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REMARKS ON d-GONAL CURVES

By

Naonori ISHII

§0. Introduction.

Let M be a compact Riemann surface and f be a meromorphic function on
M. We denote the principal divisor associated to f by (f) and the polar divisor
of f by (e If d=degree of the divisor (f)., we call f a meromorphic
function of degree d. If d is the minimal integer in which a non-trivial
meromorphic function f of degree d exists on M, then we call M a d-gonal
curve. In this case the complete linear system |(f).| has projective dimension
one. Moreover if f defines a cyclic covering M—P; over a Riemann sphere
P,, then we call M a cyclic d-gonal curve.

Now we assume that M is a p-gonal curve of genus g with a prime
number p. Then Namba has shown that M has a unique linear system g5 of
projective dimension one and degree p provided g>(p—1)* ([6]). For example
if M is defined by an equation y?—(x—a;) 1 (x—a,)"s=0 with (p, r))=1,
S7;=0 (mod p) and s=2p+1, then M is p-gonal and having a unique g3 ([71).

In this paper we treat a compact Riemann surface M defined by an equation ;

yi=(x—a)t - (x—ay)"+=0 *)
with 27r;=0 modd and 1Zr;<d,

where d is not necessarily a prime number.

In §2, we will show that M is d-gonal with the function x of degree d if
there are enough 7;’s relatively prime to p for each prime number p dividing
d. In this case we call M a cyclic d-gonal curve. We will also show that M
has a unique gy if there are more sufficient such »;’s as above (§ 2).

In §3, let M be a cyclic d-gonal curve defined by #) having a unique g%
and M’ be a compact Riemann surface defined by y%—(x—b;)"t - (x—bs)*+=0.
We will study the relations among a;, b, 7; and #; (1<i<s) in the case M and
M’ are conformaly equivalent. Namba [7] and Kato [5] have already studied
this problem in the case d is a prime number. We will give similar results for
an arbitrary d (§ 3).
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In §4, we consider a covering map n’: M’—M, where M is a cyclic d-gonal
curve with a unique g and M’ is a d’-gonal curve. In the case d=d’, we can
apply the same methods in [3], and we will see that M’ is also cyclic d-gonal.
Moreover if n’ is normal and d=d’, then the covering group of x’ is isomorphic
to cyclic, dehedral, tetrahedral, octahedral or icosahedral. For a general case
d<d’, we will show some relations between d and d’ (§4).

In §5, we will give some remarks about coverings M—N with a cyclic
d-gonal curve M having a unique g}.

Finally we determine the equation #), which defines the curve M (with a
unique g%) having an automorphism V (&<T>) of order N, where T is the
automorphism defined by T*x=x and T*y=¢>*"%y (§6).

§1. Preliminaries

At first we give several results on the existence of meromorphic functions
on a compact Riemann surface M of genus g following Accola and Namba.

LEMMA 1.1. (Accola [1]) Let M be a compact Riemann surface of genus g.
Let f, and f, be two meromorphic functions on M of degree n, and n, respectively.
If f1 and f, generate the full field C(M) of meromorphic functions on M, then
g=(n—1)(n,—1).

The following lemma by Namba is easily obtained from Lemma 1.1.

LEMMA 1.2 (Namba [6]) Let M be a compact Riemann surface of genus g
and f be a meromorphic function of degree p on M with a prime number p.

QO If h is a meromorphic function of degree n on M satisfying
(p—D(n—1)<g—1, then p divides n and h=r(f), where r(x) is a rational
function of degree n/p.

(2) If (p—11=<g—1, then M is p-gonal and having a unique linear system
8» of degree p and dimension 1.

Proor. (1) By lemma 1.1, the subfield C(f, g) of C(M) generated by f
and £ is not equal to C(M). As p=[C(M):C(f)] is a prime number,
C(f)=C(f, g). (2) If h is any meromorphic function of degree p, then
C(h=C(f) by ). O

Next we give some results concerning covering maps. Let 7: M’—M be an
arbitrary covering with compact Riemann surfaces M and M’. For a divisor
D=2%n,Q, (m;sZ, Q;€M') we define a divisor Nm,D=NmD by Zn;n(Q;). On
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the other hand, for a meromorphic function f on M’ we denote by Nm[f] the
meromorphic function on M obtained by the norm map Nm: C(M)—C(M). It
is well known that the equation of principal divisors Nm.(f)=(Nm[f]) holds
([2]). When the divisor Nm(f) is trivial, we can choose a constant ¢ such that
the divisor Nm(f+c¢) is non trivial. This means that d’>d if M’ and M are
d’-gonal and d-gonal respectively.

When M and M’ are both d-gonal, we have the following lemma :

LEMMA 1.3 (Ishii [3]) Let n': M'—M be a covering map that both M and
M are d-gonal. Then;

(1) there exists a covering map =« P{— P, with Riemann spheres P/ and P,
satisfying the following diagram;

x4

M- P!
n‘ll l»— CMY=C(M) @ C(P{), CMNCP)H=C(P,),
M B (P
Nm[¢']

where ' is a morphism of degree d,

(2) if M’ has a unigue gy and =’ is normal, then = is also normal
and Gal(M'/M)=Gal(P{/P,) (i.e., cyclic, dehedral, tetrahedral, octahedral, or
1sosahedral).

§2.

Let M be a compact Riemann surface of genus g that has two meromorphic
functions A and A’ of degree d and d’ respectively. Let C(h, h’) be a subfield
of C(M) generated by i and A/, and M be the compact Riemann surface of
genus g whose function field is isomorphic to C(k, A’). Put [C(M): C(h, h')]=1.
Then M has meromorphic functions of degree d/t and d’/t induced by i and
h’ respectively. By Lemma 1.1 we have;

LEMMA 2.1. g=(d/t—1)d’/t—1).
From now on we assume ;

M is defined by the equation %), 7 is the automorphism of M defined

by (x, ¥)F—(x, {sv), where {,=exp(2ri/d), and h is the canonical map
M—-M/KT>=P,.

We denote by g, the genus of the quotient compact Riemann surface M/<T*>
for a positive integer k dividing ¢ and k=#d. Moreover if k=g is a prime
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number, we denote by s, the number of branch points of the canonical map
M/KTH—-M/KTy=P,. s, is equal to the number of r;’s pri'me to ¢ and we
have g,=(¢g—1)(sq—2)/2 (*.© Zr;=0 mod d).

LEMMA 2.2. Assume that M has a meromorphic function h’ of degree d’.
Let q, be the smallest prime number dividing G.C.D. (d, d")=(d, d’). If d’
satisfies the inequalities:

go>(d/qo—1)d /go—1)eeevns k)
for any prime q dividing G.C.D.(d, d),

then t=d or 1. Especially when (r;, d)=1 for all 1<i<s, t=d or 1 provided
8> (d/qo—1)(d"/go—1).

PROOF. Assume t#d, 1. As (T%*'> is a unique subgroup of order ¢ in
<T>, M should be isomorphic to M/<T%*> and §=gq,. For any prime number
¢ dividing d/t (#1), we have <THDKT¥") and §—1=g,—1=(d/q—1)(d"/g,—1)
>(d/t—1)(d’/t—1). This contradicts to Lemma 2.1. If (r;, d)=1 for all
i=1, -, s, then s=s,=s,, and g,=g,, for any prime number ¢ dividing (d, d’).
Thus the latter part of this lemma is reduced to the first part. O

PROPOSITION 2.3. Assume M is a compact Riemann surface of genus g
defined by the equation ). Let d’ be a positive integer satisfying the inequal-
ities *%) in lemma 2.2 and (d—1)(d'—1)<g—1. Then;

1) If d does not divide d’, then there is no meromorphic function of
degree d’.

(2) If d divides d’, then every meromorphic function h’ of degree d’ is
obtained by r(h), where v is some rational function of degree d’/d and h is the
canonical map M—M/{T>.

PROOF. Let i’ be a meromorphic function of degree d’. (d—1)(d'—1)=<g—1
means t#1 by lemma 1.1. Thus C(h, h')=C(h) by lemma 2.2 and h’=r(h) for
some rational function . O

REMARK. If d=p is a prime number, this proposition is exactly same as
Lemma 1.2(1).

THEOREM 2.4. Let M be a compact Riemann surface of genus g defined by
x) and g, be the smallest prime number dividing d.

(1) Assume (d—1Xd—2)<g—1 and (d/q—1Xd/q.—2)<g8,—1 for any prime
g dividing d. Then M is d-gonal.
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(2) Assume (d—172<g—1 and (d/q,—1)*<gy—1 for any prime q dividing d.
Then M is d-gonal and having a unique g%.

ProOOF. (1) Assume that there is a meromorphic function A’ of degree d’
with d’<d—1. By (d—1)(d—2)<g—1 and lemma 1.1, t=[C(M): C(h, h)]#1.
As ti(d,d’) and d’'<d, we have d’'<d—t. Thus d’/g=d/g—1 and
(d/ge—1)d"/go—1)<(d/qo—1)(d/qo—2)<ge—1 for any prime number ¢ dividing
d. Hence the assumptions in Proposition 2.3 are satisfied. This is a con-
tradiction. (2) Let 2’ be a meromorphic function of degree d. By the same
way as in (1) and Proposition 2.3(2), we have C(h, h')=C(h). Thus M has a
unique gy O

When (7;, d)=1 for all i=1, -, s, we can restate Theorem 2.4 as follows;

THEOREM 2.4'. (1) If (d—1)(d—2)<g—1 and (d/q—1)Xd/g—2)=g¢—1,
then M is d-gonal.

) If (d—1)<g—1 and (d/q—1)*<g,,—1, then M is d-gonal and having a
unique gj.

PrOOF. Use the latter part of Lemma 2.2. O

EXAMPLE 2.5. Let M be a compact Riemann surface defined by
yr—x(x—a)(x —a)(x—a){(x—a)x—as)x—as)(x—a,)}*=0, where a; (1£iL7)
are distinct non-zero numbers, then g=7. Put N=M/<{T?. N is defined by
yi—x(x—a.)(x —a)(x—ay=0, i.e., g.=1. M satisfies the conditions of Theorem
2.4(1), and then M is 4-gonal. On the other hand M has infinitely many gi.
In fact if g} and gi’ are two distinct linear systems on N, then n*g} and m*gy’
are distinct linear systems of degree 4 and dimension 1 on M, where =: M—N
is a canonical map. Thus M has infinitely many gi.

ExAMPLE 2.6. For prime numbers p and ¢ with p=¢, let M be defined by
yPl—(x—a,) 1 (x—a,)"? - (x—a,)"*=0 with X7r;=0 mod pg and (r;, pg)=1,
1<i<s. If s satisfies s=2pg—1 and (p—1)p—2)<(¢g—1)(s—2)/2, then M is
pg-gonal. If s satisfies s=2pg+1and (p—1)’<(¢g—1)(s—2)/2, then M is pg-gonal
and having a unique gjq.

PrROOF. These results are easily from g=(pg—1)(s—2)/2, g,=(p—1)(s—2)/2,
g2,=(g—1)(s—2)/2, and Theorem 2.4’. O

EXAMPLE 2.7. Let M be defined by y*—x%x—a)(x—a.)(x —as;)=0, where
a,, a,, a; are distinct non-zero numbers. The covering map x:M—P, is
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completely ramified at A,, A,, A; and @ with x(A4;)=a; (¢=1, 2, 3) and x(¢)=c0
respectively. Also x is ramified at two points P, and P, with ramification
index 2 and x(P)=x(P,)=0. Thus g=4(<(4—1)4—2)) and g,=1. Then this
M does not satisfy the conditions in Theorem 2.4(1). In fact M is trigonal
with a principal divisor (x/y)=P,+P,+Q—A,—A,— A,, and not a hyperelliptic
curve by Lemma 1.2(1).

REMARK. M in Example 2.7 does not satisfy the condition of Lemma 1.2(2)
for p=3. But M has unique gi, because M has a canonical divisor (dx/v)=
2A,+2A,+2A, and by [4] (II.8.7).

§3.

In the following sections we give some applications of our results in §2.
At first we will prove the following Theorem, which have been obtained by
Namba [7] and improved by Kato {5] in the case d=p a prime number.

THEOREM 3.1. Let M and M’ be defined by the following equations;

Yyo—(x—a) 1 (x—ag)Ts=0cccrcrrennn i)
and
FEa(F—by) e (B—bg)is=0 vvvvvrenrnnnn i)

respectively, where 1<r;<d-—1, 1<t;<d—1, 2r;=2t,=0 modd. Assume M
satisfies the conditions in Theorem 2.4(2), and M and M’ are birationally equiv-
alent. Then, by changing the indeces suitably, we have;

(1) there exists Ac Aut(P,) satisfying b;=Aa; (1<i<s), and

{ ordpt;=o0rd,r; if ordy,r;<ord,d or

#

ordptizord,d if ordyr;=ord,d (1=i<s)
for each prime number p dividing d.

(2) if (r, A)=1, then ri/t,=(Z/dZ)* and (r,/t)t;=vr; mod d (1<i<s).
(3) if d is square free, then rit;=tr; modd (2<i<s).

PROOF. (1) The proof owes to the uniqueness of gi (Theorem 2.4(2)), and
goes almost same way as in the proof of Theorem 1.1 in [6]. Let ¢: M—M’
be the birational map. As M has unique g}, there exists A< Aut P, satisfying
a commutative diagram;
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M—
xl l%
P, P, .
A
Thus we may assume Aa;=b; for i=1, ---, s. Let M” be a curve defined by

28— (u— A"t - (u—A7by)ts=0 and ¢4=¢ be a birational map from M’ to
M” defined by (%, 5)—(u, 2)=(A7'%, ¢§/(%—7)*'), where ¢ 1s a suitable constant,
y=A(0) and k’'=(2t,)/d ([6]). Put w=z-¢-¢, which is a meromorphic function
on M. Then M is also defined by

We—(x—a)4 - (X — @) 5=0 vvoveerenene i,

As both i) and i’) define the ramification type of the same cyclic covering
x: M—P,, we can see #) by considering a covering map M/(T?"*?*>P,
induced by x.

(2), (3) Put v=w"1/y4, then we have;

Ud;(x*_az)fltz—fztl (x_as)rlts_TsH:O. . .iiD.

Put [C(M): C(x, v)]=t. As C(M)DC(x, v)DC(x) are cyclic extensions, v¢/* is
in C(x) and »,¢;—6,7;=0 mod ¢ (2<7/<s) by iii). Moreover we can see that s
numbers (mt;—try)/l (2<i<s) and d/t have no common divisor and
G.C.D.(ry, t, d)=(ry, t,, d) divides t. On the other hand C(x, v) is the function
field of the curve M/<T%*y. Assume d=+t, and take a prime number ¢ dividing
d/t. Then the curve M/(T% is defined by the following two equations simul-
taneously ;

Yl (x—a) 1 (x—ag)T5=0 ceererriieiiiii. A)
and

VI—(x—@ay) 1t TR/ L (x— g )TatsTTst IE=() .. .. B),

Now we will show 7,20 mod ¢. In fact this is obvious when (r,, d)=1. Next
we consider the case d is square free. From #) we have (ry, &, d)=(1, d).
As d is square free and (v, t;, d)|t, (d/t, r,, d)=(d/t, r,)=1 and (7, ¢)=1.
Thus a, is a branch point of the covering x: M/<T%—P; by A). But this
contradicts to B). So we have t=d and

riti—tir;=0 mod d (2Z7i<s).
When (r,, d)=1, then (t;, d)=1 by #, and we get (2). O

REMARK. Conversely if there exists A< Aut(P,) as in (1) and we have
(ri/t)t;=r; mod d (2<i<s), then M and M’ are birationally equivalent ([6]).
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§4.

Next we consider a covering map =’ : M'—M with a cyclic d-gonal curve
M defined by *) of genus g and a d’-gonal curve M’ of genus g’.

THEOREM 4.1. Assume d=d’. Then;

(1) M is also a cyclic d-gonal curve.

(2) If M satisfies the conditions of Theorem 2.4(2) aud =’ is normal, then
the Galois group af = is cyclic, dehedral, tetrahedral, octahedral or isosahedral.

Proor. (1) Easily from Lemma 1.3(1). (2) Let T (resp. T’) be the auto-
morphism of order d on M (resp. M’) as in §2. By the commutative diagram
in Lemma 1.3 and the uniqueness of g4 on M we may assume that 7’ induces
T. For each prime number ¢ dividing d, we have a commutative diagram;

M/

M /<T"

M M/<T9.

Let g/ be genus of M'/<T'%. As g<g’ and g,<g, M’ is also satisfying the

conditions in Theorem 2.4(2). Then M’ has a unique gj. By Lemma 1.3(2)
we have our results. O

THEOREM 4.2. Assume d<d’. If d and d’ satisfy the conditions of Prop-
osition 2.3. on M, then d divides d’.

Proor. Let D’ be a positive divisor of degree d’ on M’ such that |D’|
has projective dimension 1. Assume Nm,D’ has some common point with Nm.E
for each E€!D’|. Then each E€|D’| has some common point with z*NmD’.
On the other hand if E and E’ in |D’] have common points, then E=E’ by
the minimality of d’. Hence |D’| should be a finite set. This is a contradic-
tion. Thus there is a meromorphic function & of degree d’ on M’ and Nm[h]
is also of degree d’ on M’. By Proposition 2.3 we have d[d’. O

COROLLARY 4.3. Let n’: M'—M be an unramified covering of degree g with
a cyclic p-gonal curve M of genus g, where p and q are distinct prime numbers.
Assume g>p2q—2p+1. Then;
(@) M is a pg-gonal curve with a unique gp,.
(b) Let ¢: M'—Py be the covering map defined by gy, in a), then;
(b-1) ¢ is not cyclic (i.e., M’ is not a cyclic pg-gonal curve).
(b-ii) if p Y q—1, then ¢ is not normal.
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PROOF. (a) Let h: M—P, be the covering map of degree p, then hoz’ is
a meromorphic function of degree pgon M'. For g>p*q—2p+1>(pg—1)(p—L1),
M is pm-gonal 1<m<g—1) or pg-gonal by Theorem 4.2. (see the remark of
Proposition 2.3). Now we assume that M’ is pg-gonal. Let ¢ be a meromorphic
function of degree pg on M’. Put K=C(¢, hon’) and [C(M’): K]=t. As the
genus g’ of M’ is ¢(g—1)+1, we have g’>(pg—1)® and t+1. Consider the
following diagram ;
CIM)DKDC()
) V)
C(M)DC(hex").
If t=q, then [K:C(h-n’)]=p and genus of K=g (".° =n’ is unramified and
(p, 9=1). For g>(p—1)%, K=C(h-zn’). This is a contradiction. If t=p, then
KDC(hon') is an unramified extension. As C(hen’) is of genus 0, this is a
contradiction. Thus we have t=pg and M’ has a unique gb, If M’ is
pm-gonal (1=m=g—1) and ¢ is a meromorphic function of degree pm on M’,
then [C(M"): C(¢, hen’)Y]1=p by (p, ¢9)=1 and g’>(pm—1)pg—1). This is a
contradiction.
(b-i) We may assume hon’=¢ by (a). If ¢ is cyclic, then there exists an
automorphism 7’ on M’ of order p, and we have a commutative diagram ;

M M//<T/>

= l | =
= T
\

M M/{T»>=P,, where ©’ is unramified.

h

For (p, ¢)=1, = is unramified. This is a contradiction. (b-ii) Assume ¢ is
normal with galois group G. If p<g and p jg—1, it is well known that G is
cyclic. But this can not be happened by (a). If p>¢, then G has a unique
normal subgroup (T’) of index ¢ generated by 7’. Thus we have a same
commutative diagram as in the proof of (b-i). This is also a contradiction. [

§5.

We consider a covering =’: M—N, where M is cyclic d-gonal and N is
e-gonal. Put deg r=n and d’'=ne.

THEOREM 5.1. Assume d and d’ satisfy the conditions of Proposition 2.3.
Then e divides d. Moreover if u: M—M/{T?%*) is the canonical map, then there
exists a covering map v: M/CT**>—N satisfying n’=veu. Especially when
d=d’=ne, N is isomorphic to M/{T .
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PROOF. Let ¢y: N—P, be the covering over Riemann sphere P, of degree
¢. Then ¢yen’ is a meromorphic function on M of degree d’=ne. By Prop-
osition 2.3, d divides ne=d’, and we have a commutative diagram ;

M- P,=M/<T>
7 l i%
N P,

Oy
with a rational function # of degree d’/d and the canonical map h. The
function fields C(N) and C(P,) are linearly independent over C(PB) for the
minimality of e. Then there exists a e-gonal curve M with a function field
C(A7I) isomorphic to C(P,) ® C(N). By the universal property of C(ZVI’ ) we

c(Pp
have the following commutative diagram;

i \h‘k
\ML
x P1=M/<T>
||
N —>P,
N

where degd=c and deg i=ne/d. We can see that e divides d. As h is a
cyclic extension, M=M/{T%%. O

EXAMPLE 5.2. Let M be the cyclic pg-gonal curve defined in Example 2.6
with p=gq, s=2pg+1 and (p—1)*<(¢g—1)(s—2)/2. Then any covering 7 : M—N
of degree p (resp. ¢) with a ¢ (resp. p)-gonal curve N is birational to the
cyclic ¢ (resp. p)-gonal curve defined by Yl (x—a;)"1 - (x—a;)"s=0 (resp.
yP—(x—a) 1 (x—ay)"s=0).

§6.

Let M be a cyclic d-gonal curve with a unique gi defined by
yi—(x—a,)"1 - (x—as;)"s=0, XYr;=0 modd,------ *)
(r;, d)=1 for all 7, here we can take co as one of a,’s.

Let T be the automorphism of order d as in §2, and ¢: M—M/<{T)> be the
canonical map. We will determine the equation %), which defines M having an

automorphism V (&<(T) of order N.
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For the uniqueness of gi, we have V{(T)V*=<(T) and V induces an
automorphism V on M/<T>=P,(x). Let C(x) and C(u) be the function fields
of M/<T> and M/<{V, T respectively. Then =n’: M/<T)>—M/{T, V) is a cyclic
covering of order N’ (N’|N) and we may assume n’*u=x"".

Before considering generally, we study the following two cases;

Case 1) (TH>\<KV>=<(T>, Case 2) <(TH>r<V>={1}.

Case 1) (Ty>n<V>=<T>

We can see that d|N and N’=N/d. We may assume V¥/¢=T and
V*x=¢'x with a primitive N’-th root £’ of 1. We denote the set {fixed point
of ¥} by F(V). Then #F(V)=2.

Case 1-a) #F(V)Niay, -, a;} =2
We may assume that two elements of the above set are a,_;=0 and ag,=co.
As V acts on {ay, -, a;_,} faithfully, M can be defined by;

Nid

A) yd—_—x{]"[ (x—c’j'lcb)mN/d-(t—le},

P __1mzv/d~<z_1)+j5€0 mod d,

<,

where (m«, d)=1, and ¢, (#0) are distinct complex numbers satisfying
{7 ISTEN/AY L e IS SN/dY =0 for fos.

By acting V* on both sides of A), we have;

Nid

k
B) (Trp)*=g{ 1L

(x_-C’f‘th)mN/d-(z—1>+j}x ,
t=1

=1

.,

& Nid
where M=1+ zzl ElmN/d-(t—l)-hi'
= j=

By the proof of Theorem 3.1 and comparing A) with B), there exists a posi-
tive integer v (1=v<d, (v, d)=1) satisfying v -my/e. -0+ =Mysa.c-v+j+1 mod d
(1£7<N/d—1), and vmy,g.c=My,q.¢-n+: Mod d. But in this case, v-1=1 mod d.

Thus we have v=1 and my/q.c_1ys1= *** :mN,d.Lpézn (t=1Zt<k). The equation
A) is;
k Nid . k
1) ye=x{ I T (=7 et} =x- [ (x¥14=bore,
= = t=1

As V#*y¢={'y% and V is of order N, we have V*y=nzy, where 7 satisfies
n¢={" and 7"’ is a primitive N/N’ (=d)-th root of 1.
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PROPOSITION 6.1a). Case 1-a happens if and only if M 1is defined by 1)
with d|N, (r:, d)=1 (t=1, ---, k) and N/dé re+12£0 mod d. V is defined by

V*x={'x and V*y—;y]y, ...................... 1)

where {' is a primitive N'-th root of 1, 7 satisfies 7*={ and n™' is a primitive
d-th root of 1 (for example, n=e***'" and {'=e**!"" satisfy these conditions).

Case 1-b) #F(V)ﬂ{al, e ast=1

We may assume that the element of the above set is a,. There exists a
point P€M such that ¢(P)¢{ay, -, a;} and V(P)e<{T)>P=(VV/¢)P. Then
V4P)=P. If (d, N/d)=r=+1, then T¢TpP=V¥/édirp=pP This contradicts
to ¢(P)¢{ay, -+, as}. Thus (d, N/d)=1 and (VHV¥/*)={1}. We have
CIM)=C(M/<VFI%Yy @ CM/V?), Assume ¢(P)=c, a,=0 and w’*u=x"/°,

C KV

As M/ KVE-M/Vy=P,(u) is cyclic of degree d, C(M/<V?)) is defined by
y":ut_ﬁl(u—bt)"ﬁ, with (n,, d)=1 (t=1, ---, ¢) and 1l4n;+ --- +n,50 mod d.

Then M is defined by y¢=x¥/¢(xV/¢—p)™1 ... (x¥/2—p,)"*, For (d, N/d)=1,
M can be defined by the following equation ;

m) yi=x-(x¥/e—p) 1 (x¥/¢—by)Tr, with 142770 mod d.
After all, we have;
PROPOSITION 6.1b). Case 1-b) happens if and only if (N/d, d)=1 and M is
defined by T) with (r., d)=1 and 1+§ 70 modd. V is defined by
VAx=C'x and V*y=ny, cooeeeeoeeiiiiiinnan. 2)
where T’ is a primitive N'-th root of 1, v satisfies 7=’ and n"' is a primitive

d-th root of 1.

Case 1-¢) #F(V)N{a,, -+, a;} =0
By the same way as in Case 1-b), we have;

PROPOSITION 6.1c). Case 1-c) happens 1f and only if \N/d, d)=1 and M is
defined by ;

m) YE=(x¥ IS e (Vb

k
with (r:, d)=1 and Lg r:=0 modd. V is defined by;
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V*x :c’x and V*y :C”y’ .................... 3)
where L' (resp. L") is a primitive N’ (resp. d)-th root of 1.
Case 2) <TO>rVy>={1}

The automorphism ¥ on M/<T) induced by V is of order N, and we may
assume that V*x={x with a primitive N-th root  of 1.

Case 2-a) #{ai, -, a}NF(P)=2 and
Case 2-b) #{a,, -, a}NF(V)=1
By the same way as in Case 1-a), M can be defined by

V) ye=x TT (x¥—bo)™t, with (r,, N)=L.
t=1

In Case 2-a) (resp. 2-b), N é ri+15£0 (resp. =0) mod d. As V satisfies V*y¢
=C.y%¢ and V is of order N, V is defined by;
Vix=Cx and VH*ymE-y, cevvrrreeeeerennniannn 4)

where & is a N-th root of 1 satisfying £?={. .. (d, N)=1 and £ is also a
primitive N-th root of 1. After all we have;

PROPOSITION 6.2. Case 2-a) (resp. 2-b)) happens if and only if (N, d)=1
and M is birational to the curve defined by IV) with (r,, N)=1 and Né} re+1=£0
(resp. =0) mod d. V s defined by 4) with a primitive N-th root & of 1 and {=E&.

Case 2-¢) #{ay, -, a;) NF(V)=0
By the same way as in Case 1-a), M is birational to the curve defined by

k N k N
yd:{l__[ j[[(x—C’“‘b;)"‘Nu—nH} with 21 217711\7/(1.(;_1).”'50 mod d
P21 j=1 =1 j=

and (m«, d)=1. Moreover there exists a positive integer v 1Zv=d—1, (v, d)=1)
satisfying vmy -+ =My - +j41 Mod d (1=<7SN—1), and vmy..=mpy -1, mod d.
We see v¥=1 modd. Thus M is defined by

B N i1
V) ye=11 I (x—=g'b)"e"

t=1 j=1

E N .
with positive integers n, satisfying LZI Z} nw''=0 mod d and (n., d)=1. Put
= &

R=2XYn, and S=2v""*, Then RS=0 modd. By acting V* on the both sides
of V again, we have
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£\d — T T _pi-1p \ng? !
(V¥y)*=IT T Cx—¢7b0
={5S YT T (=0’
t=1 j=1
C”y“/f[l(x—C”*‘b:)"““”*”, CRS+1  (if RS0 mod N).
= or

y”d/fll(x—CN_lbz)””"N”” (if RS=0 mod N).

Then we have;
ngRSILyv/ Llill(x—CN"lbt)"‘wN_l”d: (if RS0 mod N)-.--V-i)
V*y=4{ or
ny*/ ﬁ(x—(”“bt)"t‘”N“”d, (if RS=0 mod N)- - - -V-ii).

where 7 is some d-th root (not necessarily primitive) of 1.
Assume RS=£0 mod N. Using V-i) repeatedly, we have;

N- oN-1-l9wN-1y/q
ynygsgasiosy [ L s ]

vN‘l‘l:l(vN’l)/d

N-1 k&
N N =24 9pN =340 (N =)0 —1-
=778C(RSId)Syv /gR(v +2v +o (N )v)[{ll*[u zl:Il(x_CN i lbt)"‘}

:nSC(RS/d)S—R(S2—NS)/dyvN/(yd)(vN—j)/d____vSCRNS/dy:vsy ( RS=0 mod d).
For V*¥y=y, pS=1 should be held.
When RS=0 mod N, by the same way as above, we have;

V*Ny:vSQ—R(SZ—NS)/dyvN(y d)('vN—l)/d:nSC—RSZ/dy .
Thus 5 should satisfy »S={Rs%4.

PROPOSITION 6.3. Case 2-c) happens 1f and only if M is birational to the
curve defined by V) with v¥=1 mod d end RS=0 modd. If RS#0 (resp. RS=0)
mod N, V s defined by V*¥x=(x and V-i) (resp. V-ii) with d-th root 3 of 1
satisfying 9S=1 (resp. pS={R5*%), here w3 is not necessarily primitive (for
example, n=1 (resp. p=CF5'®) satisfies nS=1 (resp. 5S={F5%)),

General case (TONV’'>=(V¥" >=(T%>.

We can obtain the equations of M and V as follows. We may assume that
N’|N and d’|d, then d/d’=N/N’. The case d’=1 is exactly same as the case
1) (Propositions 6-la~c)).
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When d’>1, put M'=M/<T»V). Then M’ is d’-gonal with a unique
ga having an automorphism V’ (=V mod<V%')) of order d’. We can apply
Proposition 6.2 or 6.3, and M’ is defined by an equation of type IV) or V).

For example, assume M’ is defined by ;

N’ R (i1
[T (x =L (cf. V)

nm*_

y'e

with (nf, d)=@’, d)=1, 1<v'<d’—1, and R’S’=0 mod d’, where R’'= Zn,,

N
S’=2>Jv"”7"! and a primitive N’-th root {’ of 1. Moreover, assume R’S’=%0

Jj=1
mod N’. Then V'’ is defined by;
{ Vi*x={"x
B’ .
V/*y/zy]/cm's'/d'yv'/ H(x_CIN'—lbi)ni(u"v ~1)/d’ (cf. V-i),
i=1

with d’-th root 7’ (not necessarily primitive) of 1 satisfying #’*'=1. Put
y'=y%% we can have the equation of M;

k' N’ ) Vit
=11 H (x =77 )™ 7, eeeennn V)
t=1 j=1
As M is defined by =), we have R’S’=0 mod d, (n}, d)=@’, d)=1 and v'=1
mod d. Thus V on M is defined by;

VEx={"x
{ V*yan/R'S'/d E/H(X C/V' 1p7 )nt(vN -he

where 7 satisfies %/*'=7’. We can see V*¥'y=95y. As V is of order N,
7’5" should be a primitive N/N’ (=d/d’) root of 1. When (5, d/d")=1, 5’=1,
and n=exp(2rid’/d) satisfies these conditions,

Considering the other cases, we finally have;

THEOREM 6.4. Let M be a cyclic d-gonal curve with a unique g4 defined by
*) with an automorphism V (&<T>) or order N. Then M and V are determined
as the following types;

I) Let d’” (>1) and N’ (>1) be two integers satisfying d’|d, N'|N and d/d’
=N/N'#1.
1-i) M is a curve defined by the equation

N’ ) L i1
1;_[( —gFp)mTT VD)

nﬂ’t

with 150 <d’—1, (nf, d)=@’, d)=1 and S’R’=0 mod d.
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If S’R’=£0 mod N’, then V is defined by
{ V*x={"x
.
o PIRI S d 07 _erN—1pn\nb N 14
V=g s ey TT (x— LV by ,

where ) is a d-th root (not necessarily primitive) of 1 such that %' is a primitive
d/d’-th root of 1. (for example, when (S’, d/d")=1, e***%'/? can be taken as 7).
If S’R’=0 mod N', V is defined by

{ VEx={"x
k' ’
Vay=qy®/ IL(x =0 iyt onie,
=1

where 7 is @ d-th root (not necessarily primitive) of 1 such that Q'S¢ is a

primitive d/d’-th root of 1. (for example, when (S’, d/d’)=1, we can take

B8 4140 as y, where Larqr is a primitive d/d’-th root of 1). (c¢f. Prop. 6.3)
I-ii) If (d’, N")=1, we have an additional type;

k
yi=x E(XN’“bz)”
with (ry, N)=1. In this case V is defined by ;
V*y=¢€y and V*x=8&%%,

where & is a primitive N-th root of 1. (¢f. Prop. 6.2)

O) In case of d|N, in addition to 1), we have other types of M and V as
follows ;

[i-i) M and V in Proposition 6.1a).

[-ii) In addition to T-i), M and V in Proposition 6.1b) and 6.1c), provided
((d, N/d)=1.
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