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ON PROJECTIVE COHEN-MACAULAYNESS OF A DEL PEZZO
SURFACE EMBEDDED BY A COMPLETE
LINEAR SYSTEM

By

Yuko HommA

Let £ be an algebraically closed field. We understand by a Del Pezzo surface
X over £ a non-singular rational surface on which the anti-canonical sheaf —wx is
ample. We call the self-intersection number d=w% of wxy the degree of X, then
we get that 1=d=9. It is well known that X is isomorphic to P'XP', which has
degree 8, or an image of P? under a monoidal transformation with center the union
of r=9—d points which satisfies the following conditions:

(a) no three of them lie on a line;

(b) mno six of them lie on a conic;

(c) there are no cubics which pass through seven of them and have a double

point at the eighth point.
Conversely any surface described above is a Del Pezzo surface of the corresponding
degree ([8, T, Theorem 1]). It is also well known that —wy is very ample when
d=3 and that ample divisors on X of degree 3, which is a cubic surface, are very
ample too. In this paper we will get that ample divisors on X of degree d=3 are
very ample and that ample divisors on X of degree 2 [resp. 1] other than —wx
[resp. —wx nor —2wx] are very ample.

A closed subscheme V in P¥ is said to be projectively Cohen-Macaulay if its
affine cone is Cohen-Macaulay. It is equivalent to that HY(P?Y, Jy(m))=0 for every
meZ and H(V, Ov(m))=0 for every meZ and 0<i<dim V. In this paper, we will
get that ¢p(X) is projectively Cohen-Macaulay for a very ample divisor D on X,
where ¢,p, is the morphism from X to P42 defined by the complete linear system
|D| of D. We also study the homogeneous ideal I/(D)=Ker [SF(D) — @uf(nD)]
defining ¢p(X). These results will be stated and proved in §3 and Es. The
fourth section will be devoted to a study on —#nwx of a Del Pezzo surface X of
degree 1 or 2.

In §1 we will compute the dimension #4%D) of the i-th cohomology group
HY{X, 9x(D)) of the invertible sheaf ©x(D) corresponding to a divisor D.
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By abuse of terminology we use a divisor D and the corresponding invertible
sheaf Ox(D) interchangeably. In §2 we have general studies of the equations
defining a projective variety. Throughout this paper a curve on a surface will
mean a reduced curve.

§1. Cohomology groups of a divisor on a Del Pezzo surface.

From now on, a Del Pezzo surface means one which is not P'XP' unless
otherwise specified. Let X be a Del Pezzo surface of degree d=8, and f: X — P2
be its representation in the form of monoidal transformation of the plane with
center Py, ..., P.. The linearly equivalent class of the exceptional curve E;=f~'(P;)
is denoted by e;e Pic(X). Put /=f*®p(1). Then (, e, ---,e) is a free basis of
Pic (X) and wx~—3[+ _}il e;. We denote by & the set of all exceptional curves on
X, then '

&={Y|an irreducible curve Y with Y2<0}.
& is a finite set and it is easy to list up all Fe&, as follows.

a b1 bz b3 b4 bS bG b7 bB

S U R W=D
W N NN D
DO DN DD ke ke e O
[SoI ORI S o I )
N DN = = =D O
DN DN e e DO
NN O DD
N == DD D =

where Ox(E)~al— 42 bies With b= - = b,
=1

We begin with a lemma on X of degree 8, which is isomorphic to a rational
ruled surface F, with invariant one.

LemmMA 1.1. Let X be a Del Pezzo surface of degree 8 and D~al—be, a divisor
on X. Then the following assertions hold:

Q) if e=zbi=—1 or a—bi=-1, then K (D)=h*D)=0;

(2) D is ample & D is very ample & a>b,>>0.

Proor. We can prove (1) in the manner of [6,§7]. The statement (2) is found
in [1, V, Cor. 2.18].
The following remark is available for us.
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ReEMARK 1.2. Let X be a Del Pezzo surface of degree d=7 and D a divisor
with D.E>0 for each Ec&. Then theve exists a monoidal transformation f: X — P?
such that D~ al— ibiei with a=b,+by+bs (in case r=2, a>b,+bs) and b,;=b,= .. =

i=1
b>0.

Proor. We prove the result by induction on ». The assertion is trivial for
r=2. In fact for any monoidal transformation f:X — P? we can assume D.e,=
D.e,. Also we get D.(l—e;—e;)>0 and D.e;=5b,>0 by the assumption.

For r=3, choose £, so that D.E=b, is equal to the minimum value of D.E for
any Ee&. Blowing down E,, we have a monoidal transformation = : X — X’, where
X’ is a Del Pezzo surface of degree d+1. By the induction hypothesis for a
divisor D’ on X’ such that #=*D’~D+b.e,, there exists a monoidal transforma-
tion f7: X' — P? satisfying the condition of this remark. Then f’°z is what we
want.

LemMA 1.3. Let X be a Del Pezzo suvface of degree d=T7 and D~al— “Li‘biel

a divisor on X such that a=zb,+b.+bs (if ¥=3 or 4, azb,+b.+b,; if v=2, a>b,+b,)
and byzb,= -+ =b,>0. Then in case I=d=T, D is very ample and in case d=2,
D is ample. Moreover in case d=2, | D| is free from base points.

Proor. If =2, then it is clear that D~—wx+(b,—1)((—e)+ (b —1){—e2)+
(@—b,—b,—1){ is very ample. Because —wyx is very ample and |/—e¢; | and |/]| are
free from base points. Next assume 7=5 [resp. =3 or 4] We put D,=—oy,

Do=1l, Di=l—ey, D;=2/— Y ¢, for 2=i=4 [resp. 2=i=r—11, and De=3[—3 ¢, for
Jj=t Jj=1

5=k=v—1. Then D is linearly equivalent to f‘,ciDi, where c¢,=b,,c;=b;—b;;, for
=0

1=i=7—1 and co=a—(bs+b:+b,) [resp. co=a—(b,+b.+b,)]. Since | D;| has no base
points and ¢;=0 for every i,0=<i=r—1, D is ample or very ample according as —wx
is ample or very ample. Also |D| has no base points if | —wx | has no base points.

6
Since the anti-canonical divisor 3/— 3 ¢; is very ample on a cubic surface, it has no
=1

unassigned base points. This shows that |—wx|=]3/ -—)Ej ¢i} on X of degree 2 has
i=1

no base points.

ProprosiTION 1.4.1. Let Dwal—i bie; be a dwisor on a Del Pezzo surface X of
degree d=7. Assume that |D| has an irreducible curve. Then h\(D)=h¥D)=0 and

(D)= L (a+1)(a+2)—i 1 bi(bi+1).

2 &2
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Prooy. Let Ye|D| be an irreducible curve on X and p(Y) the arithmetic
genus of Y. We consider the following exact sequence

0@y —>D—D|y—0.

From its long cohomology sequence we have H*D)=0 and HYD)z=H'(Y, D|y).
Since deg (D]y)—(2p(Y)—1)=Y. (—wx)—1 is not less than zero by the ampleness
of —wx, we get A(Y, D|y)=0 and #'(D)=0. Finally 2%(D)=~A%D|y)+1 is computed
by Riemann-Roch theorem.

COROLLARY 1.4.2. Let Dwal—ébiei be a divisor on a Del Pezzo surface of
i=1

degree d=7. Assume that a=b,+bst by (in case r=2,a=b+b) and byzh= --- =
b,=0, then h'(D)=h*D)=0.

Proor. First we consider the case r=2. If ¢>b,-+b, and b,>>0, then D is very
ample by Lemma 1.3. So | D | has an irreducible curve, which proves A2'(D)=4*D)=0
by Proposition 1.4.1. Next if a>b, and b,=0, then H¥(D)=H F,, al—b.e;), which
are vanishing by Lemma 1.1 (1) when i=1 or 2. In the other case (i.e., a=b;+0b2),
we contract {—e,—e; to a point on P'xP'. Any divisor on P'x P! is denoted by
a pair of integers (,) in ZAZ under the isomorphism

Pic (P'x P")=p¥(Pic PYY®pF(Pic P)=ZDZ,

where p, and p, are the projections of P'XP* onto the two factors. Then we get
[H{(X, D)= H(P'X P, (b, by)), since D is b;(/—e\)+bs({—e;). By the assumption
120,20 we get Hi(P'X P, (b, b:))=0 for i=1,2.

Second we consider the case when 3=r=6. If ,>0, then D is very ample by
Lemma 1.3. In that case we can apply Proposition 1.4.1 and conclude A¥{D)=0 for
i=1,2. If b,=0, then H{D)=HX’,D’) for each i, where X’ is the contraction of
X via E, and D' is a divisor on X’ such that D is its transform. Thus we can
prove the corollary by induction on 7.

Finally for the case =7, 8, we may assume b,>>0 by using the inductive proof
above. Let Ce| —wy| be an irreducible curve, which has the arithmetic genus
2.C)=1. Consider the following exact sequence

0 —> D+twy — D+(t—1Doy — D+(¢—Dwx ¢ —>0

where 1=¢=b,. Since deg (D+(#—1Dwx)|¢>0 for 1=¢=b,, H(C, D+(t—1)wx)=0. So
we get the surjection HY(D+twx) — H(D(—1wx) and the isomorphism

Hi D+ tox)=H (D+(t—-1ox).

Immediately we get the surjection HYD+b,wx) —> H'(D)) and the isomorphism
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H D+ browx)=HD). But D+b»,wX=(a~3b,,-)l-f2i]l(bi—b,)ei satisfies the condition of
this corollary too. Hence we obtain that 2{(D+b,0x)=0 for i=1,2, and #{(D)=0
for i=1,2 as required.

CorOLLARY 14.3. Let D be an ample divisor on a Del Pezzo surface X, which
may be isomorphic to P'XP'. Then:

(i) HYX, D+wx)=0 for i=1,2;

(i) HX, —D)=0 for i=0,1.

Proor. Since (i) and (ii) are equivalent by Serre’s duality, it is sufficient to
prove (i). In case X=P? or P'x P!, the assertion is clear. For the case X=F,
see Lemma 1.1. For =2, by Remark 1.2 we may assume that D is such that
az=bi+b.+b; (in case r=2,a>b,+b;) and b, = .- =b,>0, because D.E>0 for all Ee&
by Nakai’s criterion. It follows that /zi((a——3)l~-§l(bi—l)ei):O for i=1, 2 by Corol-
lary 1.4.2.

This corollary implies that Kodaira’s vanishing theorem holds on a Del Pezzo
surface in any characteristic. The following lemma is also a vanishing theorem on
some divisors which are not ample. This will be used in §4 and §5.

Lemma 1.5. Let X be a Del Pezzo surface of degree d=T7 and Els exceptional
curves on X. Then:

1) E)=1 and B(E)=I(E)=0;

2) W(—FE,)=0 for every i;

() HW(Ea—Ep)=0;

4) P(E.—E—E)=0 and *(—E;—E,)=0;

(8) I Ee—Es—E,—E)=0and h(— Ey— E,— E5)=0unless Ep. =, E;= . Ey=1.

Proor. In Proposition 1.4.1, (1) is already proved. To prove (2) we assume
X=F, and E,~e,. Then (2) is given by Lemma 1.1 (1). For (3) we consider the
following exact sequence

00— —‘Eg

> Ey— By —> Opt(—1— £, Fy) — 0

and the resulting cohomology sequence H*(—FE;) — H¥E,~E;) — 0. Since
H¥—E5)=0, we get H¥E,—LE;)=0. Similarly if H¥—Fs—F,)=0 [resp. H¥—FE;—
E,—FE;)=0], then HXE,—E;—E,)=0 [resp. H{—FE,— E;— E,— E;)=0]. To show that
H¥—E;—FE,)=0, we consider the following exact sequence

0 —> —Ey—E, —> —E, — @Opi(— E3.E,) —> 0.

Since — Fpf, = —1, H'(Op((—EsE,))=0. This means H¥—E;—E,)=H%—LE,), which
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is vanishing by (2). Finally assume that FsFE,+1 or E.E;+1. Then in the same
manner we get H¥— E;— E,— E;)=H(—E,— E;) because H'(Op(~ Es.E,— Es.E;))=0.
Hence we get that H*—FE;—E,—E;)=0 unless EuE,=F,.FE;=F;E;=1. We have
finished the proof.

§2. On the equations defining a projective variety.

In this section let V be a projective variety of dimension n=2 over k.

PrOPOSITION 2.1. Assume VCPY¥. Let H be a hypevplane of PN such that
VaH Put V'=VNnNH We denote by Jy the ideal sheaf of V in P¥ and by Jv..u
the ideal sheaf of V' in H. For a positive integer m, we assume HY(Jv(m))=0. If
DTy am+1)RI(Op(1)) —> TGy, ug(m+2)) is surjective, then

I'(Gy(m+1)RI'(Op(1) —> I'(Iv(m+2))

is also surjective. Futhermove if H'(Jv(m+1))=0, then the converse is also true.
Proor. We note the following exact sequence
RH
(*) 0— J/V(m)(—)—> Jv(im+1) —> Yy, u(m-+1) — 0,
which is obtained from the exact sequence

00— OPN(—l)@—{ OpN —> Oy —> 0

tensored with gy(m+1) (cf. [3, p. 101]). Taking cohomology groups of the exact
suquences (*) and (*) ®Opr(1), we have the following commutative diagram.

HY Iym+1)QHY0p(1)) ——— HAIy u(m+1)QHYOK1) — 0

<(\:\,\\<\\\\\§P [

0 —— HY(Jy(m+1) —s HAJp(m+2)) —> HAIv’ u(m+2)) —> H(Iv(m+1))

If we define the dotted arrow by ¢+ tQH where teH(Jv(m+1)), then the shaded
triangle commutes, which proves that the map « is surjective. The rest of the
proposition is clear.

COROLLARY 2.2. Assume HYOv)=0. Let _L be an ample invertible sheaf on

V such that H'm.L)=0 for every m=1. Assume that there exists a non-zero section
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SeH(.L). Put V'=(s) and L'=_L|v. Then £ is normally generated™ if and
only if L' is normally generated. In this case I(.L)=Ker [S['(.L) —> (@F (m.0)] is
M=0

generated by its elements of degvee 2,3, ---, and v if and only if I( L") is generated
by its elements of degrvee 2,3,-.-, and v.

Proor. First we note that £’ is ample on V’. From the following exact
sequence

Xs

0— (m—1)L— mfL —> mL — 0, where m = 1,

we get the following commutative diagram with exact rows

0 — I'(m—-1).00R1'(L) —= I'mLRQ(L) — [V, mL)QI(L) —> 0

T :

0 ——s I'mL) ——— I'(m+1).L) r(v,(m+1).Ly —0,

where the dotted arrow is defined by ¢—— tQs for tel'(m.L). So a is surjective
if and only if j is surjective. This proves that the normal generatedness of _[
is equivalent to that of _£’. In this case the following diagram commutes

SV C Pdim!.ri
U u
Grent VO, Hz=pdimic

where H is a hyperplane section such that V/’=VNH Since £ is normally
generated, H'(Jy(m))= for every m=0. Applying Proposition 2.1 toV and V”’, im-
mediately we get the rest of the corollary.

For curves the following theorem is known.

THeoreM 2.3 ([5],[9] and [10)). Let C be an irreducible reduced projective
curve and D a divisor on C. Then:

(1) of deg D=2p(C)+1, then D is normally generated and I(D) is generated by
its homogeneozés parts I,(D) of degree 2 and L(D) of degree 3;

(2) if deg D = 2po(C)+2, then I(D) is generated by I(D).

@ According to [2], an ample invertible sheaf £ on a projective variety is said to be
normally generated if I'(_L)RI'(mL) — I'(m+1).0) is surjective for every m=1. By abuse
of terminology we say that a divisor D is normally generated if the corresponding invertible
sheaf is normally generated. In this case D is very ample.
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§3. Ample divisors on a Del Pezzo surface of dgree d, where 3=d=8.

Now we enter the main issue of this paper.

ProrosiTION 3.1. Let X be a Del Pezzo surface of degree d=7. For a divisor
D on X the following conditions are equivalent -

(1) for every exceptional curve £ on X, E.D>0;

(ii) D is ample.
Moreover if 3=d=7, the above condilions are equivalent to the next owe.

(iii) D is very ample.

Proor. The implication (ii) = (i) is clear by Nakai’s criterion. Combining
Remark 1.2 and Lemma 1.3, we get (i) = (ii), (iii).

LEMMA 3.2. Let X be a Del Pezzo surface of degree d=8. For an ample
divisor D~al —i} bie; assume that:

@) |D] ,lzzzr—sl an irreducible curve; and

(b) 3a—3b:~3=0.
Then D is ve:’y ample and $p(X) is projectively Cohen-Macaulay. In this case I(D)
is generated by L(D) and Iy(D). Moreover if D satisfies the condition

(b') 3a— 3 bi—3>0,
then I(D) is ,g:e-;erated by Iy(D).

Proor. Let Ye|D| be an irreducible curve. By the adjunction formula we get
deg (DIy)—(Zpa(Y)Jr—l):Ba—iZgbi—3, which is not less than zero. Then D]y is
normally generated by Theorem 2.3 and so is D by Corollary 2.2, since H'(mD)=0
for every m=0. Also H'(mD) vanishes for every m<0 by Corollary 1.4.3 (ii), so
we see that ¢ p(X) is projectively Cohen-Macaulay. The rest follows also Theorem
2.3 and Corollary 2.2.

THEOREM 3.3. Let X be a Del Pezzo suvface of degree 3=d=8 and D be a
very ample divisor on X. Then ¢ p(X) is projectively Cohen-Macaulay. Moveover if
D is not linearly equivalent lo the anli-canomical divisor on « cubic surface, then
I(D)y=Ker [SI'(D) — m@o I'(mD)] is genevated by its clements of degree 2.

Proor. We have only to apply Lemma 3.2. Since D is very ample, the con-
dition (a) of the lemma is satisfied. If d=8, then D on I can be written al-be

,
with @>b,>0 by Lemma 1.1. In case 3=d=7, we may assume that D~al— Y bie:
=1

is such as in Remark 1.2. In each case D satisfies the condition (b). The equality
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holds if and only if ¢=3 and b,=---=bs=1. So we get the theorem.

§4. Anti-canonical divisors on Del Pezzo surfaces of degree 1 and 2.

A detailed study on anti-canonical divisors on Del Pezzo surfaces is found in
[8, IV and V]. Here the author will add a few results on generaters of I(—nwx).

THeoREM 4.1. Let X be a Del Pezzo surface of degree 2. Then —nwy is very
ample if and only if n=2. Inthis case ¢_nw X,(X ) is projectively Cohen-Macaulay and
I(—nowy) is generated by its elements of degree 2.

Proor. We prove only that /[(—nwy) is generated by its elements of degree
2. For the other assertions are found in [8, V, Theorem 1]. Since —nwx~3n/—
7
2. #e;, 3(1—21_] b;—3=9n—-7n—3 is grater than zero under »=2. Hence I(—nwx) is
i=1 =1

generated by its elements of degree 2 from Lemma 3.2.

THEOREM 4.2. Let X be a Del Pezzo surface of degvee 1. Then:

(1) Bs|—wx|={one point} and Bs|—2wx|=¢;

(2) |—nwx| has an irreducible member for every n=1;

() —nwx is very ample if and only if n=3. In this case ¢\-no(X) is projec-
tively Cohen-Macaulay

4) if n=4, then (—nwy) is generated by [,(—nwx);

(5) I(—3wy) is generated by its elements of degree 2 and 3 but not generated

by only those of degree 2.

Proor. The assertions (1), (2) and (3) are found in [8,1V, Proposition 6 and V,
Theorem 1]. We will prove (4) and (5), applying Lemma 3.2. The condition (b’)
of Lemma 3.2, that is 3a-~§‘,lbi-3:9n-—8n»~3 >0, holds when n=4, hence (4) is
proved. When n=3, the condition (b) holds, so /(—3wy) is generated by its ele-
ments of degree 2 and 3. Let Ye|—3wx| be a non-singular irreducible curve whose
genus is equal to four. To prove (5) we have only to study generaters of /(—3wx],)
by Corollary 2.2. By the adjunction formula we get wy~—2wx|,, this implies
—3wX|Y~wy+(—cuX)Ly. We claim that —wXJY is an effective divisor of degree 3.
In fact considering the following exact sequence

0 —> I'Cawy) — '(—~wx) —> I'(Y, —wx|y) — H'(2wy),

we get ['(—ox|,)=l(—wx), because H{Z2wx)=0 for i=0and 1. So —wyxl, is effec-
tive. It is clear that deg (—wx|,)=3wi=3. An application of the next lemma to
—3wx|, yields that /(—3wx|,) is not generated by only its elements of degree 2.

Hence I(—3wy) is not generated by its elements of degree 2 by Corollary 2.2,
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Lemma 4.3. ((4)). Let C be a non-singular irreducible curve of genus g=1 and D
a divisor on C of type wo+ P+ P+ Py, wheve P; is a closed point of C. Then D is
normally generated and I(D) is generated by iis elements of degree 2 and 3 but not
generated by only those of degree 2.

§5. Ample divisors on Del Pezzo surfaces of degree 1 and 2.

In this section X is a Del Pezzo surface of degree 1 or 2. We study ample
divisors on X from the same point of view as §3.

THEOREM 5.1. Let D be an ample divisor other than —ox on X of degree 2.
Then D is very ample, ¢\p(X) is projectively Cohen-Macaulay and I(D) is generated
by its elements of degree 2.

THEOREM 5.2. Let D~(ll—§_jb¢&- be an ample divisor on X of degree 1 such
that a=b,+b,+bs and bxé---gl;;>0. Assume that D is neither —wy nor —2wy.
Then the following assertions hold :

(1) D is very ample and $p(X) is projectively Colen-Macaulay

2) if Dis 41—2e1—i} e; or 6[—2i} e;—e3 OF 9[—32 e;, then I(D) is generated by
(D) and I(D), but not generated by only I(D).

(3) if D is not any of the three divisors described above, then I(D) is generated
by I(D).

Before the proof, we state some lemmas.

Lemma 53. ({2, § 1. Generalized lemma of Castelnuovo)). Suppose that M is
an invevtible sheaf on a varviety V such that I'(‘M) has no base points. Let F be a
cohevent sheaf on V such that H(FQ(—iH)=0 for every i=1. Then the map
I FRQUi—D IR M) — I'(FRiM) is surjective for every i=1.

LemmA 54. Let D be an ample divisor on X such that I'(D) has no base
points. Assume that the map p:I'(DYRQI(D) —> I'(2D) is surjective. Then D is
normally genmerated.

Proor. From Corollary 14.2, H¥(¢—i)D)=0 for every i=1,2 and #=2. By
Lemma 5.3 we see that I'(¢D)RI'(D) — I'(¢+1)D) is surjective for each ¢=2.
Under the assumption that 8 is surjective, this proves that D is normally generated.

Lemma 5.5.1. Let D be an ample divisor on X such that I'(D) has no base poinis.
Assume :
1) —Dwxz3;
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(@) |D+owx| has no base points '
3) A(—D—2wx)=0.
Then D is normally generated.

Proor. By Lemma 5.4 we have only to prove the surjectivity of the map B.
Let C be an irreducible curve of |—wy| whose arithmetic genus is equal to one.
Consider the following commutative diagram.

0 == I'D+e)®I'(D) — I'(DRI'(D) —> I'(D)RI(D) —> ¢

X I I

0 —— 7I'CD+wy) ——— T (2D) I'CDl) —— ¢

Since A'(mD+wy)=0 for every m=1, the rows are exact. The assumption (1)
implies that deg (D|¢)=2p.(C)+1. Hence D|; is normally generated by Theorem
2.3(1). So 7 is surjective. Next we can apply Lemma 5.3 to a« by the assumptions
(2), (3) and the fact that 2'(D—(D+wx))=0. Hence « is surjective, and so is 8.

LemMA 55.2. Let X be a Del Pezzo surface of degree 1 and let D be an ample
divisor on X such that I'(D) has no base points. Assume:

0) Z(D+20x)=0;

(1) —D2wy=5;

(2) 1D+2wx| has no base points ;

3) A{(—D—4wx)=0.
Then D is novmally generated.

ProOF. By Theorem 4.2(2) there exists an irreducible curve C of | —2wx| whose

arithmetic genus is equal to two. Then we have only to replace wy in Lemma
5.5.1 by 2wy.

Now to prove the theorems we may assume that D~al—i} bie; is such that
azbi+b:+bs and b,=-..=b,>0 by Remark 1.2. In this case z\;e get =4 since
D~ —wy. Moreover if a=4, then D is either 4l—é e; (say D) or 4Z—Zel—ijzej
(say D). ’

ProoF oF THEOREM 5.1. We have only to apply Lemma 3.2. For the condi-
tion (a) of Lemma 3.2, we will prove that D is very ample, classifying D’s as
follows.

Case 1. D is either Dy, or Dgy,.

Case 2. b,=2.
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Case 3. a>4,a>b,+b,+b; and b=1.

Case 4. a>4,a=b,+bo+bs, by >ba=bs and b;=1.

Case 5. a=3b,,b,=b;=2 and b,=1.
Since it is a simple calculation to check the condition (#) of Lemma 32, it is
omitted.

Case 1. We will prove that D is normally generated using Lemma 5.5.1. First
we note that I'(D) has no base points by Lemma 1.3. FEasily we can check the
condition (1) of Lemma 55.1. Since Duy+owx [resp. Dun-+wx] is I [resp. l—e,], the

condition (2) holds. Finally for (3), since —D—2wx is 2 Yie;=(2l— Yei)—es—er
i=1 i=1

[resp. (2I— f:_‘,ze,-)—eq], its second cohomology is vanishing by Lemma 1.5 (4) [resp.
Lemma 1.5 (3)]. Thus we can apply Lemma 551 and get that D is normally
generated.

Case 2. We will prove that D is very ample. Put v=[(1/2)b;]. then D is linearly
equivalent to the sum of the very ample divisor »(—2wx) and the divisor (@—6v)l—
ii‘l(bi——Zu)ei. Since l(a—~6u)l—z7}(b7;—2u)ei| is free from base points by Lemma 1.3,
D is very ample. -

Case 3. Since |D—D¢| has no base points, D is very ample.

Case 4. Since |D—D»| has no base points, D is very ample.

Case 5. First we note that if b, =2, then D is either 6[~2§]ei—-— es—er (say D)

or 61~Zi}lei—e7 (say D). It is clear that D(6)~D<4I>+(Zl—_}§‘,2ej) is very ample.
For DW;, we can prove its normal generatedness applying Lémma 5.5.1. Indeed
it is easy to see that the conditions (1) and (2) of Lemma 5.5.1 are satisfied. Since
¥ — Den—20x)=h—e:)=0 by Lemma 1.5, (3) holds. Finally when b,=3, we see
that |D— D] or |D—Den| has no base points. So D is very ample.

Now we will prove Theorem 5.2 on the same lines as above. But in the first
place we have to prove the following lemma.

LEmMmMA 5.6. Let D~al— ﬁ‘,biei be a divisor other than —wx such that a=b,+D.+bs
i=1

and by=---=bs=1 or 2. Then |D| has no base points.

Proor. When bs=1, we consider a morphism =:X-— X’ to a Del Pezzo
surface X’ of degree 2 such that =(Fs) is a point. By abuse of notation we also
denote by (/, ey, - - -, e;) the basis of Pic(X’) such that e;~z*e; for 1=i=7. Then

7
the divisor al— Yb:e; on X’ is ample, hence very ample by Theorem 5.1. So it has
i=1

7
no unassigned base points, which shows that |al—zbiei—e8| has no base points on

X. Next if bs=2, then we may assume D~ —2wy since we have already known
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that |~2wx| has no base points. Then |D+2wy| is free from base points, and so
is |D].

Proor or THroreM 5.2. We classify ample divisors D other than —wy nor
—2wy into the following six cases.

Case 1. D is either Dy, or Dy

Case 2. bg=3.

Case 3. a>4,a>b,+b,+bs and by=1, 2.

Case 4. a>4,a=b,+by+bs, b, >bs=0b; and bg=1, 2.

Case 5. bg=1,a=3b, and b,=b;=2.

Case 6. b3=2,2=3b, and b,=b;=3.

Case 1. By Lemma 5.6 |D| is free from base points, so we get that D is
normally generated from Lemma 5.5.1.

Case 2. Put v=[(1/3)bs), then D is linearly equivalent to the sum of the two
divisors v(—3wyx) and (a—9v)— stl(bi —3v)e;. If the latter is —wy, then D~—Bv+ 1wy
with v=1, which is very airaple by Theorem 4.2. In the other case, |(¢—9v)/—
izz(bi—?)u)eil is free from base points by Lemma 5.6, hence D is very ample.

‘ Case 3. When bs=1,|D—D,| has no base points, so D is very ample. When
bs=2, we replace Dy, by 4l—i{{:ei~238.

Case 4. Unless D~71—3e1—2_28]e,~, D is very ample. Because |D— D, is free
j=2

from base points. When Dw7l~3er—2ie,-, we get that it is normally generated
j=2
from Lemma 5.5.1.
Case 5. Similarly to Case 5 of the previous proof, first we note that if b,=2,

then D is one of the D 1y’s, where D(G,k)~61-—2§ei— 28] e;,k=0,1,2. It is clear
k

i=1 J=6+
that D,o), Which is the sum of 4l—ijei—235 and Zl-fjei, is very ample. Applying
Lemma 5.5.1 we can prove that D:,:s, and D, aré:lnormally generated. When
6,23, |D—D,ry| has no base points, for some . Hence D is very ample.

Case 6. In the same manner as above, we have only to prove that D with

- . 5+k 8
0,=3 is very ample. Such D is one of the D, x’s, Where D i~ —33e;— 3 ey,
i=1 i=6+k

k=0,1,2. For k=0 or 1, since D(g,mND(s,m+(3[~5£ei—es), it is very ample. Next

applying Lemma 5.5.2 to D5, we conclude that 15(9,2) is normally generated.
Finally we will examine the condition (b) of Lemma 3.2. By a simple calcula-

tion we see that 3a~i§_}1bi—~315 zero when D is either D, Dy OF —3wyx, and

that it is grater than zero for the other cases. Hence we get the assertions (1)
and (3) of the theorem.



102 Yuko Homma

Now to complete the proof we will show that I(D.,) and J(D¢,») are not
generated by their elements of degree 2. Since the homogeneous part of (D)
of degree 2 is the kernel of the surjection S*I'(D) —> I'2Dwus), its dimension is
equal to sHa— (2D wun)=1/2)6 x5—(1/2)(9x10—-4x5~7x2x3)=1. This implies that
I(D.) cannot be generated by its elements of degree 2. Next when D~Dy,», the

proof is similar to that of Theorem 4.2(5) for —3wy. Let Y be an irreducible
curve of |D|, then D|y~or+(—wox)|,. Looking at the following exact sequence

0 —> I'(—=D-wx) —> I'(~wx) —> I'(—ox|,) — H'(—D-wox),
since A(—D—wx)=h*" D+2wx)=h"*es)=0 for i=0,1, we get that
I’(—wX)E'F(—-a)XIY)¢O.

Thus —ox|, is an effective divisor of degree 3. Applying Theorem 2.3 and
Corollary 2.2, we conclude that (D) is not generated by [(D). We have done.
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