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ANOTHER PROOF OF THE STRONG COMPLETENESS

OF THE INTUITIONISTIC FUZZY LOGIC

By

MitioTakano

Takeuti and Titani [3] introduced the system, which we shall call TT, for

the intuitionisticfuzzy logic, and proved the following theorem:

Strong Completeness Theorem (Takeuti and Titani [3, Theorem 1.3]).

Suppose that the language of TT is countable. If a sequent 2=$A is valid then

it is provable in TT, where Z may be infinite.

The purpose of this note is to give another proof of the above theorem.

The author expresses his thanks to Dr. Yuichi Komori, who gave him

information on the logic studied in this note.

§1. Recall, first,that the axioms and inference rules of TT are those of

the intuitionisticlogic (Gentzen's LJ) together with the following ones:

Extra Axiom Schemata for TT.

1. =${A-+B)V((A-*B)-+B);

2. {A->B)^B^{B->A)VB;

3. (AAB)->C=$(A-*C)V(B^C);

4. ^(5VC)=KA->£)VG4->C);

5. V x(C＼/A(x))=$CVV xA(x), where x does not occur in C;

6. VxA(x)―>C=$3x(A(x)->D)＼/(D-j>C), where x does not occur in D.

Extra Inference Rule for TT.

r^AV(C^p)V(P^B)

where p is any propositional variable not occurring in the lower sequent.

We callthat system TT~ which is obtained from TT by deleting Extra

Inference Rule for TT.
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Fifteen years before,Horn had introduced another system for the logic,

which we shallcallH, and had shown the weak completeness(Horn [1, Theo-

rem 3.8]): A formula is validiffit is provablein H. The system H has also

been characterizedby means of Kripke models in Ono [2, Theorem 3.3]. Recall

that the axioms and inference rules of H are those of LJ together with the

followingaxioms:

EA 1. Vx{C＼f;4(jc))=4CVV'xA(x),where x does not occurin C;

EA 2. =3(A^B)V(B->A＼

Then we claim the following theorem:

Theorem. Suppose that the language concerned is countable. The following

properties (a)-(d) of a sequent 2=$A are equivalent, where 2 may be infinite:

(a) 2=$d is valid.

(b) 2=)A is provable in H.

(c) 2=$rf is provable in TT~.

(d) 2=$A is provable in TT.

The proof of (a)=Xb) is postponed until§2. Since EA 1 is identical with

Extra Axiom Schema 5 for TT and EA 2 follows from Extra Axiom Schemata

1 and 2 by the intuitionisticlogic, (b) implies (c). Clearly (c) implies (d),while

the proof of (d)=4(a) is routine. Thus, the proofs of (a)=Hb)=Hc)=Hd) form

another proof of Strong Completeness Theorem stated in the introduction.

The author confesses that he does not know any syntactical proof of

(d)=Hc).

§2. We shall prove that (a) implies (b). In this section, provability means

that in H.

To show the contraposition we assume that 2=$A is unprovable, and we

shall construct a model <<-#,[]> in which I=$A is not valid. As in [3] we

further assume, for simplicity, that there exist infinitely many individual free

variables which do not occur in Z=$A, and that A consists of one formula A.

Let Ji and 3 be the sets of all terms and all formulas, respectively.

Proposition 1. There exists a set Q of formulas which satisfiesthe follow-

ing conditions(l)-(3):

(1) SQS and AtBG.

(2) // ＼-G=$Bi＼/―＼/Bv,then BteS for some I

(3) // B(t) ES for every t in J., then MxB(x)^G.
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Proof. Let 3 = {Fn | n=l, 2,･･･}. We definea pair Gn, Mn of subsets of

3 inductivelyas follows.

Let GX=I and M1=A={A).

Assume that Gn and Mn have been defined already. Case 1: I―Sn=$

＼fSCnVFn. Set Gn+1=GnU{Fn} and Mn+1=Mn. Case 2: Otherwise. Set Gn+1

―Gn, and SCn+1―Mn＼J{Fn,B(a)} or Mn+1=MnU{Fn} according as Fn has the

form Vx.B(x) or not, where a is any individualfree variablewhich does not

occurin Gn＼JMn＼J{Fn}.

In view of EA 1 we see ＼^Gn=$＼/Mnby induction on n, and IJ"=]1S=

3-{Jn=iGn- So 5=U"=i^≫ is the required set. □

We assume hereafterthat a set Q of formulas satisfying(l)-(3)is given.

Now we define the relation^° and = on 3 by

B£"C&B->C<eS and B = C&B£°C & C£°B.

Then ^° is reflexiveand transitive;sincefor every B, C and D, l-=3B->B

and hB-+C, C-^D=$B-^D, so B-*B^G and if B-^C^G and C->D<eG then

B^D^G. Hence = is an equivalencerelationon 2". For every B in 5 we

let ＼B＼be the equivalence class under = to which B belongs,and EF/= the

set of allequivalenceclasses. Next we definethe relation^ on EF/= by

＼B＼^＼C＼&B£°Ct=>B-+CeS.

This is an unambiguous definition,and <3/ = , <> forms an ordered structure.

Proposition 2. <3V = , ^> is a countable linearly ordered structure with the

distinctmaximal element ＼A-+A＼and the minimal element ＼~^{A―>A)＼.

Proof. Since £Fis countably infinite,27 = is countable. For every B and

C, ＼-=$(B^>C)V(C-*B) by EA 2, and so either B-*C<eQ or C-^B^Q; hence

S is linear. For every B, h-=3B-+(A-*A) and ＼-=$―i(A->A)^>B, and so

B->(A->A)seS and -^(A->A)-^Be3; hence ＼A-*A＼ and ＼-^(A-*A)＼are the

maximal and the minimal elements, respectively. Since i―(^4―>A)-+―i(A-*A)=$A

and since AeS, (A->A)->-i(A-+A)G3; so ＼A-^A＼=t＼->(A-^A)＼. D

We abbreviate |A->^4| and ＼-i(A-+A)＼by 1 and 0, respectively.

Proposition 3. The following properties hold in (%/ = , ^>:

1°) |5AC|=min(|5|, |C|).

2°) |flvC|=max(|B|, |C|).

3°) ＼B-+C＼=lif |B|<|CI; ＼B->C＼= ＼C＼otherwise.
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|-iB|=1 if |£|=0; |-i5|=0 otherwise.

|3jc£Qc)l=sup{|B(*)| | feJI}.

VxB(x)＼='mf{＼B(t)＼| fe≪J}.

|B|=l^Be5.

Proof. 1°) From h-^BAC-^B, ＼-^BAC^C and V-D^B, D-^C=$D^

BAC for every D, it follows |flAC|=inf(|£|,|C|), from which 1°) follows

since ^ is linear.

2°) is proved similarly to 1°).

3°) From H=H5-≫C)A£->C and h-/M5-≫C=}£-Kfl->C) for every D, it

follows |5^C|=max{|i)| | |DA5| ^ |C|}. Hence in view of 1°),follows 3°)

since ^ is linear.

4°) From ＼-=$~iBAB^-^(A-^A) and ＼-DAB-^-i(A-+A)=$D^>-iB for every

D, it follows |-i5|=max{|D| | ＼DAB＼=0}. Hence in view of 1°),follows 4°)

since fS is linear.

5°) Since ＼-=$B(t)->3xB(x), ＼B(t)＼^＼3xB(x)＼for every t in J.. On the

other hand, for every D,

＼B{t)＼^＼D＼for every t in J

<=>B(t)-+D(E3 for every t in J.

^Vi(5(xhD)E5 since (3)

=^x£(x)->Z)eE5 since ＼-Vx(B(x)^D)=$3xB(x)^D

&＼3xB(x)＼^＼D＼.

Hence 5°)follows.

6°) is proved similarly to 5°).

7°) Since ＼-(A-+A)-*B=$B and ＼-B=$(A-^A)-+B,

B＼=l& A-^A＼<＼B <=>(A->A)-+BeS&B^S . □

Proposition 4 (Horn [1, Lemma 3.7]). // <L, ^> is a countable linearly

ordered structure with the distinct maximal and minimal elements, then there

existsa monomorphism on <L, ^> to <[0, 1~＼(~＼Q,^> which preserves the maximal

and the minimal elements as well as all existing supremums and infimums in

<L, 5S>. Hence there existssuch a monomorphism on <L, ^> to <[0, 1], ^>. D

By Propositions 2 and 4, there exists a monomorphism h on <£F/=, ^>

into <[0, 1], ^> which preserves the maximal and the minimal elements as

well as all existing supremums and infimums in <2r/=, ^>. Put ＼_BJ―h{＼B＼)

for every fi in ?, and we obtain a model <JZ, [ ]> by Proposition 3. Note
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that for every B,

In thismodel,

B^I^B^Q^lBJ^l,

while A<£Q so lAJ-^l; so 2=$ A is not valid.

Thus we have found, on the assumption that 2=$ A is unprovable, a model

(A. ＼V>in which it is not valid. O. E. D.
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