REMARK ON LOCALIZATIONS OF NOETHERIAN RINGS WITH KRULL DIMENSION ONE

By

Hideo Sato

Let R be a left noetherian ring with left Krull dimension α. For a left $R-$ module M which has Krull dimension, we denote its Krull dimension by K-dim M in this note. In the previous paper [6], we have shown that the family $\boldsymbol{F}_{\beta}(R)=$ ${ }_{R} I \subseteq R \mid K$ - $\left.\operatorname{dim} R / I \leq \beta\right\}$ is a left (Gabriel) topology on R for any ordinal $\beta<\alpha$. We are most interested in the case when R is (left and right) noetherian, $\alpha=1$ and $\beta=0$. Let R be such a ring and we denote $\boldsymbol{F}_{0}(R)$ by $\boldsymbol{F}^{\text {. Let } A \text { be the artinian }}$ radical of R. Then Lenagan [3] showed that R / A has a two-sided artinian, twosided classical quotient ring $Q(R / A)$. In this note, we shall show that R_{F}, the quotient ring of R with respect to F, is isomorphic to $Q(R / A)$ as ring and we shall investigate a more precise structure of R_{F} under some additional assumptions.

In this note, a family of left ideals of R is said to be a topology if it is a Gabriel topology in the sense of Stenström's book [7]. So a perfect topology in this note is corresponding to a perfect Gabriel topology in [7]. Let \boldsymbol{G} be a left topology on R, and M a left R-module. A chain of submodules of M;

$$
M_{0} \supseteq M_{1} \supseteq \ldots \ldots \supseteq M_{r}
$$

is called a G-chain if each M_{i-1} / M_{i} is not a G-torsion module. A G-chain of M is said to be maximal if it has no proper refinement of G-chain.

The following lemma can be proved easily.
Lemma 1. If ${ }_{R} M$ has a finite maximal G-chain of length r, then any G-chain of M has a finite length s and $s \leq r$.

Hence we can give a definition of G-dimension of M, denoted by G - $\operatorname{dim} M$, as follows; if M has a finite maximal G-chain of length r, define \boldsymbol{G} - $\operatorname{dim} M=r$, and $G-\operatorname{dim} M=\infty$ otherwise.

Corollary 2. For any short exact sequence of R-modules;

$$
0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0
$$

we have G - $\operatorname{dim} M=G-\operatorname{dim} M^{\prime}+G-\operatorname{dim} M^{\prime \prime}$.

Corollary 3. Let $G \subseteq G^{\prime}$ be left topologies on R, and M a left R-module. Then \boldsymbol{G} - $\operatorname{dim} M \geq \boldsymbol{G}^{\prime}-\operatorname{dim} M$.

We apply Lenagan's results ([3, Theorem 3.6] and [2, Theorem 3.1]) in the following form.

Theorem (Lenagan) Let R be a (left and right) noetherian ring with lefl Krull dimension one, and A its artinian radical. Denote R / A by \bar{R}, and $x+A$ by \bar{x} for $x \in R$. Let $S=\{s \in R \mid \bar{s}$ is a regular element in \bar{R}.$\} Then the following state-$ ments hold.
(1) $\Sigma(S)=\{R s \mid s \in S\}$ is a cofinal family of F.
(2) \bar{R} has a two-sided classical quotient ring $Q(\bar{R})$.

We should remark that Lenagan showed that $Q(\bar{R})$ is a (left and right) artinian ring. But in the assertion (2) we need only the existence of $Q(\bar{R})$ for our purpose.

In the following Lemmas 4,5 and $6, R$ is assumed to be a left noetherian ring with left Krull dimension α.

Lemma 4. (See [6, Theorem 3.1].) For any $\beta<\alpha, \boldsymbol{F}_{\beta}=\left\{{ }_{k} I \subseteq R \mid K-\operatorname{dim} R / I \leq \beta\right\}$ is a left topology on R.

Lemma 5. Let $t_{F_{\beta}}$ be the torsion radical corresponding to the topology \boldsymbol{F}_{β}. Then $\operatorname{rad}^{\beta}\left({ }_{R} R\right)=t_{F_{\beta}}(R)$ where $\operatorname{rad}^{\beta}\left({ }_{R} R\right)$ is the largest left ideal of R whose Krull dimension is at most β. (Cf. [6])

Proof. Clear by definitions.
Lemma 6. For every left ideal I of $R, I \in \boldsymbol{F}_{\beta}(R)$ if and only if $I+A / A \in \boldsymbol{F}_{\beta}(R / A)$ where $A=t_{F_{\beta}}(R)$.

Proof. Since $(R / A) /(I+A / A) \cong R / I+A$ as R / A-module and as R-module, $I \epsilon$ $F_{\beta}(R)$ implies that K - $\operatorname{dim} R / I+A \leq K-\operatorname{dim} R / I \leq \beta$. Thus $I+A / A \in \boldsymbol{F}_{\beta}(R / A)$. Conversely assume that $I+A / A \in \boldsymbol{F}_{\beta}(R / A)$. Then $K-\operatorname{dim}_{R / A}(R / I+A) \leq \beta$. Since $I+A / I$ $\cong A / A \cap I, K-\operatorname{dim} I+A / I \leq K-\operatorname{dim} A \leq \beta$. Thus $K-\operatorname{dim} R / I \leq \beta$. Hence we have $I \epsilon$ $\boldsymbol{F}_{\beta}(R)$.

In the sequel, R is assumed to be a left and right noetherian ring with left Krull dimension one. Denote $F_{0}(R)$ by F^{\prime} and $F_{0}(\vec{R})$ by \boldsymbol{F}^{\prime} respectively. Here $\bar{R}=R / A$ and $A=t_{F}(R)$.

Lemma 7. $R_{F} \cong \bar{R}_{F} \cong Q(\bar{R})$ as ring.
Proof. For any left ideal I of R, consider the following exact sequence: $0 \rightarrow I \cap A \rightarrow I \rightarrow I \mid I \cap A \rightarrow 0$. Since $I \cap A$ is an F-torsion module and $\bar{R}=R / t_{F}(R)$ is F -torsion-free, $\operatorname{Hom}_{R}(I, \bar{R}) \cong \operatorname{Hom}_{R}(I / I \cap A, \bar{R}) \cong \operatorname{Hom}_{\bar{R}}(\bar{I}, \bar{R})$ where $\bar{I}=I+A / A$. Clearly the above isomorphisms are natural in I. Thus $R_{F}=\underset{\overrightarrow{I \in F}}{\lim } \operatorname{Hom}_{R}(I, \bar{R}) \cong \underset{\vec{I} \in F}{ } \lim _{\vec{I}} \operatorname{Hom}_{\bar{R}}(\bar{I}$, $\bar{R})=\bar{R}_{F}$, by Lemma 6. It follows from Lenagan's theorem that $\bar{R}_{F^{\prime}} \cong Q(\bar{R})$ as ring. This complets the proof.

Lemma 8. $F_{\text {is }}$ a perfect topology.

Proof. Let $S=\{s \in R \mid \bar{S}$ is a regular element in $\bar{R}\}$. Then by Lenagan's theorem, it is sufficient to prove that $b s=0$ for $b \in R$ and $s \in S$ implies $u b=0$ for some $u \in S$ (see [7, XI, Proposition 6.3]). Now we have then $\bar{b} \bar{s}=0$ and hence $\tilde{b}=0$, that is, $b \in A$. Thus $R b \cong R / l(b)$ is artinian and hence $l(b) \in \mathbb{F}$. Here $l(b)$ is the left annihilator ideal of \bar{b}. It follows from Lenagan's theorem that $l(b) \cap S \neq \emptyset$. This shows that $\Sigma(S)$ is a cofinal family of \boldsymbol{F}.

Recall that R is said to satisfy the restricted minimum condition for left ideals if R / I is an artinian module for every dense left ideal I. (Cf. [6])

Theorem 9. Let R be a noetherian $Q F-3$ ring satisfying the restricted minimum condition for left ideals. Then $R_{r^{r}}$ is a QF ring where $\boldsymbol{F}=\boldsymbol{F}_{0}$.

Proof. By assumption, it follows from [6, Theorem 5.1] and [8, Proposition 1] that R has left Krull dimension at most one. Denote R_{F} by Q. Then by Lemma $8, Q_{R}$ is flat, and $Q \otimes_{R} N=0$ if and only if N is an F-torsion module for any left R-module N. Let M be any finitely generated left Q-module. Then it follows from the above facts that there exists a finitely generated, \boldsymbol{F}-torsion-free left R module N such that $M \cong Q \otimes_{R} N$ as left Q-module. Since R satisfies the restricted minimum condition for for left ideals, ${ }_{R} N$ is D-torsion-free where D is the topology of dense left ideals. Since R is $\mathrm{QF}-3,{ }_{R} N$ is a finitely generated torsionless module. Thus ${ }_{R} N$ can be embedded into a finitely generated free R-module because R is noetherian. Thus ${ }_{Q} M$ can be embedded a finitely generated free Q module. Since Q is a noetherian ring, it follows from the above facts that any proper descending chain of left ideals of Q is an F-chain of ${ }_{R} Q$. Since an R-module Q / \bar{R} is an \boldsymbol{F}-torsion module, we have $\boldsymbol{F}-\operatorname{dim}_{R} Q=\boldsymbol{F}-\operatorname{dim}_{R} \bar{R}=\boldsymbol{F}$ - $\operatorname{dim}_{R} R \leq \boldsymbol{D}-\operatorname{dim}_{R} R<\infty$ by Corollary 3 and [8, Proposition 1]. This shows that $Q_{Q} Q$ has finite length. Therefore it follows from [4, Corollary 6] that Q is a QF ring.

Theorem 10. For a noetherian ring R, the following statements are equivalent.
(1) R is a two-sided order in a $Q F$ ring and $K-\operatorname{dim}_{R} R \leq 1$.
(2) R can be decomposed into a ring direct sum, say $R=A \oplus B$, where A is a $Q F$ ring and B is a $Q F-3$ ring satisfying the restricted minimum condition for left ideats and $\operatorname{Soc}(B)=0$.

Proof. Assume the statement (1). By [1, Theorem 10] we have a decomposition $R=A \oplus B$ where A is the artinian radical of R and $\operatorname{Soc}(B)=0$. By assumption, it is clear that A is a QF ring and B has a QF classical two-sided quotient ring $Q(B)$. Thus B is QF-3 (see [5, Theorem 1.5]). Let S be the set of all regular elements in B. Let $\Sigma(S)=\{B s \mid s \in S\}$. Then $\Sigma(S) \subseteq \boldsymbol{F}_{0}(B)$. Conversely assume $I \in \boldsymbol{D}(B)$ where $D(B)$ is the topology of dense left ideal of B. Since $Q_{Q(B)} Q(B)$ is a cogenerator, we have $Q(B)=Q(B) I$ and hence $I \cap S \neq 0$. Hence $\boldsymbol{F}_{0}(B)=D(B)$. This shows that B satisfies the restricted minimum condition for left ideals.

Conversely assume the statement (2). Then it is immediate from Lenagan's theorem, Theorem 9 and Lemma 7.

In the remainder of this note, we assume that R is a noetherian $Q F-3$ ring satisfying the restricted minimum condition for left ideals. So R has left Krull dimension one. We denote the topology of dense left ideals by D and \boldsymbol{F}_{0} by \boldsymbol{F}. Let $S=R_{F}$ and $Q=R_{D}$. Then we shall give a remark on the connection between two rings, S and Q. Now, we have a commutative diagram of canonical ring homomorphisms;

because $D \subseteq \mathbb{F}$ by assumption.
Then we have

Proposition 11. Both ϕ and ψ are left flat epimorphisms. Moreover S is injective both as left R-module and as left Q-module.

Proof. By Lemma $8, \phi$ is a left flat epimorphism and hence ϕ is an epimorphism. By Theorem 9, S is an injective left S-module. So we see by adjointness that S is also injective as left R-module. Denote the artinian radical by A, and R / A by \bar{R}. Consider a canonical exact sequense;

$$
0 \rightarrow R \rightarrow Q \rightarrow Q / R \rightarrow 0 .
$$

Since Q / R is a D-torsion R-module, it is an F-torsion module. On the other hand, ${ }_{R} \bar{R}$ is F-torsion-free and ${ }_{R} S$ is an essential extension of ${ }_{R} R$. Thus ${ }_{R} S$ is F-torsionfree. Hence we have $\operatorname{Hom}_{R}(Q / R, S)=0$. For any left ideal I of Q and Q-homomorphism g of ${ }_{Q} I$ into ${ }_{Q} S$, there exists an R-homomorphism \bar{g} which makes the below diagram commutative;

where j is an inclusion. Fix any element q_{0} in Q. Define an R-homomorphism h of Q into S as follows;

$$
q h=q\left(q_{0} \bar{g}\right)-\left(q q_{0}\right) \bar{g} \quad \text { for any } q \in Q .
$$

It is clear that $R h=0$. We have the induced R-homomorphism \bar{h} such that the following diagram is commutative;

where π is the canonical map. By the above remark, $\bar{h}=0$ and hence $h=0$. This shows that \bar{g} is a Q-homomorphism and hence ${ }_{Q} S$ is injective. It remains to show that S_{Q} is flat. Consider an exact sequence of left Q-modules:

$$
0 \rightarrow X \rightarrow Y .
$$

Since ${ }_{Q} S$ is injective, we have the following exact sequence;

$$
\operatorname{Hom}_{Q}(Y, S) \rightarrow \operatorname{Hom}_{Q}(X, S) \rightarrow 0
$$

Since s s is a cogenerator, it is immediate by adjointness that the following sequence is exact.

$$
0 \rightarrow S \otimes_{Q} X \rightarrow S \otimes_{Q} Y
$$

Thus S_{Q} is flat. This completes the proof.

References

[1] Ginn, S.M. and Moss, P.B.: A decomposition theorem for noetherian orders in artinian rings, Bull. London Math. Soc. 9 (1977) 177-181.
[2] Lenagan, T.H.: Noetherian rings with Krull dimension one, J. London Math. Soc. (2) 15 (1977) 43-47.
[3] Lenagan, T.H.: Artinian quotient rings of Macaulay rings, Lecture Notes in Math. 545, Springer, Berlin (1976).
[4] Rutter, E. A.: A characterization of QF-3 rings, Pacific J. Math. 51 (1974) 533-536.
[5] Sato, H.: On localizations of a 1-Gorenstein ring, Sci. Rep. Tokyo Kyoiku Daigaku A. 13 (1977) 188-193.
[6] Sato, H.: On maximal quotient rings of QF-3 1-Gorenstein rings with zero socle, to appear in Osaka J. Math.
[7] Stenström, B.: Rings of quotients, Grundlehren Wissenschaften 217, Springer, Berlin (1975).
[8] Sumioka, T.: On non-singular $\mathrm{QF}-3^{\prime}$ rings with injective dimension ≤ 1, Osaka J. Math. 15 (1978) 1-11.

