TSUKUBA J. MATH.
Vol. 3,No. 1 (1979), 7989

A RENEWAL THEOREM IN HIGHER DIMENSIONS

By

Kiyoshi SHIKAI

Summary

Let F be a probability distribution on d-dimensional Euclidean space R¢ with
mean 0 and finite 2[d/2]-th moment. Let U{A}:Z‘ F™{A}, where F™ denotes the

n-fold convolution of # and A is a measurable set on R? The purpose of this
paper is to give an asymtotic expression for U{A+z} as |x|—co, in case that F is

nonlattice and d=3.

1. Introduction and the statement of the result

Let F be a probability distribution on R?. For any measurable set A put

where I denotes the n-fold convolution of F. A random walk associated with #

is transient, if for any bounded set A
U{A} < 0.
For transient random walk of d=2, it is well known

lim U{A+z}=0.

12 {—c0

For lattice distributions it was shown by F. Spitzer [2] and P. Ney and F. Spitzer
[1] that for aperiodic d-dimensional random walk (d=3) with mean 0 and finite
second moments, such that for each #, |x|¢2p(0, )0 when |z|—oco, the Green
function has the asymtotic behavior

G(0, 2)~calQ|~/*(z, @'z}, when |z|->co,

Here G(0, x)zgmo, x), pa(0, z) denotes the probability that a particle starting at
the origin will be at the point z at time #»,®Q is the covariance matrix of (0, x),
Q! is its inverse, and |Q| is the determinant of @, and the constants ¢4 are positive
and depend on the dimension.
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QOur aim is to obtain the asymtotic expression of the Green function in case
of a nonlattice distribution with mean 0 and finite 2[d/2]-th moment.
Let ¢ denote the characteristic function of F. We say that F is nonlattice if

(L1) lo(y)I <1,  yeR*—{0}

In our case the quadratic form is given by
12) Q)= (@ v Fids).

For z=(x1, -, z¢)e R* and A4 >0, let Py(x, h) be the measures assigned by F™ to
the set

{y=(yy, -, vo)lme=we=xe+h for 1sk=d}.
For a fixed v>0, we take a bounded set A as

A={y=(ys, -, yo)|0=ye <v for 1=k=d}.
Noting that

J{A+z) :Z Pz, v),
we get the following
TueoreM. If F satisfies the conditions below ;
(13) d=3,

(1.4) F is nonlattice,

(15) Sr Fldz) =0,

(16) Slx\Z[d/ZJF{ci.r}<OO,

then

a7 UA 4 2o 2112) Q12)17%2, as |z|—co.

(d—2)72Q|"* %

Here @ is the covariance matrix of F, Q! is its inverse, and |Q| is the determinant

of Q.

2. Preliminaries

Before the proof we prepare two lemmas.

LemmMma 1. (C. Stone [4]) If F is a nonlattice distribution with mean 0 and
second moment, then for each v>0



A Renewal Theorem in Higher Dimensions 81
(2.1 lim [(2nr)22 Py, v)—v?|Q| =1 2e~1/2n (2. 7100 ] ==(),

uniformly for all zeR®.

LemmMa 2. If F is nonlattice distribution with mean 0 and 24-th (¢=1, integer)
moment, then

®2) tim( 7 ) TP, ) QI e ],

uniformly for all xeR¢.
Following C. Stone (4], we define g(x) and y(x), ze R¢ by

(Lo (S 41, ]
gcv)_(@]—&@ﬁ) 1]1( z; ) (m=Fk+1, integer fixed),

r(y)=ge“’““q(x)dw
(L N A NELEZAR
=(cap) 1§ eostven(F5) "

oo 3 2m
where A2m=—l~g (smx ) dx.
T Jo

x
Set |y|=(y >+ +9*)""% and ||y|l=£n:_1>§|yj}. 7(y) is a function of class C? on
<js

R? and 7(y)=0on ||y||=2m. For a>0 set go(x)=a"%(a'x) and 7.(y)=rolay). Then

{outras=1,

g TV (z)dr=714(y).

Now Py(-, k) is integrable and

(w0 P/, Vi i = et [ 25 g (L
Se WV, Vnh)ds= j[]l—ih;j——¢ (Vﬁ)

To complete the proof of Lemma 2 we need the following two propositions.

ProrposiTION 1.

(2.3) lim A’{g&"(%)]:m[e—l/z QW) yeR?;

n—o0

(24) for an arbitrary fixed B>0

(k)

=constant, |y|=B;
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Ak[¢n<*~7y;7>] ¢n'2k<\/y77>l; lyl=1;
(2.6) Iﬂk[¢"<:/%>] =constant e™*QW, |y|=ev/n;

where 4% is the £-th (£=0,1,2, --.) iteration of Laplace operator 4, the constant in

(2.5)

=constant |y|%*

(24) may depend on B but is independent of # and y, the constants in (2.5) and
(2.€) are both independent of »# and y, and as to >0 in (2.6) see Appendix.

We can show Proposition 1 in the same way of P. Ney and F. Spitzer [1]
and [2].

Using Proposition 1, we next prove the following proposition.

ProposiTiON 2. Let
@7) Vila, b, @)=z Zkgga(x—y)Pn,( Ny, N h)dy.

For arbitrary fixed positive numbers v and 2, set z=v/+# and a=21/vn. Then

v

d .
(2.8) Valz, b, g):(—l)k( 2-;«/;7) Se—i(z.y)dk[e—llz QW dy +0(n-4'%)

d
— ]x|2k ,,,,,,, o172 z,@ 1m) +0(7L"d/2).

d
Proor. Put [] (1—e=¥) (ihy;)"'=fu(y), then we have by Fubini’s theorem and
j=1
Green’s theorem
d

Vila, @)= () ol e ()

B

|1yl g2ma—t

() 1el et ()

11 4¥dma—!

() ey i ()

2

1Ws4vd ma—1

=15 ) | e s st () v

1Yls4vdma=!

Let

L T RV RY. [ S W v

WisB
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L= e 9 ( ) s

B<|Y|seVn

L= e o(F) avs

Va<|yls4Ydma—1

[4 — e—-i(z,y)Ak[e—l/z Q(‘y)]dy ;
1¥1>B
L= (S +S + )e~i<w>H(y)dy ;

s Bwisn “eva<iylsaeVdma—t

where H(y):Ak[n@)fn(y)qs"(y”n:)]—m(y)fh(y)zrk[sﬁ"(ﬁ)]. H{(y) is a polynomial

of partial derivatives of r.(y) fh(y)gb"(\/y;) of the first 2%k order, each term involv-

ing at least the first partial derivatives of r.(y)fw(v). Note that

d
(11+12+13+14+15)><(-1)k(é%>

d
= Vilx, h, a)-(—l)k<2’—:_) Se—iwmk[e—w ewdy.

In order to prove (2.8) it is sufficient to show that

lim I,=0 (1=m=5) uniformly for all zeR¢.

7 =00

Since |7a(W)| =1, [fu(y)| =1, and lim ru(y)=lim fu(y)=1, it follows from (2.3) and (2.4)
that

(2.9) lim I;=0 uniformly for all xeR<.

Using (2.6) for each given ¢,>>0, we can choose B>>0 independent of x such that
(2.10) | L] <es.

Nextly we prove that there exists a positive constant ¢ independent of 7 (but may
depend on ¢, m, and 2) such that

(211) |I;] =constant 7?21 —g)"-%,

Indeed since we can choose >0 such that
’P(T/yﬁ)‘ 13 for ev/a<|y| EAmVa 1V

Using (2.5) we have
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|I;| =constant (1—3)" "\ |y|*dy.

WismVadivn
Now choosing B sufficiently large we get
(2.12) |14 <e»
for a given fixed ¢.>0. Finally we prove

(2.13) lim ls=0 uniformly for all xzeR?

n—oo

Note that

Irl

. ) ‘
L‘P}ﬂm(m@)fn(y))—o if |7]50.

Then it follows that

lim\ -1V Hdy=0 uniformly for all zeRY,

n-o

1Y|sB

because the derivatives of ¢”<7yn:) and y.(y)fx(y) are uniformly bounded on every

compact set. Furthermore using the estimations similar to (2.5) and (2.6) for the

derivative of ¢"<v?;:>, we have

limS =i @ D (y)dy =0, limg =@ Hly)dy =0

n 00

B<wlseVn “eYn< iyl samaTIVE

uniformly for all zeR?. That completes the proof.

Proor oF Lemma 2. The proof of Lemma 2 is as same as C. Stone’s [4].
But for completeness we repeat it here.

Put pk(x)=]xlz"(Zz)“d’lel‘“29““2<”~Q_1”> and p=max pi(x). Since pr(z) is uni-
z€RA

formly continuous, there is an /;>>0 such that | pu(2)—pe()| =1/4e if [lz—y||=h.
We choose a 6>0 such that (1+26)2=4/3, 1+206)0¢—1=¢;, (1-26)?—1=—¢, and

g(.z)dx §€2)

Hxli>1/8

where ¢, and e are positive numbers satisfying

(p—l—el p-l—%e)(l—sz)“—pée

and
1

61p+ez(j>+s)§i e
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Set i=(1, ---,1)eR¢. By Proposition 2 we can find N>0 such that for n=N

and reR¢

R R ) El CoveCa P Ces - R vy
é((1+25)u) (ﬁk(x)+—}l—s>+9<j%)d
() (miwrars s,

and

0 Vil B BSEe Pe (2Bl (B L (Y
=(CF) (o) 1(F5)
z( > (pk(w—exp—%e :

Now

2.16) P(«/ﬁ( 7:; y> (1+25)u>;Pn<«/h,p>, gl == «/n

and

217 Pn<«/ﬁ<x+j—%i—y>,(1——25)v>§Pn(«/ﬁx,u), :j%

By (2.16) we get

by . (1420w o
(2.18) Vn<x— T «/ﬁ)

ZIxI”S 0:,(0)Po («/n( ~ e y> (1+25)v>dy

—
llvhsava "

= |z|* PV , v)S gaa(y)dy

ysowvn "

=(1—e)|z|®Po(V7 z, v).
Therefore by (2.14) and (2.18) we get

(2.19) || Po(/7 1, v)<< — ) (pul) Fer pte) (L—eg)!

= (=) oo
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On the other hand

V“(”*«/n b (1«/25)” x;n)

=l-r|2’“g gaz,(u)P”( <x+«/—z )(1 25»)

Yeo Vi UM

+|1'|2I”S Uaf’:(il)P ( <x+%i—y>,(l—25)u>dy

yzow/Vn

2]1 +j2-
By (2.17) we get
=2 PV 5 2, ).

Noting that the equality

Vn(m+ (1—25w 52y>

a T n o Wn

= i%;-)i)dpk(m +-% i> +o(n-4?%)

~(75) P +otm-ery

holds by (2.8), we can see that

1= (7 ) o+

Therefore we get

Q-2 By
(2.20) Vn(x+v~z o 'Vﬁ)

o d
<|2"Pu(V7 z, p)+(7%—> (p+)en
Thus by (2.15) and (2.20) we obtain
(2.21) |2|?* Po(v/ % x, v)= ( ) ( prlz)—e).

Since ¢ is independent of x we may replace z by z/v# in the inequalities (2.19)
and (2.21). Thus the proof of Lemma 2 is complete.

Proor or THE THEOREM. By Lemma 1 and Lemma 2 we have for z+0
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(2.22) |z |22 Po(, v) = ||4-2(2nx)~ 22| Q| ~1/2p-1/20(2,Qa™12)

+ lxld—Zn—d/2E1<n’ x)’
and
(2.23) | )42 Py, v) = | 2|4 2nr) "¢ 2% Q | 1/2g-1/an(z. @I
+ 1xld—2—2kn—d/2+kE2(n’ x))
respectively. Here k=[d/2]. Both of the error terms Ei(n,x) and Ex(n,z) have

the property of tending to zero as #—co, uniformly in z.

Let us investigate the asymptotic behavior of

ol UIA +2) = 3 |l Palz,»)

as |x|—oo. Set
S(x)=(2ﬂ)—d/2y(i|Ql—]/2lx|d~2i nﬂd/Ze—l/Zn(x,_lz‘).
n=1

Put (x,Q'z)'=4, then

(zn)ﬁdlzvd[Q] —-1/2 | x|d~2 co

Sy = g B, A

Since 4—0 as |z|—co, the sum on the righthand side tends the convergent im-

proper Riemann integral

o 2¢1°(d|2)
a/2,—1/28 Jf —
Sot e 12t 5
Therefore
(2.24) S(z)~via=2(d—2)"(d]2)|Q|~Hx, @ x)'~¥*|x|*"? as |x|—oco.

We now only have to explain why the error terms do not contribute to our result.
We shall use (2.23) for the range 1=n=[|z[?]. Since the contribution of the
principal terms in (2.24) is positive, we have to show that

) [1z12]
(2.25) Ihlmlacl‘l*z—z" 37w VR Ey(n, x)|

Z|—oo n=1

+lim 0% Y, w3 E(n, x)|=0.

| & | -0 n=[]x|2]+1

From (1.6) any finite number of terms in the first sum is zero. We choose M so
large that sup |Eu(n, )| <¢ whenever n=M. Then

[lz12]
|ap| -2k ZMﬂ“d/“"lEz(n, z)|
=
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[1z]2]
“S_elxldAZ-zk ZMn-d/Hk
n=

[lz]2]
éslx[d”%% Z n—d/w—k._ssk1
n=1

for some positive k; independent of ¢ and z. Since ¢ is arbitrary. the first limit
in (2.25) is zero. The second limit is also zero since

oo

29> 3w E(n, @) £|2] sup |Eyn,x)| YT no
n=[|z]2]+1 n>[12{2] n=[{z[2|]+1

<k, supz)lEl(ﬂ, z)l,

n>[fx|

where k; is a positive constant independent of z. This completes the proof.

Appendix

(2.3) can be shown by expanding the derivative on the left and then taking
limits #—oco.

Since

ATl -

and for |r|=2

a!rl
|W¢<—,\7yh?> én—r/zglx:]...x-zdlp{dm}’ ¥y +7’d=lr|y
1 d «

we get (24) and (2.5).
Next, using the fact that

I—gly) 1
Ty "7 ly|>0 (see P7.7 of [2}),

we see that ¢ can be chosen sufficiently small so that

#(7)

Then we have (2.6) immediately.

e ew  for  |y|=evnm.
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