# A RENEWAL THEOREM IN HMGHER DIMENSIONS 

By

Kiyoshi Shikal

## Summary

Let $F$ be a probability distribution on $d$-dimensional Euclidean space $R^{d}$ with mean 0 and finite $2[d / 2]$-th moment. Let $U\{A\}=\sum_{n=1}^{\infty} F^{n^{*}}\{A\}$, where $F^{n^{*}}$ denotes the $n$-fold convolution of $F$ and $A$ is a measurable set on $R^{d}$. The purpose of this paper is to give an asymtotic expression for $U\{A+x\}$ as $|x| \rightarrow \infty$, in case that $F$ is nonlattice and $d \geqq 3$.

## 1. Introduction and the statement of the result

Let $F$ be a probability distribution on $R^{d}$. For any measurable set $A$ put

$$
U\{A\}=\sum_{n=1}^{\infty} F^{n^{*}}\{A\},
$$

where $F^{n *}$ denotes the $n$-fold convolution of $F$. A random walk associated with $F$ is transient, if for any bounded set $A$

$$
U\{A\}<\infty .
$$

For transient random walk of $d \geqq 2$, it is well known

$$
\lim _{\{x \rightarrow \infty} U\{A+x\}=0 .
$$

For lattice distributions it was shown by F. Spitzer [2] and P. Ney and F. Spitzer [1] that for aperiodic $d$-dimensional random walk ( $d \geqq 3$ ) with mean 0 and finite second moments, such that for each $n,|x|^{d-2} p_{n}(0, x) \rightarrow 0$ when $|x| \rightarrow \infty$, the Green function has the asymtotic behavior

$$
G(0, x) \sim c_{d}|Q|^{-1 / 2}\left(x, Q^{-1} x\right)^{1-d / 2}, \text { when }|x| \rightarrow \infty .
$$

Here $G(0, x)=\sum_{n=1}^{\infty} p_{n}(0, x), p_{n}(0, x)$ denotes the probability that a particle starting at the origin will be at the point $x$ at time $n, Q$ is the covariance matrix of $p(0, x)$, $Q^{-1}$ is its inverse, and $|Q|$ is the determinant of $Q$, and the constants $c_{d}$ are positive and depend on the dimension.

Received May 17, 19'78. Revised November 2, 1978.

Our aim is to obtain the asymtotic expression of the Green function in case of a nonlattice distribution with mean 0 and finite $2[d / 2]$-th moment.

Let $\phi$ denote the characteristic function of $F$. We say that $F$ is nonlattice if

$$
\begin{equation*}
|\phi(y)|<1, \quad y \in R^{d}-\{0\} . \tag{1.1}
\end{equation*}
$$

In our case the quadratic form is given by

$$
\begin{equation*}
Q(y)=\int_{R^{d}}(x, y)^{2} F\{d x\} . \tag{1.2}
\end{equation*}
$$

For $x=\left(x_{1}, \cdots, x_{d}\right) \in R^{d}$ and $h>0$, let $P_{n}(x, h)$ be the measures assigned by $F^{n^{*}}$ to the set

$$
\left\{y=\left(y_{1}, \cdots, y_{d}\right) \mid x_{k} \leqq y_{k} \leqq x_{k}+h \text { for } 1 \leqq k \leqq d\right\}
$$

For a fixed $\nu>0$, we take a bounded set $A$ as

$$
A=\left\{y=\left(y_{1}, \cdots, y_{d}\right) \mid 0 \leqq y_{k}<\nu \text { for } 1 \leqq k \leqq d\right\}
$$

Noting that

$$
U\{A+x\}=\sum_{n=1}^{\infty} P_{n}(x, \nu),
$$

we get the following
Theorem. If $F$ satisfies the conditions below;
(1.3) $d \geqq 3$,
(1.4) $F$ is nonlattice,

$$
\begin{align*}
& \int x F\{d x\}=0,  \tag{1.5}\\
& \int|x|^{2[d / 2]} F\{d x\}<\infty, \tag{1.6}
\end{align*}
$$

then

$$
\begin{equation*}
U\{A+x\} \sim \frac{\Sigma^{d} \Gamma(d / 2)}{(d-2) \pi^{d^{/ 2}}|Q|^{1 / 2}}\left(x, Q^{-1} x\right)^{1-d / 2}, \text { as }|x| \rightarrow \infty . \tag{1.7}
\end{equation*}
$$

Here $Q$ is the covariance matrix of $F, Q^{-1}$ is its inverse, and $|Q|$ is the determinant of $Q$.

## 2. Preliminaries

Before the proof we prepare two lemmas.
Lemma 1. (C. Stone [4]) If $F$ is a nonlattice distribution with mean 0 and second moment, then for each $\nu>0$

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left[(2 n \pi)^{d / 2} P_{n}(x, \nu)-\nu^{d}|Q|^{-1 / 2} e^{-1 / 2 n\left(x, Q^{-1} x\right)}\right]=0, \tag{2.1}
\end{equation*}
$$

uniformly for all $x \in R^{d}$.

Lemma 2. If $F$ is nonlattice distribution with mean 0 and $2 k$-th ( $k \geqq 1$, integer) moment, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\frac{|x|}{\sqrt{n}}\right)^{2 k}\left[(2 n \pi)^{d / 2} P_{n}(x, \nu)-\nu^{d}|Q|^{-1 / 2} e^{-1 / 2 n\left(x, Q^{-1} x\right)}\right]=0 \tag{2.2}
\end{equation*}
$$

uniformly for all $x \in R^{d}$.
Following C. Stone [4], we define $g(x)$ and $\gamma(x), x \in R^{d}$ by

$$
\begin{aligned}
g(x) & =\left(\frac{1}{2 \pi A_{2 m}}\right)^{d} \prod_{j=1}^{d}\left(\frac{\sin x_{j}}{x_{j}}\right)^{2 m}(m \geqq k+1, \text { integer fixed }), \\
\gamma(y) & =\int e^{i(y, x)} g(x) d x \\
& =\left(\frac{1}{\pi A_{2 m}}\right)^{d} \prod_{j=1}^{d} \int_{0}^{\infty} \cos \left(y_{j} x_{j}\right)\left(\frac{\sin x_{j}}{x_{j}}\right)^{2 m} d x_{j},
\end{aligned}
$$

where $A_{2 m}=\frac{1}{\pi} \int_{0}^{\infty}\left(\frac{\sin x}{x}\right)^{2 m} d x$.
Set $|y|=\left(y_{1}{ }^{2}+\cdots+y^{2}\right)^{1 / 2}$ and $\|y\|=\max _{1 \leq j \leq d}\left|y_{j}\right| . \quad \gamma(y)$ is a function of class $\mathcal{C}^{2 k}$ on $R^{d}$ and $\gamma(y) \equiv 0$ on $\|y\| \geqq 2 m$. For $a>0$ set $g_{a}(x)=a^{-d} g\left(a^{-1} x\right)$ and $\gamma_{a}(y)=\gamma_{a}(a y)$. Then

$$
\begin{aligned}
& \int g_{a}(x) d x=1, \\
& \int e^{i(x, y)} g_{a}(x) d x=\gamma_{a}(y) .
\end{aligned}
$$

Now $P_{n}(\cdot, h)$ is integrable and

$$
\int e^{i(x, y)} P_{n}(\sqrt{n} x, \sqrt{n} h) d x=h^{d} \prod_{j=1}^{d} \frac{1-e^{-i h y_{j}}}{i h y_{j}} \phi^{n}\left(\frac{y}{\sqrt{n}}\right) .
$$

To complete the proof of Lemma 2 we need the following two propositions.

## Proposition 1.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \Delta^{k}\left[\dot{\phi}^{n}\left(\frac{y}{\sqrt{n}}\right)\right]=\Delta^{k}\left[e^{-1 / 2} Q(y)\right], y \in R^{d} ; \tag{2.3}
\end{equation*}
$$

(2.4) for an arbitrary fixed $B>0$

$$
\left|A^{k}\left[\phi^{n}\left(\frac{y}{\sqrt{n}}\right)\right]\right| \leqq \text { constant, }|y| \leqq B ;
$$

$$
\begin{align*}
& \left|\Delta^{k}\left[\phi^{n}\left(\frac{y}{\sqrt{n}}\right)\right]\right| \leqq \mathrm{constant}|y|^{2 k}\left|\phi^{n-2 k}\left(\frac{y}{\sqrt{n}}\right)\right|,|y| \geqq 1  \tag{2.5}\\
& \left|J^{k}\left[\phi^{n}\left(\frac{y}{\sqrt{n}}\right)\right]\right| \leqq \mathrm{constant} e^{-1 / 4 Q(y)},|y| \leqq \varepsilon \sqrt{n} \tag{2.6}
\end{align*}
$$

where $\Delta^{k}$ is the $k$-th $(k=0,1,2, \cdots)$ iteration of Laplace operator $\Delta$, the constant in (2.4) may depend on $B$ but is independent of $n$ and $y$, the constants in (2.5) and (2.f) are both independent of $n$ and $y$, and as to $\varepsilon>0$ in (2.6) see Appendix.

We can show Proposition 1 in the same way of $P$. Ney and F. Spitzer [1] and [2].

Using Proposition 1, we next prove the following proposition.

Proposition 2. Let

$$
\begin{equation*}
V_{n}(x, h, a)=|x|^{2 k} \int g_{a}(x-y) P_{n}(\sqrt{n} y, \sqrt{n} h) d y \tag{2.7}
\end{equation*}
$$

For arbitrary fixed positive numbers $\nu$ and $\lambda$, set $h=\nu / \sqrt{n}$ and $a=\lambda / \sqrt{n}$. Then

$$
\begin{align*}
V_{n}(x, h, a) & =(-1)^{k}\left(\frac{\nu}{2 \pi \sqrt{n}}\right)^{d} \int e^{-i(x, y)} \Delta^{k}\left[e^{-1 / 2 Q(y)}\right] d y+o\left(n^{-d / 2}\right)  \tag{2.8}\\
& =|x|^{2 k} \frac{\nu^{d}}{(2 \pi n)^{d / 2}|Q|^{1 / 2}} e^{-1 / 2\left(x, Q^{-1 x} x\right.}+o\left(n^{-d / 2}\right)
\end{align*}
$$

Proof. Put $\prod_{j=1}^{d}\left(1-e^{-i h y_{j}}\right)\left(i h y_{j}\right)^{-1}=f_{h}(y)$, then we have by Fubini's theorem and Green's theorem

$$
\begin{aligned}
V_{n}(x, h, a) & =\left(\frac{h}{2 \pi}\right)^{d}|x|^{2 k} \int_{||y|| \leqslant 2 m a^{-1}} e^{-i(x, y)} \gamma_{a}(y) f_{h}(y) \phi\left(\frac{y}{\sqrt{n}}\right) d y \\
& =\left(\frac{h}{2 \pi}\right)^{d}|x|^{2 k} \int_{|y| \leqq 4 \sqrt{d} m a^{-1}} e^{-i(x, y)} \gamma_{a}(y) f_{h}(y) \phi^{n}\left(\frac{y}{\sqrt{n}}\right) d y \\
& =(-1)^{k}\left(\frac{h}{2 \pi}\right)^{d} \int_{|y| \leqq 4 \sqrt{d} m a^{-1}} \Delta^{k}\left[e^{-i(x, y)}\right] \gamma a(y) f_{h}(y) \phi^{n}\left(\frac{y}{\sqrt{n}}\right) d y \\
& =(-1)^{k}\left(\frac{h}{2 \pi}\right)^{d} \int_{|y| \leqq 4 \sqrt{d} m a^{-1}} e^{-i(x, y)} \Delta^{k}\left[\gamma_{a}(y) f_{h}(y) \phi^{n}\left(\frac{y}{\sqrt{n}}\right)\right] d y
\end{aligned}
$$

Let

$$
I_{1}=\int_{|y| \leqq B} e^{-i(x, y)}\left(\gamma_{a}(y) f_{h}(y) J^{k}\left[\phi^{n}\left(\frac{y}{\sqrt{n}}\right)\right]-\Delta^{k}\left[e^{-1 / 2 Q(y)}\right]\right) d y
$$

$$
\begin{aligned}
& I_{2}=\int_{B<1 y \leq \varsigma \sqrt{n}} e^{-i(x, y)} \gamma_{a}(y) f_{h}(y) \Delta^{k}\left[\phi^{n}\left(\frac{y}{\sqrt{n}}\right)\right] d y ; \\
& I_{3}=\int_{\sqrt{ } \sqrt{n}<|y| \leq 4} e^{-i(x, y)} \gamma_{a}(y) f^{-1}(y) \Delta^{k}\left[\phi^{n}\left(\frac{y}{\sqrt{n}}\right)\right] d y ; \\
& I_{4}=-\int_{|y|>B} e^{-i(x, y)} \Delta^{k}\left[e^{-1 / 2 Q(y)}\right] d y ; \\
& I_{5}=\left(\int_{|y| \leqslant B}+\int_{B<|y| \Sigma c \sqrt{n}}+\int_{\sigma \sqrt{n}<|y| \Sigma 4 \sqrt{\bar{d}} m \alpha^{-1}}\right) e^{-i(x, y)} H(y) d y ;
\end{aligned}
$$

where $H(y)=\Delta^{k}\left[\gamma_{a}(y) f_{h}(y) \phi^{n}\left(\frac{y}{\sqrt{n}}\right)\right]-\gamma_{a}(y) f_{h}(y) \Delta^{k}\left[\phi^{n}\left(\frac{y}{\sqrt{n}}\right)\right] . H(y)$ is a polynomial of partial derivatives of $\gamma_{a}(y) f_{n}(y) \phi^{n}\left(\frac{y}{\sqrt{n}}\right)$ of the first $2 k$ order, each term involving at least the first partial derivatives of $\gamma_{a}(y) f_{h}(y)$. Note that

$$
\begin{aligned}
\left(I_{1}+I_{2}+I_{8}\right. & \left.+I_{4}+I_{5}\right) \times(-1)^{k}\left(\frac{h}{2 \pi}\right)^{d} \\
& =V_{n}(x, h, a)-(-1)^{k}\left(\frac{h}{2 \pi}\right)^{d} \int e^{-i(x, y)} \Delta^{k}\left[e^{-1 / 2} Q(y)\right] d y
\end{aligned}
$$

In order to prove (2.8) it is sufficient to show that

$$
\lim _{n \rightarrow \infty} I_{m}=0(1 \leqq m \leqq 5) \text { uniformly for all } x \in R^{d} .
$$

Since $\left|\gamma_{a}(y)\right| \leqq 1,\left|f_{l}(y)\right| \leqq 1$, and $\lim _{n \rightarrow \infty} \gamma_{a}(y)=\lim _{n \rightarrow \infty} f_{l}(y)=1$, it follows from (2.3) and (2.4) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} I_{1}=0 \text { uniformly for all } x \in R^{d} . \tag{2.9}
\end{equation*}
$$

Using (2.6) for each given $\varepsilon_{1}>0$, we can choose $B>0$ independent of $x$ such that

$$
\begin{equation*}
\left|I_{2}\right|<\varepsilon_{2} \tag{2.10}
\end{equation*}
$$

Nextly we prove that there exists a positive constant $\delta$ independent of $n$ (but may depend on $\varepsilon, m$, and $\lambda$ ) such that

$$
\begin{equation*}
\left|I_{3}\right| \leqq \text { constant } n^{d / 2+k}(1-\delta)^{n-2 k} \tag{2.11}
\end{equation*}
$$

Indeed since we can choose $\delta>0$ such that

$$
\left|\psi\left(\frac{y}{\sqrt{n}}\right)\right|<1-\delta \text { for } \varepsilon \sqrt{n}<|y| \leqq 4 m \sqrt{d} \lambda^{-1} \sqrt{n}
$$

Using (2.5) we have

$$
\left|I_{3}\right| \leqq \text { constant }(1-\delta)^{n-2 k} \int_{|y| \leq \Delta m \sqrt{d} x^{-1} \sqrt{n}} \frac{|y|^{2 k} d y}{}
$$

Now choosing $B$ sufficiently large we get

$$
\begin{equation*}
\left|I_{4}\right|<\varepsilon_{2} \tag{2.12}
\end{equation*}
$$

for a given fixed $\varepsilon_{2}>0$. Finally we prove

$$
\begin{equation*}
\lim _{n \rightarrow \infty} I_{5}=0 \text { uniformly for all } x \in R^{d} . \tag{2.13}
\end{equation*}
$$

Note that

$$
\lim _{n \rightarrow \infty} \frac{\partial^{|r|}}{\partial y_{1}^{r_{1} \ldots \partial y_{d}^{r_{d}}}}\left(\gamma_{a}(y) f_{h}(y)\right)=0 \quad \text { if }|r| \neq 0
$$

Then it follows that

$$
\lim _{n \rightarrow \infty} \int_{|y| \leqslant B} e^{-i(x, y)} H(y) d y=0 \text { uniformly for all } x \in R^{d}
$$

because the derivatives of $\phi^{n}\left(\frac{y}{\sqrt{n}}\right)$ and $\gamma_{a}(y) f_{h}(y)$ are uniformly bounded on every compact set. Furthermore using the estimations similar to (2.5) and (2.6) for the derivative of $\phi^{n}\left(\frac{y}{\sqrt{n}}\right)$, we have

$$
\lim _{n \rightarrow \infty} \int_{B<\backslash y \mid \leq \sqrt{n}} e^{-i(x, y)} H(y) d y=0, \lim _{n \rightarrow \infty} \int_{\mathbb{E} \sqrt{n} / \bar{n}<|y| \leq 4 m a^{-1} \sqrt{\bar{d}}} e^{-i(x, y)} H(y) d y=0
$$

uniformly for all $x \in R^{d}$. That completes the proof.
Proof of Lemma 2. The proof of Lemma 2 is as same as C. Stone's [4]. But for completeness we repeat it here.

Put $p_{k}(x)=|x|^{2 k}(2 \pi)^{-d / 2}|Q|^{-1 / 2} e^{-1 / 2\left(x, Q^{-1} x\right)}$ and $p=\max _{x \in R^{d}} p_{k}(x)$. Since $p_{k}(x)$ is uniformly continuous, there is an $h_{1}>0$ such that $\left|p_{k}(x)-p_{k}(y)\right| \leqq 1 / 4 \varepsilon$ if $\|x-y\| \leqq h_{1}$. We choose a $\delta>0$ such that $(1+2 \delta)^{d} \leqq 4 / 3,(1+2 \delta)^{d}-1 \leqq \varepsilon_{1},(1-2 \delta)^{d}-1 \geqq-\varepsilon_{1}$, and

$$
\int_{\| x| |>1 / \delta} g(x) d x \leqq \varepsilon_{2},
$$

where $\varepsilon_{1}$ and $\varepsilon_{2}$ are positive numbers satisfying

$$
\left(p+\varepsilon_{1} p+\frac{1}{2} \varepsilon\right)\left(1-\varepsilon_{2}\right)^{-1}-p \leqq \varepsilon
$$

and

$$
\varepsilon_{1} p+\varepsilon_{2}(p+\varepsilon) \leqq \frac{1}{2} \varepsilon .
$$

Set $i=(1, \cdots, 1) \in R^{d}$. By Proposition 2 we can find $N>0$ such that for $n \geqq N$ and $x \in R^{d}$

$$
\begin{align*}
V_{n}\left(x-\frac{\partial \partial \nu}{\sqrt{n}} i, \frac{(1+2 \ddot{\partial}) \nu}{\sqrt{n}}, \frac{\delta^{2} \nu}{\sqrt{n}}\right) & \leqq\left(\frac{(1+2 \delta) \nu}{\sqrt{n}}\right)^{d} p\left(x-\frac{\delta \nu}{\sqrt{n}} i\right)+\varepsilon\left(\frac{\nu}{\sqrt{n}}\right)^{d}  \tag{2.14}\\
& \leqq\left(\frac{(1+2 \delta) \nu}{\sqrt{n}}\right)^{d}\left(p_{k}(x)+\frac{1}{4} \varepsilon\right)+s\left(\frac{\nu}{\sqrt{n}}\right)^{d} \\
& \leqq\left(\frac{\nu}{\sqrt{ } n}\right)^{d}\left(p_{k}(x)+\varepsilon_{1} p+\frac{1}{2} \varepsilon\right),
\end{align*}
$$

and

$$
\begin{align*}
V_{n}\left(x+\frac{\delta \nu}{\sqrt{n}} i, \frac{(1-2 \delta) \nu}{\sqrt{n}}, \frac{\delta^{2} \nu}{\sqrt{n}}\right) & \geqq\left(\frac{(1-2 \delta) \nu}{\sqrt{n}}\right)^{d} p_{k}\left(x+\frac{\delta \nu}{\sqrt{n}} i\right)-\frac{1}{4} \varepsilon\left(\frac{\nu}{\sqrt{n}}\right)^{d}  \tag{2.15}\\
& \geqq\left(\frac{(1-2 \delta) \nu}{\sqrt{n}}\right)^{d}\left(p_{k}(x)-\frac{1}{4} \varepsilon\right)-\frac{1}{4} \varepsilon\left(\frac{\nu}{\sqrt{n}}\right)^{d} \\
& \geqq\left(\frac{\nu}{\sqrt{n}}\right)^{d}\left(p_{k}(x)-\varepsilon_{1} p-\frac{1}{2} \varepsilon\right) .
\end{align*}
$$

Now

$$
\begin{equation*}
P_{n}\left(\sqrt{n}\left(x-\frac{\delta \nu}{\sqrt{n}} i-y\right),(1+2 \delta) \nu\right) \geqq P_{n}(\sqrt{n} x, \nu), \quad\|y\| \leqq \frac{\delta \nu}{\sqrt{n}} \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{n}\left(\sqrt{n}\left(x+\frac{\delta \nu}{\sqrt{n}} i-y\right),(1-2 \delta) \nu\right) \leqq P_{n}(\sqrt{n} x, \nu), \quad\|y\| \leqq \frac{\delta \nu}{\sqrt{n}} . \tag{2.17}
\end{equation*}
$$

By (2.16) we get

$$
\begin{align*}
V_{n}(x & \left.-\frac{\delta \nu}{\sqrt{n}} i, \frac{(1+2 \delta) \nu}{\sqrt{n}}, \frac{\delta^{2} \nu}{\sqrt{n}}\right)  \tag{2.18}\\
& \geqq|x|^{2 k k} \int_{||y|| \leq \delta \nu / \sqrt{n}} g_{\frac{\partial 2}{\sqrt{n}}}^{\sqrt{\bar{n}}}(y) P_{n}\left(\sqrt{n}\left(x-\frac{\delta \nu}{\sqrt{n}} i-y\right),(1+2 \delta) \nu\right) d y \\
& \geqq|x|^{2 k} P_{n}(\sqrt{n} x, \nu) \int_{\bar{y} \leq \Delta \nu / / \bar{n}} g_{\frac{\sigma_{22}}{\sqrt{n}}}(y) d y \\
& \geqq\left(1-\varepsilon_{2}\right)|x|^{2 k} P_{n}(\sqrt{n} x, \nu) .
\end{align*}
$$

Therefore by (2.14) and (2.18) we get

$$
\begin{align*}
|x|^{2 k} P_{n}(\sqrt{n} x, \nu) & \leqq\left(\frac{\nu}{\sqrt{n}}\right)^{d}\left(p_{k}(x)+\varepsilon_{1} p+\varepsilon\right)\left(1-\varepsilon_{2}\right)^{-1}  \tag{2.19}\\
& \leqq\left(\frac{\nu}{\sqrt{n}}\right)^{d}\left(p_{k}(x)+\varepsilon\right) .
\end{align*}
$$

On the other hand

$$
\begin{aligned}
V_{n}(x & \left.+\frac{\delta \nu}{\sqrt{n}} i, \frac{(1-2 i) \nu}{\sqrt{n}}, \frac{\delta^{2} \nu}{\sqrt{n}}\right) \\
& =|x|^{2 k} \int_{y \leq \delta \Delta \nu / \sqrt{n}}^{0} g_{\frac{\delta_{2}}{}(y)}^{\sqrt{n}}\left(P_{n}\left(\sqrt{n}\left(x+\frac{\delta \nu}{\sqrt{n}} i-y\right),(1-2 \delta) \nu\right) d y\right. \\
& +|x|^{2 k} \int_{y \geq \delta \nu / \sqrt{n}} g_{\frac{\delta \Sigma_{2}}{\sqrt{n}}}(y) P_{n}\left(\sqrt{n}\left(x+\frac{\delta \nu}{\sqrt{n}} i-y\right),(1-2 i) \nu\right) d y \\
& =J_{1}+J_{2} .
\end{aligned}
$$

By (2.17) we get

$$
J_{1} \leqq|x|^{2 k} P_{n}(\sqrt{n} x, \nu)
$$

Noting that the equality

$$
\begin{aligned}
V_{n}(x & \left.+\frac{\delta \nu}{\sqrt{n}} i, \frac{(1-2 \delta) \nu}{\sqrt{n}}, \frac{\delta^{2} \nu}{\sqrt{n}}\right) \\
& =\left(\frac{(1-2 \delta) \nu}{\sqrt{n}}\right)^{d} p_{k}\left(x+\frac{\delta \nu}{\sqrt{n}} i\right)+o\left(n^{-d / 2}\right) \\
& =\left(\frac{\nu}{\sqrt{n}}\right)^{d} p_{k}(x)+o\left(n^{-d / 2}\right)
\end{aligned}
$$

holds by (2.8), we can see that

$$
J_{2} \leqq\left(\frac{\nu}{\sqrt{n}}\right)^{d}(p+\varepsilon) \varepsilon_{2}
$$

Therefore we get

$$
\begin{align*}
& V_{n}\left(x+\frac{\partial \nu}{\sqrt{n}} i, \frac{(1-2 \delta) \nu}{\sqrt{n}}, \frac{\partial^{2} \nu}{\sqrt{n}}\right)  \tag{2.20}\\
& \quad \leqq|x|^{2 k} P_{n}(\sqrt{n} x, \nu)+\left(\frac{\nu}{\sqrt{n}}\right)^{d}(p+\varepsilon) \varepsilon_{2} .
\end{align*}
$$

Thus by (2.15) and (2.20) we obtain

$$
\begin{equation*}
|x|^{2 k} P_{n}(\sqrt{n} x, \nu) \geqq\left(\frac{\nu}{\sqrt{n}}\right)^{d}\left(p_{k}(x)-\varepsilon\right) . \tag{2.21}
\end{equation*}
$$

Since $\varepsilon$ is independent of $x$ we may replace $x$ by $x / \sqrt{n}$ in the inequalities (2.19) and (2.21). Thus the proof of Lemma 2 is complete.

Proof of the Theorem. By Lemma 1 and Lemma 2 we have for $x \neq 0$

$$
\begin{align*}
|x|^{d-2} P_{n}(x, \nu)= & |x|^{d-2}(2 n \pi)^{-d / 2} \nu^{d}|Q|^{-1 / 2} e^{-1 / 2 n\left(x, Q^{-1} x\right)}  \tag{2.22}\\
& +|x|^{d-2} n^{-d / 2} E_{1}(n, x),
\end{align*}
$$

and

$$
\begin{align*}
|x|^{d-2} P_{n}(x, \nu)= & |x|^{d-2}(2 n \pi)^{-d / 2} \nu^{d}|Q|^{-1 / 2} e^{-1 / 2 n\left(x, Q^{-1} x\right)}  \tag{2.23}\\
& +|x|^{d-2-2 k} n^{-d / 2+k} E_{2}(n, x),
\end{align*}
$$

respectively. Here $k=[d / 2]$. Both of the error terms $E_{1}(n, x)$ and $E_{2}(n, x)$ have the property of tending to zero as $n \rightarrow \infty$, uniformly in $x$.

Let us investigate the asymptotic behavior of

$$
|x|^{d-2} U\{A+x\}=\sum_{n=1}^{\infty}|x|^{d-2} P_{n}(x, \nu)
$$

as $|x| \rightarrow \infty$. Set

$$
S(x)=(2 \pi)^{-d / 2} \nu^{d}|Q|^{-1 / 2}|x|^{d-2} \sum_{n=1}^{\infty} n^{-d / 2} e^{-1 / 2 n(x,-1 x)} .
$$

Put $\left(x, Q^{-1} x\right)^{-1}=\Delta$, then

$$
S(x)=\frac{(2 \pi)^{-d / 2} \nu^{d}|Q|^{-1 / 2}|x|^{d-2}}{\left(x, Q^{-1} x\right)^{d / 2-1}} \sum_{n=1}^{\infty}(n \Delta)^{-d / 2} e^{-(2 n d)^{-1}} \Delta .
$$

Since $\Delta \rightarrow 0$ as $|x| \rightarrow \infty$, the sum on the righthand side tends the convergent improper Riemann integral

$$
\int_{0}^{\infty} t^{-d / 2} e^{-1 / 2 t} d t=\frac{2^{d} \Gamma(d / 2)}{d-2}
$$

Therefore

$$
\begin{equation*}
S(x) \sim \nu^{d} \pi^{-d / 2}(d-2)^{-1} \Gamma(d / 2)|Q|^{-1 / 2}\left(x, Q^{-1} x\right)^{1-d / 2}|x|^{d-2} \text { as }|x| \rightarrow \infty . \tag{2.24}
\end{equation*}
$$

We now only have to explain why the error terms do not contribute to our result. We shall use (2.23) for the range $1 \leqq n \leqq\left[|x|^{2}\right]$. Since the contribution of the principal terms in (2.24) is positive, we have to show that

$$
\begin{align*}
& \lim _{|x| \rightarrow \infty}|x|^{d-2-2 k} \sum_{n=1}^{[|x| 2]} n^{-d / 2+k}\left|E_{2}(n, x)\right|  \tag{2.25}\\
& \left.+\lim _{|x| \rightarrow \infty} \mid x\right)^{d-2} \sum_{n=\left[|x|^{2}\right]+1}^{\infty} n^{-d / 2}\left|E_{1}(n, x)\right|=0 .
\end{align*}
$$

From (1.6) any finite number of terms in the first sum is zero. We choose $M$ so large that $\sup \left|E_{2}(n, x)\right|<\varepsilon$ whenever $n \geqq M$. Then

$$
|x|^{d-2-2 k} \sum_{n=M}^{[1 x \mid 2]} n^{-d / 2+k}\left|E_{2}(n, x)\right|
$$

$$
\begin{aligned}
& \leqq \varepsilon|x|^{d-2-2 k} \sum_{n=M}^{\left[\left.|x|\right|^{2}\right]} n^{-d / 2+k} \\
& \leqq \varepsilon|x| d-2-2 k
\end{aligned} \sum_{n=1}^{\left[|x|^{2}\right]} n^{-d / 2+k} \leqq \varepsilon k_{1} .
$$

for some positive $k_{1}$ independent of $\varepsilon$ and $x$. Since $\varepsilon$ is arbitrary. the first limit in (2.25) is zero. The second limit is also zero since

$$
\begin{aligned}
|x|^{d-2} \sum_{n=\left[\mid x x^{2}\right]+1}^{\infty} n^{-d / 2}\left|E_{1}(n, x)\right| & \leqq|x|^{d-2} \sup _{\left.n<\left.|x|\right|^{2}\right]}\left|E_{1}(n, x)\right|_{n=\left[\left|x x^{2}\right|\right]+1} \sum^{\infty} n^{-d / 2} \\
& \leqq k_{2} \sup _{n>|x| 2)}\left|E_{1}(n, x)\right|,
\end{aligned}
$$

where $k_{2}$ is a positive constant independent of $x$. This completes the proof.

## Appendix

(2.3) can be shown by expanding the derivative on the left and then taking limits $n \rightarrow \infty$.

Since

$$
\begin{aligned}
\left|\frac{\partial}{\partial y_{j}} \phi\left(\frac{y}{\sqrt{n}}\right)\right| & =\frac{1}{\sqrt{n}}\left|\int\left(e^{i\left(x, \frac{y}{\sqrt{n}}\right)}-1\right) x_{j} F\{d x\}\right| \\
& \leqq \frac{|y|}{n} \int|x|^{2} F\{d x\},
\end{aligned}
$$

and for $|r| \geqq 2$

$$
\left\lvert\, \frac{\partial^{|r|}}{\partial y_{1}^{r_{1} \ldots \partial y_{d}^{r_{d}}} \phi\left(\frac{y}{\sqrt{n}}\right)\left|\leqq n^{-r / 2} \int\right| x_{1}^{r_{1} \cdots} x_{d}^{r_{d}}\left|F\{d x\}, r_{1}+\cdots+r_{d}=|r|, ~, ~ . ~\right.}\right.
$$

we get (2.4) and (2.5).
Next, using the fact that

$$
\frac{1-\phi(y)}{Q(y)}=\frac{1}{2} \quad \text { as }|y| \rightarrow 0 \quad(\text { see P7.7 of }[2]),
$$

we see that $\varepsilon$ can be chosen sufficiently small so that

$$
\left|\phi^{n}\left(\frac{y}{\sqrt{n}}\right)\right| \leqq e^{-1 / 4} Q(y) \quad \text { for } \quad|y| \leqq \varepsilon \sqrt{n} .
$$

Then we have (2.6) immediately.

## Bibliography

[1] Ney, P. and Spitzer, F.: The Martin Boundary For Random Walk, Trans. Am. Math. Soc. 121, 116-132, 1966.
[2] Spitzer, F.: Principles of Random Walk, Van Nostrand, 1964.
[3] Stam, A. J.: Renewal theory in dimensions(1), Compositio Mathematica, vol. 21, Fac, 4, 383-399, 1969.
[4] Stone, C. J.: A local limit theorem for multidimensional distribution functions, Ann. Math. Stat. 36, 546-551, 1965.

Institute of Mathematics
University of Tsukuba
Ibaraki, 300-31, Japan

