TSUKUBA J. MATH.
Vol. 18 No. 1 (1994), 223—246

ASYMPTOTIC BEHAVIOUR OF DENSITIES OF
MULTI-DIMENSIONAL STABLE DISTRIBUTIONS

By

Seiji HIRABA

Abstract. In one-dimension asymptotic behaviour of densities of
stable distributions is well-known. However, in multi-dimensional
cases it is very difficult to investigate asymptotic behaviour of
densities of non-degenerate stable distributions in general. In the
present paper we give the following two results: If the Lévy
measure of the stable distribution has mass at a half-line, then the
density decreases along the half-line with the same order as in
one-dimensional case. If the Lévy measure is supported only on
finitely many halflines, then we can determine asymptotic behaviour
along each direction starting at 0.

Keywords: multi-dimensional stable distribution, Lévy-Ito decom-
position of Lévy processes.

1. Introduction and results

Let p(dx) be a stable distribution on R? with exponent 0<a<2. Then its
log-characteristic function ¥(z) is given as follows: For z=|z|§, teS§¢ 1=
{xeR*: |x|=1},

o

T@=—lz1°,, 1< 6)1[1~itan T

sen<é, 05 |1d0)+icz, b if a1,
6>]1 ;2 6>1 051 [Ad8)+ilz, by if a=1
—l21{,,_, 1<6, 03[ 1+ sgncs, O¥log|<z, 051 [Xd0)+ice, by it a=1,

where A(df) is a finite measure on $¢°! and beR?. If b=0 (a#1) or Sﬂi(dﬁ)

=0 (a=1), then p satisfies the scaling property: p™(dx)=t"%%u(t "*dx), in
this case g is called strictly stable. Note that the Lévy measure n(dx) of p is
given by
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ndn={_, Xdo) LexrO)r-edr on RN{0}.

We say that g is non-degenerate if the support of u spans R?, or equi-
valently the support of 2 spans R?. Write this condition Span Spt A=R¢4.

Throughout the present paper we always assume that g is a non-degenerate
stable distribution on R¢. It is then well-known that p(dx) is absolutely con-
tinuous and has a density p(x) with respect to the Lebesgue measure dx on
R?, which is expressed as

(L.1) plx)= @%TSW exp[—icx, >+ (2)]dz.

Furthermore p(x) is a C=-function with derivatives of all orders vanishing at
infinity (cf. [6], [7], [8] and [9D).

If we write p(x)=p(x;b), then p(x;b)=p(x—b; 0). Henceforth, we assume
b=0. Then note that g is strictly stable except a=1.

We are concerned with asymptotic behaviour of the density function p(x)
as | x|—-oco. Inone-dimension it is well-known that p(x) decreases like [x|7"¢
as x—-oo if A has mass at {+1}. In addition, if A has no mass at {—1}, then
p(x)=" for x<0 when 0<a<1, and p(x)>0 for x<0 and decreases exponentially
fast ag x—»—oo when 1<a<2(see §2). In multi-dimensional cases Pruitt and
Taylor [6] give an upper estimate p(x)<K|x|™'~* for a strictly stable density.
When 1 is absolutely continuous and has a continuous density with respect to
the uniform measure on S¢°! Dziubanski [2] investigates an asymptotic be-
haviour p(ro)~cr % % as r—-+oo, where 0&8%", ¢=c(¢)=0 and a~b means
that a/b—1. Furthermore Arkhipov [1] gives an asymptotic expansion of p(ro)
under some additional regularity condition on the density of 4. On the other
hand one can easily deduce that if A is supported only on the orthonormal
basis of R?, then p(x)=II1%1pf(x,), where x=(x;, -, ¥q) and p; is a one-
dimensional density corresponding to e;. Therefore if eS8 'N{x;>0, j=1,
.., d}, then we have p(ra)~cr ¢?*® as r | 4o, where c=c(a)>0.

From these results it would be expected that a general a-stable density
p(ro) on R® has the following asymptotic property: For each 0=8%"! there
exist ¢=c¢(¢)>0 and k=*k(a, 0)=1-+a such that

k

plra)~cr- as r— +co.

In this paper we first discuss a lower estimate for a general stable density
p(ra) and we show that a lower estimate coincides with that of the upper
estimate when A has mass at ¢. Furthermore we show that the above asym-
ptotic relation is valid when 2 is a discrete measure whose support consists of
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only finitely many points in S¢-1.

Our first result is the following: Let p¢ be a non-degenerate stable distribu-
tion on R? and Con Spt 2 be the smallest convex hull in S¢-1 containing all
elements of Spt 4, and Int S denotes the interior of a set S in S¢-L Recall
that 6=0.

THEOREM 1. Suppose that A has mass at o,=8%%, i.e., A{o})>0. If 0<
a<1 and o,=Int (Con Spt 2), or if 1Sa<2, then there exist positive constants
Ci=Cua, 0,) and ry=rye, d,) such that 0<Ci=v™*%p(ra,) for all r=r,, where
C. is independent of r=v,.

REMARK 1. By the result of [6], assuming thst Saz(da):o when a=1, it
holds that 0<Ci<r"**p(ra,)<C,<oo for all r=7r, where the constant C, is
independent of »=0 and g, (the upper estimate seems valid without the restric-
tion Sazum:o when a=1, but we have no proof for it).

Now we assume that 1 has mass at only finitely many points mm S9! (of
course we also assume that 6=0 and Span Spt A=R9). To state the next
result we define the following subsets of R¢: For each 1<k<d

(i) S%%) is a union of closed convex cones with the origin as vertex,
the cones which are subtended by every linearly independent k-elements of
Spt 4,

(i)  S(k)=S°(-)NS*', S(0)=@ and T(k)=S(k)—S(k—1).

Now our main result in the present paper is the following :

THEOREM 2. Let d<3. Suppose that Spt A is a finite set of 8%, Letge
§e-t,

a) Let O<a<l.

If eT(k)NInt S(d) for some 1<k<d, then pra)~cyr Fr gg posf oo,

If o&lInt S(d), then p(ro)=0.

b) Let 1<a<2

If a&T(k) for some 1=k<d, then p(ro)~c,r **® g5 oo,

If 0#S(d), then p(ro) decreases faster than any negative order of #, that
is, p(ro) is a rapidly decreasing function of =0,
Here constants c¢;, ¢,>>0 are independent of » and can be determined explicitly
by the expression of ¥(z).

For d=4 this theorem could be also proved in a similar way to our proof.
However, it seems to be so tedious to describe the proof in general. So we
treat the case of d=2 and 3. This theorem is proved by using the rotation of
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contour of integration as is similar to the one-dimensional case. Lemmas 2
and 4 are essential to the proof of this theorem (see § 3).

In the first cases of (a) and (b) in Theorem 2 we can give more concrete
information. We say that A has mass at (m+-1)-directions ;e84 j=0, 1, 2,

., m, if A has mass at ¢; and/or —g; for each j=0, 1, 2, ---, m (of course we
assume ¢;#0, if j#k). Now suppose that A has mass at only (m+-1)-directions
6;, 7=0,1,2, -, m. When o=T(k) for some 1<k <d, we define a vertex set
V(o) of {g; j=0, 1, -, m} and an index set I.(o) as follows;

{0, a5, EVi(0) if {o;, -, g;,} is linearly independent and ¢ is con-
tained in the interior of Span {g;, -, 6;,},

JR={, intelilo) if {a;, -, Ujk}EVk(O')-

Moreover for j(k)s (o) set H;y=Span {g;, -, ¢;,} and fix an orthonormal
basis {e;, -, e;,} Of Hjum. Now let

(i) pju be a k-dimensional density on H;, with a log-characteristic
function ¥y, ,,

(ii) pjw> be a (d — k)-dimensional density on H 7}, with a log-characteristic
function llfig;(k)(if k=d, set piam=D.
In particular we write p;=p;m: 2 one-dimensional density on Hjq,, when j(1)

={j}-

THEOREM 3. Let d<3. Suppose that ¢=T(k)NInt S(d) in case of 0<a<
1 and that e=T(k) in case of 1=a<2 for some 1<k=d. Then

plroy~ 2 )Pj(k)(fﬂ(,lh(k)))Pé<k)(0> as r— +oo,

J(kyelp(o

= % gGEN T psrhi) b,

4f(}1)€Ik(o'
where o(F(B)=4-1h;,05,=0 14 and g(G(R)=|detQ;cy| with a kX k-matrix
Q; such that Qe 0;,=e;, for every s=1,2, -, k.
Note that the assumption of Theorem 3 implies that there is at least one
J(B)Y=1jy, =, Jx} Elx(@) such that p}(0)>0 and p;(ro;)~c(j)r " as r—
+oo with a positive constant ¢(j,) for each s=1, -, k.

REMARK 2. a) Note that S(d)=Con Spt 4 and T(1)=Spt A.
b) In a similar way to the proof of Theorem 2 we can show that if p is
rotation invariant, that is, ¥'(@)=—c|z|*(c>0), then
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where

_ (=1t _ . Tha na+d na
J— a 1 na-1,n - —
Ca=T ”cx(n 1)'2 ¢ sin 5 Z( 5 )I(2>.

This expansion means that
(12)  po)= 5 eal |47 +0(| x| ~-O"*D%) a5 |x|—too for all N.

In particular, if 0<a<l, then p(x)=315_,c,|x| ¢ "
This result was shown by S.C. Port (A. 13 in [5]) by making use of a
subordination technique.

2. Some Preliminary Results

For the proof of Theorem 2, we mention some results in the one-dimensional
case which are well-known in [3].

a) a+1. In this case p(x) is expressed with some constants ¢,>0 and
[Bs] =1 as follows:

@1 p(x)_f {7 ex [—z'xz—colzl“( —ifi tan"E-sgn z)]dz
=5 g exp[—ixz—c|z|%e %’ sgn z]dz

(2.2) 7{_—2 (= l)nH M (na+1)c"sinny as 0<x — oo,

where

2.3) c=cosecl, 0=0(B)=rLl(a)B/2 and 7=9@)=0+ra/2
=nla+L@p)/2 with L(@)=al0<a<l), =a—2(1<a<?2)
and pB=2z"'L(a)"' arctan (B, tanwa/2).

Note that [8]<xn/2, ¢>0, 0<yp==z, |B|<1 and

(2.4) Bo=+1if and only if S==+1 and then A has mass at only {+1}
respectively .

In particular if B,=—1, then =0(0<a<1), =7 (1<a<2) and it holds that
(2.5) p(x)=0 for x=0 if O<a<i,

(cua) 1/(2a— 2).€(2 ayf(ea— Z)exp[ (a, l)a—a/(n 1)641/(a l)xa/(a 1)]

\/27r(a 1
as 0<x— 4o if lI<a<?2.
b) a=I.
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2.6) p(x)—z S” exp[—ixz—c(\zl—}—i—zﬂﬁzlog\zl)]dz, >0, |BI<1,
~% i;; l—nS:e"zﬂ Im[i(1+‘8)—~2ﬁ£10g%]ndz as 0<% — +oo.

In this case (2.4) also holds. Moreover, if f=—1 (i.e., Spt ={—1}), then
2.7 P(x)~ = exp[ x—ice"‘““)] as 0<x— +oo
2\/ ce 4c Te )

¢) The asymptotic behaviour of each derivative of p(x) is obtained by
differentiating the above formulae.

d) Moreover (cf. [9])
(2.8) p(x)=0 if and only if 0<a<1 and either x>0, f=—1 or x=0, g=1.
In particular if a=+1 then

2.9) pO)=x"TcV* (@~ +1) cos(z”—a L(@§)-

REMARK 3. In the case 0>x——oo, we obtain the same results by chang-
ing x, B, and B to |x|, —B, and —f (thus, @ to —@) respectively. Because if
we write p(x; @, B)=p(x) as p(x) depends on (a, B), then p(—x; a, f)=
p(x; a, —B) holds.

3. Proof of Results

Before proceeding to the proof of Theorem 1, we present a general fact
on multidimensional stable distributions, which is interesting in its own right.
Let p(x) be a density function of non-degenerate stable distribution g of ex-
ponent 0<a<2. Recall that =0 in ¥'(z) and S°(d) is the smallest closed con-
vex cone with vertex 0, which contains Spt 2. Note that Int S°(d)+# @ because
of Span Spt 2=R¢?, where Int V denotes interior of a set V in R

LEMMA 1. p(x)=0 if and only if 0<a<l and x¢&Int S°(d).

Proor. Let (X,, P) be a Lévy process on R? corresponding to g, then
P(X,€dx)=p"*(dx). Of course for each >0, p**(dx) has a C=-density p.(x)
with respect to the Lebesgue measure on R?, and p,=p. We divide the proof
into three cases: a=I1, 1<a<2 and 0<a<1, and use the Lévy-Ito decomposi-
tion of Lévy processes (see [4], [8]).

(1) a=1. In this case ¥'(z) is expressed by
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Va=—1zI,, 1<6 o1[1+iZsgnce, 0> 10gi<z, 051 ]aan)

sd

={ 0 2 Tet e 1=z, 10310 ()t dr by, 2,
where 4,=27- and b0:42ﬂ“cogﬁx(d0) with
cozrr‘z sin rdr—l—g:r“z(sin r—rydr.
Then by the Lévy-lto decomposition we see that

t

Xt:S £0<|Zl<lx1\~f(ds dx)—l—gtg xN(ds dx)--tb,,

0 0J)1s121<00

where N(ds dx)=#{seds: Xs—Xs_&dx} is a Poisson random measure cor-
responding to a Poisson point process with characteristic measure

n<dx>=gsd_‘Zo(dﬁ)szcldx(rﬁ)r‘zdr on R\ {0}
and 1\7(ds dx)=N(ds dx)—ds n(dx). Now for each 0<e<1 we define

g:ﬁ xN(ds dx)+gtg xN(ds dx)+th,
0Jegixicl 0J12|Z (oo

:g‘g xN(ds dx)—tb*
0Jesix <o
with
bi=(~1 2 0Ado
=(~loge+c) |, 0X(d0).
Then Xi;-+tb° is a compound Poisson Process with Lévy measure
ndn=\_, (o) Loy,

Thus, if we set Fi={0}, F{=Spt nt, F5,,=F5+F;(n=1), then it holds that
Spt Xi+tb°*=CL(\U5-oF%) for all t>0 and that 1 lim.,,CL(U5-,F%)=5%d), where
Spt X; denotes a support of a distribution of Xi under P and CL V denotes
closure of a set V in R?. From these results we can easily see that Spt p

—R®. In fact, if S&Z(d&):o then S°(d)=R® because of Span Spt i=R*. Hence
Spt X,= 1 lim.,,Spt X{=S%(d)=R* for all t>0. Therefore Spt p=Spt X,=R?,
If gﬂl(dﬁ)io then [6°|—+co as e—0 and bcInt S°(d) for small ¢ because of
gﬁl(dﬁ)elnt S%d). Thus for each x&R? we have x-+b:cInt S%(d) if 0<e<

is sufficiently small. Hence there is an 0<e<1 such that x-+b€CL(UZ.,F3),
that is, x&8pt X;iCSpt X, for all 1>0. Therefore Spt p=Spt X,=R¢. Now if
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we assume that p(x)=0 for some xR, then L*p(x)=(0/8¢)p(x)|1=1=0, where
L* is a Lévy generator of —X,:

Lep=_, 150" [ptx+70)= px)—<rb, V() Lol *dr-+<bo, Tp(x)>

with %(d8)=2,(—d8). Hence noting that Vp(x)=0, we have p(x—r6)=0 for
a.e. =0 and l-a.e. §=Spt . By the continuity of p it holds that p(x—7»6)=0
for all =0, §<Spt 2. Furthermore we easily deduce that

p(x—rd)=0 for all =0, /=Con Spt 1.

This implies that g(x—Int S°(d))=0, but which is contrary to Spt p=R* and
Int S%(d)+@. Therefore we get p(x)>0 for all xR

(2) l<a<2. In this case p>0 on R® has been already proved in [9] by
using the scaling property of p.(x). We here give an alternative proof by the
same way as in (1). In this case the previous arguments work replacing ¥(z),
n(dx) and L* by the following:

T

W(Z)Z—]zl"‘gsd_l I<§, 0>|“[l—z’ tan—

sgn¢é, 0>] (d6)

:Ssd_lzo(da)g: [eﬂz. rﬂ)-.]_-j(z, r@>1rt"edr,

where L, =c(a)d with c(a)=21(a-+1) sin(za/2)/x.

t

X,:S xNids dx)

0g0<(1|<m
with Lévy measure

n(dx):gs
For each 0<e<1,

d

_llo(dﬁ)gjldz(rﬂ)r“'“dr on R {0}.

t

0

Xf:SZLm@xﬁ(ds dx):S leme(ds dx)—tb*

where

br=ea—1| , 03(d0),

d

and its Lévy measure is given by

ndn=|, W@ Lusroyr-edr.

d

The Lévy generator L* of —X,:

Lrpo=| 1@ TpCr-+r0)— () —<rb, Tp(apIredr

d-1
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(3) O0<a<l. We show that p(x)=0 if and only if x&Int S°(d). In this
case ¥'(z) and X, are expressed by the following:

Ve=—lz1°(,, 1< 051 1—i tan " sgncs, 0] ad0)

={ 0 @0 e 11y,

where 4, is the same as in (2), and

¢

XL:S *Nds dx).

0S0<ll‘[<oo

Moreover for each 0<<e<1 we define
= xN@s dx),
0Jes|TiCoo

then Spt Xi=CL(\U5-, F%). Hence by limiting ¢—0 we have Spt X,=5%4d), that
is, p(x)=0 if x&Int S°(d). Furthermore by a similar argument to (1) we can
see that p(x)>0 if xelInt S°(d). In fact, if p(x)=0 for some x<Int S°(d), then
L*p(x)=(9/0t)p(x)|,=1=0, where L* is given by

Lep={ ,  2@0 [ptx+r0)—p(x)lr-dr

with 2¥(d6)=24,(—d@). Hence we have pu(x—Int S°(d))=0, but this is contrary
to Spt p=5°4d). Therefore we get p>0 on Int S°(d). Q.E.D.

We alsc mention the following result: To emphasize the dependence on A
we write T(2)=¥;(z) and p(x)=p;(x). Let Q be a linear transformation on
R* and set 2,(d0)=AQ7'df) on Q(S* Y. Then by the definition of ¥'(z) we
have ¥, (2)=¥;(*Qz), where ‘Q denotes a transposed matrix of Q. Moreover
by using (1.1) we can easily deduce that if Q is invertible, then p; o is well-
defined and

3.1) pa(x)=|det Q| p1o(Qx)
holds.

PROOF OF THEOREM 1. First assume that A({g,})>0 for some g,&8¢71,
and also that og,=Int(Con Spt 1) if 0<a<1. For simplicity we write o,=a.
In (3.1) let Q@ be an orthogonal transformation, then Pa(x)=p;,(Qx). From
this we may assume that ¢=(1, 0, ---, 0). Moreover it is easily deduced that
p(ro) is expressed by

(3.2) plro)y=cpi(r)pe(0, -, 0)
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or
(33) pray={"_pr=3pa03,0, -, 0dy,

where p; is a j-dimensional density (j=1, d—1, d) and ¢>0. In fact, we define
2° by 1=8.,+1° and set H=Span Spt 2°. Then dimH=d—1 or d because of
Span Spt A=R¢. If dim H=d—1, then by taking @ in (3.1) such that Qo=g¢
and Q(H)={x,=0} we see that p;,(ro)=pi(r)pa-1(0, -, 0), where p; (resp. pa_1)
is a one-dimensional density function (resp. (d—1)-dimensional density function)
corresponing to d,,, (resp. 43). Hence we get p(ro)=|det Q| p:(*)pa-(0, -, 0).
If dimH=d, then we can define a d-dimensional density function p, by 4°.
Thus we have

@m*p=|,expl—ix, >4+¥s, @+¥ e (2)]dz
:S:ody pl(y)SRd expl—i{(x1— )21+ Xozot -+ X aze} +¥ 10 (2)]dz

=@m|"_pio)patri—y, 3, -, x)dy.

Therefore (3.3) holds. Here in the second equation we use
expl¥s,,@1=|"_ s expli y2ldy.

Now noting that (3.2) does not occur when 0<a<1 and Con Spt 1#S¢71,
we see that pg_i(0, -+, 0)>0 and p.(y, 0, ---, 0)>0 if at least y>0 by Lemma
1. Hence in the case of (3.2) our claim holds. In the case of (3.3) we have
pra)=cp,(2r) for sufficiently large » with a positive constants ¢. In fact there
are a compact set K in (0, ) and a positive constant #, such that e=
inf,expa(y, 0, -+, >0 and inf,exp,(r—y)=p:(@2r) for all r=7,. Thus p(ro) =
e|K |inf,cxpr(r—y)=¢e| K| pi(2r) for r=r,. Since p(2r)~c'r™'7% as r— +oo,
there is a constant C,>0 such that p(ra)=C,r'"* for all r=r,. Q.E.D.

PROOF OF THEOREM 2 AND THEOREM 3. Let d=2, 3 and let ¢ be a non-
degenerate stable distribution on R¢ with exponent 0<a<2. Recall that we
are assuming that Spt A is a finite set of §¢7!, and we say that 1 has mass at
(m41)-directions ¢;€8%7%, j=0, 1, 2, -, m, if 1 has mass at ¢; and/or —a; for
each j=0, 1, 2, ---, m (of course ¢;+ =g, if j#£k).

Now we begin with the case d=2. The proof is divided into three cases.

CASE 1. 2 has mass at only two directions a,, 0, (0, *=0d;). By 3.1) we



Asymptotic Behaviour of Densities 233

may assume that g,=(1, 0), ¢,=(a, b) and with a1, b>0 such that a*+b*=1.
Then
P(ra)=b""po(rho) ps(rhy)

where, h; are defined by the decomposition o=h,e,+h,0,, and p,;(y), yER are
defined by (2.1) with some constants (c;,o, Bs.0) instead of (co, Bo), 7=0, 1. Here
one can easily check that b7'=g({0, 1}); which is defined in Theorem 3, and
that p5(0)=b"'p,(0) and pi(0)=b"1p,(0). Hence our claim immediately follows
by using the facts (2.2), (2.4), (2.8) and (2.9). In particular if 1<a<Z2 and o
Con Spt 4, then by (2.5) and (2.7),

(3.4) pro)~Kr¥eexp [—Kyp¥e] as r— +oo if 1<a<?2,
(3.5) pro)~K exp[Kor—KieB+]  as r— 4o if a=1,

where K, 1?, are positive constants which are independent of ». For instance,
when Spt A={+0,, ¢} with ¢,=(, 0) and ¢,=(0, 1), let o=(s, ),

if 6€T(2), i.e., t>0 and o+0,, then p(ro)~cr2** as r — 4o0;

if e€T1)NInt S@2), i.e.,, 6=0,, then p(ro)~cr *® as r — oo ;

if c€TU)N0S?), i.e., 6==0a,, then p(ro)=0 0<a<l), pro)~cr (1=
a<2) as r——+oo;

if 6&S2), i.e., t<0, then p(ro)=0 for all »=20(0<a<1) 3.4) (1<a<2) and
(3.5) (a@=1) hold.

CASE 2. a=1 and A has mass at only (m+1)-directions ¢; j=0,1,2, -,
m(m=2). Then ¥(z), z=(z,, z,), is expressed by

T

T@)=— D c;.l<a, z)l“[l—iﬁj,o tan
P 2

sgn<{a;, z>]

:—].27:0 cj]<afr Z> I ¢ €Xp [—1'0;‘ sgn<aj) Z>:| ’

where ¢;,>0, | 8501 <1 and ¢;, 8, are defined by (2.3).

In order to prove Theorem 2 and Theorem 3 in Case 2 we first consider
the special case, however we show that the general case is reduced to this
special one (see Second step).

First step. Set g=0,=(, 0) and let o¢,=(s;, ¢;), /=0, 1, 2, ---, m, where
s;=cos¢; and ¢;=sing; with 0=¢,<¢,<:--<@,=n/2. Note that if A has no
mass at o=(1, 0), then A has mass at —o=(—1, 0) by our definition of direc-
tions, and B,,=—1.

We define the following a-stable densities:

(i) For y, zeR, p,(y) (resp. p5(y)) is a one-dimensional density with a
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log-characteristic function ¥y(z)=—c,|2|*exp[—if,sgnz] (resp. ¥3)=¥ (0, 2))
(ii) For x, z€R? and j+#k, p; »(x) is a two-dimensional density with a
log-characteristic function & ,(2)=—r=s. s c+1<{0+, 20| exXp[—if sgnlag,, 2>].

PROPOSITION. Let »=0.
a) If o=Spt A and p5(0)>0, then

3.6) plra)~p(r)ps0) as r— +oo;
b) If a&Spt 4 and o=Con Spt A, then
3.7 zb(ra)fv1 2 buxre) as r— +oo;

sj<ksm
c) If 12a<?2 and o&Con Spt A, then p(ra) is rapidly decreasing as r— oo ;
d) If 0<a<l and o&Int (Con Spt A), then p(ro)=0.

Note that (b), (c) and (d) also hold in the case that A has no mass at {+¢}
(in this case ¢y, ,=c,=0 in ¥(z)) and that, by (2.9)

Re S exp¥ (0, z)dey=7p§(0)=C"*I'(a™+1) cos( ’; L@)p),

where (¢, ) is (¢, f) in (2.3) which is given by using (¢, Bo) = (S, ¢j 4,
S oBi.0t%/Ce) instead of (¢, Bo) in (2.3). Hence by (2.4) and (2.8) p5(0)=0
if and only if 0<a<1 and B ¢=Bz0='"=Fn==x1 (i.e., a&Int (Con Spt 1)).
From this proposition we can easily deduce Theorem 2 and Theorem 3 in
Case 2 by using the one-dimensional results.
To prove Proposition we need some lemmas. The following lemma is
obtained by elementary analysis.

LEMMA 2. Set a;=t;/s;=tan ¢;(a,=0, ap=00). Then

3.8) p(m):(2z)~2§mexp[—z'rzlwf(z)jdz

I (— 1)" v o LU
~ 2 na na _—7 —
=r iz Z__,l r~"%c? sin nr;og du e “u Regu/(ml)exp?f( i u)du
n-1
+rin? 21 (= 1) e p Tl sin nms du e *ynat!

g" dgei® 35+ = 1)n "“"Im[ %c,-u“(sﬁz’e”’tj/al)“e‘“/f]n

n=0

ey B
due™™

lljl)

+ra S [T
j=tJo
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r " Im{cou®e 110415 (u—aw) e 4 ..
+c;8%(u—ajv)*e "

§ =
n=1 n!
& (ﬁl)n—l -na a a,-if) a,=if n
v Im[cj+13j+l(aj+11)“u) e~ iti4 s o peTtim]
This expansion

!

as r—+oo, where 5;=75(0,), 9,=9(—0,) are defined by (2.3).
holds in equal provided 0<a<1, and if 1<a<2, then it holds in the sense of
1.2).
PRrOOF.
0,=(s,, 1), 0,=(8,, t;) and ¢,=(0, 1). That is, for Ci=c¢;85(j=1, 2),
V(@) =—colz,|“exp[—if,sgnz,1—¢, |21+ a,2:| *exp [ —i0, sgn (z,+a125)]

For simplicity we only prove the case that m=3, e=0,=(1, 0),
—C2|z14 22, “eXp[—i6, 5gn (2,4 a225) ] —¢s| 22| “exp[—i0; sgnz,] .

Then
Re ” ” ; a,~if
piro)= ﬁg dzggo dz,exXp [—irz;—coz¥e=i0]
(exp[—C1(z1+a122)% 01 —y(21+ao20)%e 02— cyz80™09]

+eXp [_C'“.'l I 21— Q125 l ae—i0l sgn(z;-aqzg)
—-C~2 I 21—(1222] ae—iﬂzsgn(q—-agzz) ~csz‘;e”-"]) .

By changing variable 7z, to ¥ we have
o Tajzg . .
27r2rj)(ra):Re§0 dzz{g du exp[—iu—cor “u“e 0]
0

N UNE o o A )
(exp[-cl(a122+7\) e wl'—Cz((1222+ 7) e~ —cyzge ”’3]

a . a
+exp[~cl(alzz——) e”l—cz(agzg——> e'”z—c3z'§e”’3b

“2%2 ; —a,,a,—il
du exp[—iu—cor *u®e %]

r
+
rajzg
u “ s A »
(exp[—cl(?%—alzz) e ”’1—c2(a222+7) e tr—cyzge “’3]

a . ~ a
+exp[—c1<——alzz> e‘”’l—c2<azzz——~> e”’z—cgz‘ge’”{t)

=3

—I—S du exp[—iu—cor - uce 0]
Tagzy
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~ [ U a . A a ~
(exp[—cl(7+a122> e ”1—cz<—r—+agzz> e 2 —cyz%e "]

y @ « _
—|—exp[~c1(—r—alzg) e 101—02(7—@22) e "’2~cszg‘e”’3]>}.

First assume 0<a<1. Rotate the contour of integration with respect to du
through an angle —=n/2. Then

Tayzg

(3.9) 2n2rp(m):Re[—z'g;°dzz{S

du e *exp[—cor *u%e 10]
]

~ CUN\E ~ CUN\E i
(exp[—cl(alzg—z~) e 101_6'2(0222'_—1—‘) e~ Wr—cyz%e ”’3]
r r

. RAGCE . LU\ )
+exp|:—('1((1122+27> 9101—02(0222+17> 97'02—63,2%9103])

Tagzy i~
—1—S du exp[—u—cor *u%e *m]
Tlllzg

~ u ; “« -in ~ L UNT -i0 o 10
expl —¢, 7+zalzg> e ”"Cg(ang—‘Z?) e tVr—cyz5e™ 3

S U a . N R )
—i—exp[—cl(? ~zalzz> e l’/l—cg(agzz—l—z7) 9102_63252103]>

—I—S du exp[—u—cor *u%e t10]
Ta g2y

LU « o qu . a ”

(exp[~c1(7+zalzz) e‘“ﬂ—cz(7+zagzz) e t2—cyzfe™ 3]

L U « (U a . P
—i—exp[—cl(-r——zalzz) e lWl’*Cz(?*ZGng) et —cyz40" 3])}
(e /2 i
—HS deTGIZQS dpe™t
0 0

exp[—7a.12,e" 170 —c,aTz5e 00 —Fz8(a,—a e ) e e —cyz5etle]
{exp[—71a5z5(1—e )% 1] —exp[ — ¢ a5z8(e7' —1)%e 1]}

T

+igmdzgragzzg md(pe“i‘f
4]

(1}
expl—7ay2,0" T/ —ya525e 00D —F 28(as0 0 —a1)%e P —cyz5et?s]
{exp[—c”'za‘52‘2’(1~e‘”)“ei"2]—exp[—Eza%(e‘W~1>"e‘“’2]}].

In the last two terms change ra,z, and ra,z, to u, ©/2—¢ to ¢ respectively

and rotate the contour of the integration with respect to du through an angle
—¢. Moreover, in the second and third terms exchange the order of integra-
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tion with respect to dz, and du and change 7z, to v. Then 2% p(ro) is
equal to

Smdugw dze ™ Im{exp[ —cor “u%e 0]}

0 u/(ray)

o

N LU o LuUNT »
Re{exp[—cl(alzz—z7) e “"l—cz(azzz~z7) e Mr—c,2% ‘03]}
Im ® ~-u —d,a,-1
+7 du e exp[—cor u%e 0]
0

ulag ~ . . - . . _ s
{§ dy(exp[—&r~*(u+iaw) e M —Fr % (aw—iu)e 02— cyrry%eifs]
ufagy
Fexpl—Cir (u—iaw) e N —r(avtiu)%et? —cr et ])

ulag " . . . . . _ -
+S0 dulexp[—&,r *(u+ia,w) e I —F = (u-tiaw) e 12— ¢y ayag=ify]

+exp[—c~1r““(u—ialy)“e'i’“—fzr‘“(u—z'azv)"e‘“??—car”“y“ei”3])}
Re(= N .
+—S du e ™ exp[—cor *u%e 0 ~S d
r Jo pL—6 ] a, Jo ¢
exp[—ig—Cor "u(l—ie % ay/a)% e —cyr~*a7oue ¥s= 9]
{exp[—¢r *u*(1—ie™**)%en]—exp[—&r~*u*(l—ie~*#)¢-111]}
Regm ) u (72
—\ du e *exp[—cor uetn *S d
+ 7)o pL—¢o ]a2 . ¢
expl—i _glr—aua(l_ie—iq}al/az aei;;l_car—aa;auaei(og—am
p
{exp[—&or *u(1—ie~*?)*e*12] —exp[ — &y “u*(1—ie~1%)%¢-172]}
Moreover in the second term we see that
ul/ay . . . ~ . 0 .
S dv(exp[fyr™*(u+iaw)®e M —Cor %(ay—iu)®e 02—y yre-i03s]
wiasy
+exp[ ¢ (u—iaw)*e  NM—¢y(aw+in) el e— g ryaeils])
ufagy ~ . . ~ . . :
—I—S dv(exp[—clr‘“(u—Halv)“e‘”“—czr‘“(u+zagu)“e‘zm—car‘“y“e“'”ﬁj
0
+exp[—& (U —iaw) e N—Cr " (U —ia.w) e e — gy ¥yaeifs])
(ulay o A . . s
:zgu/ du(exp[—C1r (U —aw) e " 1o~ (aw—u)%ei T2 — %% its]
ag

—eXp[—Cir M (u—aw)*e M —,r*(aw—u) e r—cyrayTemi0s7])

(ulag ~ . ~ . ‘s
_HS du(exp[—& 7 *(u—aw)%e " —Fr *(y— a,v)%e 12—y~ ¥y etis]
0
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—exp[ —& (U —ap)%e N —Fr 4 (u—apw)*e 12— cyr T e H4])
. u (2 . ~ C :
—-za—g d¢(exp[z¢-—c]r‘“u“(l—i—ze*"‘)e““

1 Jo
—Ertut(l+ie*?a,/a,)%e 12— cyr%a7u et 0smad)]
—exp[—ig—&r *u(l—ie %)% 0
—Eru(l—ie*ay/ a) et 1t —cyr a7 u%et s a9

LU /2 i o L .
+"’?So dg(expligp—.r“ut(1+ie"a,/az)men

2
—rtut(l4ie') e 2 —cor%azue t9sma9)]
—exp[——z‘¢—flr"“u“(l—iei%l/az)'rg—ivn
— & u(1—ie*®) et 12—y a3z u%e? s 9]

LU /2 . . L .
—za—go d¢(exp[z¢—clr““u“(l+zel¢a,/ag)“e‘“71

2
& ut(14iet9)%e e — g~ %a;u%e 103 9)]
—exp[—igp—&r “us(l—ie**a,/a,)"e "
—&rtu(l—iet)e 12— cyr"azuet s P ]),

where we rotate the contours through angles -+=/2. Substitute this equation
for the above one, then we get

L (- .
plro)=—;_|" du ¢™* ImlexpL—cor~"ue™ 1]}

” x SUNT 0, SUNT i 6
Reg dzz{exp[—m(alzz—z—r—) et 1*c2<a222—z7> e 02,7900 3]}

u/(ray)

1 w ulay -u -, 0,1y N —a a,—1
—%—Trr; du / dy e * Im{exp[—cor “u%e 10— *(u—aw)*e 11}
uaz

Im {exp[—&or (@ —u)%e 12—~y 147}

ulag .
-I—So dye “Im{exp[—cor “u“e 10— r *(u—aw)e M

—&r (U —ayw)¥e 2]} Im {exp[—csr’“y"e‘”?ﬂ}}

1 « -u -, u
+ o go du e * Im{exp[—cor *u%e 703} p

/2 .
S: d¢ explig—&r *u*(1+ie*?)%e 1

—&rtut(1+iea,/a,) e Mt — a7 u e s ],
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This implies (3.8). Next let 1<a<2. In this case it is impossible to proceed
in the same way as above, because the integral in (3.9) may diverge. However
in a similar way to the one-dimensional case (cf. [3] Th. 2.4.2), if we choose
suitable angles in the rotation of the contours of integration and use Taylor’s
formula: For x>0, yeR

N pu— y n — y N+1
eXpE—x+iy]=n2=?0( x:!”) +e( &J:f))! )

then we will obtain the same asymptotic expansion (3.8). In fact, first we see
that

eelC, |g|£1,

Z”Erf’(“’)zReX:dzzS:umdu exp[—iu—cyr“ue %] /n |
u\e . . AN i .
<exp|:_€‘(a122+?) 9—1'01—'6'2((1222"}“7) e 02—63226 ‘03]
~ U\« o A ;
+BXP[—Cl(a122— 7) Ewl—c‘z(azZz*?) e ”2—c3zge 03])
R 3 agy .
+7Sg d”{g * duexpl—iu—cor*ute ]
0 ajy
N N .
(ZO[“‘517“"‘(u+aw)ae—101]n/n 1 20 [ =& *(aw+u)®e2]n/n |
n= e

N ) N |
2 [—esr e e]n/n | + 3 [—&r *(u—aw)*e ]2 /n !
n=0 n=0

M=

0[—Ezr‘“(a2v—u)“e“’2] "/nl

S
Il

M=

3
i
o

[—ecsr™*u%e?s]n/p !)—I—S duexp[—iu—cor “u%e~i%]
agy

N
) [—&r *(utaw)®e 1] /n ] > [—Cor*(utamw)®e 2] /n !

3
M=

N P
[—esr™ % ]2 /n ) + ) [—&r *(u—aw)%e~01]"/n
n=0

M=

S
]
°

N N ;
2 (=t u—aw) e % /n 1 3 [—er~ v e 5]/ 1)}
+0(7,~1-(N+1)a) .

In each term we rotate the contour of integration with respect to du through
an angle y=r[(a—2)B,—1]/2a), then exp[—iu] is to exp[—ue**/2*nN7] and
exp[—eor"u%e 0] is to explicor *u]=0_, [icor *u]"/n | +e[icor-u]¥*1/
(N+1)! with e<C, |¢]<2. Note that —x<y<0 and |x/2+7|<=n/2. Moreover
we rotate the contour through an angle —z/2—y. Then we have the expansion
which is similar to (3.9). Then by the same way to the case of 0<a<1 we
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can easily obtain (3.8). Q.E.D.

Thus if ¢=Spt 2 and p$(0)>0, then

o0

Reg expllf(—z'%, y) dy — mp5(0) as v - +oo,

ujr
and
plro)~r 1 on ¢y sinyo L (a+1) p5(0) as 7 — +oo.
Therefore we have (a) in Proposition :
If 6#Spt A then B, ,=—1, i.e, 1=0 or = (see §2), thus the first and
second terms of (3.8) vanish. Hence by change of variables u—a,v to u’ we
have the following :

LEMMA 3. Set bj=a;—a,(by=0, bpy=o0). Then for c&Spt 4,

m=—1(oo bj+qv
3.10) pro)=rir~? ZS duS du e * %1
7

i=1]J0 ij

it ("Dnﬁ ~na aq,a,-1 a a ,—i
> e ImLeisfuteT M cosu—bw)tem e
n=1 .

+e;s4(u—bw)*e t1i]"

< (_1)11—1 -na a a,—i%; a,~i7 n

R Im ;.18 1(bjav—w)®e Mitt4 oo feqpe”tim]n,
n= .

as v — +oo.

This lemma also holds in the case that 4 has mass at neither ¢ nor —o,
because ¢,=0 in (3.8).
Thus if ¢&Spt 2 and o<Int S(2), then

p(ro')wr‘“”“’n‘zf(a—l—l)zlsjg‘ismgj, ijI hj_ k | “l-«gin NiCe I hk,jl “1"% gin 77)3

~ % 5.1 Dirh; Da(rhe.y) as 7 — +o
sj<ksm

1

= Z pj.k(ro)’
1sj<ksm

where g; y=(s;tr—Sst;) >0 for j<k, h;, and h, ; are defined by o=h;,0,+
hy. ;6% (.e., h; e=ts/(s;tr—sst;). Thus, we get (b) in Proposition.

Moreover if 1<a<2 and ¢&S(2), then B ,==Bn. ==l (€., 1= =9n
=m or ;= =7)n=n). Hence every term of (38.10) vanish. We have (c¢) in
Proposition.

Finally (d) is followed by Lemma 2.

Second step. Suppose that A has mass at only (m+1)-directions g, 7=0, 1,
2, -, m. We may assume that o=(l, 0) and 0=¢y<<@ << <Pm-1<Pm <
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n(p;=arga,;). If 2 has no mass at {+¢}, then by taking ¢,=0 in ¥(z) and
seting ¢,=¢ we may include ¢ as a member of directions a;, j=0, 1, -, m.
Moreover in (3.1) let @ be a linear transformation such that Q¢,=o, and Qo
=(0, 1), then 0=,<@: < <@gmn=n/2 where @,=arg@a;. Thus by Qra=ro
we have p;(ro)=|det Q1p14(ro) and 1y has mass at only (m+1)-directions Qg;,
j=0,1, -, m. Therefore the general case is reduced to the special case of
First step.

The proof of Theorem 2 and Theorem 3 in Case 2 is complete.

CASE 3. a=1 and 21 has mass at (m+1)-directions oy, gy, -, @ (M=2).
We may also take {e¢;, /=0, 1, 2, .-, m} as in First step of Case 2. Then for
z=(z,, z,)ER?

m 2
V(== 3 e {l<a, 1 +i=pia, 2 logl<a, 1},
j=0 71'
where ¢;>0, |8;/<1, j=0, 1, 2, -, m are constants.
The following lemma is corresponding to Lemma 2 and Lemma 3.

LEMMA 4. Let =0 and a=0,=(1, Q).
(i) Then for a;=tang;

p@ra) =(27r)-ZSR2exp[—z'rzl +¥(z)]dz

0

Re S:/Texpllf(—i%, u)dv

P e . 2 un
+ra B Lo 11m[;(1+,30)—;50 log7] du
S o aw e 5 T i i go— 2 gy log X
o B ) T du e 5 im cou{z(l—i—ﬁo) = By log r}

+0131(u“011’>{i(1+,@1)* ’72?181 IOg[Sl(u_alv>/7]}+"'

+Cj3j(u”“ajy){l'(l+ﬁj)—’7’2{‘8j log[Sj(u—aj)J)/r]}:ln

K . 2
7;1 ] Im[(,‘j+1$j+1((lj+1v—u){l(l_ﬁj+1)+ ;ﬁj+1 log[Sjn(ajuV_u)/?’]}

o0
>
n=1
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4 e +cmy{i(l—ﬁm)+%ﬁm log%}]n

as r—-co,
(ii) If o&Spt A, set b;=a;—a,, then

bj+1”du e—u—alu

p(ra)zr'zn'zglg:dug

bjv

> le[clslu{i(l—i-ﬁl)— % B log [Sx(u—bx)/rj}+"'

n=t n!

+c;s(u—byp) {i(l+,8,-)—%,8, log[sj(u—bjy)/r]}]n
él%lm[()jﬂsju(bjuv—u) {i(l"’ﬂju)‘F %ﬂjﬂ log [Sj+1(bj+1v-—u)/r]}

+ .. +cmv{i(1—,8m)+%lsm log%}]n

as r—-—co,

From this lemma we obtain Theorem 2 and Theorem 3 by the same way
as in case of 1<a<?2.

Next we proceed the proof of Theorem 2 in case of d=3.

(1) First we see that

B @arpt=| expl—icx, >+T(@dz

=2 RBSR3dZ {exD[_i(xlzr*'szz‘{‘xszs)‘i'qf(zl, 2, 23)]
3

+exp[_i(x121“xzzz"f‘xaza)‘*‘w(ZI, —2s, Z3)]
+exp[—i(X 12z, + %22, — X325) + T (21, 23, —23)]
+exp[—i(%,2;— Xoz2s— X325) + T (21, —22, —25)]}.

(2) We divide the integral domain in order to omit the notation “sgn” in
U(z).

(3) We change variables z,, z,, z, appropriately according to o.

Then we deduce that Theorem 2 and Theorem 3 hold. We will describe
the outline of the proof in some details. Here we only consider the case that
2 has mass at (m-+1)-directions @, ¢, - 6, (m=3) but that 0<a<1 and o¢&
Int S(3), because it is evident in the others.

a) If e=TQ), i.e., A({e})>0, we may take 6=0,=(1, 0, 0) and change z,
to —iu/r, then we have p(re)~p()ps(Q)~cr "*(c>0) as r—-oo.
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EXAMPLE 1. Let m=506=0¢,=(1,0,0), 6,=(, 1, 0), 0.=(1/43, 1/4/3,
1/v/3), 6=, /v 2, 1/vV2), a,=(1/+2Z, 0, 1/+/2) and a,=(0, 0, 1). In (3.11)
we divide the integral domain as follows:

01 [l an(anf ) )
[ e )
a0 e )

R (e M s W |

and change z, to —iu/r, then we can see that the sum of terms in (3.11)
corresponding to the first integral with respect to dz, of each term in (3.12)
decreases like po(r)p3(0) ~ cr™*"%(¢>0) as r — +oco. Moreover, the remaining
terms are o(r"!"%) as r—--oo.

b) If ¢=T(2), then the following two cases arise.

(i) There exists only one plane H which is spanned by some elements
Gy, 01, -+, 0,(k=1) of Spt A and contains ¢. In this case we may assume
that H is x,x,-plane, o=(1/+2, 1/v/ 2, 0), g,=(1, 0, 0), ¢,=(0, 1, 0) and o, ---,
0, €1{0,=0}\{6,=0, 6,=0, 0,=0} in S% Set »’=r/+/2. We divide the integral
domain as mentioned in (2) and change (z,, +2z,) to —i(u,/r’, +u,/*’) in order
to exp[—ir'(z1£2.)] become exp[—u,—u,] in (3.11). Then we have an asym-
ptotic behaviour p(ra)~r2*® as y—t-co,

EXAMPLE 2. Let m=3, k=1, ¢,=(1,0,0), 6,.=(, 1, 0), 6,=(0, 1/4/5,
2/4/5), 6:=(0, 0, 1) and ¢=(1/v2, 1/ 2, 0)=Con {a,, ,}. In (3.11) we divide
the integral as follows:

Jeyde=l,ta e[+ 021

Change variables z, and z,. Then from the term in (3.11) corresponding to the
first integral in the above we have an asymptotic Do.1(ra(0, 1) ps 1(0)(~cr20ro,
¢>0) as r—-+oo, where ¢(0, 1) is a restriction of ¢ to Span {c,, ¢,}. Moreover,
from the other we have o(r"2"*®) as r—4oo.

(ii) There exist at least two planes H,, H, which are spanned by some
elements of Spt 1 and H,NH, is a line containing ¢. In this case we take ¢
=(1, 0, 0). We change z, to —iu,/r and also z, appropriately as seen in the
following example. Then we have p(rg)~r*1+® g5 r—+f oo,
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EXAMPLE 3. The setting is the same as in Example 1 except g,=(1/v 2,
1/4/2, 0)+a=(1, 0, 0), and also divide the integral domain as in it. First in
each integral we change z, to —iu,/r then in (3.11) terms vanish which cor-
respond to the first integrals with respect to z; in (3.12). In the integral

o z3/2 riz3—29) . . . .
godzag dzgs du, we change z, to -ius/r, —iuy/r, +ius/r and —iu,/r
0 T2y

according to each term of (3.11). Then we have the asymptotic p,..(ra(0, 1))
pt(0) as r— +oco. Moreover by the same change of variables we have
o(r~2*®) a5 y—-+oco from the integrals of

o zg/2 TZ3 r(zg+zg) L
[aaf(* ™ 474 dw)
0 1] T (23+29) T23 T(23%29)
23 Tz3 r(zg+29) o
S D)
z3/2 T2y T23 T (29%23)

T{29~2g)

Similarly, in the integral rdzsr dZQS du, we change z, to +ius/r, +ius/r,
] 223

T3

—ius/r and —iuy/r according to each term of (3.11). Then we have the asymp-
totic p,. s(ra(4, 5)pLs0) as r—+co, and by the same change of variables we
have o(r 20*®) as r—+co from the integrals of

3 223 Tzg r(zg9+23) o
ng{S ng(g -I-S —]—g dul)
0 23 TZg T2z9 T(z9+23)
£ T29 r(z9+23) o0
ol o)
223 T (29-23) Ty T (29+23)
i 23 TZg r(zg+zg) o
:g dZQ{S ng(S +S + du1>
0 29/2 rzg Tz9 r(zg+23)
zg/2 TZg r(zg+23) o
a7 AL )
0 T (29—23) TZg T (29+23)

Finally we have the asymptotic p, s(#0(2, 3))p3,:(0) as r—-+oco from the remaining

oo H Tz
terms. In fact, in the integral S dzag ? dzzg "du, we change z, (resp. z;) to
0 23/2 reg

—iUs/7, Fius/r, —ius/r and +ius/v (resp. +ius/v, +ius/v, —ius/r and —ius/7)
according to each term of (3.11). Moreover change variables (ui, us, uy) to
(vi~4vs, vs, va+vs). Then the sum of the first and 4-th terms vanish and we
change v, to —iv, (resp. +iy,) in the second term (resp. third term). Similarly

0 2z z
in S dzag 3d22gr8 du, change z, (resp. zs) to ~iuy/r, —iu./r, +ius/r and
0 29

T (29-23)
—iu,/r (resp. —ius/r, —ius/r, +ius/r and +ius/r) according to each terms of

(3.11), and (u,, us, us) to (vi+vs, va+vg, vg). Then the sum of the first and 4-th
terms vanish. Hence, we change v; to +ivs (resp. —ivs) in the second term
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(resp. third term). By this way we have p, s(ra(2, 3))ps 5(0) as r—-+oo. There-
fore we see that p(ra)~ po.(ra(0, 1)ps1(0)+ pe.s(ra(2, 3)pt o(0)+pus(ra(4, 5))
$i,50) (~er 2+ @) ag r—+oo.

¢) If ¢eT(@3), it is sufficient to consider the case that e=(1/+3, 1/4/3,
1/v/3), a=(1, 0, 0), 6,=(0, 1, 0), 6,=(0, 0, 1) and oy, -+, 0,CS?\{0,=0, 6,=0,
#:=0}. Set '=r/+/3. We divide the integral domain as mentioned in (2) and
change (zi, 2o, 25) to —i(u,/7’, *u,/¥', +us/7’) in order to expl —ir'(z,+2,+25)]
be to exp[—u;—u,—u,] in (3.11). For instance, for exp[—ir'(z;—2zs+2:]) we
change (z), zs, z5) to —i(u./7’, —us/¥’, us/r’). Then we have an asymptoic p(ro)
~pT3EN) a8 r— 400,

EXAMPLE 4. Let m=3, ¢,=(1,0,0), 6,=(0,1,0), 0, =1(0, 0, 1), g, = (0,
—1/+/2,1/v/2)and 6=(1/+/3, 1/v/3, 1/+/3). In (3.11) we divide the integral

[yt =l azif dan{[["+ azi).

Change variables z,, z, and z, as above. Then we can easily deduce that
7)(7’0')"’150,1.2(7‘0')17i 1,2(0)‘*‘?0,1,3(7’0)?& 1.3(0)‘*‘170,2,3(7’0')17&2,3(0) (~er2@r e ¢>0) as
y— oo,

d) If 0=S@3) and 1Za<2, then by the same way as in (¢) we can see
that p(ro) is rapidly decreasing as r—-co.

All of the above change of variables are informal, however we can justify
the computations by a similar way to the case of d=2.

Then we conclude Theorem 2 and Theorem 3.

REMARK 4. As mentioned in §1, m higher dimensions (d=4) we belive
that our method should work, although the calculations may be more tedious
and complicated.
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