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Abstract. We accomplish the Kaehler version of Choi’s characteri-
zations of rotationally symmetric manifolds.

0. Introduction.

A Kaehler manifold M of complex dimension »n is said to be unitary-
symmetric at a point m of M if the linear isotropy group of automorphisms
(that is, holomorphic isometries) of M is the unitary group U(n).

A unitary-symmetric Kaehler manifold is a Kaehler version of a rotationally
symmetric manifold (cf. Choi [1], Greene-Wu [2]). The second author [8] has
given a characterization of such a Kaehler manifold. Using the result, the
present authors have constructed a one parameter family of complete Kaehler
metrics on CP", the complex projective n-space, which are compatible with
the canonical complex structure on it, and have studied the geometry of unitary-
symmetric Kaehler manifolds (cf. Watanabe [8], Mori-Watanabe [4], [5], [6]).

Let us fix some notations. Let M be a Kaehler manifold with Kaehler
structure (ds® J). We denote by V the Levi-Civita connection. The curvature
tensor R is defined to be

R(X, Y)Z:vXVyZ—VYsz_vEX'Y]Z

for any vector fields X, ¥, Z on M and the Ricci tensor is denoted by Ric.
Further, we denote by £ the fundamental 2-form, that is, 2(X, YV)=ds*(J X, Y).
Let meM. We define 0 to be the distance from the origin O of the tangent
space T,(M) at m to the first conjugate locus @m in T,(M). Define E,;:
{XeT (M) X|<o}. Then it isclear that ﬁ(; becomes a Riemannian manifold
equipped with the metric expkds® since expmzﬁa—>M is non-singular. Now
we consider the following four conditions.
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(I) (M, ds® J) is unitary-symmetric at m.
(II) The metric exphds® and the fundamental 2-form expkf2, pulled back
under the exponential mapping exp,, are given by

ex prds’=dr*+f(r)d@*+ f(r)*(f/(r)* -y,
ex pRQ=2f(f"r)gNdr+ ()T

on the punctured ball Bs— {O} of radius 6 in T,(M), where f is a C* odd
function on (—4, ) such that f’(0)=1 and f’(»)>>0. Here we assume that d is
infinite when M is non-compact, and we denote by (», @) the usual polar coordi-
nate system of C"=T,(M), by (d©? ¢, & n) the standard Sasakian structure
on the unit sphere S*"7' in T,(M), and set ¥(X, Y)=dOpX, V).

(II The Riemannian curvature tensor R satisfies

Ry, vOr’'=h0]1",  RE®D), 1" 1'=k(rE®m),

where 7/ is the tangent vector field of a radial geodesic y starting from m,
h(r), k(r) are functions depending only on the geodesic distance » from the origin
0, and E(r) is a parallel vector field along 7 which is perpendicular to both
y and J7'.

(IV) The exponential image of any complex linear subspace (resp. real
subspace spanned by u, w) of T,(M) is a closed, totally geodesic, complex
(resp. real) submanifold of M, where u, Ju and w are orthonormal.

Then our assertion is as follows.

THEOREM. Let (M, ds*, J) be a complete, connected, simply-connected, Kaehler
manifold of complex dimension n=2 and m be a point of M. Then the above
conditions I, I1, 111 and IV are equivalent.

1. Proof of Theorem.

We have already known that (I) is equivalent to (II) (see Watanabe [8]).
We shall show that (III) implies (II). Let y be a geodesic issuing from m
and E=FE(r) a parallel vector field along y such that E(0) is perpendicular to
both 77(0) and J7’(0). Then we have the following two kinds of Jacobi fields
V and 5 along 7,
Vin=rmnEr),  E@r)=gn]r

for some functions f, g, which satisfy the differential equations

fr) k@ =0,  g"(r+h(@)g(r)=0
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with initial conditions
f@=0, f[(O=1, g0=0, g’ O0)=1,

respectively. By applying the Jacobi field argument, a long calculation shows
that the Riemannian metric expkds? is given by the form

ex phds’=dr*+ f(dO*— @)+ g*nR

(cf. Nakashima-Watanabe [7]). Since (ds? J) is a Kaehler structure, we can
see that g=/ff’. Further, since f>0 and f’>0 on (0, §), it follows from the
assumption on ¢ that if d<{co, then f’(d)=0. Thus we have the condition (II).

We shall show that (I) and (II) imply (IV). Let W be a complex linear
subspace of T,(M). Then there exists a unitary matrix ¢ which leaves W
pointwise fixed but ¢(X)=X for every XeT,(M)—W. From the assumption
that (M, ds?, J) is unitary-symmetric at m, it follows that there exists an auto-
morphims @ of (M, ds? J) such that (®4)n=¢. From this the image of W
under the exponential map exp, is the fixed point set of the isometry @ of
(M, ds*), which implies that the image set exp,(W) is a totally geodesic sub-
manifold of (M, ds®). By restricting the structures (ds? J) to the vectors tan-
gent to exp,(W) we see that exp,(W) is an almost Hermitian submanifold of
(M, ds?, J). Thus the first assertion is true (see Kobayashi-Nomizu [3], p. 171).

From the first assertion, it suffices to prove the second assertion in the
case n=2. We adopt a polar coordinate system ¢(z, 8,, 6,, 8,)=(t cos 8, cos 6, cos 85,
tcosB cos by sin by, tcos@ sinb,, tsind,), 0<i<co, —m/2<0,, 0,<m/2, —w<,
<z for Tw(M)=C". Then we shall show that the submanifold exp,, {¢, 0, 6., 0)
lHeR, —m/2<0,<7/2} is a closed, totally geoderic submanifold. We find that
with respect to local coordinates w,=t, w,,;=6,, i=1, 2, 3, the components 81
of the Riemannian metric g are given by g,;=d8,;, j=1,2, 3,4, gisin=
SO AAf@=Dnd), i=1, 2, 3, Giwijr=FO /)=y, i#j, where =1,
A =08 Ws, Ay =13=C0S’ W2 €08’ W3, 7);=SiN W3, 73=—SIiN W>C0S W;C0SWs. From this
observation it follows that the Christoffel’s symbols satisfy I'%,=0 for ;=2, 4
and j, k=1, 3, when 0<|w,|<oo, —7/2<w;<n/2 and w,=w,=0. Thus, the
second assertion is true.

Finally, we shall show that (IV) implies (IlI). Let u, Ju and w be ortho-
normal vectors in T,(M) and consider the geodesic r(r)=expnru, r&R. Set
P=cexp, spaniu, Ju}, Q=exp, span{u, w}. Denote by E(») a unit vector field
(in Q) along y(r) which is perpendicular to 7’(r) and satisfies E(0)=w. Since
P and @ are 2-dimensional totally geodesic submanifolds of M, we find that
E(r) is a (uniquely determined) parallel field along 7 which is perpendicular to
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both 7’ and J7’ and that

RUJY'®), 1D (=hM]7'(r),  RE®D), 7'y (= k(r)E®),

for some functions A(r) and k(r). Thus we have the condition ().
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