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ON THE INTERVALS BETEEN CONSECUTIVE NUMBERS
THAT ARE SUMS OF TWO PRIMES
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Hiroshi MIKAWA

1. Introduction.
It is the well known conjecture of H. Cramér that

pn+1_pn<<(10g pn)2
where p, is the n-th prime. In 1940 P. Erdés proposed the problem to esti-
mate the sum
2 (pn+1_pn>2;
Ppsz
and A. Selberg showed that it is
L x(log x)*

under the Riemann hypothesis. This problem has been stimulating the several
authors, vide [2, 3, 10, 11, 13].
Let (g,) denote in ascending order even integers that are representable as
the sum of two primes. The Goldbach conjecture is then interpreted as that
gn+1—‘gn:2

for all n. In 1952 Ju. V. Linnik [7] proved, on assuming the Rieman hypo-
thesis, that

gni—gn<k(log go)***
for any ¢>0 and all n. Also see [1]. In this paper we shall estimate the

third moment of it.

THEOREM.
E (gn+1—gn)s<<X(10g x)9°° .
Eps®

COROLLARY. For 0<y<3, we have

gzsz(gn-x-l’—gn)T:(zr—l‘l‘o(l))x .
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Our assertion should be compared with the known results in Goldbach’s
problem. Let FE(x) be the number of even integers not exceeding x that may
not be expressed as a sum of two primes, and D(x) be the maximum of
(gni1—&n) for g.<x. It was proved by H.L. Montgomery and R.C. Vaughan
[9] that

E(x)gx?

with some 8>0. As for D(x), the argument in [9] runs as follows. Suppose
that one knows the equi-distribution of primes in intervals [x, x+x%7 for
almost all x, and in [x, x+x%] for all x. Then,

(1.1) D(x)&x% .

By an elementary consideration, see section 3, we find
g%x(gnﬂ_gn)z:zx+O(D(X)E(x)) .

It seems that no unconditional result leads 06 <4.

Our argument is based upon Linnik’s method [6, 7] and D. Wolke’s trick
[13]. The limitation of our estimate comes from A. E. Ingham’s bound [4] for
zeros of the Riemann zeta-function.

I would like to thank Professor Uchiyama and Dr. Kawada for encourage-
ment and valuable comment.

2. Notation and Lemmas.

We use the standard notation in number theory. p stands for the non-
trivial zeros of the Riemann zeta-function. For 1/2<¢<1 and T>0, N(g, T)
denotes the number of p such that ¢ <Re(p) and |Im(p)| <T.

LEMMA 1. Uniformly for x, T=3, we have

P % A'(x)+0(x(log xT)*)

1Im(p) 1T

where A'(x) is equal to the von Mangoldt function if x is an integer, and A'(x)

=0 otherwise.

This is a formula of E. Landau [5]. Though his estimate is not uniform
for x, it is easy to alter the proof of [5] to be suitable for our aim. The
following Lemma 2 is due to Ingham [4] and Montgomery [8, Theorem 1].
Lemma 3 follows from [8, Theorem 2].
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LEMMA 2. For T>2, we have

N(g, T)KT*@u-9(log T)1
where

2 f12<e<4/5
Aa)= 9
= if 4/5<a<1.

LEMMA 3. If 9/10=¢ =1, then
N(g, TYKT® 0" (log T)*
where ¢ is a positive absolute constant.
In sections 3 and 4 we use the convention L=log X. For a real x, write
e(x)=e*'*. * and " mean that f*g(x>=Si:f(x—y>g(y)dy and f(x)= S:f(y)-

e(—xy)dy, respectively. The implied constants in O and < are absolute, except
for the proof of Corollary.

3. Reduction of the problem

In this section we first reduce the proof of Theorem to that of Lemma 4
below. Lemma 4 will be verified in section 5. Next we derive Corollary from

Theorem. Put d,=g..1—g», for simplicity.

Proor orF THEOREM. It is sufficient to prove

Flx)= 2 d.*<x(log x)*"

T'<EpET

for all large x and x'=(5/7)x. We have

Fx)< 2 d,’+(log x) sup > di)’.
z'<gpsx 0>(log 2150 y'<gpsx
dps(log z)150 d<d 520

Because of (1.1), d<D(x)<xV¢. Put

I(x,0)=1{g,: x'<gn<x, 0<d, <20, gn=x}.
Then,

by d,ﬁ+5ZD(x))

sup (
(log z)1803<z1/8\ g =T (2, 8)

(3.1) F(x)<(log x)“')gZ\_Idn—%-(log x)

L x(log x)*°+(log x) sup of 3 d..

(log 2) 1908z l/b gpel (2. 0)

Here we state our main lemma.
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LEMMA 4. Let X be a large parameter,
6/2)X<x<(7/2)X and (1/2)(log X)W <A< X Ve,

There exists a function R(x, A) such that

(1/2)X
3.2) S | R(x, A)|2dx < X*(log X)™®
(5/2) X
and
(3.3) I8 AmAM)=AX—|x—3X)+O0(AX(log X))+ R(x, 4),

rz-A<mi+nsz

uniformly for X, x and A.

Now, if t€[(gr+8ne1)/2, gns1) for g,I'(x, ) then

J gn’l'gnqﬁl__ﬂ_
l‘—"2‘>T 2 =8n-

Namely the interval (1—d/2, t] contains no sum of two primes. By (3.3) in
Lemma 4 with (7/2)X=x and 2A=4, we therefore have

R, 5/2):—% —,?—x—lt~gx1)+0(5x(log X))

for all t€[(g.+gn+1)/2, gns) With g,&'(x, ). Since these intervals are

mutually disjoint, we have

_ 8t &an 2 Ent1 2
I e R S R, 3/2) 1

gnel(z,0)J(8nt8n41)

ggxl |RG, 6/2)]%1 .

Hence (3.2) in Lemma 4 yields that

0 3 d.<x(log x)*¥

gnel (x.9)

uniformly for d, (log x)***<d<<x'°. Combining this with (3.1) we obtain

F(x)<x(log x)*°,
as required.

PROOF OF COROLLARY. With the notation in section 1, we easily see that
> dp=x4+0(D(x)),
gpsT
and

5 1= L 20 —E(x).
gnst 2
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By subtraction, we have

(3.4) 3 d. D)+ EX)KE(x),
a5

or

(3.5) :%x—%—O(E(x)).

21
=
§nsi

Now, if 0=<r<1 then

S dr=2" 3 140( 3 dn)=2"5+0(E(x))
sisd

EpsST 52521
by (3.4) and (3.5). It is known [12; Kap. VI. Satz 7.1] that
(3.6) E(x)<x(log x)™4

for any A>0. Hence we get Corollary in case 0<r<l1.
Suppose 1<y<3. Let D be a positive constant, which will be specified
later. Then,

2 d= 2 + 2 +

gpsx dp=2 2dys(logz)D dp>(logz)D
=271+ O(E(x)) +0((log )77 3 d,)+0((log ) #7733 d?)
§%s enss

=211+ O(E(x)(log x)7~P4x(log x)*°°~ -1 D)

because of (3.4), (3.5) and Theorem. On taking D=301/(3—7) we get, by (3.6),
that

> d.7=27""x+0(x(log x)™1),

Ep=2

as required.

4. Proof of Lemma 4, preliminaries.

We begin with modifying the explicit formula:

— xf X 2
@.1) SAm=x— 5 +0((1+T)(1ong))
uniformly for x, T>=3. For T=3, define

n+1/2

4.2) qnzqnm:s S yetidy

n-1/2 |1Im(p)1sT

if n<5, and ¢,=0 otherwise. Moreover we determine »,=r,(7") by the relation

4.3) An)=1—q,—7, .
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Lemma 1 then gives
4.4) Gn, ¥o<(log nT)?.

For large x, it follows from the prime number theorem, (4.1) and (4.2) that

(4.5) 7§an:1]m(p)[§T(M-;l/2)p +O<ﬁ}r|)>

& x exp(—(log x)‘/2)+(1+~;—f—)(log xT)2.

Similarly,

(4.6) 3 ra<(1+7 )(log xT)

by (4.1), (4.2) and (4.3).
Now, on choosing

X
=%

Ls
we consider the sum in question:

G= 323 Am)An).
s AomEy

By (4.3),
A(m)A(n>:1+Qan_(qm‘f'(In)_rmA(n)_A(m)rn"‘rmrn -

Accordingly,

(4.7) G:G1+Gz_2Gs_2G4_"Gs I Say
X<m,nz2X

z-A<m+nsz

= 2 #i{n: x—m—A<n=x—m}+0(4%)
X<mseX
r-2X<mcr-A-X

=4 3 140X
X<mz=2X
Tr-2X<mgsx-X

=AX—|x—3X])+0(X) .

On writing

4.9) Z=Z(y, D)= >y,

1Im(p) 1sT

we have
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G,=

(m+1/2¢n+1/2 L
5 S Z(WZw)dudy
X<m,ns2X Jm—-1/2 2

n-1/
z-A<m+nzzx

:SSDZ(u)Z(v)dudv, say.

We replace the domain D by

(4.10)

D=DX, x, A= {u, vye[X, 2X]*: x—AZu+v<x}.

The resulting error is

(4.11)

<<SS |2 Zw) | dudv< XL*
(DuD)\(DnD)

because of Lemma 1.

(4.12)

(19: ZE qm
XIm, nz2X
r-A<m+nsr

= 3 qu(A+OW)+0(A LY
A<mseX
z-2X<mszx-A-X

S g \ +XLt

msM

<agup,

LAXL™,

by (4.4) and (4.5). Also, (4.4) and (4.6) give that

(4.13)

Similarly,

(4.14)

G4: 22 A(n1>7n
XIm, ns2X
r-A<m+nsgz

& 23 A(m) sup

mseX N<2X

>

nsN

<<XL2(1+;—(>LZ

KAXL™.

Gs<AXL.

On summing up the above estimates (4.7)-(4.14) we obtain

(4.15)

G=AX—1x—3X| )+O(AXL“)+SSDZ(u)Z(v)dudv

where Z and D are defined by (4.9) and (4.10), respectively.

449
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5. Proof of Lemma 4.

Put
N*(g, T)=T*@a-a [

where 1 is defined in Lemma 2. Since
X 2 X 12/8
A(1/2) Ay (<18 27 -280 trs T A(3/4) A(4/5)
Trm=T _(AL)<XL <(AL) =TAOO LTI |
there exist » and ¢ such that 1/2<r<3/4, 4/5<i<1 and
THO =T = X2 280

Define s=min(, 9/10), and I=[r, s). We then see

(GRY) THoL XL %0 for all 6=[1/2, 9/10)N1,
and
(5.2) Tro>X2L-%  for all o=1.

Now, we divide the sum Z(y), which is defined by (4.9).
(5.3) Z)= 2 + X =z()+zy), say.

Re(p)gl Re(o)el

We first consider z,. By a familiar way,

]=§-;Izl(y)\2dy<<L2 2 X?2Re(p)-1

IIm(Q)sT
Re(p) &I

<L 14+L* sup X*"'N(a, T).
IFI{m((p))<II§/T2 1/2c0¢l
e(p

Here, because of the zero-free region [12; Kap. VIII. Satz 6.2], the above
supremum may be taken over ¢ <1—x(T) only, where n(T)=(log T)~*/*. Lemmas
2 and 3 yield that

6o sermiix] s () s (Ga) o)

1/250<8/10
<<L11XA—I+LIGX{(X—ZSO)I/IO_’_T—Cﬂ(T)}
K XL,

by (5.1).
We turn to the double integral in (4.15). Since

ZW)Z)=2z(u)z(v)+2:(u)Z (V) +Z (w)z:(v)—z:(w)z: (v),
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SSD(Z(u)Z(v)—z(u)z(v))dudu

<ng—§§ﬁﬁ%§2§‘ 2 (| ZW) + 1z )dudv

2X

2X
<Lz dy+a[ ] 120014
L LPAXEL ) e AX L
KAXL™*,

by Lemma 1 and (5.4). Combining this with (4.15) we reach (3.3);

G=AX—{x=3X)+0AXL *)+R(x, A)
where

(5.5) R(x, A):SSDz(u)z(v)dudv .

It remains to prove (3.2). First we define z(y)=0if y&[X, 2X]. Next we
split up z(y). Let z,(y) be the partial sum of z(y) restricted by ¢=<Re (p)<
g(1+1/L). Then,

2(y)= 2a(Y).
W=T(1~7§12/0L)"EI

Furthermore let X(x) denote the characteristic function of [0, A]. Thus we
may rewrite (5.5) as

R(x, A)= gi:gi:%(x-u—v)z(u)z(v)dudv

=Xxz+xz(x) .

Now, by Plancherel’s relation, we have

(1/2)X . 400
(5.6) 1:5 IR, )] dxgg \Xxzrz(x)|*dx

¢

—0c0

4o~
:S_ |Trzrz(x)|?dx

="l a0 dx

Here we see

sin 7Ax >2
X ’

0 2=(

and, on using Hélder’s inequality,
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\Zf(x)l4<<L3§ [2a()]* .
Therefore (5.6) becomes
6.7 1< L8 sup (sup 124001°)| 200 ",

by Plancherel’s relation again.
We proceed to estimate the square integral of z,.

2X
o-1

2
dy

6.8) [y =

X Hm(@) =T
aéRe(p€<0(1+1/L)

LL*X*'N(a, T).

We turn to 3,, 'The simplest saddle point method [12; Kap IX, Lemma 4.2]
leads that

X
24(x)= > SZ yRe@ -texp(i(Im(p)log y—2mxy)dy
usizI:?;%f?xthzlL) X
KLX'+ > XRew@|Im(p)| =12
3<IIm (@) 12T

osSRe(@<(1T1/L)
KLX? (l+ stlth*”zN(a, l)).
3sts

We now appeal to Lemma 2. Since A(o)(1—a)=1/2 if 1/2<0<4/5 and £1/2

if 4/5<0<1, we have that
LX°T 1*N*(a, T) if 1/250<£4/5

(5.9) 2(x)<K
LvXe if 4/5<0<1,

uniformly for x.
In conjunction with (5.7), (5.8) and (5.9) we obtain

I L‘Az( sup L*X*'T"'N*(o, T)3+-aséulp L¥*X*IN*(a, T)).

o=4/5 oz4/b

Notice that

1
=z A@)2a—1)  if 1/2<0=4/5
2(0)(1*0):‘ 3 (0)2e—1) if 1/2<0=4/
2—No)20—-1) if 4/5<g<1.

Hence, by (5.2), we conclude

[<< LAA2 sup Xw—sz—l(a)(za—l)

gel

X? )20-1

63V 3 _
<L sup (77

<<X3L287 ,
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as required.
This completes our proof.
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