prod_{j=1}^{N / d}\left(x-\zeta^{\prime j-2} c_{t}\right)^{m_{N / d} \cdot(t-1)+j}\right\} x
$$

where $\quad M=1+\sum_{t=1}^{k} \sum_{j=1}^{N / d} m_{N / d \cdot(t-1)+j}$.
By the proof of Theorem 3.1 and comparing A) with B), there exists a positive integer $v(1 \leqq v<d,(v, d)=1)$ satisfying $v \cdot m_{N / d \cdot(t-1)+j} \equiv m_{N / d \cdot(t-1)+j+1} \bmod d$ $(1 \leqq j \leqq N / d-1)$, and $v m_{N / d \cdot t} \equiv m_{N / d \cdot(t-1)+1} \bmod d$. But in this case, $v \cdot 1 \equiv 1 \bmod d$. Thus we have $v=1$ and $m_{N / d \cdot(t-1)+1}=\cdots=m_{N / d} \cdot t \stackrel{\text { put }}{=} r_{t}(t=1 \leqq t \leqq k)$. The equation A) is;

I) $\quad y^{d}=x\left\{\prod_{t=1}^{k} \prod_{j=1}^{N / d}\left(x-\zeta^{\prime j-1} c_{t}\right)^{r_{t}}\right\}=x \cdot \prod_{t=1}^{k}\left(x^{N / d}-b_{t}\right)^{r_{t}}$,
As $V^{*} y^{d}=\zeta^{\prime} y^{d}$ and V is of order N, we have $V^{*} y=\eta y$, where η satisfies $\eta^{d}=\zeta^{\prime}$ and $\eta^{N^{\prime}}$ is a primitive $N / N^{\prime}(=d)$-th root of 1 .

Proposition 6.1a). Case 1-a happens if and only if M is defined by I) with $d \mid N,\left(r_{t}, d\right)=1(t=1, \cdots, k)$ and $N / d \sum_{t=1}^{k} r_{t}+1 \neq 0 \bmod d . V$ is defined $b y$

$$
V^{*} x=\zeta^{\prime} x \quad \text { and } \quad V^{*} y=\eta y, \cdots \ldots \ldots \ldots \ldots \ldots \ldots . .
$$

where ζ^{\prime} is a primitive N^{\prime}-th root of $1, \eta$ satisfies $\eta^{d}=\zeta^{\prime}$ and $\eta^{N^{\prime}}$ is a primitive d-th root of 1 (for example, $\eta=e^{2 \pi i / N}$ and $\zeta^{\prime}=e^{2 \pi i / N^{\prime}}$ satisfy these conditions).

Case 1-b) $\# F(\tilde{V}) \cap\left\{a_{1}, \cdots, a_{s}\right\}=1$
We may assume that the element of the above set is a_{s}. There exists a point $P \in M$ such that $\psi(P) \notin\left\{a_{1}, \cdots, a_{s}\right\}$ and $V(P) \in\langle T\rangle P=\left\langle V^{N / d}\right\rangle P$. Then $V^{d}(P)=P$. If $(d, N / d)=r \neq 1$, then $T^{d / r} P=V^{N / d \cdot d / r} P=P$. This contradicts to $\psi(P) \notin\left\{a_{1}, \cdots, a_{s}\right\}$. Thus $(d, N / d)=1$ and $\left\langle V^{d}\right\rangle \cap\left\langle V^{N / d}\right\rangle=\{1\}$. We have $\boldsymbol{C}(M)=\boldsymbol{C}\left(M /\left\langle V^{N / d}\right\rangle\right) \bigotimes_{\boldsymbol{C}(M /\langle V\rangle} \boldsymbol{C}\left(M / V^{d}\right), \quad$ Assume $\boldsymbol{\phi}(P)=\infty, a_{s}=0$ and $\pi^{*} * u=x^{N / d}$. As $M /\left\langle V^{d}\right\rangle \rightarrow M /\langle V\rangle=\boldsymbol{P}_{1}(u)$ is cyclic of degree $d, C\left(M /\left\langle V^{d}\right\rangle\right)$ is defined by $y^{d}=u \prod_{t=1}^{k}\left(u-b_{t}\right)^{n_{t}}$, with $\left(n_{t}, d\right)=1 \quad(t=1, \cdots, e)$ and $1+n_{1}+\cdots+n_{k} \neq 0 \bmod d$. Then M is defined by $y^{d}=x^{N / d}\left(x^{N / d}-b_{1}\right)^{n_{1}} \cdots\left(x^{N / d}-b_{k}\right)^{n_{k}}$. For $(d, N / d)=1$, M can be defined by the following equation;
II)

$$
y^{d}=x \cdot\left(x^{N / d}-b_{1}\right)^{r_{1}} \cdots\left(x^{N / d}-b_{k}\right)^{r_{k}}, \quad \text { with } \quad 1+\Sigma r_{t} \neq 0 \bmod d
$$

After all, we have;
Proposition 6.1b). Case 1-b) happens if and only if $(N / d, d)=1$ and M is defined by II) with $\left(r_{t}, d\right)=1$ and $1+\sum_{t=1}^{e} r_{t} \neq 0 \bmod d . \quad V$ is defined by;

$$
V^{*} x=\zeta^{\prime} x \quad \text { and } \quad V^{*} y=\eta y, \cdots \ldots \ldots \ldots \ldots \ldots . . .
$$

where ζ^{\prime} is a primitive N^{\prime}-th root of $1, \eta$ satisfies $\eta^{d}=\zeta^{\prime}$ and $\eta^{N^{\prime}}$ is a primitive d-th root of 1 .

Case 1-c) $\# F(\hat{V}) \cap\left\{a_{1}, \cdots, a_{s}\right\}=\emptyset$
By the same way as in Case 1-b), we have ;
Proposition 6.1c). Case 1-c) happens if and only if $(N / d, d)=1$ and M is defined by;
III)

$$
y^{d}=\left(x^{N / d}-b_{1}\right)^{r_{1}} \cdots\left(x^{N / d}-b_{k}\right)^{r_{k}}
$$

with $\left(r_{t}, d\right)=1$ and $\sum_{t=1}^{k} r_{t} \equiv 0 \bmod d . \quad V$ is defined by;

$$
\left.V^{*} x=\zeta^{\prime} x \text { and } V^{*} y=\zeta^{\prime \prime} y, \quad \cdots \ldots \ldots \ldots \ldots \cdot 3\right)
$$

where $\zeta^{\prime}\left(\right.$ resp. $\left.\zeta^{\prime \prime}\right)$ is a primitive N^{\prime} (resp. d)-th root of 1 .
Case 2) $\langle T\rangle \cap\langle V\rangle=\{1\}$
The automorphism \tilde{V} on $M /\langle T\rangle$ induced by V is of order N, and we may assume that $\tilde{V}^{*} x=\zeta x$ with a primitive N-th root ζ of 1 .

Case 2-a) $\#\left\{a_{1}, \cdots, a_{s}\right\} \cap F(\tilde{V})=2$ and
Case 2-b) $\#\left\{a_{1}, \cdots, a_{s}\right\} \cap F(\tilde{V})=1$
By the same way as in Case 1-a), M can be defined by

$$
y^{d}=x \prod_{t=1}^{k}\left(x^{N}-b_{t}\right)^{r_{t}}, \quad \text { with } \quad\left(r_{t}, N\right)=1
$$

In Case 2-a) (resp. 2-b), $N \sum_{i=1}^{k} r_{t}+1 \not \equiv 0($ resp. $\equiv 0) \bmod d$. As V satisfies $V^{*} y^{d}$ $=\zeta \cdot y^{d}$ and V is of order N, V is defined by;

$$
\left.V^{*} x=\zeta x \quad \text { and } \quad V^{*} y=\xi \cdot y, \cdots \ldots \ldots \ldots \ldots \ldots \ldots 4\right)
$$

where ξ is a N-th root of 1 satisfying $\xi^{d}=\zeta . \quad \therefore(d, N)=1$ and ξ is also a primitive N-th root of 1 . After all we have;

Proposition 6.2. Case 2-a) (resp. 2-b)) happens if and only if $(N, d)=1$ and M is birational to the curve defined by IV) with $\left(r_{t}, N\right)=1$ and $N \sum_{t=1}^{k} r_{t}+1 \not \equiv 0$ $($ resp. $\equiv 0) \bmod d . V$ is defined by 4) with a primitive N-th root ξ of 1 and $\zeta=\xi^{d}$.

Case 2-c) $\#\left\{a_{1}, \cdots, a_{s}\right\} \cap F(\tilde{V})=\emptyset$
By the same way as in Case $1-a), M$ is birational to the curve defined by

$$
y^{d}=\left\{\prod_{t=1}^{k} \prod_{j=1}^{N}\left(x-\zeta^{j-1} b_{t}\right)^{m_{N(t-1)+j}}\right\} \quad \text { with } \sum_{i=1}^{k} \sum_{j=1}^{N} m_{N / d \cdot(t-1)+j} \equiv 0 \bmod d
$$

and $\left(m_{*}, d\right)=1$. Moreover there exists a positive integer $v(1 \leqq v \leqq d-1,(v, d)=1)$ satisfying $v m_{N(t-1)+j} \equiv m_{N(t-1)+j+1} \bmod d(1 \leqq j \leqq N-1)$, and $v m_{N \cdot t} \equiv m_{N(t-1)+1} \bmod d$. We see $v^{N} \equiv 1 \bmod d$. Thus M is defined by

$$
y^{d}=\prod_{t=1}^{k} \prod_{j=1}^{N}\left(x-\zeta^{j-1} b_{t}\right)^{n_{t} v^{j-1}}
$$

with positive integers n_{t} satisfying $\sum_{t=1}^{k} \sum_{j=1}^{N} n_{t} t^{j-1}=0 \bmod d$ and $\left(n_{*}, d\right)=1$. Put $R=\Sigma n_{t}$ and $S=\Sigma v^{j-1}$. Then $R S \equiv 0 \bmod d$. By acting V^{*} on the both sides of V again, we have

$$
\begin{aligned}
& \left(V^{*} y\right)^{d}=\prod_{t=1}^{k} \prod_{j=1}^{N}\left(\zeta x-\zeta^{j-1} b_{t}\right)^{n_{t} v^{j-1}} \\
& =\zeta^{R S} \prod_{t=1}^{k} \prod_{j=1}^{N}\left(x-\zeta^{j-2} b_{t}\right)^{n^{t} v^{j-1}} \\
& = \begin{cases}\zeta^{R S} y^{v d} / \prod_{t=1}^{k}\left(x-\zeta^{N-1} b_{t}\right)^{n_{t}\left(v^{N-1}\right)}, \zeta^{R S} \neq 1 & \text { (if } R S \neq 0 \bmod N) . \\
\text { or } & \\
y^{v d} / \prod_{t=1}^{k}\left(x-\zeta^{N-1} b_{t}\right)^{n_{t}\left(v^{N-1}\right)} & \text { (if } R S \equiv 0 \bmod N) .\end{cases}
\end{aligned}
$$

Then we have;

$$
V^{*} y= \begin{cases}\eta \zeta^{R S / d} y^{v} / \prod_{t=1}^{k}\left(x-\zeta^{N-1} b_{t}\right)^{n_{t}\left(v^{N-1) / d}\right.}, & \text { (if } R S \not \equiv 0 \bmod N) \cdots \cdot \mathrm{V}-\mathrm{i}) \\ \text { or } & \\ \eta y^{v} / \prod_{t=1}^{k}\left(x-\zeta^{N-1} b_{t}\right)^{n_{t}\left(v^{N-1) / d}\right.}, & \text { (if } R S \equiv 0 \bmod N) \cdots \mathrm{V}-\mathrm{ii})\end{cases}
$$

where η is some d-th root (not necessarily primitive) of 1 .
Assume $R S \not \equiv 0 \bmod N$. Using $\mathrm{V}-\mathrm{i})$ repeatedly, we have;

$$
\begin{aligned}
& V^{* N} y=\eta^{S} \zeta^{(R S / d)} y^{v^{N}} /\left[\left\{\prod_{l=0}^{N-1} \prod_{t=1}^{k}\left(\zeta^{l} x-\zeta^{N-1} b_{t}\right)^{n_{t}}\right\}^{v^{N-1-t}}\right]^{\left(v^{N}-1\right) / d} \\
& =\eta^{S} \zeta^{(R S / d) S} y^{v^{N}} / \zeta^{R\left(v^{N-2}+2 v^{N-3}+\cdots(N-) v 0\right)}\left[\left\{\prod_{l=0}^{N-1} \prod_{t=1}^{k}\left(x-\zeta^{N-l-1} b_{t}\right)^{n_{t}}\right\}^{v^{N-1-l}}\right]^{\left(0^{N-1}\right) / d}
\end{aligned}
$$

For $V^{* N} y=y, \eta^{s}=1$ should be held.
When $R S \equiv 0 \bmod N$, by the same way as above, we have;

$$
V^{* N} y=\eta^{S \zeta} \zeta^{-R\left(S^{2}-N S\right) / d} y^{v^{N}}\left(y^{d}\right)^{\left(v^{N-1) / d}\right.}=\eta^{S} \zeta^{-R S^{2} / d} y .
$$

Thus η should satisfy $\eta^{s}=\zeta^{R s^{2} / d}$.
Proposition 6.3. Case 2-c) happens of and only if M is birational to the curve defined by V) with $v^{N} \equiv 1 \bmod d$ and $R S \equiv 0 \bmod d$. If $R S \not \equiv 0(r e s p . R S \equiv 0)$ $\bmod N, V$ is defined by $V^{*} x=\zeta x$ and $\left.\mathrm{V}-\mathrm{i}\right)($ resp. V-ii) with d-th root η of 1 satisfying $\eta^{s}=1$ (resp. $\eta^{s}=\zeta^{R S^{2} / d}$), here η is not necessarily primitive (for example, $\eta=1$ (resp. $\eta=\zeta^{R S / d)}$) satisfies $\eta^{s}=1\left(\right.$ res $\left.p . \eta^{s}=\zeta^{R S^{2} / d}\right)$).

General case $\langle T\rangle \cap\left\langle V^{\prime}\right\rangle=\left\langle V^{N^{\prime}}\right\rangle=\left\langle T^{d^{\prime}}\right\rangle$.
We can obtain the equations of M and V as follows. We may assume that $N^{\prime} \mid N$ and $d^{\prime} \mid d$, then $d / d^{\prime}=N / N^{\prime}$. The case $d^{\prime}=1$ is exactly same as the case 1) (Propositions $6-\mathrm{la} \sim \mathrm{c})$).

When $d^{\prime}>1$, put $M^{\prime}=M /\langle T\rangle \cap\langle V\rangle$. Then M^{\prime} is d^{\prime}-gonal with a unique $g_{d^{\prime}}^{1}$ having an automorphism $V^{\prime}\left(=V \bmod \left\langle V^{d^{\prime}}\right\rangle\right)$ of order d^{\prime}. We can apply Proposition 6.2 or 6.3 , and M^{\prime} is defined by an equation of type IV) or V).

For example, assume M^{\prime} is defined by;

$$
y^{\prime d^{\prime}}=\prod_{i=1}^{k^{\prime}} \prod_{j=1}^{N^{\prime}}\left(x-\zeta^{\prime j-1} b_{t}^{\prime}\right)^{n_{t}^{\prime} v^{\prime j-1}} \quad \text { (cf. V) }
$$

with $\left(n_{*}^{\prime}, d^{\prime}\right)=\left(v^{\prime}, d^{\prime}\right)=1,1 \leqq v^{\prime} \leqq d^{\prime}-1$, and $R^{\prime} S^{\prime} \equiv 0 \bmod d^{\prime}$, where $R^{\prime}=\sum_{t=1}^{k^{\prime}} n_{t}^{\prime}$, $S^{\prime}=\sum_{j=1}^{N^{\prime}} v^{\prime j-1}$ and a primitive N^{\prime}-th root ζ^{\prime} of 1 . Moreover, assume $R^{\prime} S^{\prime} \neq 0$ $\bmod N^{\prime}$. Then V^{\prime} is defined by;

$$
\left\{\begin{array}{l}
V^{\prime} * x=\zeta^{\prime} x \\
V^{\prime} * y^{\prime}=\eta^{\prime} \zeta^{R^{\prime} s^{\prime} / d^{\prime}} y^{v^{\prime}} / \prod_{t=1}^{k^{\prime}}\left(x-\zeta^{\prime N^{\prime}-1} b_{t}^{\prime}\right)^{n_{t}^{\prime}\left(v^{\prime} N^{\prime}-1\right) / d^{\prime}} \quad \text { (cf. V-i) }
\end{array}\right.
$$

with d^{\prime}-th root η^{\prime} (not necessarily primitive) of 1 satisfying $\eta^{\prime s^{\prime}}=1$. Put $y^{\prime}=y^{d / d^{\prime}}$, we can have the equation of M;

$$
\left.y^{d}=\prod_{i=1}^{k^{\prime}} \prod_{j=1}^{N^{\prime}}\left(x-\zeta^{\prime j-1} b_{t}^{\prime}\right)^{n_{t}^{\prime} v^{\prime, j-1}} . \cdots \cdots \cdots \cdot \mathrm{VI}\right)
$$

As M is defined by $*$), we have $R^{\prime} S^{\prime} \equiv 0 \bmod d,\left(n_{*}^{\prime}, d\right)=\left(v^{\prime}, d\right)=1$ and $v^{\prime N} \equiv 1$ $\bmod d$. Thus V on M is defined by;

$$
\left\{\begin{array}{l}
V^{*} x=\zeta^{\prime} x \\
V^{*} y=\eta \zeta^{R^{\prime} S^{\prime} / d} y^{v^{\prime}} / \prod_{t=1}^{k^{\prime}}\left(x-\zeta^{\prime N^{\prime}-1} b_{t}^{\prime}\right)^{n_{t}^{\prime}\left(v^{\prime} N^{\prime}-1\right) / d}
\end{array}\right.
$$

where η satisfies $\eta^{d / d^{\prime}}=\eta^{\prime}$. We can see $V^{* N^{\prime}} y=\eta^{s^{\prime}} y$. As V is of order N, $\eta^{\prime s^{\prime}}$ should be a primitive $N / N^{\prime}\left(=d / d^{\prime}\right)$ root of 1 . When $\left(S^{\prime}, d / d^{\prime}\right)=1, \eta^{\prime}=1$, and $\eta=\exp \left(2 \pi i d^{\prime} / d\right)$ satisfies these conditions,

Considering the other cases, we finally have;
Theorem 6.4. Let M be a cyclic d-gonal curve with a unique g_{d}^{1} defined by *) with an automorphism $V(\notin\langle T\rangle)$ or order N. Then M and V are determined as the following types;
I) Let $d^{\prime}(>1)$ and $N^{\prime}(>1)$ be two integers satisfying $d^{\prime}\left|d, N^{\prime}\right| N$ and d / d^{\prime} $=N / N^{\prime} \neq 1$.

I-i) M is a curve defined by the equation

$$
\left.y^{d}=\prod_{t=1}^{k^{\prime}} \prod_{j=1}^{N^{\prime}}\left(x-\zeta^{\prime j-1} b_{t}\right)^{n^{\prime} v^{r^{j-1}}} \cdots \cdots \cdots \cdot \sqrt{ }\right)
$$

with $1 \leqq v^{\prime} \leqq d^{\prime}-1,\left(n_{*}^{\prime}, d\right)=\left(v^{\prime}, d\right)=1$ and $S^{\prime} R^{\prime} \equiv 0 \bmod d$.

If $S^{\prime} R^{\prime} \equiv 0 \bmod N^{\prime}$, then V is defined by

$$
\left\{\begin{array}{l}
V^{*} x=\zeta^{\prime} x \\
V^{*} y=\eta \zeta^{R^{\prime} S^{\prime} / d} y^{v^{\prime}} / \prod_{t=1}^{k^{\prime}}\left(x-\zeta^{\prime N^{\prime-1}} b_{t}^{\prime}\right)^{n_{t}^{\prime}\left(v^{\prime N^{\prime}}-1\right) / d}
\end{array}\right.
$$

where η is a d-th root (not necessarily primitive) of 1 such that $\eta^{S^{\prime}}$ is a primitive d / d^{\prime}-th root of 1 . (for example, when $\left(S^{\prime}, d / d^{\prime}\right)=1, e^{2 \pi i d^{\prime} / d}$ can be taken as η).

If $S^{\prime} R^{\prime} \equiv 0 \bmod N^{\prime}, V$ is defined by

$$
\left\{\begin{array}{l}
V^{*} x=\zeta^{\prime} x \\
V^{*} y=\eta y^{v^{\prime}} / \prod_{t=1}^{k^{\prime}}\left(x-\zeta^{\prime N^{\prime-1}} b_{t}^{\prime}\right)^{n_{t}^{\prime}\left(v^{\prime N^{\prime}}-1\right) / d}
\end{array}\right.
$$

where η is a d-th root (not necessarily primitive) of 1 such that $\eta \zeta^{\prime-R^{\prime} S^{\prime 2 / d}}$ is a primitive d / d^{\prime}-th root of 1 . (for example, when $\left(S^{\prime}, d / d^{\prime}\right)=1$, we can take $\zeta^{\prime R^{\prime} S^{\prime} / d} \zeta_{d / d^{\prime}}$ as η, where $\zeta_{d / d^{\prime}}$ is a primitive d / d^{\prime}-th root of 1). (cf. Prop. 6.3)

I-ii) If $\left(d^{\prime}, N^{\prime}\right)=1$, we have an additional type;

$$
y^{d}=x \prod_{t=1}^{k}\left(x^{N^{\prime}}-b_{t}\right)^{r_{t}}
$$

with $\left(r_{t}, N\right)=1$. In this case V is defined by;

$$
V^{*} y=\xi y \quad \text { and } \quad V^{*} x=\xi^{d} x,
$$

where ξ is a primitive N-th root of 1. (cf. Prop. 6.2)
II) In case of $d \mid N$, in addition to 1), we have other types of M and V as follows;

II-i) M and V in Proposition 6.1a).
II-ii) In addition to II-i), M and V in Proposition 6.1b) and 6.1c), provided $((d, N / d)=1$.

References

[1] Accola, R.D.M., Strongly branched coverings of closed Riemann surfaces, Proc. Amer. Math. Soc. 26 (1970), 315-322.
[2] Arbarello, E., Cornalba, M., Griffiths, P.A. and Harris, J., Geometry of Algebraic Curves Vol. I Springer-Verlag 1985.
[3] Ishii, N., Covering over d-gonal curves, Tsukuba J. Math. Vol. 16, No. 1 (1992), 173-189.
[4] Farkas, H. M. and Kra, I., Riemann Surfaces, Graduate Texts in Mathematics 71, Springer-Verlag (1980).
[5] Kato, T., Conformal equivalence of compact Riemann surfaces, Japan J. Math. 7-2 (1981), 281-289.
[6] Namba, M., Families of meromorphic functions on compact Riemann surfaces, Lecture Notes in Math. 767 (1979), Springer-Verlag.
[7] Namba, M., Equivalence problem and automorphism groups of certain compact Riemann surfaces, Tsukuba J. Math. 5-2 (1981), 319-338.
[8] Yoshida, Y., Automorphisms with fixed points and Weierstrass points compact Riemann surfaces, Tsukuba J. Math. 17-1 (1993), 221-249.

Mathematical Division of General Education
College of Science and Technology
Nihon University
Narashinodai, Funabashi-shi, Chiba-shi, Chiba, 274
Japan

[^0]: Received August 31, 1993.

