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MINIMAL SURFACES WITH CONSTANT CURVATURE

AND KAHLER ANGLE IN COMPLEX SPACE FORMS

By

Yoshihiro Ohnita

Introduction.

Minimal surfaces with constant Gaussian curvature in real space forms

have been classifiedcompletely (cf. [Ca-2], [Ke-1], [Br] and their references).

Next natural interest is to investigate minimal surfaces with constant Gaussian

curvature in complex space forms, more generally in symmetric spaces. Prof.

Kenmotsu posed the following problem: Classify minimal surfaces with constant

Gaussian curvature in complex space forms.

Recently, minimal 2-spheres with constant Gaussian curvature in complex

projective spaces were classifiedindependently by [B-Oh] and [B-J-R-W]. [C-Z]

studied pseudo-holomorphic curves of constant curvature in complex Grassmann

manifolds. For an immersion <p of a Riemann surface M into a Kahler manifold

N, the Kahler angle 0 of <pis defined to be the angle between Jd<p{d/dx) and

d(p{d/dy), where z=x + V―ly is a local complex coordinate on M and / denotes

the complex structure of N. Chern and Wolfson [Ch-W] pointed out the impor-

tance of the Kahler angle in the theory of minimal surfaces in Kahler manifolds.

In [B-J-R-W] and [E-G-T] they investigated minimal 2-spheres in complex

projective spaces and minimal surfaces in 2-dimensional complex space forms

respectively in terms of the notion of Kahler angle.

In this paper we classifyminimal surfaces with constant Gaussian curvature

and constant Kahler angle in complex space forms.

Theorem A. Let M be a minimal surface with constantGaussiancurvature

K immersed fully in a complex projectivespace CPn of constantholomorphic

sectionalcurvaturec>0. Assume that the Kdhler angle 6 of M is constant.

Then the following:

(1) // K>0, then there exists some k with O^k^n such that K―

c/{2k(n―k)+n}, cos6=K(n―2k)/c and M is an open submanifold of <pn,k{S2).
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(2)

(3)
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// K=0, then cos 0=0,

K<Q is impossible.

i.e., M is totally real.

Theorem B. Let M be a minimal surface with constant Gaussian curvature.

K immersed in a complex hyperbolic space CHn of constant holomorphic sectional

curvature c<0. // the Kdhler angle 6 of M is constant, then M is totally

geodesic, i.e., M is an open submanifold of CH1 in CHn {K=c, cos 0 = 1) or RH2

in CHn (K-c/4. cos 0=Q＼

Refer to [B-Oh] and [B-J-R-W] about the minimal immersions (pn,k in (i;

of Theorem A. On (2) of Theorem A totallyreal flatminimal surfaces in com-

plex projective spaces were classifiedessentiallyby Kenmotsu [Ke-2]. It seems

not to be known if there is a minimal surface with constant Gaussian curva-

ture and nonconstant Kahler angle in complex space forms of nonzero constant

holomorphic sectional curvature.

Eells and Wood [Ee-W] introduced the notion of universal liftfor a smooth

map to a complex projective space in order to investigate harmonic maps from

surfaces to complex projective spaces. On the other hand Bryant [Br] defined

certain fundamental operators on the space of vector-valued forms on a Rie-

mann surface, and classifiedminimal surfaces with constant Gaussian curvature

in real space forms by utilizing those operators. In this paper we extend

Bryant's operators to the operators acting on the space of vector bundle valued

forms on a Riemann surface, and apply the extended fundamental operators to

the universal life for minimal immersions of surfaces. By the argument ana-

logous to that of Bryant, we show Theorem A. By the same method we also

show Theorem B.

1. Fundamental operators on the space of

vector bundle valued smooth functions.

Let M be a connected Riemann surface and gM be a Riemannian metric

compatible with the holomorphic structure of M. We do not assume that M is

compact or that gM is complete. Let Tfu0^M (resp. T%,vM) be the complex

line bundle of (1, 0)-forms (resp. (0, l)-forms). Let {u, u} be a unitary basis of

TXMC with u^T^M and u^Tg-^M, and {g>,a>) be its dual basis. Denote

by 1M the Riemannian connection of (M, gM). The curvature form RM and the

Gaussian curvature K of M are defined by RM(V, W)=[!ff, lw~]-^iv,wi and

K=gM{RM(u,u)u,u). Put r=T?ll0>M and r^TfujM. For w^O we let rm

(resp. r"m) be the m-th power tensor product of r (resp. r"1). Using the identi-
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fication <ym=(<y)-m for all m, we have a canonical pairing rnXr*^rM+A for all

m and k. Set 2*= c C°°(rm)as a Z-graded vector space.
m=-oo

Let £ be a complex vector bundle over M with an indefinite Hermitian

fibre metric < ,}E and a connection Vs compatible with < ,}E. Le C°°(E)denote

the vector space of all smooth sections of E defined on M. Consider the tensor

product bundle £0rm(raeZ). For each m we equip the bundle E^zm with

the tensor product connection D―1E^1M. Set <5― 0 C°°(£(g)rOT)as a Z-graded
m=-oo

vector space. We have a pairing <, >: eX£->3: gotten by extending the inde-

finite Hermitian fibre metrix <, }E of E in the obvious fashion. We define

operators D;:C°°(£(^rmhCM(£RrB+1) and Z%: C0O(£(g)Tm)->Coo(£Rrm-1) by

D'm<j=(Dua)RQ), Df^a=(Dua)<S)Qi for <7eC°°(£(g)rm).We define the fundamental

operators X, Y on £by X- 0 D' Y= c D'^. Set J=XY+YX, the Laplace-
OT=-oo

Beltrami operator on each graded piece.

m―-<x>

Proposition 1.1. Assume that the curvature form RE of the bundle E

satisfiesthe condition

(1.1) ARE=RE{u, u)=X-I

for some real valued function X on M. Then for any a^Cc°(E<^Tm),

(1.2) IX, Y]a={X-mK)<r.

Moreover if X and K are constant, then we get

(1.3) [H,X~＼=K'X, ＼_H,y]= -K'Y,

IX, Yl = -H,

where the operatorH on S is definedby H-― c (X―mK)I

->C°°(£Rrm) is the identity

Proof. Let a^C°°(ERTm) and write o = s<g>((D)mlocally, where s is a local

smooth section of E. Since RM(u, u)a)= ―K-(o, RM(u, u)a}=K-aJ, by (1.1) we

have

IX, Y~]o= (RE(u, U)s)R(a))m+(-mK)s(a>)m

=(X-mK)o .

If 1 and K are constant, we have the firstformula of (1.3),
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[#, X~＼a-H{Xa)-X{Ha)

=(-X+(m+l)K)Xa-(-X+mK)Xff

=K-Xa .

The second formula of (1.3) is similar. q. e.d.

Remark. (1) In case ^=0 these are just the formulas used by [Br].

(2) Generally a holomorphic connection satisfying the condition (1.1) for

some constant X over a Kahler manifold is called an Einstein-holomorphic con-

nection.

2. Harmonic map equation to a complex projectiyespace.

Let Cn+1 denote the complex (n+l)-space equipped with the standard Her
n

mitian inner product <t>, w}― 2 v

i=0

iwi for v=(i>°, ･･･, vn), w = (w＼ ■■■, i≫")gC"+1

Let CPn be an n-dimensional complex projective space and %＼ C"+1＼{0}―>CPn

be its canonical projection. Cn+1＼{0} is a principal bundle over CPn with the

structure group C*, where C* denotes the group of non-zero complex numbers.

For a positive constant c, set S2n+1(c)={veCn+1; <y, v>=l/c}. The Hopf fibra-

tion jt: S2n+1(c/4)->CJPn is obtained by restricting the canonical projection

it: Cn+1＼{0}-^CPn. The Fubini-Study metric on CPn with constant holomorphic

sectional curvature c(>0) is characterized by the fact that the Hopf fibration

%: S2n+1(c/A)-^CPn is a Riemannian submersion. We endow CPn with the

Fubini-Study metric g of constant holomorphic sectional curvature c. Let L be

the universal bundle over CPn; the fibre Lx over any x^CPn can be identified

with the complex 1-dimensional subspace of Cn+1 determined by x. Thus L is

identified as a holomorphic subbundle of the trivial bundle CJl+1 = CPnxCn+1

over CPn. Let L1 be the subbundle of Qn+1 whose fibre at x is the orthogonal

complement of Lx in Cn+＼ Lx = C_n+1/L can be given a holomorphic structure.

We endow the bundles L and LL with the Hermitian connected structure in-

duced from the Hermitian inner product <,> of Cn+1. We give L^^L1 the

tensor product Hermitian connected structure, where L* denotes the dual bundle

of L. Then there exists a natural bundle isomorphism h: Tcl'0)CPn―>L*0Lx

preserving connects and satisfying </i(Z), h(W)}―(c/2)g(Z, W) for Z, W^

T£-≫CPn (cf. [Ee-W, p. 224]).

Let <p: M->CPn be a smooth map from a Riemann surface to a complex

projective space. We say <p is full if its image lies in no proper complex pro-

jective subspace of CPn. Denote by d≫cl'0)(£)the (1, 0)-component of d<p(g) for
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Consider the exact sequence of vector bundles over CPn:
i
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0 ―> L ―> Cre+1―> Lx ―> 0

where i is the natural inclusion and j is given by the orthogonal projection

along L. Tensoring with L* and pulling back via a map <p:M->CPn gives

the exact sequence over M

0 ―> <p-＼L*RL) ―> <p-＼L*<g)Cn+1)―> <p-＼L*RLL) ―> 0.

Note that the bundle <p~＼L*(g)L)has the "identity" section, which we denote

simply by 1. We call the section <P=/(l)eCoo(p-1(Z,*(g)Cn+1)) the universal lift

of <p(cf. [Ee-W]). We give the bundles (p~lL,y-xL*, y'1^, <p-＼LRCn+1) and

cp~＼L*,LL) the pull-back Hermitian connected structures. Pulling back

h: T(1|0:'C7P"->L*(S)LJ-by <p,we get a connection-preserving bundle isomorphism

(2.1) h: (p-＼T^^CPn) ―■*y-KL*R!.1)

satisfying

<h((dy)≪-°＼e)),/i((^)cl'0)()?))>=(c/2)^((^)^.^(a (T^F^J)

for any £,tj^TxMc.

Set £=y>-1(L*(g)CIB+1)=(9-1L*)0Cn+1 and denote by D the covariant differ-

entiation in the bundle E. We apply results of Section 1 to the bundle E and

use the formulation and notation in Section 1.

Now we give a description of the curvature form for the bundle E. Let ai

be the fundamental 2-form of (CPn, g) defined by a)(Z, W)=g{Z, JW) for Z, W

^TxCPn, where / denotes the canonical complex structure CPn. For any

FeC~(£) and ptEC°(<p-lL),

(RE(u, u)V){p)^Rcn+＼u, u){V{p))-V(R*-lL(u, u)p)

= -V{(p-'R＼u, u)(p)).

Since it is known that the curvature form of the universal bundle L is given

by Rl=-(c/2)Vzi1q), we get

RE{u, u)={c/2W-i{<p*a)){u, u).

Hence we can write

(2.2) ARB=(c/2)-fiI,

where ft is a smooth function on M defined by

u=V―l(<p*<o)(u, u).
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p.is called the Kdhler function of a map <p(cf. [E-G-T, p. 573]). When <p is

an isometric immersion, the function ptis related to the Kahler angle 6 of <p

by fi=cos d. Then p.―I (resp. p.――I) if and only if <p is holomorphic (resp.

anti-holomorphic), and ^=0 if and only if (p is totally real.

It is easily shown that if a smooth map <p:M-^CPn satisfies[t=0, there

are a covering space v: M-+M and a horizontal smooth map (pi M-≫S2n+1(c/4)

relative to the Hopf flbration tz: S2n+1(c/4)-^CPn such that 7z°f>=<p°v.More-

over (p is harmonic if and only if <p is harmonic. Therefore every minimal

surface in CPn with ^=0 can be locally and isometrically lifted to a minimal

surface in S2n+1(c/4).

Proposition 2.1. (i) 0 always satisfies

(2.3) <0, R>=l.

(ii) For any $^C°°(TMC), D$<I><E;C°°(E)has image in ip~lLL. In particular

0 always satisfies

(2.4) (XR, R}=0, <Y0,<P)=O.

Thus we may regard D$0 as a section of (p~l{L^<^LL).

(iii) Under the isomorphism (2.1),

(2.5)

for any %<=TXMC.

(2.6)

h{(d<pyi^m=DzR

(iv) A smooth map <p: M-+CP71 is harmonic if and only if

J0+＼DR＼2<P=O.

This proposition is essentially due to Lemma 4.3 and Propositions 4.5, 4.6

in [Ee-W]. In [Ee-W] they introduced the notion of complex isotropy of a

map. A smooth map ip: M-+CP71 is called complex isotropic if

(2.7) <XpR, Yq0} = O

for all p, (?^0 with p+q^l.

Suppose that (p: M―*CPn is a minimal surface with constant Gaussian cur-

vature K. If <pis complex isotropic, then we have K>0. Because, according

to [Ee-W], <p has a horizontal holomorphic lift of $ relative to a twistor fibra-

tion J{r,s-+CPn. Here Mr,s is endowed with the structure of a homogeneous

Kahler submanifold in a complex projective space. Hence <pinduces a holo-

morphic isometric immersion of M into a complex projective space. Thus by
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virtue of a result of Calabi [Ca-1], K must be positive.

Proposition 2.2. (i) <pis conformal if and only if 0 satisfies

(2.8) (X0, Y0>=O.

(ii) <pis an isometric immersion if and only if 0 satisfies(2.8) and

(2.9) (X0, X0y+(Y0, Y0>=c/2 .

(iii) The Kdhler function p. of a map <pis given by

(2.10) (X0, X0>-<X0, Y0}=(c/2)n .

(iv) <pis a minimal isometric immersion if and only if 0 satisfies(2.8) and

(2.11) M+(c/2)0=O.

Proof. By (2.1) we have

(2.12) <DzR, Dv0>=(c/4)((.V*g)(g, i?)+V-%*a>X6, y)

for £,57eTXM. Let {eu e2) be an orthonormal basis of TXM so that u ―

(l/V^iex-V^ez), a=(l/Vr2"Xei+V=Te8)- Using (2.12), we compute

(2.13) <X0, r<P>=(c/2){(l/4)((?)*^)(e1>eO-(<p*g))e2, ≪,))

-(V=T/2)(^)(gl, ≪,)},

(2.14) <X≪2>,A'(P>=(c/2){(l/4)((9*g)(e1,ei)+(9*^)(e2, e≪))

-(l/2X^a>Xe1? e2)},

(2.15) <F0? r<P>=(c/2){(l/4)((9)*^Xei, ei)+(9*^)(≪2,ea))

+a/2)(<p*(o)(euet)}.

(2.13) implies (i). From (2.14) and (2.15) we get (ii)and (iii).If (p is a minimal

isometric immersion, by (iv) of Proposition 2.1 and (ii)we get (2.8) and (2.11).

Conversely suppose (2.8) and (2.11). By (2.3),(2.4) we compute <X#, XR>+

<Y0, Y0}=-<YX0, R>-<XYRs R>=-(A0, #>=(c/2). Hence w is a minimal

isometric immersion. So we o-etCiv)
q. e.d.

3. Minimal surfaces with constant curvature and

Kahler angle in a complex projectivespace.

Let M be a Riemann surface with a Hermitian metric gM and K denote its

Gaussian curvature. Let <p:M->CPn be a smooth map and fi=V―i((p*(i)){u,u)

be the Kahler functionof w, where u and u denote a unit (1,OVvector on M
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and its conjugate. In this section we assume that K and ft are constant on M

Consider the bundle E=<p-＼L*RC*+l) and the universal lift 0gCm(£) of <p.

Proposition 3.1. Suppose thata section＼ of C°°(E)satisfiesA＼+(c/2)W=i

Then, for each m^O,

(3.1) YXm+lW=a/2){m(m+l)K-(c/2){l+{2m+l)fjtnXm＼,

(3.2) XYm+1W=(l/2)[m(m+l)K-(c/2){l-(2m+l)^}]FmF.

Proof. We show (3.1) and (3.2) by the induction on k. Since Fg5 ha

degree 0, HW=-(c/2)ft-＼.

JW=(XY+YX)W=-(c/2)W,

(-H)W=(XY-YX)W=(c/2)[i-W.

It follows that

YXW=-(c/2)(l+fi)/2-W, XYW=-(c/2)(l-fi)/2-W.

This verifiesour claim when m=0. Now suppose that

YXmW=(l/2)lm(m-l)' K-(c/2){l+(2m-l)finXm-1＼,

and

XYmW={l/2)[m(jn-l)- K-(c/2){l-{2m-V)fiWm-1W.

We compute

YXm+1＼=XY(XmW)-lX, Y~]XmW

=X(XXmW)+H(XmW)

=(l/2)im(,m-l)-K-(c/2)- {l+(2m-l)ftnxm＼,

-{(c/2)fi-m-K}Xm＼

=a/2)lm(m+l)-K-(c/2){l+(2m+l)ftnXm＼,

XYm+l＼=Y(XYm＼)-H(Ym＼)

=0./2)[m(m-l)K-(c/2){l-(2m-l)fi}JiYm＼

+ {(c/2)ft+mK}Ym＼

=(l/2)[m(m+l)K-(c/2){l-(2m+l)[i}lYm＼.

So the induction is complete. n.e. d.

Proposition 3.2. Suppose that 0 satisfiesd@ + (c/2)<P―0. Then, for each

m^O,
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<xm+l0, xm0y=<ym0, ym+i$>=o

and (Xm0, Xm0>=Am, (Ym0, Ym0> = Bm, where Am and Bm are constants de-

pending only on m, K and pt satisfying

A0=B0=1,

ylm+1=(l/2)C(c/2){l + (2m + l)i≪}-m(m+l)-A'].^m

and

Bm+1=a/2)l(c/2){l-(2m+l)fi}-m(m+l)-K2-Bm.

Proof. We show this proposition by the induction on m. (2.3) and (2.4)

verify our claim when m―Q. Suppose that our claim is true for m=p. Apply-

ing Y to <Xp+10, XP0)=O, we get

<yxp+l0, xp0>+<xp+10, xv^>=o.

So by (3.1) and the assumption of the induction we have

<Xp+10, Xp+10y=-a/2)[p(p+l)-K-(c/2){l+(2p+l)tin(Xp0, Xp0)

―Ap+i.

Applying X to this equation, we get

<Xp+20, Xp+l0>+<Xp+10, YXp+10y=XAp+1=R.

By (3.1) we have

(Xp+Z0, Xp+l0>=-(l/2)[p(p+l)-K~(c/2){l+(2p+l)fJtn<Xp+10, Xp0}

=0.

Similarly by (3.2) and the assumption of the induction we have <YP+10, Yp+10}

=BP+1 is constant and <Yp+20, YP+10>=O. So the induction is complete, q.e.d.

Put

am=(l/2)[(c/2){l + (2m+l)^}-m(m+l)-/C],

and

6m=(l/2)[(c/2){l-(2m+l)/i}-m(m4-l)-^].

Then from Propositions 3.1 and 3.2 we get

{o.o) Ap+i ―apA.p, Dp+i^bpUp,

(3.4) YclXp^={-iyap-l - ap-qXp-≪0

(3.5) X≪Yp0=(-iybp-1 ■■■bp-qYp-≪0

for p^q^Q.
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Lemma 3.3. Suppose that 0 satisfiesA0+(c/2)0=O. If Am+l=0 for some

m^O, then 0 is complex isotropicand satisfies

(3.6) <XP0, X≪0>=O

for any p and q with p, q^m+l or m^p>q^0. Similarly,if Bn+i=0 for some

mS^O, then 0 is complex isotropicand satisfies

(3.7) <Xp0, Y≪0}=O

for any p and q with p, q^m+1 or m^p>q^0.

Proof. Assume that Am+1=0 for some m^O and let m be the smallest

integer satisfyinĝ 4m+1=0. From (3.3)we have Ap―0 for allp^m+l. Apply-

ing X to (Xm0, Xm-10}=O, we get

(Xm+10, Xm-l0}+(Xm0, YXm-10}=O.

Since Xm+10=O, by (3.4)we have

am-z<Xm0, Xm-20)=O.

Since Am=t0, from (3.3)we see am_2^0. Hence (Xm0, Xm-20}=O. Similarly,

applying X to thisequation, we have (Xm0, Xm~s0}=O. Inductively we get

(Xm0, X*0>=Q for each q with 0^q^m-l. Applying Y to <Xm0, Xq0>=O

for each q with 0^q^m―2,

<YXm0, Xq0>+<Xm0, Xq+10>=O.

By (3.4)we get am-1-iXm~l0} Xq0}=Q. Since am-x^O, we have (Xm~l0, X≪0}

=0 for each q with Q£q<Lm―2. Inductively,we obtain(XV0, X9$>=0 for

any p, q with m^p>q^0. So we get(3.6). In particular(XP0, 0}=O for all

p^l. We show the complex isotropy of 0 by the induction on p+q. (2.4)

shows our claim when p+q=l. We suppose that(XV0, Yq0}=O for any p

and q with k>p+q^l. Using this assumption repeatedly,we compute, for

each p, q with p+q=k,

<Xp0, Y*0>=X(Xp0} Y*-lQ>-<Xp+10, Y^'0y

= -(Xp+10, Y*-l0y

= -X(Xp+10, Y≪-*0y+(Xp+i0, Yq~20>

-<xp+20, Yq-*0y

=(-l)＼Xp+li0, 0>=O.

Therefore we get the complex isotropy of <p. When Bm+i=0 for some w^O,
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similarlywe can show (3.7)and the complex isotropy of <p. q.e.d.

We shallstudy a map <p:M-+CPn satisfyingJ0+(c/2)0=O in each case:

K>0, K=Q, K<0.

Proposition 3.4. Suppose that 0 satisfiesA@+(c/2)0=O and <pis full. If

K>0, then <p: M―>CPn is a minimal isometric immersion and there exists some I

with 0^/^n such that k=c/{2l(n―l)+n}, fi=K-(n―2l)/c and <p(M) is an open

submanifold of WnA: S*->CPn.

PROOF. Since K>0, am, bm-*―oo as m->oo. Since Am^0, Bm^0 for all

m, by (3.3)there are k, /2>2 such that ak=bi=0, a*_i^O and ^-^O. From

ak=bi=0 we have

f(c/2){l+(2k+l)tt}-k(k+l)-K=0,
＼
(c/2){l-(2l+l)ft}-l(l+l)K=0.

By a simple computation we get fi=K(k―l)/c and K=c/(2kl~{-k+l). We have

Ap=Bq=0 for any p^k+1, q^l+l, and AP=<,XP@, XpR)>0, Bp={Yp0,Yq0y

>0 for any O£p£k, Q£g£l. Set Zo=^, Zp=(l/VA~p)-Xp0 for eachl^/>^fe,

and Z-q=(-l)＼l/V^)'Yq0 for each l^?^/. Then by Lemma 3.3 we have

(Zp> Zqy=8p,q for ―l^p, qn^k. If we regard each Zp as a vector bundle JS-

valued functionon the bundle SO(M) of orthonormal frames compatible with

the orientationof M, then {Zp(p), ZQ(p),Z-q(p);l^p£k, i£q^l] is unitary

in Cn+i for any unit element p^<p~1L at every point of SO(M). Hence

{Zp> Zo, Z.q; l^p<^k, l^q^l} is projectiveunitaryin C"+1 at every pointof

SO(M). By (3.3),(3.4),(3.3)we compute

(3.8)

DZP=XZP+YZP

= Va~P'Zp+l ― Vap-1-Zp-1 for l^p£k ,

DZ0=Va0-Zr1-W2'-i> and

Z)Z.,=V^^-(,-i)-V^'Z-c,+n for l^g^l.

From these equations and the fullness of <p we see k-{-l=n. So we get p.―

K{n―2l)/c, K=c/{2l(n―l)+n}. Moreover we have

(3.9) ap=(c/2)>(n-l-p)(l+p + l)/{2l(n-l)+n}

for Q<Lp<,k ―1 and

(3.10) bp=(c/2)-(l-q)(n-l+q+l)/{2l(n-l)+n}

for 0<>q<,l―l. {Zv, Zo, Z-q; l^kpi^k, l^q^l} can be regarded as a map from
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SO(M) to a projective unitary group PU(n + l). Using (3.8),(3.9),(3.10) and

results of [B-Oh, §2], by virtue of the congruence theorem for smooth maps

to a homogeneous space (cf. [Gr] or [Je]) we conclude that <pis locally con-

gruent with <pn,i. q.e.d.

Remark. From the complex isotropy of <p,we also can get the conclusion

of this proposition by results of [Ee-W], [Ca-1], [B-Oh] and [B-J-R-W].

Proposition 3.5. Suppose that 0 satisfiesd@+(c/2)@=0. If K―0, then

M=0.

Proof. In this case am=(c/4){l + (2m+l)/i} and &m=(c/4){l―(2m+l)/i}.

If pt^Q, then am―≫―oo or frm―>―coas ra―>cxd.By (3.3) we get ^4m=0 or Bm=0

for some m^l. By virtue of Lemma 3.3 ^ is complex isotropic. From (iv) of

Proposition 2.2 <p is a complex isotropic, minimal isometric immersion. But

since if=0, it'simpossible. Therefore we have ^=0. q.e. d.

By the argument similar to that of [Br, Theorem 2.3] we show the fol-

lowing.

Proposition 3.6. Suppose that 0 satisfiesJ0+(c/2)@=Q. Then K<Q is

impossible.

Proof. Suppose K<0. If Am=0 or Bm― 0 for some m^l, then by Lemma

3.3 and (iv) of Proposition 2.2 <p becomes a complex isotropic minimal isometric

immersion. But since K<0, it'simpossible. Therefore ^4m>0 and Bm>0 for

all m^O. From (3.3) am>0, bm>0 for all m^O. We fix an integer m with

m^2. For any integer p with p^m, applying Z"1"1 to the equation <XP+10, Xp&}

=0, by (3.3),(3.4) we compute

Xm-＼Xp+10,Xp0}=
m-1 /yn― 1 ＼
S( KXr+p+10, Ym'1-rXp0}

r=0＼ r /

2jYm
^(-lr-'a,

- op-u-.-r)^"^, ih"-'-^>

= s(m-1)(
r=0＼ r I

=0.

Hence we have

l)m-1-rG4PA4p-nl+1+r)<X*+1+r0, X≫-m+1+r0>

S ( )(-l)m-1-r(l/Ap+rKXp+T+m0> A^+r$>=0
r=o＼ V t
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for each p^l. This equation says that the sequence {(l/APKXp+m@, Xp@}

p^Z, p^l} satisfiesa difference equation of order m―1: (_lr-l-r
r

=0. By a well-known result about difference equations, there exists a poly-

nomial Rm(s), of degree at most ra―2 in s with coefficients in C°°(rm)so that

(3.6) a/APKXp+mR, X*0> = Rn(p)

for all p^l. For p^O, define ZP=(1/VA~P)XP0. Then we have <ZP, ZP> = 1,

<ZP+1, Zp}=0. When m^2, for all />^1

<Zp+m, Zp>=(l/V7[p^VA~PKXp+m0, X*0>

= VAp/Ap+m-Rm(p).

Since if<0, we have

VAp/Ap+m<Cm/pm

for some positive constant Cm which depends on K and p.. Because from (3.3)

we compute

v A.p/ Ap+m=z＼Cip+m-i) ･(a.p+m-2) (<3p)

= [(c/4){l + (2p+2m-l)fi}-(p+m-l)(p+m)K/2Yz

■■■l(c/4){l+ (2p + l)fi}-p(P + l)K/2y≫<Cm/pm.

Since Rm(P) is of degree at most m―2, when raS^l

lim<Zp+m, Zp>(^OT)=0

for each unit vector mgTc1i0)M. Let weTcl'0)M be a fixed unit (1, 0)-vector at

xgM and p^Lx be a fixed unit element. We define the vectors VFP in Cn+1

by ((Zp)x(mp)X/>)=WV Then <Zp+m, Zp}(um)=<Wp+m, Wp>.

Let r>n be any integer and let e>0 be small. By the above argument,

there exist an integer p so large that ＼(Wp+k, Wp+l}＼<e for all ki=l, O^k,

l<*r, while <WP+k, Wp+k>=(Zpk) Zp+k} ―l for all k. Taking s sufficiently

small, thisimplies that the r+1 vectors {Wp

in Cn+1. Since r>n, this is impossible.

Wp+r} are linearly independent

q.e. d.

Combining Propositions 3.4, 3.5 and 3.6,by (iv) of Proposition 2.2 we obtain

Theorem A. We remark about the case if=0. Let <p:M->CPn be a totally

real flatminimal surface. By the total realness of (p, <p can be locally lifted to

a flat minimal surface <p:M->S2n+1(c/4). By Theorem 3.1 of [Br], (p extends

to a minimal immersion of C. So <p also extends to a totally real minimal
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immersion of C into CPn. Such minimal immersions are completely classified

by [Ke-2].

4. The case when the ambient space Is a complex hyperbolic space.

In Cn+1 we consider an indefinite Hermitian inner product <,>i,n defined by

n
<z, m/>in=―zoWOjr 2 z1 1.

i=l

Fixing any negative constant c, we let Hzn+l{c)―{z^Cn+l; <z, z>1,n=l/c}. The

group 51={ev/rr5} acts freely on H2n+1(c/4) by z-^^^. An n-dimensional

complex hyperbolic space CHn is the base manifold of the principal S^bundle

H2n+1(c/A) with the projectionn n: Hzn+＼c/A)-*CHn. For each z^H2n+＼c/4),

we define a subspace Mz of 7＼H2n+1(c/4) by Mz={w^Cn+1; (z, w>1,n=Q}. The

restriction of <, >i,, to each Mz is positive definite. Then we can define a

Riemannian metric g on CHn so that dn: (Mz, (, ))-^(T2C^CHn, gK^) is a linear

isometry for each z<=H2n+1(c/4), where (,)=Re < ,>i,,. g gives the standard

Kahler structure on CHn of constant holomorphic sectional curvature c. We

define a holomorphic line subbundle Lx of the trivialbundle Cre+1 over CHn by

{Li)x = C-z for x=7t{z)^CHn and 2<E#2n+1(c/4). The restriction of <,>1>B to

Li defines an indefinite (negative definite) Hermitian fibre metric <, > of Lu

Then Lx has the Hermitian connection with respect to the holomorphic struc-

ture and the indefinite Hermitian fibre metric. Let L＼ be the complex vector

subbundle of Cn+1 defined by (Li)x = {w^Cn+1; <u/,z>Un=0 for all 2G(L),}.

We have an orthogonal direct sum Cn+1^=L1^LX1 with respect to <,>i,n. We

endow the bundle L＼ with the Hermitian fibre metric < ,> by restrictinng < ,>lj7l

to Li. L＼ has the holomorphic structure through the bundle isomorphism Lj =

Cn+l/Li. With respect to them L＼ has the Hermitian connection. Now we

consider the tensor product bundle L＼RL＼ with the Hermitian connected struc-

ture induced from those of Lx and L＼. Then there exists a connection-preserv-

ing biholomorphic isomorphism h: Til-°>CHn-+L*1RL11 such that <h(Z), h(W)>

= -(c/2)g(Z, W) for Z, W^T^CH*.

Let <p:M-+CH71 be a smooth map from a Riemann surface. We consider

the exact sequence of the complex bundles equipped with pull-backindefinite

Hermitian connected structure:

0 ―> <p-＼L^L,) -^ <p-KL?RCn+1) -i <p~＼L^RL＼)-^ 0 ,

where i is the inclusion map and j is the orthogonal projection along Lx rela-

tive to <,>!,,. Set £=≪-1(LfRC"+1). We call the section i(1)eC"(£) the
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universal lift 0 of <p,where 1 denotes the identity section. Let <, > and D

denote the indefinite Hermitian fibre metric and the covariant differentiationin

the bundle E. Then we have the following:

(1) <0,0> = -l.

(2) For any ^C°°(TMC), DS0 has image in <p~xL＼.

Moreover h((d<pY1-n)=D0.

(3) <pis harmonic if and only if in any chart

D"D'0-(D'0, D'<P)(P=O

or

D'D"R-<D"<Df D"0><P=O.

More generally the similar formulation for indefinite complex space forms

was given by [Er-G] in detail.

Let M be a Riemann surface with a compatible Riemannian metric and

w: M-+CH71 be a smooth map. The following is shown easily:

(i) <$, 0>=-l, <XR, R> = (YR, R>=Q.

(ii) <pis conformal if and only if (XR, YR}=0.

(iii) <pis an isometric immersion if and only if (XR, YR}=0 and (XR,XRy

+ (YR, YR> = -c/2.

(v) Let 6 be the Kahler angle of <p and put /i=cos d. Then (XR, XR}

-<XR, YRy=-(c/2)fi.

(vi) Suppose that <p is an isometric immersion. Then <pis minimal (or

harmonic) if and only if AR + (c/2)R―0.

Suppose that K and p. are constant and 0 satisfiesJ$+(c/2)0=O. Fol-

lowing the calculations in Section 3, we easily establish the same formulas as

in Propositions 3.1 and 3.2 for a negative constant c. So we get, for mSgO,

(4.1) A.m+i = Q.mA.m , ■LJm+l―bmiJm

where Am=<XmR, XmR),Bm=<Ym0, YmR>,

(4.2) am = (l/2)[(c/2){l+ (2m+l)//}-m(m+l)-/r] ,

(4.3) &m = (l/2)[(c/2){l-(2m+l)/i}-m(m+l)-/T].

Now assume that <p:M^>CHn is a minimal surface with constant Gaussian

curvatureK and constant Kahler angle 6. By the equation of Gauss we have

(4.4) if=(c/4Xl+3≪2)-a/2)IM|2<0,
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where ||≪|denotes the length of the second fundamental form a of <p. By (4.4)

we compute

flc=(c/4)(l+iu)^0,

bo=(c/A)a-fi)^O,

ai=a/2){(c/2)3fia-pt)+＼＼a＼n,

ft1=(l/2){(c/2)3(―jEfXH-iM)+lla||2},

a2=(l/2){(C/2)(-2+5i≪-V)+3||≪||2}>0,

62=(l/2){(c/2)(-2-5/i-9/i2)+3||a||2} >0.

Therefore form (4.2),(4.3) we have am>0, bm>0 for any m^2. We see that

if ^0 (resp. ^^0), then a^O (resp. b^O).

Lemma 4.1. The case ao<0 and at>0 is impossible. Similarly, the case

bo<O and ^X) is also impossible.

Proof. Suppose that ao<O and at>0. Since cm>0forany m^2, by (4.1)

we have Am>Q for allm^l. By the argument similarto the proof of Proposi-

tion 3.6,we derive the same identiesas (3.6). We defineZp=(l/VAP)XP@ for

p^l. Then we have <ZP, ZP>=1 and the same estimatelim (Zp+m, Zpy=0

pointwise on M for any m>0. Hence we again derivea contradictionfrom the

finitedimensionalityof Cn+1. When bo<O and fri>0,by the similar argument

we can derive a contradiction. q.e.d.

Proof of Theorem B. First suppose that ―1^/^0. Then a^O. If

fi=―l, we have bo<O, /?1=(1/2)||≪||2.By Lemma 4.1 we get &i=0, i.e. Mis

totallygeodesic and anti-holomorphic.If ―K^^O, we have <zo<Q. By Lemma

4.1 we get fli=0. Hence we get /*=0 and ||≪||2=0.Thus M is totallyreal

and totallygeodesic.

Next suppose that 0<^^l. Then b^O. If p=l, we have ao<O, ax=

(1/2)||a||2.By Lemma 4.1 M is holomorphic and totallygeodesic. If 0^^e<l,

we have bo<O and bi=Q by Lemma 4.1. Therefore M is totallyreal and totally

geodesic. q.e.d.
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