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REMARK ON LOCALIZATIONS OF NOETHERIAN RINGS
WITH KRULL DIMENSION ONE

By

Hideo SaT0

Let R be a left noetherian ring with left Krull dimension «. For a left R-
module A which has Krull dimension, we denote its Krull dimension by K-dim M
in this note. In the previous paper [6], we have shown that the family Fy(R)=
{RIC R|K-dim R[I< g} is a left (Gabriel) topology on R for any ordinal f<a. We
are most interested in the case when R is (left and right) noetherian, =1 and
B=0. Let R be such a ring and we denote Fo(R) by #. Let A be the artinian
radical of R. Then Lenagan [3] showed that R/A has a two-sided artinian, two-
sided classical quotient ring @(R/A). In this note, we shall show that Rp, the
quotient ring of R with respect to #, is isomorphic to Q(R/A) as ring and we
shall investigate a more precise structure of Rp under some additional assumptions.

In this note, a family of left ideals of R is said to be a topology if it is a
Gabriel topology in the sense of Stenstrom’s book [7]. So a perfect topology in
this note is corresponding to a perfect Gabriel topology in [7]. Let & be a left
topology on R, and M a left R-module. A chain of submodules of M;

MoD M, Deeee- oM,

is called a G-chain if each M;_./M; is not a G-torsion module. A &G-chain of M
is said to be maximal if it has no proper refinement of G-chain.
The following lemma can be proved easily.

Lemma 1. If gM has a finite maximal G-chain of length r, then any G-chain
of M has a finite length s and s<r.

Hence we can give a definition of G-dimension of M, denoted by G-dim M, as
follows; if M has a finite maximal G-chain of length 7, define G-dim M=v, and
G-dim M=co otherwise.

COROLLARY 2. For any short exact sequence of R-modules ;

0->M —>M-M'"->0

we have G-dim M=G-dim M’ +G-dim M.
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COROLLARY 3. Let GG be left topologies on R, and M a left R-module.
Then G-dim M>G'-dim M.

We apply Lenagan’s results ([3, Theorem 3.6] and [2, Theorem 3.1]) in the

following form.

TuroreMm (Lenagan) Let R be a (left and right) noetherian ving with left
Krull dimension one, and A its artinian radical. Denote R|A by R, and x+A by
z for xeR. Let S={seR|3 is a regular element in R) Then the following state-
ments hold.

(1) X(S)=(Rs|seS} is a cofinal family of F.

(2) R has a two-sided classical quotient ring Q(R).

We should remark that Lenagan showed that Q(R) is a (left and right) artinian
ring. But in the assertion (2) we need only the existence of Q(R) for our purpose.

In the following Lemmas 4, 5 and 6, R is assumed to be a left noetherian
ring with left Krull dimension a.

LemMa 4. (See [6, Theorem 3.11) For any B<ea, Fy={pISR|K-dim R|I<f}
is a left topology on R.

LeMMA 5. Let tr, be the torsion radical corvesponding to the topology Fj.
Then rad¥zR)=tr R) where rad*(zR) is the largest left ideal of R whose Krull
dimension is at most B. (Cf. [6])

Proor. Clear by definitions.

LeMMA 6. For every left ideal I of R, IeFs(R)if and only if I+A]AcFyR|A)
where A=tp,(R).

Proor. Since (RIAN(I+AJA)=R/I+A as RJ/A-module and as R-module, e
Fy(R) implies that K-dim R|I+A<K-dim R|I<p. Thus [+A[/AeF{R[A). Con-
versely assume that I+A4/AeFy(R|A). Then K-dimg(R/I+A)<B. Since I+A(T
=AJANI, K-dim I+ A/I<K-dim A<B. Thus K-dim R/{I<pB. Hence we have J¢
Fy(R).

In the sequel, R is assumed to be a left and right noetherian ring with left
Krull dimension one. Denote Fy(R) by F and Fy(R) by F’ respectively. Here
R=R|A and A=t:(R).
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LemMa 7. Rp=Rp=QR) as ring.

Proor. For any left ideal I of R, consider the following exact sequence:
0—~INA—I-IIINA—0. Since INA is an F-torsion module and R=R/tz(R) is F-
torsion-free, Homz(I, B)=Homz(I/INA, R)=Homy(7, R) where [=I+AJA. Clearly

the above isomorphisms are natural in I. Thus Rrp=lim Homg(/, R)=1lim Homgz{,
Ier IeF

R)=Ry by Lemma 6. It follows from Lenagan’s theorem that Ry =Q(R) as ring.
This complets the proof.

LeMMA 8. F is a perfect topology.

Proor. Let S={seR|S is a regular element in R}. Then by Lenagan’s
theorem, it is sufficient to prove that bs=0 for beR and seS5 implies ub=0 for
some u€S (see [7, XI, Proposition 6.3]). Now we have then 53=0 and hence b=0,
that is, beA. Thus Rb=RJl(b) is artinian and hence [b)eF. Here /() is the left
annihilator ideal of b. It follows from Lenagan’s theorem that /(b)NS+0. This
shows that X(S) is a cofinal family of F.

Recall that R is said to satisfy the restricted minimum condition for left ideals
if R/I is an artinian module for every dense left ideal I. (Cf. [6])

THEOREM 9. Let R be « noctherian QF-3 ring salisfying the vestricted wmini-

mum condition for left ideals. Then Ry is a QF ring where F=F,.

Proor. By assumption, it follows from {6, Theorem 5.1} and [8, Proposition 1]
that R has left Krull dimension at most one. Denote Ry by . Then by Lemma
8, Qg is flat, and QXxzN=0 if and only if N is an F-torsion module for any left
R-module N. Let M be any finitely generated left @-module. Then it follows
from the above facts that there exists a finitely generated, F-torsion-free left R-
module N such that M=Q®zN as left Q-module. Since R satisfies the restricted
minimum condition for for left ideals, N is D-torsion-free where D is the
topology of dense left ideals. Since R is QF-3, gN is a finitely generated torsion-
less module. Thus zN can be embedded into a finitely generated free R-module
because R is noetherian. Thus ¢M can be embedded a finitely generated free Q-
module. Since @ is a noetherian ring, it follows from the above facts that any
proper descending chain of left ideals of @ is an F-chain of z&. Since an R-module
Q/R is an F-torsion module, we have F-dimpQ = F-dimgR = F-dimgR < D-dimzR < co
by Corollary 3 and [8, Proposition 1]. This shows that ¢& has finite length.
Therefore it follows from [4, Corollary 6] that @ is a QI ring.
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TueoreM 10. For @ noetherian ring R, the following statements are equivalent.

(1) R is a two-sided order in o QF ring and K-dimpR<1.

(2) R can be decomposed into a ring dirvect sum, say R=AM®B, where A is a
QE ring and B is a QF-3 ving satisfyving the restricted minimum condition for left
ideals and Soc(13)=0.

Proor. Assume the statement (1). By [1, Theorem 10] we have a decomposi-
tion R=A®@®B where A is the artinian radical of R and Soc(B)=0. By assumption,
it is clear that A is a QF ring and B has a QF classical two-sided quotient ring
Q(B). Thus B is QF-3 (see [5, Theorem 1.5]). Let S be the set of all regular
elements in B. Let X(S)={Bs|seS}. Then X(S)C F(B). Conversely assume /e D(B)
where ID}(B) is the topology of dense left ideal of B. Since o5 ®(B) is a cogener-
ator, we have Q(B)=Q(B)] and hence INS#0. Hence Fy(B)=D(B). This shows
that B satisfies the restricted minimum condition for left ideals.

Conversely assume the statement (2). Then it is immediate from Lenagan’s

theorem, Theorem § and Lemma 7.

In the remainder of this note, we assume that R is a noetherian QF-3 ring
satisfying the restricted minimum condition for left ideals. So R has left Krull
dimension one. We denote the topology of dense left ideals by D and F, by F.
Let S=Rpr and )=Rp. Then we shall give a remark on the connection between
two rings, S and @. Now, we have a commutative diagram of canonical ring

homomorphisms ;

R—Q

AL
s

because DS F by assumption.
Then we have

ProrosiTioN 11, Both ¢ and ¢ are left flat epimorphisms.  Moreover S is
mjective both as left R-module and as left Q-module.

Proor. By Lemma 8, ¢ is a left flat epimorphism and hence ¢ is an epimor-
phism. By Theorem 9, S is an injective left S-module. So we see by adjointness
that S is also injective as left R-module. Denote the artinian radical by A, and
R/A by R. Consider a canonical exact sequense;

0 R — QR 0.
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Since Q/R is a D-torsion R-module, it is an F-torsion module. On the other hand,
=R is F-torsion-free and S is an essential extension of zR. Thus S is F-torsion-
free. Hence we have Homg(Q/R, S)=0. For any left ideal I of @ and @-homomor-
phism ¢ of oI into ¢S, there exists an R-homomorphism ¢ which makes the below

diagram commutative;

0— 1 -—Q
0] ’ /1
S

where j is an inclusion. Fix any element ¢, in €. Define an R-homomorphism 7
of @ into S as follows;
gh=q(qe0)—(qq0)d  for any geQ.

It is clear that RA=0. We have the induced R-homomorphism % such that the

following diagram is commutative ;

h
Q& — S

ﬂ\ /71
Q/R

where 7 is the canonical map. By the above remark, =0 and hence 4#=0. This
shows that § is a @-homomorphism and hence oS is injective. It remains to show
that Sq is flat. Consider an exact sequence of left @-modules:

0->X—-Y.
Since ¢S is injective, we have the following exact sequence;
Hom(Y, S)— Home(X, S) — 0.

Since S is a cogenerator, it is immediate by adjointness that the following sequ-
ence is exact.

Thus S¢ is flat. This completes the proof.
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