ON A CONSTRUCTION OF INDECOMPOSABLE MODULES AND APPLICATIONS

By
Koji Nishida ${ }^{1)}$

1. Introduction

One of the main purposes of this paper is to introduce a new method to get a family $\left\{M_{n}\right\}_{n=1,2, \ldots}$ of indecomposable modules over a commutative Noetherian local ring R with the maximal ideal \mathfrak{m}, which will be done in Theorem (2.1) when R possesses a finitely generated R-module C of $\operatorname{depth}_{R} C \geqq 1$ such that $C \otimes_{R} \hat{R}$ (R is the completion of R with respect to the m-adic topology.) is indecomposable and the initial part of a minimal free resolution of C satisfies certain condition. Each M_{n} is a finitely generated R-module of $\operatorname{dim}_{R} M_{n}=\operatorname{dim}_{R} C$ and depth ${ }_{R} M_{n}=0$ and if C is Cohen-Macaulay, then M_{n} is Buchsbaum (see [9] for the definition of Buchsbaum module.). Furthermore $M_{n} / H_{\mathrm{m}}^{0}\left(M_{n}\right)\left(H_{\mathrm{m}}^{0}\left(M_{n}\right)\right.$ $\left.=\bigcup_{i \geq 1}\left[(0): \mathfrak{m}^{i}\right]_{M}\right)$ is isomorphic to the direct sum of n-copies of C. Hence in this case there are "big" indecomposable R-modules without limit.

Another aim of us is to apply Theorem (2.1) to the Buchsbaum-representation theory in the one dimensional case. We say that a Noetherian local ring R has finite Buchsbaum-representation type if there are only finitely many isomorphism classes of indecomposable Buchsbaum R-modules M which are maximal, i. e. $\operatorname{dim}_{R} M=\operatorname{dim} R$. In [4] S. Goto determined the structure of one-dimensional complete Noetherian local rings R of finite Buchsbaum-representation type under the hypothesis that the residue class field of R is infinite, which will be removed in section 3 of this paper. Our family constructed by Theorem (2.1) has the suffix set of non-negative integers and this enables us to develope the same arguments in [4], not assuming the infiniteness of the residue class field.

Throught this paper R is a Noetherian local ring with the maximal ideal \mathfrak{m}. We denote by \hat{R} the completion of R with respect to the m-adic topology and $H_{\mathrm{m}}^{i}(\cdot)$ is the i-th local cohomology functor of R relative to m . For each finitely generated R-module M let $\mu_{R}(M)$ be the number of elements in a minimal system of generaters for M and let M^{n} denote the direct sum of n-copies of

[^0]M. We regard each element of M^{n} as column vector with entries in M.

2. Construction of indecomposable modules.

Let C be a finitely generated R-module and let

$$
\sigma: 0 \longrightarrow L \longrightarrow F \xrightarrow{\varepsilon} C \longrightarrow 0
$$

be the initial part of a minimal free resolution of C. We define a homomorphism

$$
\rho: \operatorname{End}_{\mathbb{R}}(C) \longrightarrow \operatorname{End}_{R}(L / \mathfrak{m} L)
$$

of algebras by

$$
\rho(\phi)(\bar{z})=\overline{\psi(z)}
$$

for any $\phi \in \operatorname{End}_{R}(C)$ and $z \in L$, where - denotes the reduction $\bmod \mathfrak{m} L$ and ψ is an R-endomorphism over F with $\varepsilon \psi=\phi \varepsilon$. The well definedness of ρ is verified as follows. If ψ^{\prime} is another R-endomorphism over F with $\varepsilon \psi^{\prime}=\phi \varepsilon$, then $\phi^{\prime}=\phi+\delta$ for some $\delta \in \operatorname{End}_{R}(F)$ with $\delta(F) \subset L$. Notice that $\delta(L) \subset \mathfrak{m} L$ because $L \subset \mathfrak{m} F$. Then we have $\overline{\phi^{\prime}(z)}=\overline{\phi(z)}$ for any $z \in L$. We put $A_{\sigma}=\operatorname{lm} \rho$ and we regard $L / \mathfrak{m} L$ as a (left) A_{σ}-module. If $\operatorname{End}_{R}(C)$ is generated by $\phi_{1}, \phi_{2}, \cdots$, ϕ_{r} as R-module, then $\rho\left(\phi_{1}\right), \rho\left(\phi_{2}\right), \cdots, \rho\left(\phi_{r}\right)$ generate A_{σ} over R / m. Especially A_{σ} is equal to R / \mathfrak{m} if $\operatorname{End}_{R}(C)$ is a cyclic R-module.

Our main theorem is stated as follows with the above notations.
Theorem (2.1). Let C be a finitely generated R-module such that $\operatorname{depth}_{R} C$ $\geqq 1$ and $C \bigotimes_{R} \hat{R}$ is indecomposable and let

$$
\sigma: 0 \longrightarrow L \longrightarrow F \xrightarrow{\varepsilon} C \longrightarrow 0
$$

be the initial part of a minimal free resolution of C. Suppose there exist elements x and y of L such that \bar{x} and \bar{y} are linearly independent over A_{σ}. We denote, for each integer $n \geqq 1$, by N_{n} the R-submodule of L^{n} generated by

$$
\left(\begin{array}{c}
x \\
0 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right),\left(\begin{array}{c}
y \\
x \\
0 \\
0 \\
\vdots \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
y \\
x \\
0 \\
\vdots \\
0
\end{array}\right), \quad, \quad\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
0 \\
y \\
x
\end{array}\right)
$$

and $\mathfrak{m} L^{n}$. We put $M_{n}=F^{n} / N_{n}$. Then the following statements hold.
(1) M_{n} is indecomposable if A_{σ} is commutative.
(2) $M_{n} \neq M_{m}$ if $n \neq m$.
(3) M_{n} is a maximal Buchsbaum R-module if C is maximal Cohen-Macaulay.

Before the proof of Theorem (2.1) we show the next lemma, which may be well-known, since it plays a key role.

Lemma (2.2). Let A be a commutative ring with an identity element and T be an A-module. Suppose there are elements x, y of T which are linearly independent over A and P, Q are $n \times n(n \geqq 1)$ matrices with entries in A. Then if

$$
P\left[\begin{array}{lllll}
x & y & & & \\
& x & y & 0 \\
& & \ddots & \ddots & \\
& 0 & & \ddots & y
\end{array}\right] Q=\left[\begin{array}{l|l}
\Pi_{1} & 0 \\
\hline 0 & \Pi_{2}
\end{array}\right]
$$

for some matrices Π_{1} and Π_{2} with entries in T, either P or Q is singular.
Proof. Assume that both P and Q are regular. Let

$$
N=\left[\begin{array}{lllll}
0 & 1 & & & \\
& 0 & 1 & & \\
& & \cdot & \cdot & \\
& & & \cdot & \\
& & & & 1 \\
& & & & 0
\end{array}\right]
$$

As x and y are linearly independent over A, we have

$$
P Q=\left[\begin{array}{c|c}
\Phi_{1} & 0 \\
\hline 0 & \Phi_{2}
\end{array}\right] \text { and } P N Q=\left[\begin{array}{c|c}
\Psi_{1} & 0 \\
\hline 0 & \Psi_{2}
\end{array}\right]
$$

for some matrices Φ_{i} and Ψ_{i} with entries in A of the same size as Π_{i}. Since $P Q$ is a regular matrix, Φ_{i} must be square and regular. Hence we get

$$
P N P^{-1}=\left[\begin{array}{c|c}
\Omega_{1} & 0 \\
\hline 0 & \Omega_{2}
\end{array}\right] .
$$

where $\Omega_{i}=\Psi_{i} \bar{\Phi}_{i}^{-1}$. Take a maximal ideal J of A. For any matrix X with entries in A we denote by \bar{X} the matrix of which entries are the classes of the entries of X in A / J. Then \bar{P} is still regular and

$$
\bar{P} \bar{N}(\bar{P})^{-1}=\left[\begin{array}{c|c}
\bar{\Omega}_{1} & 0 \\
\hline 0 & \bar{\Omega}_{2}
\end{array}\right]
$$

But this contradicts the uniqueness of the Jordan's normalform.

Now let us start the proof of Theorem (2.1).
(3). Applying [4, Lemma (2.3)] to the exact sequence

$$
\tau: 0 \longrightarrow L^{n} \longrightarrow F^{[} \xrightarrow{\left[\begin{array}{lll}
\varepsilon & & \\
& & \\
& & \varepsilon
\end{array}\right]} C^{n} \longrightarrow 0
$$

and N_{n} we get that M_{n} is a maximal Buchsbaum R-module if C is maximal Cohen-Maculay.
(2). The exact sequence

$$
0 \longrightarrow L^{n} / N_{n} \longrightarrow F^{n} / N_{n} \longrightarrow C^{n} \longrightarrow 0
$$

induced from τ yields $H_{\mathrm{m}}^{\mathrm{o}}\left(M_{n}\right)=L^{n} / N_{n}$ and so $M_{n} / H_{\mathrm{m}}^{\mathrm{o}}\left(M_{n}\right) \cong C^{n}$. Hence $M_{n} \not \equiv M_{m}$ if $n \neq m$.
(1). We shall prove that M_{n} is indecomposable in the following. Assume $M_{n}=X_{1} \oplus X_{2}$ with non-zero R-submodules X_{i}. Then $\bar{X}_{1} \oplus \bar{X}_{2} \cong C^{n}$, where $\bar{X}_{i}=$ $X_{i} / H_{\mathrm{m}}^{0}\left(X_{i}\right)$. Since the category of finitely generated \hat{R}-modules is a KrullSchmidt category and since $C \bigotimes_{R} \hat{R}$ is indecomposable, so $\bar{X}_{i} \bigotimes_{R} \hat{R} \cong C^{s_{i}} \bigotimes_{R} \hat{R}$ for some integers s_{i} with $s_{1}+s_{2}=n$. So we have $\bar{X}_{i} \cong C^{s_{i}}$ by [8, Lemma 5.8]. Because $H_{\mathrm{m}}^{\circ}\left(X_{i}\right) \subset \mathfrak{m} X_{i}$ by $H_{\ldots}^{\circ}\left(M_{n}\right) \subset \mathfrak{m} M_{n}$, we get a commutative diagrams

with exact rows and columns for $i=1$, 2. Then $F^{s_{i}} / N_{i}^{\prime} \cong X_{i}$ and $\mathfrak{m} L^{s_{i}} \subset N_{i}^{\prime} \subset L^{s_{i}}$. Let $t_{i}=\mu_{R}\left(N_{i}^{\prime}\right)$ and let N_{i}^{\prime} be generated by

$$
\left[\begin{array}{c}
z_{1,1}^{(i)} \\
\vdots \\
z_{s i, 1}^{(i)}
\end{array}\right],\left(\begin{array}{c}
z_{1,2}^{(i)} \\
\vdots \\
z_{s i, 2}^{(i),}
\end{array}\right), \quad, \quad\left[\begin{array}{c}
z_{1, t_{i}}^{(i)} \\
\vdots \\
z_{s i, t_{i}}^{(i)}
\end{array}\right)\left(z_{\nu, \mu}^{(i)} \in L\right)
$$

Let N^{\prime} be an R-submodule of $L^{n}=L^{s_{1}} \oplus L^{s_{2}}$ which is generated by

$$
\left(\begin{array}{c}
z_{1,1}^{(1)} \\
\vdots \\
z_{s_{1}, 1}^{(1)} \\
\hline 0 \\
\vdots \\
0
\end{array}\right) \cdots\left(\begin{array}{c}
z_{1, t_{1}}^{(1)} \\
\vdots \\
z_{s_{1}, t_{1}}^{(1)} \\
0 \\
\vdots \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
\hline z_{1,1}^{(2)} \\
\vdots \\
z_{s_{2}, 1}^{(2)}
\end{array}\right), \quad,\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
\hline z_{1, t_{2}}^{(2)} \\
\vdots \\
z_{s_{2}, t_{2}}^{(2)}
\end{array}\right)
$$

Then $F^{n} / N^{\prime} \cong X_{1} \oplus X_{2}$ and so $F^{n} / N^{\prime} \cong F^{n} / N_{n}$. Hence applying [4, Lemma (2.3)] to N_{n}, N^{\prime} and τ we have $\psi\left(N_{n}\right)=N^{\prime}$ for some $\psi \in \operatorname{Aut}_{R}\left(F^{n}\right)$ with $\psi\left(L^{n}\right) \subset L^{n}$. Let $\xi \in \operatorname{End}_{R}\left(L^{n} / \mathfrak{m} L^{n}\right)$ be the endomorphism induced from ϕ. We identify $\operatorname{End}_{R}\left(L^{n} / \mathfrak{m} L^{n}\right)$ with the matrix algebra $M_{n}(\Gamma)$, where $\Gamma=\operatorname{End}_{R}(L / \mathfrak{m} L)$. Put $\xi=\left[\xi_{i j}\right]_{1 \leq i, j \leq n}$. Since there is an automorphism $\phi \in \operatorname{Aut}_{R}\left(C^{n}\right)$ which makes the following diagram

commutative, we have $\xi_{i j} \in A_{\sigma}$ for any $1 \leqq i, j \leqq n$ and $\left[\xi_{i j}\right]_{1 \leq i, j \leq n}$ is a regular matrix of $M_{n}\left(A_{\sigma}\right)$. Furthermore because $\xi\left(N_{n} / \mathfrak{m} L^{n}\right)=N^{\prime} / \mathfrak{m} L^{n}$, we have
for some $n \times n$ regular matrix Q with entries in R / \mathfrak{m} (Hence $Q \in M_{n}\left(A_{\sigma}\right)$). But this is a contradiction by Lemma (2.2) and the proof is completed.

We note the following corollary which is a special case of Theorem (2.1).
Corollary (2.3). Let C and

$$
\sigma: 0 \longrightarrow L \longrightarrow F \longrightarrow C \longrightarrow 0
$$

be as in Theorem (2.1) and let $A_{\sigma}=R / \mathrm{m}$. Then if $\mu_{R}(L) \geqq 2$, there exists a family $\left\{M_{n}\right\}_{n=1,2 . .}$ of finitely generated indecomposable R-modules such that $M_{n} \neq M_{m}$ for $n \neq m$ and M_{n} is maximal Buchsbaum if C is maximal Cohen-Macaulay.

The typical example such that A_{σ} is not equal to R / \mathfrak{m} is the next
EXAMPLE (2.4). Let k be any field, then the semi-group ring $R=k \llbracket t^{3}, t^{4}, t^{5} \rrbracket$
has a family $\left\{M_{n}\right\}_{n=1,2, \ldots}$ of indecomposable maximal Buchsbaum R-modules such that $M_{n} \nsubseteq M_{m}$ if $n \neq m$.

Proof. Put $S=k \llbracket t \rrbracket=R+R t+R t^{2}$ and let

$$
\sigma: 0 \longrightarrow L \longrightarrow R^{3} \xrightarrow{\varepsilon} S \longrightarrow 0
$$

be the initial part of a minimal free resolution with

$$
\boldsymbol{\varepsilon}\left(e_{1}\right)=1, \quad \varepsilon\left(e_{2}\right)=t \quad \text { and } \quad \varepsilon\left(e_{3}\right)=t^{2}
$$

where e_{1}, e_{2}, e_{3} are the canonical basis of R^{3}. Since S is an indecomposable maximal Cohen-Macaulay R-module, by Theorem (2.1) it is sufficient to show that A_{σ} is commutative and there exist elements x and y of L such that \bar{x} and \bar{y} are linearly independent over A_{σ}, where - denotes the reduction $\bmod \mathfrak{m} L$ ($\mathfrak{m}=t^{3} S$). As $\operatorname{End}_{R}(S)$ is a commutative R-algebra which is generated by $\mathbb{1}_{S}$, $t \mathbf{1}_{S}$ and $t^{2} \mathbf{1}_{S}$ as R-module, so A_{σ} is commutative and $\rho\left(\mathbf{1}_{S}\right)=\mathbf{1}_{L / \mathrm{mL}}, \rho\left(t \mathbf{1}_{S}\right)$ and $\rho\left(t^{2} 1_{S}\right)$ generate A_{σ} over k. We put $\xi_{i}=\rho\left(t^{i} 1_{S}\right)$ for $i=1,2$. Let α_{1} and α_{2} be the R-endomorphisms over R^{3} defined by the matrices

$$
\left[\begin{array}{ccc}
0 & 0 & t^{3} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{ccc}
0 & t^{3} & 0 \\
0 & 0 & t^{3} \\
1 & 0 & 0
\end{array}\right]
$$

respectively. Then $\varepsilon \alpha_{i}=\left(t^{i} \mathbf{1}_{S}\right) \varepsilon$ for $i=1$, 2. Hence ξ_{i} is induced from α_{i}. Put

$$
x=\left[\begin{array}{r}
t^{4} \\
-t^{3} \\
0
\end{array}\right], x_{1}=\left[\begin{array}{r}
0 \\
t^{4} \\
-t^{3}
\end{array}\right], x_{2}=\left[\begin{array}{c}
-t^{6} \\
0 \\
t^{4}
\end{array}\right], \quad y=\left[\begin{array}{r}
t^{5} \\
-t^{4} \\
0
\end{array}\right], y_{2}=\left[\begin{array}{r}
0 \\
t^{5} \\
-t^{4}
\end{array}\right], y_{3}=\left[\begin{array}{r}
-t^{7} \\
0 \\
t^{5}
\end{array}\right] .
$$

Then we have $\xi_{i} \bar{x}=\bar{x}_{i}$ and $\xi_{i} \bar{y}=\bar{y}_{i}$. Assume

$$
\left(a_{0} \mathbf{1}_{L / \mathrm{mL}}+a_{1} \xi_{1}+a_{2} \hat{\xi}_{2}\right) \bar{x}+\left(b_{0} \mathbf{1}_{L / \mathrm{mL}}+b_{1} \xi_{1}+b_{2} \xi_{2}\right) \bar{y}=0
$$

with $a_{i} \in k$ and $b_{j} \in k$. Then we get

$$
a_{0} \bar{x}+a_{1} \bar{x}_{1}+a_{2} \bar{x}_{2}+b_{0} \bar{y}+b_{1} \bar{y}_{1}+b_{2} \bar{y}_{2}=0 .
$$

Since $\bar{x}, \bar{x}_{1}, \bar{x}_{2}, \bar{y}, \bar{y}_{1}, \bar{y}_{2}$ are linearly independent over k, so

$$
a_{0}=a_{1}=a_{2}=b_{0}=b_{1}=b_{2}=0 .
$$

Hence \bar{x} and \bar{y} are linearly independent over A_{σ}.

3. Curve singularities of finite Buchsbaum-representation type.

This section is devoted to verifying that we can avoid the restriction on the residue class field in [4, Theorem (1.1)]. But we will not look over the whole arguments developed in [4] since it is sufficient to prove only [4, Corollary (2.4)]. [4, Theorem (2.7)], [4, Theorem (3.1)] and [4, Proposition (6.1)] without the hypothesis that the residue class field is infinite. Throught this section we assume that R is complete and $\operatorname{dim} R=1$.

We begin with the following
Proposieion (3.1) (cf. [4, Corollary (2.4)]). Let R have finite Buchsbaumrepresentation type and I be an ideal of R such that R / I is a Cohen-Macaulay ring of $\operatorname{dim} R / I=1$. Then $\mu_{R}(I) \leqq 1$.

Proof. Applying Corollary (2.3) to the exact sequence

$$
\sigma: 0 \longrightarrow I \longrightarrow R \longrightarrow R / I \longrightarrow 0
$$

we have $\mu_{R}(I) \leqq 1$.
Theorem (3.2) (cf. [4, Theorem (2.7)]). Let R be a Cohen-Macaulay ring with the canonical module K_{R}. If R has finite Buchsbaum-representation type, then $v(R) \leqq 2$, where $v(R)$ denotes the embedding dimension of R.

Proof. Let

$$
\sigma: 0 \longrightarrow M \longrightarrow F \longrightarrow K_{R} \longrightarrow 0
$$

be the initial part of a minimal free resolution of K_{R}. Since $\operatorname{End}_{R}\left(K_{R}\right)=R$, we have $A_{\sigma}=R / \mathrm{m}$. Hence $\mu_{R}(M) \leqq 1$ by Corollary (2.3). Then the proof of [4, Theorem (2.7)] works for the rest.

Theorem (3.3) (cf. [4, Theorem (3.2)]). Let P be a regular local ring of $\operatorname{dim} P=2$ and let $R=P / f P$ with $f \in P$. We denote the integral closure of R in its total quotient ring by \bar{R}. If \bar{R} is module-finite over R and $e(R) \geqq 3$, where $e(R)$ denote the multiplicity of R, then there exists a family $\left\{M_{n}\right\}_{n=1,2, \ldots}$ of indecomposable maximal Buchsbaum R-modules such that $M_{n} ¥ M_{m}$ if $n \neq m$.

Proof. Let L be the first syzygy module of \mathfrak{m}. Since \mathfrak{m} is an indecomposable maximal Cohen-Macaulay R-module, the minimal free resolution of m is periodic of period 2 and L is indecomposable by [2] and [7]. Hence we have an exact seqeence

$$
\sigma: 0 \longrightarrow \mathfrak{m} \longrightarrow F \longrightarrow L \longrightarrow 0
$$

with $F R$-free. We put $A=\{x \in \bar{R} \mid x \mathfrak{m} \subset \mathfrak{m}\}$, which we identify with $\operatorname{End}_{R}(\mathfrak{m})$ as algebras. Then by [4, Proposition (3.4)] there is an element $h \in A$ such that $A=R+R h$ and $h \mathfrak{m \subset \mathfrak { m } ^ { 2 }}$. Hence $\operatorname{End}_{R}\left(\mathfrak{m} / \mathfrak{m}^{2}\right)=A_{\sigma}=R / \mathfrak{m}$. Since R is not regular, $\mu_{R}(\mathfrak{m}) \geqq 2$ and so we can get the required family by Corollary (2.3).

By Theorem (3.2), Theorem (3.3) and [1] we have the next
Theorem (3.4) (cf. [4, Theorem (3.1)]). Let R be a Cohen-Macaulay ring. Then R is reduced and $e(R) \leqq 2$ if R has finite Buchsbaum-representation type.

Finally we prove the following
Proposition (3.5) (cf. [4, Proposition (6.1)]). If R has finite Buchsbaumrepresentation type, then $e(R) \leqq 2$ and $v(R) \leqq 2$.

Proof. Our method of proof is almost the same as the proof of [4, Proposition (6.1)] and so see it for the detail.

Let $I=H_{\mathrm{m}}^{\circ}(R)$. Then R / I is a Cohen-Macaulay ring of finite Buchsbaumrepresentation type. Hence we get by Theorem (3.4) that R / I is reduced and $e(R / I)=e(R) \leqq 2$. As $\mu_{R}(I) \leqq 1$ by Proposition (3.1) and as $v(R / I) \leqq 2$ by Theorem (3.2), we have $v(R) \leqq 3$. We show $v(R) \neq 3$ in the following. Assume $v(R)=3$. Then $v(R / I)=2$ and $\mu_{R}(I)=1$, hence $e(R / I)=2$. We put $I=z R$. By [4, Claim 1 in the proof of Proposition (6.1)] R / I is an integral domain. We denote the normalization of R / I by S. Let $\overline{\mathfrak{m}}$ be the maximal ideal of R / I and let denote the reduction $\bmod I$. Then there are elements x and y of \mathfrak{m} such that $\overline{\mathfrak{m}}=(\bar{x}, \bar{y})$ and $S=R+R t$, where $t=\bar{x} /(\bar{y})^{n}$ for suitable $n \geqq 1$. Furthermore we get an exact sequence

for some $a \in R$ and $b \in R$ with $t^{2}=\bar{a}+\bar{b} t$, where

$$
\varepsilon\left[\begin{array}{l}
1 \\
0
\end{array}\right]=1 \quad \text { and } \quad \varepsilon\left[\begin{array}{l}
0 \\
1
\end{array}\right]=-t
$$

We note if $a \in \mathfrak{m}$, then $b \in \mathfrak{m}$. Let $L=\operatorname{Ker} \varepsilon$. Then L is generated by

$$
v_{1}=\left[\begin{array}{l}
z \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
0 \\
z
\end{array}\right], \quad v_{3}=\left[\begin{array}{c}
x \\
y^{n}
\end{array}\right], \quad v_{4}=\left[\begin{array}{c}
b x+a y^{n} \\
x
\end{array}\right] .
$$

We apply Theorem (2.1) to the exact sequence

$$
\sigma: 0 \longrightarrow L \longrightarrow R^{2} \xrightarrow{\varepsilon} S \longrightarrow 0 .
$$

Since $\operatorname{End}_{R}(S)$ is a commutative R-algebra which is generated by 1_{S} and $t 1_{S}$ as R-module, so A_{σ} is commutative and $\rho\left(\mathbf{1}_{S}\right)=\mathbf{1}_{L / \mathrm{mL} L}$ and $\rho\left(t \mathbf{1}_{S}\right)$ generate A_{σ} over R / m. We put $\xi=\rho\left(t \mathbf{1}_{S}\right)$. Because the following diagram

is commutative, we have

$$
\begin{aligned}
& \xi \bar{v}_{1}=\bar{v}_{2}, \quad \xi \bar{v}_{2}=(a \bmod \mathfrak{m}) \bar{v}_{1}-(b \bmod \mathfrak{m}) \bar{v}_{2}, \\
& \xi \bar{v}_{3}=\bar{v}_{4}-(b \bmod \mathfrak{m}) \bar{v}_{3}, \quad \xi \bar{v}_{4}=(a \bmod \mathfrak{m}) \bar{v}_{3},
\end{aligned}
$$

where $\bar{v}_{i}=v_{i} \bmod \mathfrak{m} L$ for $1 \leqq i \leqq 4$. Hence if $a \in \mathfrak{m}$, then \bar{v}_{1} and \bar{v}_{4} are linearely independent over A_{σ} and if $a \in \mathfrak{m}$, then \bar{v}_{1} and \bar{v}_{3} are linearly independent over A_{σ}. But this is a contradiction by Theorem (2.1).

References

[1] Auslander, M., Isolated singularities and existence of almost split sequences, Proc. ICRA IV, Springer Lecture Notes in Math., 1178 (1986), 194-241.
[2] Eisenbud, D., Homological algebra on a complete intersection, with an application to group representations, Trans. A. M. S., 260 (1980), 35-64.
[3[Goto, S., Maximal Buchsbaum modules over regular local rings and a structure theorem for generalized Cohen-Macaulay modules, Advanced Studies in Pure Mathematics, 11 (1987), 39-64.
[4] Goto, S., Curve singularities of finite Buchsbaum-representation type, Preprint 1987.
[5] Goto, S., Surface singularities of finite Buchsbaum-representation type, Preprint 1987.
[6] Goto, S. and Nishida, K., Rings with only finitely many isomorphism classes of indecomposable maximal Buchsbaum modules. to appear in J. Math. Soc. Japan.
[7] Herzog, J., Ringe mit nur entrich vielen Isomorphieklassen von maximalen unzerlegbaren Cohen-Macaulay Modulen, Math. Ann., 233 (1978), 21-34.
[8] Herzog, J. and Kunz, E., Der kanonische Modul eines Cohen-Macaulay Rings, Springer Lecture Notes in Math., 238 (1978).
[9] Stuckrad, J. and Vogel, W., Buchsbaum rings and applications, VEB Deutscher Verlag der Wissenschaften, 1987.

Department of Mathematics
Faculty of Science
Chiba University
Yayoi-cho, Chiba-shi
260 Japan

[^0]: 1) Partially supported by Grant-in-Aid for Co-operative Research. Received May 19, 1988
