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A RENEWAL THEOREM IN HIGHER DIMENSIONS

By

Kiyoshi Shikai

Summary

Let F be a probability distribution on <i-dimensionalEuclidean space Rd with

mean 0 and finite2[rf/2]-thmoment. Let U{A} = Z Fn"{A), where Fn* denotes the

w-fold convolution of F and A is a measurable set on Rd. The purpose of this

paper is to give an asymtotic expression for U{A + x} as |#|―>*oo,in case that F is

nonlattice and ^3.

1. Introduction and the statement of the result

Let F be a probability distribution on Rd. For any measurable set A put

U{A}=ZFn*{A},

n=1

where Fnt denotes the w-fold convolution of F.

is transient,if for any bounded set A

U{A) <oo.

A random walk associatedwith F

For transient random walk of d^2, it is well known

lim U{A+x}=Q.

For latticedistributionsit was shown by F. Spitzer [2] and P. Ney and F. Spitzer

[1] that for aperiodic ^-dimensional random walk (<i^3) with mean 0 and finite

second moments, such that for each n, ＼x＼d~2pn(Q,x)->0 when |x|-*oo, the Green

function has the asymtotic behavior

G(0,x)~cd＼Q＼-1/2(x,Q-ix)1-d/＼when lar->oo.

Here G(0, x) = J^pn(O, x), pn(O,x) denotes the probability that a particle starting at

the origin will be at the point x at time n, Q is the covariance matrix of p(0, x),

Q-1 is its inverse, and |Q| is the determinant of Q, and the constants cd are positive

and depend on the dimension.

Received May 17, 1978. Revised November 2, 1978.



80 Kiyoshi Shikai

Our aim is to obtain the asymtotic expression of the Green function in case

of a nonlattice distribution with mean 0 and finite2[<f/2]-thmoment.

Let <f>denote the characteristicfunction of F. We say that F is nonlattice if

(1.1) |0O/)I<1, y£Rd-{0}.

In our case the quadratic form is given by

(1.2) Q(y)=＼ (xtyfF{dx).

For x = (xi,-",Xd)GRd and h>0, let Pn(x, h) be the measures assigned by Fn* to

the set

{y=(.Vu ■･･,yo)＼xk^ykS.xkJrhfor l^.k^d}.

For a fixed v>0, we take a bounded set A as

A = {y = (2/1,■･■,yd)＼0^yk<vfor 1^6^}.

Noting that

we get the following

(1.3)

(1.4)

(1.5)

(1.6)

then

(1.7)

U{A + x}=
f]Pn(x,v)

ra=l

Theorem. If F satisfiesthe conditions below;

F is nonlattice,

[xF{dx}=0,

[＼x＼2ld/21F{dx}<oo,

U{A+x}~
vdr(d/2)

(d-2)n([7%>＼lT2
(x, Q"1x)1"d/Z, as |x|->oo

Here Q is the covariance matrix of F, Q"1 is itsinverse, and |Q| is the determinant

of Q.

2. Preliminaries

Before the proof we prepare two lemmas

Lemma 1. (C. Stone [4]) If F is a nonlattice distribution with mean 0 and

second moment, then for each y>0



(2.1)
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lim [{2mz)d/2Pn{x, v)~vd＼Q＼-1/2e-1/2nc*.≪-^]

uniformly for all xs.Rd

o,
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Lemma 2. If F is nonlattice distribution with mean 0 and 2&-th(&^l, integer)

moment, then

(2.2) lim

/
T

＼ 2fe

uniformly for all xeRd.

Following C. Stone [4], we define g{x) and r(x),x£Rd by

where A2m ―

flf(tf)=

(

r(y)=

2nA2m ) iX ＼ xj )

[e≪*-*>g(x)dx

(m^k + 1, integer fixed),

= / ―＼ J-[V cos(^^)l―-―) dxj

＼Xfi2m / j =＼Jo ＼ Xj I

K JO
V

sinx ＼2
ax

x /

Set ＼y＼―(yi2-＼ ＼-y2)1/2and ||y||=max ＼yj＼.j{y) is a function of class C21c on

Rd and y(y)=0 on ＼＼y＼＼^2m. For a>0 set ga{x)―a-dg{a~lx) and ra{y)-Ta.{ay)- Then

＼ga(x)dx= l,

^ei(x'^ga(x)dx
= ra(y).

Now Pn(-,h) is integrable and

＼e≪*-≫>/>≫(V≫x, Vn h)dx =
i=＼ thyj Y ＼wn I

To complete the proof of Lemma 2 we need the following two propositions

(2.3)

Proposition 1

lim Afl(

(2.4)for an arbitrary fixed

*{*･{£)

y_

Vn

Y]
= Jk[e-1/2(twi y Rd;

J5>0

Inconstant,
＼y＼^B;



Let

)dy

^)>

IZ/ISB

'-i e-≪*'≫(ra(v)AW
H^)YA^e' x/ZQWtyv;
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(2.5)

(2.6)

MM

A )]
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^constant ＼y＼2k

^constant r1/4≪w, ＼y＼^sVn;

^l;

where Ak is the &-th (k=0,1, 2,･･･)iteration of Laplace operator J, the constant in

(2.4) may depend on B but is independent of n and ?/,the constants in (2.5) and

(2.6)are both independent of n and y, and as to e>0 in (2.6) see Appendix.

We can show Proposition 1 in the same way of P. Ney and F. Spitzer [1]

and [2].

Using Proposition 1, we next prove the following proposition.

Proposition 2. Let

(2.7) VJx, h,a) = I x 12k
＼
ga(x ~ y)Pn{ Vn y, Vn h)dy.

For arbitrary fixed positive numbers v and X, set h = vlVn and a = JLlVn. Then

(2.8) V.feMM-lW-^

I I 2^

＼ 'L-<C*.≫)Jfc[e-l/2Q<≫)]</j/+0(M-d/2)

__ y* e-l/2iX,Q-lx)+ofn-d/2＼

d
Proof. Put fl(1 ―e-ihyi)(ihyj)-1=fh(y), then we have by Fubini's theorem and

.7=1
Green's theorem

Vn(x,h,a)= (J^y

＼2*/

i-i-S e-≪x'≫ha(v)My)$

＼＼VU£zma-l

/ h ＼d

-<-≫&)'

s

＼

(

_JL.

Vn

Jk[e-Ux^My)A(y)f'

IJ/lsWdma.-l

)dy

dy

J-"1^)/^

IJ/lsW<Zma.->
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h

＼v＼>b

,.-($ +

＼D＼£B B<＼V＼%^n s.*'n<＼V＼<,4-S~dma-l
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where F(?/)= J*[rtt(2/)A(^"(^-)]-ra(?/)A(?/Mfc[0n(^)]- H(V) is a polynomial

of partial derivatives of ja{y)fh{y)4>n＼―r^＼of the first2k order, each term involv-

ing at least the first partial derivatives of ra{y)fh{y). Note that

(/i+/g+/8+/4+/6)x(-i)*^
y

= Vn{x, h, a)-(-l)k(-£X[e-i(-x<y'>Akle-Ui<lwyiy

In order to prove (2.8)it is sufficientto show that

lim/ra=0 (l^w^5) uniformly for all x£Rd
77―>OO

Since ＼ra(v)＼^h |A(y)|^l, and Sim r*{v) =
n―oo

that

(2.9) lim /i

lim/fc(y) = l, it follows from (2.3) and (2.4)
H-≫co

= 0 uniformly for all x£Rd.

Using (2.6) for each given si>0, we can choose B>0 independent of x such that

(2.10) |/2|<£2.

Nextly we prove that there exists a positive constant 5 independent of n (but may

depend on e,m, and X) such that

(2.11) ＼h＼^constant≫d/a+*(l-5)B-8*.

Indeed since we can choose d>0 such that

,(

Using (2.5) we have

Vn

)

<1 ―d for sVnKlyl^imVd^-Wn
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|/3|^constant (l-d)n-2k[ ＼y＼2kdy.

Now choosing B sufficiently large we get

(2.12) |/4|<£2

for a given fixed e2>0. Finally we prove

(2.13)

Note that

lim/5 = 0 uniformly for all xQRd.

7l->00

gin

,-oc dyr*-dyrd*

Then it follows that

lira

＼

(r.(y)A(y))=o if M*o

e-iix^H(y)dy=Q uniformly for all xeRd

WHB

/ y ＼
because the derivatives of <bn＼―/―＼and ra{y)fh(y)are uniformly bounded on every

＼V≪ /

compact set. Furthermore using the estimations similar to (2.5)and (2.6)for the

derivative of 4>nl
y_

Vn
j, we have

lim

≪->co

＼ e-iU'y)H(y)dy=O, ＼＼m[ e~iixr-≫3'H(y)dy=0

uniformly for all x Rd. That completes the proof.

Proof of Lemma 2. The proof of Lemma 2 is as same as C. Stone's [4],

But for completeness we repeat it here.

Put/>t(ar)=|a;|2*(2ff)-<l/a|Q|-1/2e-1/2(*'≪"lj')and p=maxpk(x). Since pk(x) is uni-

■T£Rd
formly continuous, there is an /?i>0 such that ＼pk{x)―Pk{y) 1^=1/4s if ＼＼x―y＼＼^hv

We choose a <5>0 such that (l+25)d^4/3, (l+25)d-l^ei, (1-2^-1^-eu and

＼ g(x)dx^e2,

＼IX＼＼>1/I

where ex and e2 are positive numbers satisfying

(p
+ eip +

~^j{l-e2)-x-p^

and

eip+e2(P+ s)^js
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Set i=(l, ■･･,l)£Rd. By Proposition 2 we can find Af>0 such that for n^zN

and xeRd

(2.14)

and

(2.15)

Now

(2.16)

and

(2.17)

IT
( °V

■

＼ Vn Vn

/ Jv_. {1-2 S)v

"＼ Vn ' Vn

d*v＼ /(l+25)iA<* / 8v A / v ＼d

Vn I ＼ Vn ＼ Vn I ＼Vn /

/ (l+2d)i/V/ ,
N

1 ＼ / v ＼d

V v≫ / V 4 / Vv≪ /

5*v ＼ /(l-2d)v＼<* I dv

V≪ / ＼ Vk / ＼ Vn

A 1 / v ＼d

) 4 ＼VnJ

/(l-25)vW ,. 1＼

pJVn(x―^i-y＼(l+2d)v＼^Pn(Vnx,v), ＼＼y＼＼^

1 I v Y
4£＼Vn )

8v

■Vn

Pn(^/n(x+-^i-yy(l-28)^Pn(Vnx,v), Ih/ll^r

By (2.16)we get

(2.18) vJx-
Sv

Vn

^＼x＼2k

(l+2r5)v

Vn

52v ＼

Vn I

^＼x＼*kPn(Vnx, v)[ Qvd.v)dy

^(1 e2)＼x＼2kPn(Vnx,v)

Therefore by (2.14) and (2.18) we get

(2.19) ＼x＼2kPn(Vn x, y)^
(^y(plc(x)+e1p

+ e)a-e2y1

4v^)d(Mx)+e)-
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On the other hand

M≫+7T'

= ＼x＼2k

+ ＼x＼2k

=L+U

By (2.17) we get

Noting that the equality

Kiyoshi Shikat

(1_-2^)p

Vn

8＼ ＼

gs2Xy)Pn(s/n (x + ^i-y),(l-2£)v)dy

VnU +

/i ^＼x＼uPn(Vnx,v)

8v . Q.-28)v d2v＼

Vn ' Vn ' s/n I

＼ Vn j ＼ Vn J

= (^)W)+4n--'≪)

holds by (2.8),we can see that

Therefore we get

(2.20)

/2=
Ur)(p+e)"-

＼ Vn ' Vn ' s/n /

Thus by (2.15) and (2.20) we obtain

(2.21) ＼x＼2kPn(Vnx,v)^( V
Vn

)
(pk(x)-e).

Since e is independent of x we may replace x by x/Vn in the inequalities(2.19)

and (2.21). Thus the proof of Lemma 2 is complete.

Proof of the Theorem. By Lemma 1 and Lemma 2 we have for x^O



(2.22)

and

(2.23)
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＼x＼d-2Pn(x,v)=＼x＼d-＼2nTcyd/2vd＼Q＼~1/2e-1/2n(-:c-Qx~lx>

+ ＼x＼d-2n-d/2E1(n,x＼

＼x＼d-2Pn(x, v) = ＼x＼d-i(2nK)-d/V＼Q＼-1/2e-inn^-(i~lx)
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+ ＼x＼d-2-2lcn-d/2+JCE2(n,x),

respectively. Here k=[djZ＼. Both of the error terms Ei{n,x) and E2(n,x) have

the property of tending to zero as n->co, uniformly in x.

Let us investigate the asymptotic behavior of

as |;c|-+oo. Set

＼x＼d-2U{A+x} = % ＼x＼d-2Pn{x,v)

n=＼

S(a?)= (27r)-d/V|Q|-1/a|ar|d-8f;≪-d/ae-1/sn^'"1*＼

Put (xyQ^xY^A, then

S(x) =
(27r)-d/V|Qh1/2|^|d-2 £

T! (bJ)-"'^-^"^
(x, Q-Xx)d/*-1 ^i

Since J->0 as |#|->oo,the sum on the righthand side tends the convergent im

proper Riemann integral

[°°t-*'*e-1/udt
=

Jo

2dr(d/2)

d-2

Therefore

(2.24) S{x)-vd7t~d/＼d-2)-lr{dj2)＼Q＼-1/＼x,Q'lx)1"in＼x＼d-2as |a?|->oo.

We now only have to explain why the error terms do not contribute to our result.

We shall use (2.23) for the range l^kn^[＼x＼2＼ Since the contribution of the

principal terms in (2.24)is positive, we have to show that

(2.25) lim Md-2-2&CIX>-^/2+fc|£2(rc,x)＼

|x|-°° n=l

+ lim ＼x＼d~*

Ia;I-≫co

E

n=[|x|2] +l

n-d/i＼Ei(n, x)＼
A

From (1.6)any finitenumber of terms in the firstsum is zero. We choose M so

large that sup ＼E*{n,x)＼<ewhenever ri^M. Then

＼x＼d-2-2kI] n-*/a+k＼Ei(n, x)＼
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Cl*|2]

[1*1*]

for some positive kx independent of s and x. Since e is arbitrary, the firstlimit

in (2.2$＼is zero. The second limit is also zero since

＼x＼d~* 2 n-d/2＼E1(n,x)＼^＼x＼d-2

≫=[ltfl2]+l

su

n>£l

^k2 sup

n>Ux＼2)

|£i(≫,*)l S n~d/*

23 n = [|x|2|]+ i

＼Ex(n,x)＼

where k2 is a positive constant independent of x. This completes the proof.

Appendix

(2.3) can be shown by expanding the derivative on the left and then taking

limits ≫->oo.

and for M^2

u

M

gin

w

V

Vn

<

Kir)

1

Vn

n

[(e*(*'~&-l)xjF{dx}

[＼x＼2F{dx},

^n-r'*[＼xr
1i---xrd*＼F{dx},r1

+
>--

+ rd=＼r＼,

we get (2.4) and (2.5).

Next, using the fact that

1'

<Xv)

)
=^ as M^° (see P7'? °f[2])'

we see that s can be chosen sufficientlysmall so that

^{Jn) <e-i/iQ(v> for ＼y＼^eVn

Then we have (2.6)immediately.
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