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A CHARACTERIZATION OF PARACoMPACTNESS

OF LOCALLY LINCDLOF SPACES

Lecheng Yang

Abstract. A space X is said to have property <B if every infinite

open cover 17 of X has an open refinement ^V such that every

point xg! has a neighborhood W with |{V(E<=V: Wr＼Vi=0} <

CU＼. It is proved that a locally Lindelof space is paracompact iff

it has property <B.

All spaces are assumed to be regular TV

A well-known problem posed by Arhangel'skii and Tall is: Is every

locally compact normal metacompact space paracompact? The problem is af-

firmative if we assume V=L [10] or if the space is perfectly normal [1] or

boundedly metacompact [5] or locally connected [6].

In connection with this problem, in this paper we give a characterization

of paracompactness for locally Lindelof spaces by using property B, and provide

another partialanswer to the problem.

Property B was introduced originally by Zenor [12] as a generalization of

parpcompactness: a space X is said to have property <B,if for every monotone

increasing open cover cU={Ua: ae/c} (that is, UacUp if a</3) of X, there

exists a monotone increasing open cover (V= {Va : a^tc} which is a shrinking

of IJ, i.e., VaaUa for aei.

It is proved in [11] that a space X has property & iff every open cover

of X of infinitecardinality tchas an open refinement ^V such that every point

x<=X has a neighborhood W with |{Vecy: VrW^0) ＼<k; we say such a

refinement cv is locally k. It is known from Rudin [9] that normal spaces

with property <B are not necessarily paracompact. However, Balogh and Rudin

[3] recently proved that a monotonically normal space is paracompact iff it has

property SB. Using the idea in Balogh [2] we now prove the following theorem.

Theorem 1. A locally Lindelof space is paracompact iffit has property B

Proof. Let X be a locally Lindelof space with property B. Suppose X

is not paracompact. Then there exists a minimal cardinal k such that we have
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some open cover CV of X of cardinality k which has no locally finiteopen re-

finement. We will show HJ has, however, a locally finiteopen refinement. Let

cU={Ua: ffes). Since X is countably paracompact and locally Lindelof we

can assume that k>cd and each Ua is Lindelof. There are two cases to consider.

Case 1. k is singular. Then cf(/c)=r</c. Let {k^ : //er} be an increasing

cofinalsubset of k so that {VJCU'K: //e:} is a monotone increasing open cover

of X, where cUa={Up: /3e≪} for every a<E/c. Since X has property <B, there

is a monotone increasing open cover {V^ : //Gt) of X such that 1/^cUI/^ for

every /iGr. By the definitionof ic, there exivStsa locally finiteopen collection

S,, such that Q^ refines 'VK and V pdVJQp. Let us consider the open caver

G = ＼j{G[l;fi<=r} of X. Note that each member of Q has Lindelof closure, it

is easy to check that each member of Q meets at most r many other members

of Q. Using usual chaining argument, we may find some partition {Jla: a^A}

of Q such that (＼JJ.a)r＼(＼JJ.a-)=&if a, a'^A with a±a', and ＼JLa＼^T for

every aeA By the definition of ≪, J.a has, since U<J≪ is clopen, a locally

finiteopen refinement Jfa, so that U{^a : a^A) is the desired refinement of HJ.

Case 2. * is regular. Using property & find an open refinemnet Q of "U

such that every point in X has a neighborhood V with

!{G: GseG, Gr＼Vi=0} ＼<k.

Clearly we may assume Q―{Ga'. a£E/c}with GadJa for every ae≪. Let us

firstshow that

S={a(BK: G*＼G*1=0}

is a non-stationary subset in k, where G* = U{(Gp: /3e#} for ≪gea;.

Suppose the contrary that S is stationary. Then for every ≪<eS, pick a

point xa^G*＼G* and let s(a)=sup{//GE/c: JCdGG^f which belongs to k, since /c

is regular. Define a subset C of k by

C={≪ge/c: p^Sr＼a implies s(j8)<a}.

Let us check that C is a c.u.b. set in k. Indeed, if aMC, then there is a

/3<ESn≪ with s(fi)'^a,so that (/S,a] is a neighborhood of a which misses C.

To see C is unbounded, let aG≪ be given, since S is stationary, we may find

an a^eS such that a<ax. Proceeding by induction, find an ara+1eS so that

an+i>sup{s(fji): [i(ES, fi£an}.

Then we obtain an increasing sequence {an : n<=N} such that ≪<sup{an : neiV}

eC. This concludes that C is a c.u. b. set in k. Let Sj = SnC and for every

aeESt define m(a) = mm{a<=/c: xa<=G≫} so that a^m(a)^s(a). It follows that
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xa^Gm(|8) and xp£Gm(a) whenever a, /3 eSx with a^fi. This implies that the

set P={xa: aeSJ consists of distinctpoints of X, and {Gm(a) '.aeSJ is an

open expansion of P, i.e., Gm(a)r＼P={xa} for every aGSj. Now for every

aGSi, since xa^＼j{Gpi ^Ga}, there is a j3(fl)Ga such that G^a)r＼Gm(,a)iz0-

By Pressing Down Lemma, there are a /3<gea:and a stationary set S2cSi such

that /3(a)=/3 for all ≪eS2, consequently G^nGm(a)^0 for all ≪eS2. This

contradicts our assumption that Gp is Lindelof.

Now take a c.u.b. set Cx in /csuch that Clr＼S―0 and thus GJ is clopen

for every ≪Gd. Define Ha for aed by

Ha=G*＼U{G*: juedna}

so that J£=W{i/a: aGECJ. Furthermore for every aGd, we have

(*) either Ha ―0 or Ha = Gt＼G^{a) for some /;(a)g C,H≪. In fact, if

Hai=0 then there is an x<=Ha, and thus there is ?<=a such that x<=Gr and

x<£G* for any juedna. This shows (j,≪)nCi = 0, because if there is some

^g^, a)nCi, then x<=GrcG* which is impossible. Define fi(a)―sup{ft<Ly:

/^geCx} which belongs to Cx. Then for every pi^drxa, since (7,≪)nCi = 0,

we must have pt^y. This implies fji^fjt(a)from which it follows that Ha =

G*＼G^(a), i.e.,(*) holds. By the definitionof k, we can find,for every aed,

a locally finiteopen cover of Ma of Ha such that every member of Ma is

contained in some member of °U,so that ＼J＼Ma＼a^d) is, since X is now

the union of the disjointclopen collection {Ha: aeCi), a locally finite open

refinement of <U. Thus the proof is complete.

In [9], by proving that the Navy's space has property <B, Rudin shows

that normality plus property <B does not imply paracompactness. But the

Navy's space is metacompact [7], in connection with Arhangel'skii and Tail's

problem, it is natural to ask if the Navy's space is locally compact. But our

Theorem 1 even shows that

Corollary 1. The Navy's space is not locally Ldelo'f.

Also from Theorem 1 the problem of Arhangel'skiiand Tall can be stated

as follows:

Problem 1. Does every locally compact normal metacompact space have

property *B?

However note that normal metacompact spaces do not necessarily have

property <B, see Example 4.9 (ii)in [4] or [8] for such a counterexample.
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With a modification of proof of Theorem 1 we can prove Arhangel'skii's

result mentioned above, even we have

Theorem 2. Locally Lindelof perfectly normal metacompact spaces are

■haracomtact.

Proof. Since normal metacompact spaces are shrinking (thus countabSy

paracompact), k and a point-finiteopen cover Q― ＼Ga: ≪£≪}can be defined in

the same way as Theorem 1. Clearly we need only consider the case of k

being regular, and it sufficesto prove that

S={a(EK:TTG~p＼＼JG^0}

is non-stationary.

Suppose indirectly that S is stationary. As in the proof of Theorem 1,

define m{a)^K for every ≪eS. Without loss of generality, we may assume

that there is a jSg/c such that

for all aeS.

For every neo> let

Xn={xE£X: ord(x, Q)<n].

Then Xn is closed in X. Let

Sn={a<=S: Gm{a)r＼G^r＼Xni^0}

so that S=＼Jn(=mSn and thus there is a minimal /iGfi)with |SJ=/c.

Since

we can assume that

Gm(a)nGpnXnr＼(X＼(GpnXn^))^0

for all ≪eSn.

Now every point in Gpr＼Xnr＼(X＼(GpP＼Xn-i)) has a neighborhood which

meets Gm(a)r＼Gpr＼Xn for at most finitelymay a^Sn. Since X is perfrect, the

set Gpr＼Xnr＼{X＼{Gfir＼Xn^))is Lindelof, and hence

Gm(a)r＼G^nXnr＼(X＼(G^xn_l))^0

for at most countably many ≪GSttl a contradiction proving S is non-stationary.

Thus the proof is complete.
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Note that normal submetacompact spaces are shrinking[11], but we do

not know whether in Theorem 2 metacompactness can be replaced by submeta-

compactness, thatis

PLOBLEM 2. Are locally Lindelb'f perfectly normal and submetacompact

spaces paracompact ?
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