A CHARACTERIZATION OF PARACOMPACTNESS OF LOCALLY LINCDLOF SPACES

Lecheng YANG

Abstract. A space X is said to have property \mathcal{B} if every infinite open cover \mathcal{U} of X has an open refinement \mathcal{O} such that every point $x \in X$ has a neighborhood W with $|\{V \in \mathcal{O}: W \cap V \neq \emptyset\}| < |\mathcal{U}|$. It is proved that a locally Lindelöf space is paracompact iff it has property \mathcal{B} .

All spaces are assumed to be regular T_1 .

A well-known problem posed by Arhangel'skii and Tall is: Is every locally compact normal metacompact space paracompact? The problem is affirmative if we assume V=L [10] or if the space is perfectly normal [1] or boundedly metacompact [5] or locally connected [6].

In connection with this problem, in this paper we give a characterization of paracompactness for locally Lindelöf spaces by using property \mathcal{B} , and provide another partial answer to the problem.

Property \mathscr{B} was introduced originally by Zenor [12] as a generalization of parpcompactness: a space X is said to have property \mathscr{B} , if for every monotone increasing open cover $\mathscr{U} = \{U_{\alpha} : \alpha \in \kappa\}$ (that is, $U_{\alpha} \subset U_{\beta}$ if $\alpha < \beta$) of X, there exists a monotone increasing open cover $\mathscr{CV} = \{V_{\alpha} : \alpha \in \kappa\}$ which is a shrinking of \mathscr{U} , i.e., $\overline{V}_{\alpha} \subset U_{\alpha}$ for $\alpha \in \kappa$.

It is proved in [11] that a space X has property \mathcal{B} iff every open cover of X of infinite cardinality κ has an open refinement \mathcal{O} such that every point $x \in X$ has a neighborhood W with $|\{V \in \mathcal{O}: V \cap W \neq \emptyset\}| < \kappa$; we say such a refinement \mathcal{O} is locally κ . It is known from Rudin [9] that normal spaces with property \mathcal{B} are not necessarily paracompact. However, Balogh and Rudin [3] recently proved that a monotonically normal space is paracompact iff it has property \mathcal{B} . Using the idea in Balogh [2] we now prove the following theorem.

THEOREM 1. A locally Lindelöf space is paracompact iff it has property \mathcal{B} .

PROOF. Let X be a locally Lindelöf space with property \mathcal{B} . Suppose X is not paracompact. Then there exists a minimal cardinal κ such that we have Received July 20, 1992. Revised November 5, 1992.

Lecheng YANG

some open cover \mathcal{U} of X of cardinality κ which has no locally finite open refinement. We will show \mathcal{U} has, however, a locally finite open refinement. Let $\mathcal{U} = \{U_{\alpha} : \alpha \in \kappa\}$. Since X is countably paracompact and locally Lindelöf we can assume that $\kappa > \omega$ and each \overline{U}_{α} is Lindelöf. There are two cases to consider.

Case 1. κ is singular. Then $cf(\kappa) = \tau < \kappa$. Let $\{\kappa_{\mu} : \mu \in \tau\}$ be an increasing cofinal subset of κ so that $\{ \cup \mathcal{U}_{\kappa_{\mu}} : \mu \in \tau \}$ is a monotone increasing open cover of X, where $\mathcal{U}_{\alpha} = \{U_{\beta} : \beta \in \alpha\}$ for every $\alpha \in \kappa$. Since X has property \mathcal{B} , there is a monotone increasing open cover $\{V_{\mu} : \mu \in \tau\}$ of X such that $\overline{V}_{\mu} \subset \cup \mathcal{U}_{\kappa_{\mu}}$ for every $\mu \in \tau$. By the definition of κ , there exists a locally finite open collection \mathcal{G}_{μ} such that \mathcal{G}_{μ} refines $\mathcal{U}_{\kappa_{\mu}}$ and $\overline{V}_{\mu} \subset \cup \mathcal{G}_{\mu}$. Let us consider the open caver $\mathcal{G} = \bigcup \{\mathcal{G}_{\mu} : \mu \in \tau\}$ of X. Note that each member of \mathcal{G} has Lindelöf closure, it is easy to check that each member of \mathcal{G} meets at most τ many other members of \mathcal{G} . Using usual chaining argument, we may find some partition $\{\mathcal{A}_{\alpha} : \alpha \in A\}$ of \mathcal{G} such that $(\cup \mathcal{A}_{\alpha}) \cap (\cup \mathcal{A}_{\alpha'}) = \mathcal{O}$ if $\alpha, \alpha' \in A$ with $\alpha \neq \alpha'$, and $|\mathcal{A}_{\alpha}| \leq \tau$ for every $\alpha \in A$. By the definition of κ , \mathcal{A}_{α} has, since $\cup \mathcal{A}_{\alpha}$ is clopen, a locally finite open refinement \mathcal{H}_{α} , so that $\cup \{\mathcal{H}_{\alpha} : \alpha \in A\}$ is the desired refinement of \mathcal{U} .

Case 2. κ is regular. Using property \mathcal{B} find an open refinement \mathcal{G} of \mathcal{U} such that every point in X has a neighborhood V with

$$| \{ G : G \in \mathcal{G}, G \cap V \neq \emptyset \} | < \kappa.$$

Clearly we may assume $\mathcal{G} = \{G_{\alpha} : \alpha \in \kappa\}$ with $G_{\alpha} \subset U_{\alpha}$ for every $\alpha \in \kappa$. Let us first show that

$$S = \{ \alpha \in \kappa : \overline{G^*_{\alpha}} \setminus G^*_{\alpha} \neq \emptyset \}$$

is a non-stationary subset in κ , where $G_{\alpha}^* = \bigcup \{ (G_{\beta} : \beta \in \alpha \} \text{ for } \alpha \in \kappa \}$.

Suppose the contrary that S is stationary. Then for every $\alpha \in S$, pick a point $x_{\alpha} \in \overline{G_{\alpha}^{*}} \setminus G_{\alpha}^{*}$ and let $s(\alpha) = \sup \{ \mu \in \kappa : x_{\alpha} \in G_{\mu} \}$ which belongs to κ , since κ is regular. Define a subset C of κ by

$$C = \{ \alpha \in \kappa : \beta \in S \cap \alpha \text{ implies } s(\beta) < \alpha \}.$$

Let us check that C is a c.u. b. set in κ . Indeed, if $\alpha \in C$, then there is a $\beta \in S \cap \alpha$ with $s(\beta) \geq \alpha$, so that $(\beta, \alpha]$ is a neighborhood of α which misses C. To see C is unbounded, let $\alpha \in \kappa$ be given, since S is stationary, we may find an $\alpha_1 \in S$ such that $\alpha < \alpha_1$. Proceeding by induction, find an $\alpha_{n+1} \in S$ so that

$$\alpha_{n+1} > \sup \{s(\mu) : \mu \in S, \mu \leq \alpha_n\}.$$

Then we obtain an increasing sequence $\{\alpha_n : n \in N\}$ such that $\alpha < \sup\{\alpha_n : n \in N\}$ $\in C$. This concludes that C is a c.u.b. set in κ . Let $S_1 = S \cap C$ and for every $\alpha \in S_1$ define $m(\alpha) = \min\{\mu \in \kappa : x_\alpha \in G_\mu\}$ so that $\alpha \le m(\alpha) \le s(\alpha)$. It follows that $x_{\alpha} \notin G_{m(\beta)}$ and $x_{\beta} \notin G_{m(\alpha)}$ whenever α , $\beta \in S_1$ with $\alpha \neq \beta$. This implies that the set $P = \{x_{\alpha} : \alpha \in S_1\}$ consists of distinct points of X, and $\{G_{m(\alpha)} : \alpha \in S_1\}$ is an open expansion of P, i.e., $G_{m(\alpha)} \cap P = \{x_{\alpha}\}$ for every $\alpha \in S_1$. Now for every $\alpha \in S_1$, since $x_{\alpha} \in \overline{\bigcup \{G_{\beta} : \beta \in \alpha\}}$, there is a $\beta(\alpha) \in \alpha$ such that $G_{\beta(\alpha)} \cap G_{m(\alpha)} \neq \emptyset$. By Pressing Down Lemma, there are a $\beta \in \kappa$ and a stationary set $S_2 \subset S_1$ such that $\beta(\alpha) = \beta$ for all $\alpha \in S_2$, consequently $G_{\beta} \cap G_{m(\alpha)} \neq \emptyset$ for all $\alpha \in S_2$. This contradicts our assumption that \overline{G}_{β} is Lindelöf.

Now take a c.u. b. set C_1 in κ such that $C_1 \cap S = \emptyset$ and thus G_{α}^* is clopen for every $\alpha \in C_1$. Define H_{α} for $\alpha \in C_1$ by

$$H_{\alpha} = G_{\alpha}^{*} \setminus \cup \{G_{\mu}^{*} \colon \mu \in C_{1} \cap \alpha\}$$

so that $X = \bigcup \{H_{\alpha} : \alpha \in C_1\}$. Furthermore for every $\alpha \in C_1$, we have

(*) either $H_{\alpha} = \emptyset$ or $H_{\alpha} = G_{\alpha}^* \backslash G_{\mu(\alpha)}^*$ for some $\mu(\alpha) \in C_1 \cap \alpha$. In fact, if $H_{\alpha} \neq \emptyset$ then there is an $x \in H_{\alpha}$, and thus there is $\gamma \in \alpha$ such that $x \in G_{\gamma}$ and $x \notin G_{\mu}^*$ for any $\mu \in C_1 \cap \alpha$. This shows $(\gamma, \alpha) \cap C_1 = \emptyset$, because if there is some $\mu \in (\gamma, \alpha) \cap C_1$, then $x \in G_{\gamma} \subset G_{\mu}^*$ which is impossible. Define $\mu(\alpha) = \sup\{\mu \leq \gamma: \mu \in C_1\}$ which belongs to C_1 . Then for every $\mu \in C_1 \cap \alpha$, since $(\gamma, \alpha) \cap C_1 = \emptyset$, we must have $\mu \leq \gamma$. This implies $\mu \leq \mu(\alpha)$ from which it follows that $H_{\alpha} = G_{\alpha}^* \backslash G_{\mu(\alpha)}^*$, i. e., (*) holds. By the definition of κ , we can find, for every $\alpha \in C_1$, a locally finite open cover of \mathcal{H}_{α} of H_{α} such that every member of \mathcal{H}_{α} is contained in some member of \mathcal{U} , so that $\cup \{\mathcal{H}_{\alpha}: \alpha \in C_1\}$ is, since X is now the union of the disjoint clopen collection $\{H_{\alpha}: \alpha \in C_1\}$, a locally finite open refinement of \mathcal{U} . Thus the proof is complete.

In [9], by proving that the Navy's space has property \mathcal{B} , Rudin shows that normality plus property \mathcal{B} does not imply paracompactness. But the Navy's space is metacompact [7], in connection with Arhangel'skii and Tall's problem, it is natural to ask if the Navy's space is locally compact. But our Theorem 1 even shows that

COROLLARY 1. The Navy's space is not locally Ldelöf.

Also from Theorem 1 the problem of Arhangel'skii and Tall can be stated as follows:

PROBLEM 1. Does every locally compact normal metacompact space have property \mathcal{B} ?

However note that normal metacompact spaces do not necessarily have property \mathcal{B} , see Example 4.9 (ii) in [4] or [8] for such a counterexample.

With a modification of proof of Theorem 1 we can prove Arhangel'skii's result mentioned above, even we have

THEOREM 2. Locally Lindelöf perfectly normal metacompact spaces are paracompact.

PROOF. Since normal metacompact spaces are shrinking (thus countably paracompact), κ and a point-finite open cover $\mathcal{G} = \{G_{\alpha} : \alpha \in \kappa\}$ can be defined in the same way as Theorem 1. Clearly we need only consider the case of κ being regular, and it suffices to prove that

$$S = \{ \alpha \in \kappa : \overline{\bigcup_{\beta < \alpha} G_{\beta}} \setminus \bigcup_{\beta < \alpha} G_{\beta} \neq \emptyset \}$$

is non-stationary.

Suppose indirectly that S is stationary. As in the proof of Theorem 1, define $m(\alpha) \in \kappa$ for every $\alpha \in S$. Without loss of generality, we may assume that there is a $\beta \in \kappa$ such that

$$G_{m(\alpha)} \cap \overline{G}_{\beta} \neq \emptyset$$

for all $\alpha \in S$.

For every $n \in \omega$ let

$$X_n = \{x \in X : \operatorname{ord}(x, \mathcal{G}) \leq n\}.$$

Then X_n is closed in X. Let

$$S_n = \{ \alpha \in S : G_{m(\alpha)} \cap \overline{G}_{\beta} \cap X_n \neq \emptyset \}$$

so that $S = \bigcup_{n \in \omega} S_n$ and thus there is a minimal $n \in \omega$ with $|S_n| = \kappa$.

Since

$$\overline{G}_{\beta} \cap X_n = \overline{G}_{\beta} \cap X_n \cap (X \setminus (\overline{G}_{\beta} \cap X_{n-1})) \cup (\overline{G}_{\beta} \cap X_{n-1}),$$

we can assume that

$$G_{m(\alpha)} \cap \overline{G}_{\beta} \cap X_n \cap (X \setminus (\overline{G}_{\beta} \cap X_{n-1})) \neq \emptyset$$

for all $\alpha \in S_n$.

Now every point in $\overline{G}_{\beta} \cap X_n \cap (X \setminus (\overline{G}_{\beta} \cap X_{n-1}))$ has a neighborhood which meets $\overline{G}_{m(\alpha)} \cap \overline{G}_{\beta} \cap X_n$ for at most finitely may $\alpha \in S_n$. Since X is perfrect, the set $\overline{G}_{\beta} \cap X_n \cap (X \setminus (\overline{G}_{\beta} \cap X_{n-1}))$ is Lindelöf, and hence

$$G_{m(\alpha)} \cap \overline{G}_{\beta} \cap X_n \cap (X \setminus (\overline{G}_{\beta} \cap X_{n-1})) \neq \emptyset$$

for at most countably many $\alpha \in S_n$, a contradiction proving S is non-stationary. Thus the proof is complete. Note that normal submetacompact spaces are shrinking [11], but we do not know whether in Theorem 2 metacompactness can be replaced by submetacompactness, that is

PLOBLEM 2. Are locally Lindelöf perfectly normal and submetacompact spaces paracompact?

References

- [1] A.V. Arhangel'skii, The property of paracompactness in the class of perfectly normal locally bicomoact spaces, Soviet Math. Dokl. 13 (1972), 517-520.
- [2] Z. Balogh, Paracompactness in locally Lindelöf spaces, Canad, J. Math. 38 (1986), 719-727.
- [3] Z. Balogh and M.E. Rudin, Monotone normality, Preprint.
- [4] D.K. Burke, Covering properties, Handbook of Set Theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, Amsterdam, 1984, 347-422.
- [5] P. Daniels, Normal, locally compact, boundedly metacompact spaces are paracompact: an application of Pixley-Roy spaces, Canad. J. Math. 35 (1983), 807-823.
- [6] G. Gruenhage, Paracompactness in normal, locally connected, locally compact spaces, Top. Proc. 4 (1979), 393-405.
- [7] N. Kemoto, On B-property, Q & A in General Top. 7 (1989), 71-79.
- [8] I.W. Lewis, On covering properties of R.H. Bing's Example G, General Top. Appl. 7 (1977), 109-122.
- [9] M.E. Rudin, *k*-Dowker spaces, in London Math. Soc. Lecture Note Series 92, Cambrige, 1985, 175-195.
- [10] W.S. Watson, Locally compact normal spaces in the constructible universe, Canad. J. Math. 34 (1982), 1091-1096.
- [11] Y. Yasui, Generalized paracompactness, Topics in General Topology (K. Morita and J. Nagata eds.), North-Holland, 1989, 161-202.
- [12] P. Zenor, A class of countably paracompact spaces, Proc. Amer. Math. Soc. 24 (1970), 258-262.

Department of Mathematics, Institute of

Xian Highway, Xian, China

Current Address: Institute of Mathematics,

University of Tsukuba, Tsukuba Ibaraki 305