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ASYMPTOTIC BEHAVIOUR OF DENSITIES OF

MULTI-DIMENSIONAL STABLE DISTRIBUTIONS

By

SeijiHiraba

Abstract. In one-dimension asymptotic behaviour of densities of

stable distributions is well-known. However, in multi-dimensional

cases it is very difficultto investigate asymptotic behaviour of

densities of non-degenerate stable distributionsin general. In the

present paper we give the following two results: If the Levy

measure of the stable distributionhas mass at a half-line,then the

density decreases along the half-line with the same order as in

one-dimensional case. If the Levy measure is supported only on

finitelymany halflines,then we can determine asymptotic behaviour

along each direction starting at 0.

Keywords: multi-dimensional stable distribution, Levy-Ito decom-

position of Lew processes.

1. Introduction and results

Let fjt(dx)be a stable distributionon Rd with exponent 0<a<2. Then its

log-characteristic function W{z) is given as follows: For z= ＼z＼£,%eSd~1=

＼x<=Rd: ＼x＼=l＼.

W(z)= -＼z＼a＼sdJ<^0>la[l-*tan-^sgn<£, 0>]x(d0)+i<z,b> if a±l,

~UiL-iK^ ^>l[l+*-|:Sgn<5:,̂>log|<^,d>＼y(dd)+i<z,b} if a=l

where X(d6) is a finite measure on Sd~1 and b<BRd. If b=0 (a±l) or [dX(dO)

=0 (≪=1), then fi satisfies the scaling property: fil*(dx)=t~dlapt(t~lladx),in

this case ftis called strictlystable. Note that the Levy measure n(dx) of y.is

ffiven bv
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n{dx)=＼sdJ{dd)＼
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^ldx{r6)r-l-adr on Rd＼{0}

We say that ft is non-degenerate if the support of ft spans Rd, or equi-

valently the support of X spans Rd. Write this condition Span Spt X=Rd.

Throughout the present paper we always assume that ftis a non-degenerate

stable distribution on Rd. It is then well-known that fi(dx) is absolutely con-

tinuous and has a density p(x) with respect to the Lebesgue measure dx on

Rd, which is expressed as

(1.1) P(x)= f exp [-*<*, z>+W{z)~]dz
1

Furthermore p(x) is a C°°-functionwith derivatives of all orders vanishing at

infinity(cf. [6], [7], [8] and [9]).

If we write p{x)―p{x ;b), then p(x ;b)=p(x―b; 0). Henceforth, we assume

b―0. Then note that p. is strictlystable except a=l.

We are concerned with asymptotic behaviour of the density function p(x)

as |x|―>+ oo. In one-dimension itis well-known that p(x) decreases like |x j-1~a

as x-> + oo if X has mass at { + 1}. In addition, if X has no mass at { ―1}, then

p(x)=Q for x<0 when 0<a<l, and p(x)>0 for %<Q and decreases exponentially

fast as x―>―oo when l^a<2(see §2). In multi-dimensional cases Pruitt and

Taylor [6] give an upper estimate p(x)<LK＼x＼~1~afora strictlystable density.

When X is absolutely continuous and has a continuous density with respect to

the uniform measure on Sd~1, Dziubanski [2] investigates an asymptotic be-

haviour p{ro)^cr~d~a as r^ + ≪3,where a^Sd~1> c=c(a)^0 and a~b means

that a/b-*l. Furthermore Arkhipov [1] gives an asymptotic expansion of p(ra)

under some additional regularity condition on the density of X. On the other

hand one can easily deduce that if X is supported only on the orthonormal

basis of Rd, then p(x)=Hd=1pj(xj), where x=(xu ･･･,xd) and pj is a one-

dimensional density corresponding to 2j. Therefore if a^Sd~1r＼{xjy0, j=l,

■■■,d), then we have p(ra)^cr'd<-1+a) as r | +oo, where c=c(a)>0.

From these results it would be expected that a general a-stable density

p(ro) on Rd has the following asymptotic property: For each a^Sd~1 there

exist c=c(a)>0 and k ―k{a, a)^l + a such that

p(ra)^cr~k as r―^+oo.

In this paper we firstdiscuss a lower estimate for a general stable density

p(ra) and we show that a lower estimate coincides with that of the upper

estimate when X has mass at <r. Furthermore we show that the above asym-

ptotic relation is valid when X is a discrete measure whose support consists of
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only finitelymany points in Sd~1.

Our firstresult is the following: Let p. be a non-degenerate stable distribu-

tion on Rd and Con Spt A be the smallest convex hull in S^"1 containing all

elements of Spt X, and Int 5 denotes the interior of a set S in Sd~l. Recall

Theorem 1. Suppose that X has mass at <T0<=Sd-＼i.e., A({a0})>0. If 0<

≪<1 and <7oelnt (Con Spt X), or if l^a<2, then there exist positive constants

C1=C1(a, a0) and r0=r0(ot, <r0)such that 0<C1^r1+ap(r<r0) for all r>r0, where

Cl is independent of r^r0.

r
Remark 1. By the result of [6], assuming thst ＼dX(dd)=O when a=l, it

holds that Q<C1f^r1+ap(ra0)^C2<°° for all r^ro where the constant C2 is

independent of r^O and a0 (the upper estimate seems valid without the restric-

tion
＼dX(dO)=O when

a―I, but we have no proof for it).
J

Now we assume that X has mass at only finitelymany points in S^"1 (of

course we also assume that 6=0 and Span Spt X=Rd). To state the next

result we define the following subsets of Rd: For each lf^k<^d

( i ) S°(k)is a union of closed convex cones with the origin as vertex,

the cones which are subtended by every linearly independent ^-elements of

Spt X,

(ii) S(k)=S＼k)r＼Sd-1, S(O)=0 and T(k)=S(k)-S(k-l).

Now our main result in the present paper is the following:

Theorem 2. Let d£3. Suppose that Spt X is a finiteset of Sd~＼ Let
<re

Sd~＼

a) Let 0<a<l.

// <7eT(£)nInt S(d) for some l£k£d, then p{ra)^c{r-k^+a) as r-^ + oo.

// (T^Int S(d), then p(ra)=0.

b) Let l^a<2

If a^T(k) for some l<k^d, then p(ra)^c2r~k(-1+a)as r-^+oo.

If <j<£S(d),then p(ro) decreases faster than any negative order of r, that

is, p(ra) is a rapidly decreasing function of rS^O.

Here constants cu c2>0 are independent of r and can be determined explicitly

by the expression of Wiz).

For d^i this theorem could be also proved in a similar way to our proof.

However, it seems to be so tedious to describe the proof in general. So we

treat the case of d=2 and 3. This theorem is proved bv using the rotation of



226 SeijiHiraba

contour of integration as is similar to the one-dimensional case. Lemmas 2

and 4 are essential to the proof of this theorem (see §3).

In the firstcases of (a) and (b) in Theorem 2 we can give more concrete

information. We say that X has mass at (m+Indirections ai^Sd~1, 7=0, 1, 2,

m, if 1 has mass at a, and/or ―a* for each ;"=0, 1, 2, ･･･,m (of course we

assume
<jj^ak if j^k)- Now

suppose that X has mass at only (m+Indirections

ah y=0, 1, 2, ･･･, m. When a^T(k) for some l^&^d, we define a vertex set

Vk(a) of {<Tj,j=0, 1, ･■･,m} and an index set Ik(a) as follows;

{ajv ■■■, aJk)<^Vk{<j) if {cr^, ■･･,ajk＼ is linearly independent and a is con-

tained in the interior of Span {aiv ･･･, ojk),

j(k)={j＼, ■-, jk}elk{a) if {ah, -, ffjjeFiW.

Moreover for j(k)^Ik(o) set //,-(ft)=Span {<r;i,･･･, o-iA} and fix an orthonormal

basis {eh, ■■■,ejk) of Hj{k). Now let

( i) jdjtt) be a &-dimensional density on Hj(,k) with a log-characteristic

function W＼Hjcky

(ii) £)(*) be a (d ― /?)-dimensional density on Hjik) with a log-characteristic

function W＼H^k)(if k~d, set />)(fe)= l).

In particular we write pj―pja): a one-dimensional density on Hud, when ;(1)

= {/}･

Theorem 3. Let d£3. Suppose that a^T(k)r＼lntS(d) in case of <3<a<

1 and that o^T(k) in case of l<a<2 for some l<k<*d. Then

p(ro)~ S Pj(k)(r<y(j(k)))pjU)(O) as r->+co,

= S gU(k)))npj.(rhJt)p^k)(O),
;(*)e/t(ff) s=i

where o{j{k)) = Ytks=ihjsajs―G＼Hj^k-)and g(j(k))= |det £?,<*)! with a kxk-matrix

Qj(k) such that Qj(k)Gjs=:ejs for every s = l, 2, ■･■,k.

Note that the assumption of Theorem 3 implies that there is at least one

Kk)={j＼, ■■■, jk)^h{o) such that
pj(k)(0)>0 and ph{r<Jh)~c(js)r-l-a as r-≫

+ 00 with a positive constant c(/s) for each s―1, ■･■,k.

Remark 2. a) Note that S(d)=Con Spt X and T(l)=Spt X.

b) In a similar way to the proof of Theorem 2 we can show that if ft is

rotation invariant, that is, W{z)=― c＼z＼a{c>0), then

/>(*)≪ 2 cn＼x＼-d-na as I % j -^ +cxd ,

■n1
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This expansion means that

(1.2) p(x)= S cn＼x＼-d~na+ O(＼x＼-d-(N+1)a) as |*|-> + °°for all N.
71=1

In particular,if 0<a<l, then />00= S£=icn＼x＼-d-na.

This result was shown by S.C. Port (A. 13 in [5]) by making use of a

subordination techniaue.

2. Some Preliminary Results

For the proof of Theorem 2, we mention some resultsin the one-dimensional

case which are well-known in [3].

a) a^l. In this case p(x) is expressed with some constants co>O and

IjSoÎ 1 as follows:

(2.1)

(2.2)

where

(2.3)

27r)

_

1

.

1Z n = l

(

exp ―ixz―Co＼z＼a(l―ifiotan―^-sgn zjldz

expf―ixz ―c＼z＼aeie senzldz

■1)"+1
x-1-nar(na+l)cn sin nri as 0<x-^+oo

c=co$ecd, # = #(/3)=7rL(a)/3/2 and v = 7}(d)=d + xa/2

= 7t(a+L(a)P)/2 with L(a) = a(0<a<l), =a-2(l<a<2)

and /3=27r-1L(≪)"1arctan (fl0tan;ra/2).

Note that |0|<tt/2, c>0, O^y^x, |/3|^1 and

(2.4) /3o=±l if and only if £=±1 and then X has mass at only {±1}

respectively.

In particular if /30=-l, then ^=0(0<a<l), ―7z{l<a<2) and it holds that

(2.5) p(x)=0 for x^O if 0<a<l,

~'
/9 _n(coa)'1/(2g'2)x(2'a)/(2a"2)exp[-(a-l)o;-g/(a-1)co1/(a"1)xa/(a-1)]

as 0<x-≫+≪3 if l<a<2.

b) a=l.
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(2.6) p(x)= expj^

1 <x> rn

TZ n = ＼ U

―ixz―c
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{＼z＼+i2^z ＼og＼z＼)＼dz, c>0, |]8|^1,

cm r 2B z~＼n
x-l-n＼ e"zzn Im *(l+j8) -log ― dz as 0<x -^ +=≪

Jo L Tt X A

In this case (2.4) also holds.

(2.7)
Wx)~27^exp[

Moreover, if /3

x ―

2

_

rce

Cg-*/C2c)l

-1 (i.e.,Spt/}={-!}), then

as 0<x ―>+00 .

c) The asymptotic behaviour of each derivative of p(x) is obtained by-

differentiatingthe above formulae.

d) Moreover (cf. [9])

(2.8) p(x)=0 if and only if 0<≪<l and either x^O, j8=―1 or x^Q, /3=1.

In particularif ai=l then

(2.9) ^(0)=^-1c-1/ar(a-1+l)cos(^L(a)J8)

Remark 3. In the case 0>x~^ ―oo, we obtain the same results by chang-

ing x, /30 and /3 to ＼x＼,―/30 and ― /3(thus, 6 to ―0) respectively. Because if

we write p(x; a, (3)= p(x) as /)(x) depends on (a, /3), then p(―x; a, /3)=

/>(x; a, -fl) holds.

3. Proof of Results

Before proceeding to the proof of Theorem 1, we present a general fact

on multidimensional stable distributions,which is interesting in its own right.

Let p(x) be a density function of non-degenerate stable distribution p. of ex-

ponent 0<a<2. Recall that b=0 in W(z) and S°(d)is the smallest closed con-

vex cone with vertex 0, which contains Spt X. Note thatInt S°(d)^0 because

of Span Spt X=Rd, where Int V denotes interior of a set V in Rd.

Lemma 1. p(x)=o if and only if 0<a<l and x£lnt S°(d).

Proof. Let (Xt, P) be a Levy process on Rd corresponding to p., then

P(Xt^dx)~fit*(dx). Of course for each £>Q, fil*(dx)has a C°°-densitypt(x)

with respect to the Lebesgue measure on Rd, and pi=p. We divide the proof

into three cases: a = l, l<a<2 and 0<a<l, and use the Levy-Ito decomposi-

tion of Levy processes (see [4], [8]).

(1) a=l. In this case W(z) is expressed by
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W-i
i<e 0>|[l+i-sgn<£, 0>＼og＼<z, 0>|]

Jo

where /to=2x XX and b0―

Co

KdO)

'･re>-l-i<z, r^>l(o,i)(r)]r-2rfr+<6Ojz>

2n-1c＼0X(d0) with

f°° f1
＼ r"2 sin rdr-＼-＼ r"2(sin r―r)fifr

Jl JO

Then by the Levy-Ito decomposition we see that

Z£=Tf xN(dsdx)+[t[ xN(ds dx)+tbti,

JO Jo<!^|<l JoJlg|aM<°°
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where N(ds dx)―#{s^ds : Xs―Xs-^dx) is a Poisson random measure cor-

responding to a Poisson point process with characteristicmeasure

n(dx)=[ Udd)[~ldx{rd)r-2dr on Rd＼{0}
JSd-l Jo

and N(ds dx) = N(ds dx)

with

ds n(dx). Now for each 0<s<l we define

Zf=Tf xN(ds dx)+[t[ xN(ds dx)+tb0
JoJeS|X|<l JOjlS|X|<oo

=
('[

xN(ds dx)-tbE
JOJs£|.r|<oo

b'=C log£+c≪)lL-.ww

Then Xet+tbe is a compound Poisson Process with Levy measure

n%dx)=[ lo{dd)＼"ldx{rd)r-*dr.

Thus, if we set F£0={0}, Ff=Spt n＼ Fen+1= Fsn+ Fi(n^l), then it holds that

Spt Xl+tbs=CL(Un=oFsn) for allt>0 and that | ＼imsi0CL(＼JwF'n) = S＼d), where

Spt X＼ denotes a support of a distribution of X＼ under P and CL V denotes

closure of a set V in Rd. From these results we can easily see that Spt p.

=Rd. In fact,if
＼dX(dO)=O

then S°(d)=Rd because of Span Spt }l=Rd. Hence

Spt Xt= tlim£l0Spt Xi=S°(d)=Rd for all ^>0. Therefore Spt ^=Spt X1^Rd.

If ＼6X(dd)^0 then |6£|->+ oo as £-^0 and bs<=Int S°(d)for small e because of

[dX(dO)<=IntS°(d).
Thus for each x^Rd we have x+b'^Int S＼d) if 0<s<l

is sufficientlysmall. Hence there is an 0<s<l such that x+&£GCL(U≪=oF£n),

that is, xeSpt^fcSptZ, for all ^>0. Therefore Spt ≪=Spt X1=Rd. Now if
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we assume that p(x)=O for some x<=Rd, then L*p(x)=(d/dt)Pt(x)＼t=i=Q,where

L* is a Levy generator of ―X,:

L*p(x)= )sd-l ttidd)
＼~tP(x+rd)-p(x)-(rd,

V/>(x)>l(0il)(r)]r-8rfr+<60,V/>(*)>

with Xt(dd)=X0(―dd). Hence noting that V/>(*)=0, we have p(x-rd)=Q for

a.e. r^O and A-a.e. 0eSpt X. By the continuity of p it holds that p(x―rd)―0

for all r^O, 0eSpt ^. Furthermore we easily deduce that

p(x-r0)=O for all r^O, /9eCon Spt X.

This implies that fi{x―Int S°(rf))=0,but which is contrary to Spt pL―Rd and

IntS°(d)^0. Therefore we get p(x)>0 for all xeRd.

(2) 1<≪<2. In this case p>0 on Rd has been already proved in [9] by

using the scaling property of pt(x). We here give an alternative proof by the

same way as in (1). In this case the previous arguments work replacing W(z),

ns(dx) and L* by the following:

W(z)=-＼z＼a^sd_i＼<$, 0>|≪[l-itan ^-sgn<£, 6)]x(dd)

Jo1-' JO

where X0―c(a)X with c(a)=2F(a + l) sin(tia /2)/k.

with Levy measure

xt=
JOjO<|Zl<°°

xN(ds dx)

n(dx)=[ lQ{dd)^°ldx(rd)r-l-adr on Rd＼{0}
Js^-i Jo

For each 0<e<l,

Jo

where

f
*#(ds </*)=('( xN{ds dx)-tbB

Je£|X|<<≫ JoJes|X|<=o

and its Levy measure is given by

n£(dx)― L-Mde)

The Levy generator L* of ―Xt:

L*p(x)= )sd-l MdO)＼

r
Ux(r0)r-l-adr

°°[_p(x+rd)-p{x)-(rd, lp{x)y＼r-l~adr
0
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(3) 0<a<l. We show that p(x)=O if and only if x^lnt S＼d). In this

case W{z) and Xt are expressed by the following:

＼(z)=-＼z＼^sd_i＼^,e>r[l-it&n-^

= [ ;o(<i0){°O[y<2'r*>-l>-1-ffdr.

JS^-i Jo

where /lais the same as in (2), and

x-i
o Jo<m<oo

Moreover for each 0<e<l we define

sgn<£, ey＼x{dd)

xN(ds dx)

Zf=f£( xN(ds dx)

JO Jes|x|<oo

then Spt Xl=CLCUn=0F$n). Hence by limiting s-+0 we have Spt Xt=S°(d), that

is, p(x)=O if x£lnt S°(d). Furthermore by a similar argument to (1) we can

see that p(x)>0 if *elnt S°(d).In fact, if p(x)=Q for some xelnt S°(rf),then

L*/>W=(9/9f)/>t(x)|{al=0, where Z* is given by

L*p(x)=[d_i^(dd)<^lP(x+rd)-p(x)y-^dr

with X%{dd)=X0{―dd). Hence we have pi(x―Int S°(d))―O,but this is contrary

to Spt u=S＼d). Therefore we get p>0 on Int S°(d). Q.E.D.

We also mention the following result: To emphasize the dependence on X

we write W(z)=W x(z)and p(x)=px(x). Let Q be a linear transformation on

R* and set kQ{dd)=X{Q-ldd) on Q{Sd~l). Then by the definition of ＼(z) we

have WxQ(z)=WxC-Qz), where lQ denotes a transposed matrix of Q. Moreover

by using (1.1) we can easily deduce that if Q is invertible, then pxQ is well-

defined and

(3.1)

holds.

px(x)= detQ＼px JQx)

Proof of Theorem 1. First assume that A({<?0})>0 for some ao^Sd-＼

and also that (r0eInt(Con Spt X) if 0<≪<l. For simplicity we write ao=a.

In (3.1) let Q be an orthogonal transformation, then px(x)=paQ(Q%)･ From

this we may assume that o = (l, 0,■■■, 0). Moreover it is easily deduced that

p{ra) is expressed by

(3.2) p(ra)=cp1(r)pd-^, ■■■, 0)



232

or

(3.3)
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/>(r<r)=r Pi(r-y)pd(y, 0, ･･･, 0)dy,
J -oo

where p, is a /-dimensional density (/=1, d ―1, d) and c>0. In fact, we define

X" by X=d{lf)+Xa and set #=Span Spt ^". Then dimi/=d ―1 or d because of

Span Spt X=Rd. If dimH-d-1, then by taking Q in (3.1) such that Qa=a

and <5(//)={x1=0} we see that pxQ(ra)=p1(r)pd-1(0, ■■■,0), where />i(resp. pd_1)

is a one-dimensional density function (resp. (d ―l)-dimensional density function)

corresponing to dla) (resp. X%). Hence we get p(ro)=＼6etQ＼pi(r)pd-i{Q, ･･･, 0).

If <XimH=d, then we can define a rf-dimensional density function pd by Xa.

Thus we have

(2ityp(x)=^
Rd

zyLvt-Kx,z-}+W5[a){z)+Wxo{z)-]dz

= ＼_ ^J' ^i^)f
dexp[-2{(x1-j;>1

+ x2^2H ＼-xdzd)+Wi°(zy]dz

=(2n)a＼ piWPdfa-y, x2, ･･･, xd)dy .
J -oo

Therefore (3.3) holds. Here in the second equation we use

exp[W8ia}(2)] = ＼ Pi(y) exp [i yz^ dy
J―00

Now noting that (3.2) does not occur when 0<a<l and Con Spt X^Sd~＼

we see that pd-i(0,･･･,0)>0 and pd(y, 0, ･･･,0)>0 if at least j>>0 by Lemma

1. Hence in the case of (3.2) our claim holds. In the case of (3.3) we have

P(r(f)^cpi(2r) for sufficientlylarge r with a positive constants c. In fact there

are a compact set K in (0, oo) and a positive constant r0 such that s =

infveKpd(y, 0,■･･,Q)>0 and mf y^p^r-y^p^r) for all r^r0. Thus p{ra) ^

s＼K＼'miy&Kpl{r-y)^t＼K＼pl(2r) for r^r0. Since px(2r)~ c'r'1^ as r-++ ,

there is a constant Ci>0 such that p{ra)>zCxr~1~afor all r^r0. Q.E.D.

Proof of Theorem 2 and Theorem 3. Let d=2, 3 and let pt be a non-

degenerate stable distribution on Rd with exponent 0<≪<2. Recall that we

are assuming that Spt X is a finiteset of Sd-1, and we say that X has mass at

(m+Indirections <jj^Sd~l,j=Q, 1, 2, ･･･,m, if X has mass at Oj and/or ―a, for

each ;'=0, 1, 2, ･･･, m (of course ai4'±ok if /=£&).

Now we begin with the case d=2. The proof is divided into three cases.

Case 1. A has mass at only two directions aQ, a1(a0^±o1). By (3.1) we
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may assume that aQ=(l, 0), ai=(a! b) and with a=£l, b>Q such that a2+b2―l.

Then

p(ra)=b-1po(rho)p1(rh1)

where, h} are defined by the decomposition a = haa0+hiau and pj{y), y^R are

defined by (2.1) with some constants (cjt0, &,0) instead of (c0, jS0), 7=0, 1. Here

one can easily check that b~1=g({0, 1}); which is defined in Theorem 3, and

that Pl(O)=b~1p1(O) and pi(O)=b~1po(O). Hence our claim immediately follows

by using the facts (2.2), (2.4), (2.8) and (2.9). In particular if l<a<2 and o£

Con Spt X, then by (2.5) and (2.7),

(3.4) p{ro)~KirK* exp ＼_~KzrK*] as r^+^ifl<a<2,

(3.5) p(ra)^K1explK2r-K3es^'] as r―+ooif≪ = l,

where Kjf K} are positive constants which are independent of r. For instance,

when Spt^={±<;0, o^} with ao=(l, 0) and <ri=(0, 1), let a=(s, t),

if aET(2), i.e., f>0 and ^^(T!, then p(ra)~cr~2a+a) as r-^+oo;

if <T ET(l)nIntS(2), i.e., ff= (rlf then /)(rff)~cr-(1+a) as r^+≪D;

if <reT(l)n3S(2), i.e., o = ±a0, then />(ra)=0 (0<a<l), ^(r(T)―cr-(1+a)(l^

a<2) as r^ + oo ;

if <r£S(2), i.e., ^<0, then p(ra)=0 for all r^0(0<a<l) (3.4) (l<≪<2) and

(3.5) (a = l) hold.

Case 2. a^l and A has mass at only (m+Indirections a}, j=0, 1, 2, ･■･

m(m^2). Then ＼"(2),̂=(^i, ^2),is expressed by

W(z)=-
m

r ftfl ~＼

Sc,-,0|<ff>, 2>n i-^'.o tan^―sgn <(;,-,̂ >
j=o L Z J

m
2 cj | <Oj, z> [a exp [-^ sgn (ojt z~)~]

where Cj,0>0, ＼fij,0＼<land cjr 6, are defined by (2.3).

In order to prove Theorem 2 and Theorem 3 in Case 2 we first consider

the special case, however we show that the general case is reduced to this

special one (see Second step).

First step. Set a = ao=(l, 0) and let Gj=(sj, t}),/=0, 1, 2, ･■･,m, where

Sj=cos(pj and tj=sin<pj with 0=<p0<i<p1<i---<<pm= x/2. Note that if X has no

mass at o=(l, 0), then X has mass at ―o = (―l, 0) by our definitionof direc-

tions, and /3o,o= ―1.

We define the following a-stable densities:

( i ) For y, z^R, pa(y) (resp. po(y)) is a one-dimensional density with a
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log-characteristic function W0{z) = ―ca＼z＼aexp[―id0 sgnz~] (resp. Wo(z)=W(O, z))

(ii) For x, z^R% and j^k, pj,k(x) is a two-dimensional density with a

log-characteristic function Wj,k(z) = ―Sr=j,k cr ＼(<?r,z~)＼aexp[―id sgn<<7r, ^>].

Proposition. Let r^O.

a) // <reSpt 1 and />£(0)>0,then

(3.6) p(ro)^p0{r)pLM as r-+≪D

b) // (T^Spt X and ^eCoii Spt X, then

(3.7)

c)

d)

p(ra)~ S Pi.kira) as r-^+oo

// l^a<2 and <;<^CcitSpt X, then p(ro) is rapidly decreasing as r-^ + co ;

// 0<a<l and o£Int (Con Spt X), then p(ra)=O.

Note that (b),(c) and (d) also hold in the case that X has no mass at {±<r}

(in this case c0 0= c0~0 in ＼(z))and that, by (2.9)

ReTexp^O, z2)dz2=7zp^Q)=rllar(a-1 + l)cos(^-£,(≪)£)

where (c, /3)is (c, /3)in (2.3) which is given by using (c0, fa) = (HT=icj,ot'j,

^?=iCj,oPj,otaj/co)instead of (c0,fa) in (2.3). Hence by (2.4) and (2.8) p$(Q)=0

if and only if 0<a<l and faiO=zfa:O=z---=^miO―±l (i.e.,a^Int (Con Spt X)).

From this proposition we can easily deduce Theorem 2 and Theorem 3 in

Case 2 by using the one-dimensional results.

To prove Proposition we need some lemmas. The following lemma is

obtained by elementary analysis.

Lemma 2. Set aj=tJsj―tan6j{aa

(3.8) p{ra)={2K)-^

0, am = vo). Then

expV-irzi+WWdz

≪ r~lK~2
-I)"-1

£

1 n＼

+ r~27r-2 y^i hi

r nac" sin ny0 [~du e~uuna Ref°° expW(-i―, v)dv

Jo Ju/irai) ＼ Y /

r'nac^smnr)A du e~uuna+1
Jo

fJt/2
oo ( ―l)n r m Ire

＼ ddte** ^-―{-r-na Im S CjUa(sj+iei*tJ/a1)ae-i7>J
Jo n=0 ft! Li=l J

+ r~27t-2S ＼dv＼ due~u
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(-I)"-1
£

1 n!

?. (-1)"
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r~naIm[couae-i +c1sal(u-a1v)ae-i1>i+ ■■■

+cjsaj(u-ajv)ae-irii~＼n

r~naImtcj+1s%1(aj+1v-uye-ifij+i+ ･･･+cmvae"^ ]n

as r―>+°°, where i}j=r}(0j), 7)j=zy(―@j) are defined by (2.3). This expansion

holds in equal provided 0<≪<l, and if l<a<2, then it holds in the sense of

(1.2).

Proof. For simplicity we only prove the case that m=3, a=ao=(l, 0),

0i=(si, ti),<Jz=(Si, t2) and <rs=(0, 1). That is, for df=Cjs"U=h 2),

W(z)=―co＼z1＼aexp[―i0osgnzl']―d1＼z1+a1Zi＼aexp＼i-iO1sgn(zi+a1zt)']

-c2＼zl+a2z2＼aexp[―idz sgn(z1+a2z2)']―c3＼zt＼aexp[_―i8s sgnz2] .

Thpn

h?Q TOO pOO
p{ro)=-7rY＼ dz2＼ dzlQYLp＼_―irz1―CoZale-ieo~＼

Lit Jo Jo

(exp[-c1(z1 + a1z2)ae~i8i-c2(z1 + a2z2)ae-i0z-c3z%e-ieq

+exp [-ci |zx-axz2 ＼≪e-*≪i*sn(≪i-≪i≪a)

-c2|^1-a2^2|ae-^2ssnf^l-(I2^2)_C3^≪g^s])I

By changing variable rzx to m we have

27cirp(ra)=Re＼ dzAV*1**du expl―iu ―cor~auae~id^
Jo IJo

r"ra222
+ ＼ du exp[―iu ―cor~auae~id°']
Jralz2

+exp＼―H1(― ―a^y e-iei―d2(aiza――
y

e^z-ctfU16*])

+ ＼ dw exp[―im ―cor"aMae~^°]
Jra222
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+exp[-c1(ja1z2)%-idi-c2(j-a2z2)%-id>-c3z°2eid*])}

First assume 0<a<l. Rotate the contour of integration with respect to du

through an angle ―tt/2. Then

(3.9) 27i2rp(ra)=Re＼-i[°dzJ[rai*2du e-uexp[-cor-aMae-i'≫]
L Jo Uo

+ [ra2Zzdu exp[-w-cor-aMae-^°J

+expr-c1(y-/a^2)%-^1-c2(G2^2+2y)%i'2-C3^^^

du expl―u ―cor~auae''i^0']

(exp[-c1(y+m1z2)%-i'?1-C2(y+^2^)ae-i^_C3^e-i<?3J

foe
("n/2

+i＼ dz2ralz2＼ d<pe lv>
Jo Jo

exp[-ra1zteu*'*-v)-coaa1z%e-ue°+av>-?sz%(a2-a1e-i'r)aeie*-ciz%ete*]

{expl-c1aalza2(l-e-inaeid^-expl-c1aa1za2(e-i^-l)ae-ie^}

f°° CKl2
+i＼ dz2ra2z2＼ d<pe~tlp

Jo Jo

exp[-ra2z2eU7:l2-^~c(sa%z'Ze-H0°+av)-c1z%(a2e-il>o~a1)ae-iei-c3z%ei6z']

{exp[-2f2a?zf(l-e"i<0)ae<*2]-exp[-?aa^f(e-iv-l)ae"iff!!]}l

In the last two terms change raxz2 and ra2z2 to u, n/2―<p to <j>respectively

and rotate the contour of the integration with respect to du through an angle

―<f>.Moreover, in the second and third terms exchange the order of integra-
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tion with respect to dzz and du and change rz2 to v. Then 27r2rp(ra) is

enual to

＼ du
Jo

dze~u Im{exp[―cor~auae-i7^>~＼}

Re jexp ―

H ＼ du
r Jo

cJa^z-i―)ae-idi-c2(a2z2-i―
Ye-ie'―cazWi9s'＼＼

＼ r / ＼ r I JJ

e~u exp [―c0r~auae~iil02

＼＼aidv(exp[-c1r-a(u+ta1v)ae-i^-c2r-a(azv-iu)ae-if)2-c3r-avae-ie3']

＼.Ju/a2

+exp[_-c1r-a(u-ia1v)ae-i^-c2r-a(a2v+iu)aeid2-c3r-avaeids'])

+$
u/a2

0
dv(expl~c1r~a(u-{-ia1v)ae-i^-c2r-a(u-j-ia2v)ae-i^-c3r-avae-i^l

+exp[―c1r~a(u―ialv)ae~ir^1― c2r~a{u―iazv)ae~iri^-czr~avaeid^'])＼

exp[-

0 fl, Jo r
du e uexp[―cor~auae~irio']~

a.

f'l
-c2r-aua(l-ie-i4'az/a1)aeir>*-c3r-aa^a

{expl-c1r-aua(l-ie-i^)aei^']-exp＼'-c1r-

uaei(0s-a<f>)-＼

aua(l-ie-^)ae-i7iq}

r

＼:

du e-uexpl-cor-auae-i^~＼―[7tl2d6
a2 Jo

exp[―i$―dir-auaQ.―te-t*a1/at)aeii>i―c,r-aatau≪ei(03

{exp[-?2r-aMa(l-/0-**)V'≪]-exp[-f2r-aMa(l-

Moreover in the second term we see that

le

≪0)j

i^ae "72]}

J

u/a1

u/az
dv(exp[i!1r-a(u+ia1v)ae-l'>*―dir-a(aiV―iu)ae-i0*―car-avae-ie≫~＼

+exp[-c1r-a(u-ia1v)ae~iiii-c2r-a(a2v-＼-iu)aeiez-cir-avaei83~＼)

+
ru/a2

Jo
dv(exp[-cxr a(u+ia1v)ae-i^-c2r-a(u+ia2v)ae'i^-csr-avae-id^

+exp[― Hir~a{u―ia1v)ae~ir>^―c2r~a(u―ia2v)ae~^a― c%r~avaeid^＼)

=i＼ 1dv(expl-c1r-a(u-alv)ae-i^-c2r-a(a2v-u)aei^-c3r~avaei^'＼

-expl-c1r'a(u-a1v)ae-i^-c2r-a(a2v-u)ae-i^-csr-avae~i^^)

fu/a2
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-exp[-c1r-a(u-a1v)ae-i^-c2r-a(u-a2v)ae-iriz-csr-avae-i^'])

･ u f
* B

fll J

*/2fl[0(exp[*"0-cfir-aKa(l+iy*)e-i'1

0

-c2r-aua(l+iei*a2/a1)ae-ir<*-c3r-aaTauae-uds-a^

-c2r-aua(l-iei^a2/a1)aei^-cir-aa-1auaeud^a^)

+i―[*'td6(pxpli$-d1r-aua(l+iei*a1/a9)ae-iv*
0.1Jo

-c2r"aMa(l+?V^)ae"^2-c3r""fl2awae-i(^-≪^)]

-exp[-i<f>-Cir-aua(l-iei<l>a1/a2)ae-i7i1

―c2r~aua(l―iei^)aeiTIZ―c3r~aa2auaei'-es~c"^)~＼)

a2)
7"Zd6(expU0-c1r-aua(l+iei*a1/a2)ae-i^

0

―?2r"aMa(l+≫V*)ae"t'*―csr-aa8aMflre"i(*8~a*)]

―exp[―i<t>―c1r-aua(l―iei'l'a1/a2)ae~irii

―c2r-aua(i―iei^)ae~i^i―c3r~aa^auaei(6i''a^)>

where we rotate the contours through angles ±n/2. Substitute this equation

for the above one. then we get

p(ra) = -^-^du e~uIm{exp[-cor-ttKa0-i'o]}

Ret

u/(rai) I L ＼ r / ＼ r / JJ

+ [U'a2dve-ulm{exp[-cor-auae-ir'°-c1r'a(u-a1v)ae-i^
Jo

-?2r"a(M-a2y)ae-*'I!]}Im{exp[-C8r-aytfe-1^]}}

1 C°° u
+ ―tt＼ du e-ttIm{exp[-cor-auae-<'≪]} ―

tzr Jo a.

Jo

-c2r-aua(l+ie^a2/a1)ae~i^-csr-aa-1aune-ue^c'^']
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This implies (3.8). Next let l<a<2. In this case it is impossible to proceed

m the same way as above, because the integral in (3.9) may diverge. However

in a similar way to the one-dimensional case (cf. [3] Th. 2.4.2),if we choose

suitable angles in the rotation of the contours of integration and use Taylor's

formula: For x~>0 vf=/2

exp[―x-＼-iy~＼
£ (-x+iy)n

n=o n!

(―x+iy)N+1

(N+l)l
eeC, |e|£l,

then we will obtain the same asymptotic expansion (3.8). In fact, firstwe see

that

2x*rp(ro)=Re

(exp[

f°° rr

dzA

Jo Jo

a.z.

duexp[―iu―cor~auae~e<)']n/nI

(7/ ＼a /

jYe-^-czie-*0^

+expl ―^(axZg― ―) V*i―?2(a≪z8― ―X eid*-csz%eie*

H dv＼＼ duexp[-iu-cor-auae-id°l
T Jo Uaiv

])

>71==0 71= 0

N
53

n=0
l-csr-av°e-ie*]n/n ! + 2 [-?ar-a(M-a1v)ae-i≪i]n/n I

re=o

2 L-c2r-a(a2v-u)aeid^n/n!
ra=O

S L-c3r-avaeieqn/nl)+[~ duexpl-iu-cor-auae~id^

(S i-clr-a{u+a1v)ae-idqn/n
! 2 [-c2ra(u+fl2v)ag-i^]vn !

＼n=o n=o
N

s

71=0
t-csr-avae-ie≫]n/n S + 2 [-c1r-a(u-a1v)ae-i9qn/n !

n=0

a l-?tr-a(u-aiv)ae-t9*']n/n ! S l-c9r-avaet0*]n/n l)＼
ra=O ra=O /J

+0(r-1-(ff+1)tt).

In each term we rotate the contour of integration with respect to du through

an angle y=n＼(a―2)iS0―l]/(2a), then exp[―iu~＼is to exp[―ueu*/2+r)^ and

exp[-tor-aMae-^≪] is to QX.p[icor-aua']^=^=Q[icor-aua']n/n＼+t[icor-auaY+l/

(iV+1)! with seC, |e|^2. Note that -7t<y<0 and |^/2+rl<^/2. Moreover

we rotate the contour through an angle ―it/2―y. Then we have the expansion

which is similar to (3.9). Then by the same way to the case of 0<a<l we
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can easily obtain (3.8)

SeijiHiraba

Thus if <reSpt X and K(0)>0, then

Ref" expW(―i―,v＼dv―>xpo(O) as r-^+oo

Q.E.D

and

p(r(T)~r-1-a7:-1CoS'm7]or(a+ l)pl(0) as r^+co.

Therefore we have (a) in Proposition :

If <7<£SptX then £,,,=―1, i.e., 570=0 or tz(see §2), thus the first and

second terms of (3.8) vanish. Hence by change of variables u ―axv to u' we

have the following:

Lemma 3. Set bj―aj―al{b1=^, bm=oo). Then for c^Spt X,

(3.10) p(ra)-r-27t~2

n = l

n = l

m-lfoo (･

i=iJo J

du 2~u-a^

+ cjs%u-bjv)ae-i^y

as r ―>■+ oo.

This lemma also holdsin the case that X has mass at neither a nor ―a

because co=O in (3.8).

Thus if tf^Spt X and aelnt S(2),then

/>(^)~r-2(1+≪'^-2r(≪+ l)2 S gLkcAhj.,,]-1-" simqjclhk.jl-1-" smijt

~ S gj,kpj(rhj,k)pk(rhk,j) as r->+oo
is;'<ftsm

= S Pj.kira),

where gj,k~(Sjtk―Sktj)1>0 for j<k, hj<k and hkJ are defined by a=hjikajJr

hkijak(i.e., hj,k~tk/{Sjtk―Sktj)).Thus, we get (b) in Proposition.

Moreover if l<a<2 and o£S(2), then J81,0=---=J8m0=±l (i.e.,f)i= ■■■=rjm

―tz or 7]i= ---= 7]m= 7t). Hence every term of (3.10) vanish. We have (c) in

Proposition.

Finally (d) is followed by Lemma 2.

Second step. Suppose that X has mass at only (m+Indirections aj> /=0, 1,

2, ･･･ m. We may assume that a=(l, 0) and 0^<z>0<</>i<</>2<---<<Pm-i<<Pm<
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x(<pj=a.rgoj). If X has no mass at {±a}, then by taking co=O in W(z) and

seting ao=<y we may include a as a member of directions a,, j~0, 1, ･･･, m.

Moreover in (3.1) let Q be a linear transformation such that Qa0=o0 and Qam

=(0,1), then 0=^0<^i<---<^m=^/2 where <pj=argQ(7j. Thus by Qra=ra

we have px{ro)= |det Q＼pxQ{ra) and 2Q has mass at only (m+Indirections Q<7;-,

y=0, 1, ･･･,m. Therefore the general case is reduced to the special case of

First step.

The proof of Theorem 2 and Theorem 3 in Case 2 is complete.

Case 3. a=l and 1 has mass at (m+Indirections a0, alf ■･■,am(m^2).

We may also take {ah j=0, 1, 2, ･･･,m} as in First step of Case 2. Then for

W(z) = -^cj{＼(<rj> zyi+ilfatoj, z>log＼<aj, z>＼}

where c;->0,IjS^l^l,7=0, 1,2,･･･,m are constants.

The followinglemma is corresponding to Lemma 2 and Lemma 3

Lemma 4. Let r^O and a=ao=(X, 0).

(i) Then for dj=tan<fij

p{ro)=(2x)A fTLQl-irZi+Vizftdz

-r^TT2!]
r-n

71=1 n

Ref" expF
Ju/r

I
Cno

(-･

OO y
― n

n = l 71
I

m- 1

j=l

＼:

+c1s1(u ― a1v)

JV^MmkL+/30)--^

―, v)dv
r /

u ~＼n
log― du

r ＼

cn0^e-uun+1lm[i(l+ po)-^po log
jYdu

dv ^du ≪-£-£-lm[cou{i(X + h)~flo logy}

{*'(l+
j8i)-^j81log[s1(u-a1iO/r]} + --.

+CjSj(u-ajv){i(l+p})- ―Pj＼oglsj(u-aJi)/rlW

n=l

r

n!

r ( o

Im^+1sJ+1(fl>+1y-M)|i(l-j8>+1)+ ―j8>+1 log[sj+1(aj+lv-u)/r3J
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+ - +Cmv{i(l-Pm) + ― iSm lOg

as r-^+oo.

(ii) // <r<£Spt X, set bj=aj―a1, then

7>;

p(ro)^r-zn-z ZJ ＼dv＼ du e~u-a^

Si
^-Im[c1s1M{/(l+J81)-|:j81log[s1(M-61)/?']}+-

+cisi(u-M{'(l+i8i)―IjS^logCs/M-M/r]}]"

s

n = l

r^lm＼cj+lsj+1(bj+1v-u)＼i{l-pi+l)+
― &+i log[s,-+1(&,-+1z;-M)/r]}

+ - +cmv{*(l-i8≪)+-|i8≫ l°Sj}]n

as r―>+oo.

From thislemma we obtain Theorem 2 and Theorem 3 by the same way

as in case of l<a<2.

Next we proceed the proof of Theorem 2 in case of d=3.

(1) First we see that

(3.11) (27t)3p(x)=＼ exp[-i<*, zy+Wizfidz

=2 Re( dz {exp[―i(x1z1+x2zz+Xsz^+Wizt, z2,zz)~]

+exp[―*(*iZi―x2z2+xsz3)+W(z＼ ―z2,z3)]

+exp[―i(x1zi + xazs―xazi)+W(z1, zt, ―z8)]

+exp[―i'(*iZi―x2z2―^3^3)+3r(^1, ―2g,―Zs)]}.

(2) We divide the integral domain in order to omit the notation "sgn" in

＼(z).

(3) We change variables zlf z2,z3 appropriately according to a.

Then we deduce that Theorem 2 and Theorem 3 hold. We will describe

the outline of the proof in some details. Here we only consider the case that

X has mass at (m+Indirections a0, ou ･･･am(m7>3) but that 0<a<l and <y<£

Int S(3), because it is evident in the others.

a) If ≪rGT(l),i.e.,^({<?})>0, we may take a=o0=(l, 0, 0) and change zx

to ―iu/r, then we have p(ro)~p0(r)p$(0)~cr~1~a(c>0)as r―*+oo.
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Example 1. Let m = 5, a = a0 = (1, 0, 0), d = (0, 1, 0), az = (1/V 3 , 1/V 3 ,

1/VT), <73=(0, 1/VT, 1/V2), a4=(l/VT, 0, 1/VT) and aB=(0, 0, 1). In (3.11)

we divide the integral domain as follows:

(3.12) Ud*= ＼ dzt＼＼ dzd＼ dzt＼

Jo LJ o ＼Jo jzn

I

f*3

A
/P3"*2 , f*2

+ dzt(＼ +

J*3 V

J23

+r+

r"+＼" +

JO J*2~23

Jzs+z2
dzi)

+ dzA

J*2 J≪3+22 '

J*3 Jz2 JZ2+23 '

J2z3 ＼JO J2S JZ2-23 JZ2

r
"")}

and change zx to ―iu/r, then we can see that the sum of terms in (3.11)

corresponding to the first integral with respect to dzx of each term in (3.12)

decreases like po(r)pl(O) ~ cr~l~a(c>Q) as r―>+co. Moreover, the remaining

terms are o(r~x"a) as r^+oo.

b) If <7£T(2), then the following two cases arise.

(i) There exists only one plane H which is spanned by some elements

<r0,ai, ■■■,Gk{k^l) of Spt X and contains a. In this case we may assume

that H is x^-plane, <r=(l/VT, 1/VT, 0), <ro=(l, 0, 0), ^=(0, 1, 0) and alt ■■■,

<r*e{^8=0}＼{^i^0, ^2^0, ^3=0} in S＼ Set r'=rl</2. We divide the integral

domain as mentioned in (2) and change (zu ±z2) to ―i(ujr', ±ujrf) in order

to exp[―ir'(zi±z^y＼ become exp[―ux―m2] in (3.11). Then we have an asym-

ototic behaviour t>(ra)~r~za+a) as r―>+oo.

Example 2. Let m = 3, k ― 1, <r0= (1, 0, 0), ax = (0, 1, 0), a% = (0, 1/V~5,

2/V"5), cr3=(0, 0, 1) and a=(l/VT, l/VT, 0)eCon {<ro,^}. In (3.11) we divide

the integral as follows:

f*
poo foo

＼ ,dz=＼ dz,＼
Jfl| Jo Jo

dzA＼ + dz2＼

Change variables zx and z2. Then from the term in (3.11) corresponding to the

first integral in the above we have an asymptotic Po,i{ro(§,l))/>£i(0)(~cr~2(1+a;),

c>0) as r-^+oo, where a(0, 1) is a restriction of a to Span {a0, a^. Moreover,

from the other we have o(r~2il+a))as r-^+°°-

(ii) There exist at least two planes Hu H2 which are spanned by some

elements of Spt X and H^Hz is a line containing a. In this case we take a

=(1, 0, 0). We change zx to ―iujr and also z2 appropriately as seen in the

following example. Then we have /)(r<r)~r"2(1+a)as r-* + oo.
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Example 3. The setting is the same as in Example 1 except ao=(l/V 2,

1/V2, 0)=£<r=(l, 0, 0), and also divide the integral domain as in it. First in

each integral we change zx to ―iujr then in (3.11) terms vanish which cor-

respond to the first integrals with respect to Zi in (3.12). In the integral

＼~dza

Jo

f*32dz2[rU3 22>
dux we change z2 to +iu2/r, ―iuz/r, +iu2/r and ―iujr

Jo Jrzo

according to each term of (3.11). Then we have the asymptotic po,i(ra(O,1))

/>o.i(O)as r^+co. Moreover by the same change of variables we have

ofr-≫a+a)＼as r__,_)_oofrom the integralsof

M Jo ＼Jr(z3 + 22)

rr<.23 + z2

jn3

Jz3/2 ＼Jrj2

Similarly, in the integral ＼
Jo

dz
£°

J223

fr(z3 + 22)

dzA

Jrz3

+＼:

+:

(≪3 + 22)

(22+23)

duA

du )}

dui we change zs to +ius/r, +iujr

―ius/r and ―ius/r according to each term of (3.11). Then we have the asymp-

totic p4.a(ra(4,5))ptt5(0)as r^+oo, and by the same change of variables we

have o(r"2(1+a))as r-^+oo from the integrals of

dz,＼＼3dzJ＼ 2+

0 IJ≪3 ^Jrzs Jr

poo /fTZa
+ dzJ＼

= dzA＼ dzA＼
Jo IJ22/2 VJrz3

22

+＼: du,)

≪3> Jr22 Jr(22+23)

du)＼

+＼ + duA

+ ＼ dzJ＼ +＼ + rfwijh

Finally we have the asymptotic pi,i{ra{2,3))Ks(0) as r->+oo from the remaining

f°° P23 frz2
terms. In fact, in the integral ＼ dzA dz2＼ dux we change z% (resp. zs) to

Jo j23/2 Jras

―iut/r, +iuz/r, ―iujr and +iu2/r (resp. +ius/r, -＼-ius/r,―ius/r and ―ius/r)

according to each term of (3.11). Moreover change variables (uu u2, us) to

(vi+vs, v2, V2+V3). Then the sum of the first and 4-th terms vanish and we

change v2 to ―iv2(resp. +iv2) in the second term (resp. third term). Similarly

in
so p3

0 JZo

dz-A

Jr (≪2

dux change z2 (resp. ^8) to +iu2/r, ―iujr, +iu2/r and
Jo Jz2 Jr(≪2-23)

―iuz/r (resp. ―ius/r, ―ius/r, +ius/r and +iu3/r) according to each terms of

(3.11),and (uu u2, u3) to (v1Jrv2,vt-＼-v3,v3). Then the sum of the firstand 4-th

terms vanish. Hence, we change v3 to +ivs (resp. ―zva)in the second term
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(resp. third term). By this way we have p2,%{ra(2,3))/)2,3(0)as r-≫+°°.There-

fore we see that p(ra)~po.i(r(T(O,l))Po,i(0)+pa.3(ro(2,3))K8(0)+/>4.b( (4, 5))

Ks(0)(~cr-2(1+a)) as r-^+oo.

c) If <T6T(3), it is sufficientto consider the case that <r=(l/V3, 1/V3,

1/V3"), <ro=(l,0, 0), *!=((),1, 0), <r8=(0,0, 1) and <73,- , ^dS^^^O, 02^O,

^3^0}. Set r'=r/V3. We divide the integral domain as mentioned in (2) and

change (zu z2) zs) to ―i{ujr', ±u2/r', ±ujrf) in order to exp[―ir'(z1±z2±z3)~]

be to exp[―ux ―u2―m3] in (3.11). For instance, for exp[―ir'{zi―z2-＼-z^])we

change (zx,z2, z3) to ―i(ujr', ―ujr', uz/r'). Then we have an asymptoic p{ro)

^ -S(l+a> ag r^+0O.

Example 4. Let m = 3, a0 = (1, 0, 0), <7X= (0, 1, 0), ot = (0, 0, 1), a3 = (0,

-1/VY, 1/VT) and o-=(l/v/T, 1/V3", 1/vT). In (3.11) we divide the integral

p Too poo rpj poo -I

J≪i Jo Jo IJo Jz3 J

Change variables zu z2 and z% as above. Then we can easily deduce that

p{ra)^p0.Uro)Pi^)+P^Mo)PiiM+P^Mo)PUM (~cr-8(1+<°,c>0) as

d) If (reS(3) and l<^a<2, then by the same way as in (c) we can see

that p(ra) is rapidly decreasing as r^+oo.

All of the above change of variables are informal, however we can justify

the computations by a similar way to the case of d=2.

Then we conclude Theorem 2 and Theorem 3.

Remark 4. As mentioned in §1, in higher dimensions (rf^4) we belive

that our method should work, although the calculationsmay be more tedious

and comnlicated.
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