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ON THE INTERVALS BETEEN CONSECUTIVE NUMBERS

THAT ARE SUMS OF TWO PRIMES

By

Hiroshi Mikawa

1. Introduction.

It is the well known conjecture of H. Cramer that

Pn +l-pn<(l0S PnY

where pn is the n-th prime

mate the sum

In 1940 P. Erdos proposed the problem to esti-

and A. Selberg showed that it is

x(logxf

under the Riemann hypothesis. This problem has been stimulating the several

authors, vide [2, 3, 10, 11, 13].

Let (gn) denote in ascending order even integers that are representable as

the sum of two primes. The Goldbach conjecture is then interpreted as that

gn +l―gn = 2

for all n. In 1952 Ju. V. Linnik [7] proved, on assuming the Rieman hypo-

thesis, that

for any s>0 and all n. Also see [1]. In this paper we shall estimate the

third moment of it.

Theorem.

2j {gn +l gn) <LX{lQg X)

Corollary. For Q^?-<3, we have
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Our assertion should be compared with the known results in Goldbach's

problem. Let E(x) be the number of even integers not exceeding x that may

not be expressed as a sum of two primes, and D(x) be the maximum of

(gn+i―gn) for gn^x. It was proved by H. L. Montgomery and R. C. Vaughan

[9] that

EixXx1'8

with some 8>0. As for D(x), the argument in [9] runs as follows. Suppose

that one knows the equi-distribution of primes in intervals [x, x-＼-xB~]for

almost all x, and in [x, x+xe] for all x. Then,

(1.1) D(x)<xee.

By an elementary consideration,see section3, we find

2 (gn +l-gn)2 = 2x+O(D(x)E(x)) .

It seems that no unconditionalresultleads 00^8.

Our argument is based upon Linnik's method [6, 7] and D. Wolke's trick

[13]. The limitationof our estimate comes from A. E.Ingham's bound [4] for

zeros of the Riemann zeta-function.

I would like to thank ProfessorUchiyama and Dr. Kawada for encourage-

ment and valuable comment.

2. Notation and Lemmas.

We use the standard notation in number theory, p stands for the non-

trivialzeros of the Riemann zeta-function.For l/2^a^l and T>0, N(o, T)

denotes the number of p such that a<Re(p) and ＼lm(o)＼<T.

Lemma 1. Uniformly for x, T^3, we have

2 xP = --A'(x) + O(x(＼ogxT)2)
|Im((O)|sr 7T

where A'(x) is equal to the von Mangoldt function if x is an integer, and A'(x)

=0 otherwise.

This is a formula of E. Landau [5]. Though his estimate is not uniform

for x, it is easy to alterthe proof of [5] to be suitable for our aim. The

following Lemma 2 is due to Ingham [4] and Montgomery [8, Theorem 1].

Lemma 3 follows from [8, Theorem 21.
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Lemma 2. For T>2, we have

N(a, T) TX(anl-a)(＼ogT)i:i

where

X(o)=-

3

2-a
2

_

a

if 1/2^(7^4/5

if 4/5^<7^1 .
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Lemma 3. // 9/10gej^l, then

N(a, T)<T'2'CU1-a＼logT)vi

where c is a positiveabsoluteconstant.

In sections3 and 4 we use the convention L=logX For a real x, write

e(x)=02"*. * and ~mean that f*g(x)=＼ f(x ―y)g(y)dy and /(*)=＼ /O0 "

e{―xy)dy, respectively. The implied constants in 0 and < are absolute, except

for the proof of Corollary.

3. Reduction of the problem

In this section we firstreduce the proof of Theorem to that of Lemma 4

below. Lemma 4 will be verifiedin section5. Next we derive Corollaryfrom

Theorem. Put dn=gn+1―gn, for simplicity.

Proof of Theorem. It is sufficientto prove

F(x)= S dn3<x(logxy≪u

X'<SnSX

for alllarge x and x'=(5/7)x. We have

F(x)< S dn3+(logx) sup S dn3

x'<gnix 5>(log x)150 x'<gnix
dns(!ogz)i50 5<dn&25

Because of (1.1),drgZ)(x)<x1/6. Put

Fix, 3)={gn: x'<gn^x, 8<dn^2d, gn+i^x＼

Then,

(3.1) F(x)≪(logx)300 2 dn+(logx) sup ( S

≪x(logx)300+(logx) sup d2 S dn.

(log:c)150<5<xl/G gn<=rix.5)

Here we state our main lemma.

dn*+d2D(x))

5) '
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Lemma 4. Let X be a large parameter,

(5/2)X^x^(7/2)X and (l/2)(log^)150<A<*1/6.

There exists a function R(x. A) such that

(3.2)

and

(3.3)

r(7/2>x

J(5/2)X
＼R(x,A)＼2dx X3(logXy

SS A(m)A{n)=MX-＼x-?,X＼)-＼-O(&X{＼ogX)-')+R{x, A)

X<m,
mzX

.r-A<m + nsz

uniformly for X, x and A.

Now, if te[(gn+gn+i)/2, gn+1)for gn^F{x, 8) then

t

8

^
gn+gn

+ l
dn

2 2 2
= gn

Namely the interval (t―8/2, t] contains no sum of two primes. By (3.3) in

Lemma 4 with CI/2)X=x and 2A=5, we therefore have

R(t,5/2)=-|(yX t
6x

)+O(8x(log x)-4)

for all t^[(gn+gn+i)/2, gn+1) with gn<=r(x, 8). Since these intervals are

mutually disjoint, we have

2 (gn
+i-

≪ner(i,5)＼

gn+gn +1

2
W)2< 2 f*"+1 ＼R(t,8/2)＼2di

^[X ＼R(i,5/2)＼2di.

Hence (3.2) in Lemma 4 yields that

d2 2 dn x(logxr'J

uniformly for d,(log x)1B0<5<x1/6. Combining this with (3.1) we obtain

F(x)<x(logx)300,

as required.

and

Proof of Corollary. With the notationin section1, we easily see that

2 dn=x+O(D(x)),

2 1 ~x + O(l)-E(x)
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By subtraction, we have

(3.4)

or

(3.5)

Now, if O^r^l then

S dn D(x)+E(x)<E(x)

dn>2

2 1

1^2
jX + O(E(x))

2 dnr=2r 2 1+ 0
ifnsx

§B-2

(, S dn)=2r-lx + 0(E{x))

n>2
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by (3.4) and (3.5). It is known [12; Kap. VI. Satz 7.1] that

(3.6) E(x) x(log x)~A

for any ,4>0. Hence we get Corollary in case O^f^l.

Suppose 1<y<3. Let D be a positive constant, which will be specified

later. Then.

Sn&x

V 4- V _L V*2-i -r 2j t 2j
dn=2 2<dras(Iogx)Z) dn>(logx)Z)

=2r-1x + 0(E(x))+0((＼0gxyr-1>D S dn) + o((log x)-(3^D 2 dn3)

0,n>2

^2r-1x + O(E(x)(log x)(r-≫D+x(log x)300-^0)

because of (3.4),(3.5) and Theorem. On taking /)=301/(3-}-) we get, by (3.6),

that

2 dnr^2r-1x + O(x(logx)-1)>
gn£x

as required.

(4.1)

4. Proof of Lemma 4, preliminaries.

We begin with modifying the explicitformula

S A(n)=x S -^+C>((l + ;£-)(logxT)2)

uniformly for x, T^3. For T^3, define

(4.2)
fra+ 1/2

gn=Qn(T)=＼ 23 j""1^

Jn-1/2 |Im(o)isr

if ≪^5, and qn=0 otherwise. Moreover we determine rn=rn(T) by the relation

(4.3) A(n)=l-qn-rn.
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Lemma 1 then gives

(4.4) qn> rre≪(logn7)2.

For large x, it follows from the prime number theorem, (4.1) and (4.2) that

(4.5)

71 SX

Similarly,

(4.6)

by (4.1), (4.2) and (4.3)

Now, on choosing

s AM+1/2)'

llm(p)isr＼ p
+<))

≪% exp(-(log %)1/2)+(l+ ^)(log xTf

2rn≪(l + ^-)(logx7)2

we consider the sum in question:

By (4.3),

Accordingly

(4.7)

(4.8)

T=TL'

G= US A(m)A(n)

X<m,niZX

A(m)A(n)=l+qmqn-(qm+qn)-rmA(n)-A(m)rn-rmrn

G― Gi-j-Gg―2Gs―2G4―Gn, say

Gi= SS 1
x<tti,mix

X<ma2X
x-2X<m<z-A-X

On writing

(4.9)

we have

A 2 1+O(X)

X<m£2X
x-2X<msa;-X

=A(X-＼x-3X＼)+0(X).

Z(y)=Z{y, T)= yp-i
Ilm(/j)isr
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f~*

X<.m, ns2A' J

m + l/'ir

VI-112J

71 + 1/2

re―1/2

Z(u)Z(y)dudv

= ＼＼Z(u)Z(v)dudv, say.
JJD

We replace the domain D by

(4.10) D=D(X, x, A)={(u, v)e=[X,2XY: x-A£u+v£x＼

The resulting error is

(4.11)

because of Lemma 1

(4.12)

≪[( ＼Z(u)Z(v)＼dudv<XL＼
JJ(D'JU)＼(Dnl>)

G3= £2 qm

S rym(A+O(l)) + O(A2L2)
l'<ms2JT

x-2X<msx-A-.V

<Asup S qm +XL2
MiZX msM

AXL-4,

by (4.4) and (4.5). Also, (4.4) and (4.6) give that

(4.13) Gt= 22 A(m)rn

X<m, ras2X

< S A(m) sup
nsN

≪XI2(i + ^)l2

Similarly,

(4.14) Gb AXL-4.

On summing up the above estimates(4.7)-(4.14)we obtain

(4.15) G=A(X-＼x-3X＼) + 0(AXL-i) + ＼＼Z{u)Z{v)dudv
JJD

where Z and D are defined by (4.9) and (4.10), respectively

449
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5. Proof of Lemma 4.

Put

Hiroshi MiKAWA

/V+(<?,T)=TJ")(I-≫LU

where 1 is defined in Lemma 2. Since

■Jii(l/2)_'J1^<1)__(X T*
y<x*L-28°<

(- L') _ 'pXiS/i) ^- J^(4/5)

there exist r and t such that l/2<r<3/4, 4/5<i<l and

rpX(.r)― '-pX(t) V2 T -280

Define s=min(*. 9/10), and /=[?', s). We then see

(5.1)

and

(5.2)

(5.3)

T^><X2L-280 for all aeri/2, 9/10K/,

T^^X2L-280 for all ere/.

Now, we divide the sum Z{y), which is defined by (4.9).

Z(y)= S + S =^1(3')+2(3'), say.

Re(/>)£/ Rec.o)e/

We firstconsider z

H1

By a familiar way,

z1(y)＼2dy L2 2 X2*^^'1

IIra(|O)lsrRedo)*/

≪L2

Re(p)<l/2

1 + L3 sup X2lJ-lN{o, T)

Here, because of the zero-free region [12; Kap. VIII. Satz 6.2], the above

supremum may be taken over o?^l ―y)(T)only, where iq(T)=(log T)~4/B.Lemmas

2 and 3 yield that

(5.4) J L3T + L16X

i (THa)

1 SUP I
V2~

ll/2S(T<9/10＼ A

0<£I

＼l-a /) + sup (

0^2

)i-a 1

≪L11ZA-1 + L16^{(Z-280)1/10+ T-c'?c2')}

<XL~l＼

by (5.1).

We turn to the double integral in (4.15). Since

Z(u)Z(v)=z(u)z(v)+zl(u)Z(v)+Z(u)z1(v)-z1(u)z1(v)
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＼[(Z(u)Z(v)
z(u)z(v))dudv

≪(( ＼Zl{u)＼{＼Z{v)＼+ ＼zx(v)＼)dudv

JJ Xiu.viZXi-Asu+cSi

≪L2A ＼Zl{y)＼dy+A＼ ＼z,{y)＼'dy

L2A(X2L-12)1/2+AXL-12

AXL~i>

by Lemma 1 and (5.4). Combining this with (4.15) we reach (3.3)

G=A{X-＼x-?>X＼) + O{AXL-i)+R{x, A)

where

(5.5) R(x, A)=＼＼ z(u)z(y)dudv
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It remains to prove (3.2). First we define z(y)=0 if y<£＼_X,2X~＼.Next we

split up z{y). Let za(y) be the partial sum of z{y) restricted by a^Re(p)<

<r(l+ l/L). Then,

z(y)= S za(y)

Furthermore let X(x) denote the characteristic function of [0, A]. Thus we

may rewrite (5.5) as

(5.6)

R(x, A)=[_l＼ X(x ―u―v)z(u)z(v)dudv

Now, by Plancherel'srelation,we have

I=＼ ＼R(x, A)＼2dx£＼

J(6/2)AT J-co

Here we see

＼X*z*z(x)＼2dx

= ＼ ＼X*z*z(x)＼2dx

J ―oo

=!
+°°＼i(x)＼2＼z(x)＼4dx

l**>l'=(^)'

and, on using Holder's inequality,
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Therefore (5.6) becomes

(5.7)

Hiroshi Mikawa

|2(x)|4≪L3SUa(x)|4
a

/< Z/A2 sup (sup | za(x) 12)＼+°°Iza(x) 12dx

by Plancherel's relation again.

We proceed to estimate the square integral of za.

(5.8) j: z<,{y)＼2dy=
C2X 2

jx iim(/o)iar
CTSRe(/3)<cr(l+l/Z-)

L2X2a~1N((j, T).

We turn to za. The simplest saddle point method [12; Kap IX, Lemma 4.2]

leads that

IIra(|O) 1ST
aS Re (.p)<a (1+1/L)

<LXa +

C2X
hy

s

^"^expiUlm^log y-2nxy))dy

3<IIm(/0)
＼&T

aSRe(.p)<all +l/L)

<LXa(i+ sup r1/2iV(<7,o)

We now appeal to Lemma 2. Since X(o)(＼-o)^l/2if l/2^<r^4/5 and ^1/2

if 4/5<(7<l, we have that

(5.9)

uniformly for x.

LX"T-1/2N+(a, T) if l/2£a^4/5

LuXa if 4/5^(7^1,

In conjunction with (5.7),(5.8) and (5.9) we obtain

I L4A2( sup L'X^-'T-'N^a, T)3+ sup L Xia-lN+(o, T)＼

Notice that

1754/6 024/5

l―^k(a)(2a-l) if 1/2^(7^4/5
X(o)(±―o) = 6

.2-X(a)(2o-l) if4/5^a^l.

Hence, by (5.2), we conclude

/<L47A2 sup X">-1T*-x<anla-l'>

a<=I

<X3L28＼

1
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as required.

This completes our proof.

L
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