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A CHARACTERIZATION OF PARACOMPACTNESS
OF LOCALLY LINCDLOF SPACES

Lecheng YANG

Abstract. A space X is said to have property @ if every infinite
open cover U of X has an open refinement <V such that every
point xX has a neighborhood W with [{VedW: WNV+@}| <
[Uul. It is proved that a locally Lindelof space is paracompact iff
it has property 4.

All spaces are assumed to be regular T,.

A well-known problem posed by Arhangel’skii and Tall is: Is every
locally compact normal metacompact space paracompact? The problem is af-
firmative if we assume V=L [10] or if the space is perfectly normal [1] or
boundedly metacompact [5] or locally connected [6].

In connection with this problem, in this paper we give a characterization
of paracompactness for locally Lindeléf spaces by using property 4, and provide
another partial answer to the problem.

Property 4 was introduced originally by Zenor [12] as a generalization of
parpcompactness: a space X is said to have property 4, if for every monotone
increasing open cover U={U,: ack} (that is, U,cUp if a<f) of X, there
exists a monotone increasing open cover V= {V,: a=xs} which is a shrinking
of U, i.e., V,cU, for ack.

It is proved in [11] that a space X has property & iff every open cover
of X of infinite cardinality £ has an open refinement <V such that every point
x&X has a neighborhood W with |{Ved: VNW=@}|<k; we say such a
refinement <V is locally x. It is known from Rudin [9] that normal spaces
with property @ are not necessarily paracompact. However, Balogh and Rudin
[3] recently proved that a monotonically normal space is paracompact iff it has
property 8. Using the idea in Balogh [2] we now prove the following theorem.

THEOREM 1. A locally Lindeléf space is paracompact iff it has property 3.

PROOF. Let X be a locally Lindelof space with property 8. Suppose X
is not paracompact. Then there exists a minimal cardinal £ such that we have
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some open cover U of X of cardinality # which has no locally finite open re-
finement. We will show 4 has, however, a locally finite open refinement. Let
U={U,: a=k}. Since X is countably paracompact and locally Lindelof we
can assume that x> and each U, is Lindelof. There are two cases to consider.

Case 1. & is singular. Then cf(k)=7<k. Let {k,: p&7} be an increasing
cofinal subset of « so that {\,/‘UE#: pEt} is a monotone increasing open cover
of X, where U,={U;: f=a} for every ac=k. Since X has property 4, there
is a monotone increasing open cover {V,: g7} of X such that V‘uCULU,C# for
every per. By the definition of &, there exists a locally finite open collection
G, such that g, refines U,, and V,c\Ug, Let us consider the open caver
G=\U{G,: p=7r} of X. Note that each member of ¢ has Lindel6f closure, it
is easy to check that each member of ¢ meets at most z many other members
of ¢. Using usual chaining argument, we may find some partition {A4,: ac A}
of ¢ such that (UAIN(UA)=Q if a, a’eA with a+a’, and |d.| =t for
every ac=A. By the definition of x, A, has, since \UA, is clopen, a locally
finite open refinement 4,, so that \U{4%4: ac A} is the desired refinement of U.

Case 2. « is regular. Using property @ find an open refinemnet ¢ of U
such that every point in X has a neighborhood V with

HG: Geg, GNV =0} | <k.

Clearly we may assume ¢=—{G,: ack} with G,clU, for every ack. Let us

first show that
S={ack: GAGE£ Q)

is a non-stationary subset in &, where GE=U{(G3: f=a} for ack.

Suppose the contrary that S is stationary. Then for every a=S, pick a
point x,&G¥\G¥ and let s(a)=sup{pck: x,=G,} which belongs to , since &
is regular. Define a subset C of & by

C={ack: BeSNa implies s(B)<a}.

Let us check that C is a c.u.b. set in «. Indeed, if aEC, then there is a
BeSNa with s(8)=a, so that (8, a] is a neighborhood of & which misses C.
To see C is unbounded, let ac« be given, since S is stationary, we may find
an a,S such that a<a,. Proceeding by induction, find an @,,;=S so that

Qp 41> SUP {S(/»O: #ES; ﬂéan} .

Then we obtain an increasing sequence {a,:n& N} such that a<<sup{a,: ne N}
(. This concludes that C isa c.u.b. set in x. Let S;=SNC and for every
as S, define m(a)=min{gck: x,G,} so that asm(a)<s(a). It follows that
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Xa€G g and x 3G mey Whenever a, &S, with a=§. This implies that the
set P={x,: a=S,} consists of distinct points of X, and (G : =S} is an
open expansion of P, i.e., G nay"P={x,} for every a=S,. Now for every
acS,, since x,&U{Gs: BEa}, there isa Bla)sa such that Gy NG = D-
By Pressing Down Lemma, there are a S« and a stationary set S,<S; such
that B(a)=8 for all aES,, consequently GG nw#@ for all @=S,. This
contradicts our assumption that G, is Lindelof.

Now take a c.u.b. set C, in & such that C,N\S=¢@ and thus G} is clopen
for every a=C,. Define H, for a=C, by

H,=GR\U{G}: peCinal

so that X=\{H,: a=C,}. Furthermore for every a=C,, we have

(x) either H,=@ or H,=G¥\G%w for some pa)c CiNea. In fact, if
H,+@ then there is an x&H,, and thus there is y=a such that x&G, and
x£G% for any peC,Na. This shows (7, @ "\C,=@, because if there is some
pe(r, @NC,, then x=G,cG} which is impossible. Define pu(a)=sup{p=r:
p<=C,} which belongs to C,. Then for every p&CiNa, since (7, ONC,=Q,
we must have p<y. This implies p#=<p(e) from which it follows that H,=
G¥\G¥%w, 1.e., (¥) holds. By the definition of «, we can find, for every a=C,,
a locally finite open cover of %, of H, such that every member of %, is
contained in some member of U, so that \U{H.: a=C,} is, since X is now
the union of the disjoint clopen collection {H,: a=C,}, a locally finite open
refinement of . Thus the proof is complete.

In [9], by proving that the Navy’s space has property @, Rudin shows
that normality plus property @ does not imply paracompactness. But the
Navy’s space is metacompact [7], in connection with Arhangel’skii and Tall’s
problem, it is natural to ask if the Navy’s space is locally compact. But our
Theorem 1 even shows that

COROLLARY 1. The Navy’s space is not locally Ldeldf.

Also from Theorem 1 the problem of Arhangel’skii and Tall can be stated
as follows:

PROBLEM 1. Does every locally compact normal metacompact space have
property B?

However note that normal metacompact spaces do not necessarily have
property B, see Example 4.9 (ii) in [4] or [8] for such a counterexample.
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With a modification of proof of Theorem 1 we can prove Arhangel’skii’s
result mentioned above, even we have

THEOREM 2. Locally Lindelif perfectly normal metacompact spaces are
paracompact.

PROOF. Since normal metacompact spaces are shrinking (thus countably
paracompact), £ and a point-finite open cover ¢={G,: a<k} can be defined in
the same way as Theorem 1. Clearly we need only consider the case of &
being regular, and it suffices to prove that

S={ack: UG\ Gs+# D}
B<a B<a
is non-stationary.

Suppose indirectly that S is stationary. As in the proof of Theorem 1,
define m(a)ex for every ac<S. Without loss of generality, we may assume
that there is a B« such that

Gm(a)/'\Cﬁ-'#@
for all a=S.
For every n=w let
X,={xeX: ord(x, ¢)<n}.
Then X, is closed in X. Let
Sn: {aES: Gm(a)m(_f‘ﬁan‘/fQ}

so that S=\U,e»S» and thus there is a minimal new with |S,|=«.
Since
Cﬁf\Xn=Cpf\Xn/’\(X\(E,sf\Xn-l))U(CpﬂXn_l).

we can assume that
Gm(a)méﬂqunm(x\(éﬂm)(nﬁl))i@

for all a=S,.

Now every point in GyN\X,(X\(GgN\X,._,) has a neighborhood which
meets G N\GsNX, for at most finitely may aS,. Since X is perfrect, the
set GpNX.NX\(GsNX,_1) is Lindelsf, and hence

Gm(a)ﬂéﬁ(p\Xn/A\(X\(éﬂan—l))i @

for at most countably many a=S,, a contradiction proving S is non-stationary.
Thus the proof is complete.
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Note that normal submetacompact spaces are shrinking [117, but we do
not know whether in Theorem 2 metacompactness can be replaced by submeta-
compactness, that is

PLOBLEM 2. Are locally Lindelif perfectly normal and submetacompact
spaces paracompact ?
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