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IDEALS ON a) WHICH ARE OBTAINED FROM

HAUSDORFF-GAPS

By

Shizuo Kamo

Let Q be a Hausdorff gap in m<D. Hart and Mill [2] defined the ideal la

which is the family of all subsets of w whose restriction of Q is filled. In this

paper, we shall show two results (Theorems 1, 6) about these ideals.

Our notions and terminology follow the usual use in set theory. Let X be

a subset of a) and /, g functions from I to oj. g dominates / (denoted by

/-<g), if {jigI; g(n)^f(n)} is finite. Let k and X be infinite cardinals. A

pair of sequence ≪/a|a</c>|<g19|iS<^≫ is called a (k, ^)-gap, if the following

(1), (2) are satisfied.

(1) fa, gp". 0)^(0, for any a<tc, /3</L

(2) fa<fr<gr<gp, for any a<j<K, fi<d<Z.

A (k, /)-gap ≪/≪|a<A:>|<5'i3|J8<^≫ is unfilled, if there does not exist a function

h : (a-*R such that, for all cl<k,
i8</i,
fa^h^g^. We call an unfilled (o)u o>i)-

gap a Hausdorff gap (//-gap). The following fact is well-known.

Fact. For any regular cardinals k and 1 with (≪,A)^(a)u wi), there exists

a generic extension W such that W preserves all cardinals and, in W, there

are no unfilled(≪,/0-gap.

In contrast to this fact, the following theorem holds about //-gaps.

Theorem (Hausdorff[1, Theorem 4.3]). There is an H-gap

Let S=iif a＼oL<(i)C)＼(sga＼a<(s)ly)'be a (<o1} twO-gap. Following [2], we define

the ideal /<? by

lg={xC.(o＼ 3h: x-* aNa<(i)x{fa＼x<,h<ga＼x)}.

It is easy to see that

<ye/<? if and only if Q is filled,

F'm={xCco; x is finite}dig.
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In this paper, we shall show two result about these ideals lQ.

Theorem 1. Assume the Continume Hypothesis (CH). For any ideal I with

Fine/, there exists an {(ou w^-gap Q such that 1=1$.

We need the several lemmas and corollariesto show Theorem 1. Let F=

{h; 3x0.0) (h : x->(o)}. For any /, g^F, f<Cg means that, for any k<co, {ne

dom(/)ndom(g); g(n)<f(n)+k＼ is finite. For any X, YaF, X Y means that,

for all /el and g<=Y, f g.

Lemma 2. Let X, Y be countable subsets of m(D,X^0, and I≪7. Then

there exists an h : co―xosuch that X- {h}<y'.

Proof. The case of Y=0 is clear. So

Take an enumeration </;|;<a>> of X, and an

For any k<co, sinceZ<F, it holds that

we may asumme that Y=f0.

enumeration (gj＼j<a>y of Y.

lim(min{,g-i(tt); i<k}― max{//n); j£k})=a).
re―a>

So, we can take a sequence of naturalnumbers nk (for k<a)) such that

nk<nk+1
and

Mn&lnk, nk+l)(mm{gi(n); i£k}-max{fj(n); j^k}^2k).

Define h : <y->a>by

/j(n)=max{/Xn); j£k} + k,if ne[≪t, n*+i).

Itis easy to see that X {h＼ Y. n

Corollary 3.

3f =X(f: o)^a}).

Let X,Yar. Suppose that ＼X＼^<o, ＼Y＼£<o,X<Y, and

Then, there exists an h : o)―>(D such that X < {h} < Y.

Proof. For each /el, define /*: o―>o> by

f /(n), if nedom(/),
/*(n)=
{ 0, otherwise.

By Lemma 2, there existsg: a>-^-a>such that|/*;/Gl}≪|g}. For each/e

F, define /* : <y-> o>by

f /(n), if nedom(/),

1 g(≪), otherwise.

Then, since{/*; /el}≪{/*: /eF), thereexists h : <o->o>such that{/*; /s
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X}<{h} {f*; f^Y), by Lemma 2. This h is as required. □

Corollary 4. Let X, Y, Z be countable subsets of F such that X'cZ, Z<

Y, X<CY, and 3/eI(/: o>->a>). Then, there exist g, h : o>->g> swc/if/z<2Ẑ<

{/i}<Z a?2o(Z<{ff}<r ana! h<g.

Proof. Since X<tZ＼jY, by Corollary 3, we can take h: <y-><o such that

X {h}<tZ＼jY. Then Z＼j{h}<Y and we can take g: a>-≫■m such that Z＼j{h}

Lemma 5. Let b be an infinitesubset of w and s: b-^co. Suppose that X, Y

CZ^Q) and ZcF satisfy that

(2.1) Xi-0 & ＼X＼^o) & ＼Y＼^a)& ＼Z＼£o)& X<Y & X Z Y,

(2.2) V/zeEZ(6ndom(/2) is finite).

Then, there are f, g : <y―>co such that

(2.3) X≪{/}≪Z≪{£}≪F and f<g,

(2.4) f＼b<s or s<g＼b.

Proof. Set a=a>＼&. By using Corollary 4, take fugi: a -> g> such that

X＼a {f1}<Z {g1}<Y＼a and f1<gl.

Take fz, g2: b^co such that

X＼b<{fs}<{g2}<Y＼b & /8<s or s<g2

and set

/=/iU/≪, 5-=^iW^2.

Then, / and ^ are as required. □

Proof of Theorem 1. Let / be an ideal on o> such that Fine/.

The case of that (ug( has no problem. So, we may assume that o)£l.

Set 3C={s; 3xCa)(x<£l & s: x-xu)}. By CH, take an enumeration <s≪|a<o;i>

of X and an enumeration <aa|≪<<Wi> of I. For each a<(ou let ba=dom(sa).

By induction on a<o)u we shalltake fa,ga'-(o^(o and ha: aa-+ o)which satisfy

the following (1)~(4).

(1) ft<fa<ga<gz, for any £<a.

(2) fa＼ae<hs<&ga＼ae, for any £<a.

(3) fa＼ba<Sa Or Sa<ga＼ba.
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fa＼aa<ha<ga＼aa.

Assume that we could take such fa, ga, ha (for a<a)i). By (1),

S=≪fa＼a<<o1>＼<ga＼a<a)1≫

is a gap. By (2),it holds that

fa＼afi-<h[i'<£a＼ap, for any a, i8<≪1.

So, it holds that, for all j8<<wi,a^lg (i.e.,Ids). And by (3), we have that

led.

It remains to show that we can take such /,, ga, ha (for a<<t)i).

Suppose that ≪<<≪! and defined /f, ^f, hs (for |<a) satisfying (1)~(4).

Since it holds that

ba£l & {aj

we can take bdba such that

) |<a}C/ & Fine/,

b is infinite and br＼a^ is finite for each £<≪

By Lemma 5, take fa,ga＼ <*>―>■≪such that

ft<fa<ga<g$ for all £<a,

fa＼az>hz<ga＼az for all £<a,

fa＼b-£sa＼b or sar&-<^≪t6,

and take ha : aa^a) such that

These /≪, j?a, Aa satisfy (1)~(4). m

Here, we remark that the assumption of CH in Theorm 1 is necessary. To

see this,let V be a ground model which satisfies that 2(O=2a>1. Then, in V,

there exists an ideal which is not obtained from any (<nu <≪i)-gaps,since the

cardinality of the family of ideals on o>is greater than the cardinality of the

family of Oi, G>i)-gaps. Which ideals are obtained from (o)u o>i)-gaps,under the

assumption of ―OH? The following theorem deals a case whose model is

obtained by a simple generic extension.

Theorem 6. Assume CH. Let k be a cardinal such that k^―k and P be the

partial ordering {p; 3x C /c(|x＼<a) & p : x―>2)} which adjoins K-many Cohen

reals. Then, in Vp, it holds that the family {/<?;Q is an H-gap) consistsof all

ideals I such that a>£land Find and I are ^(o^generated.
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We need the following lemma and corollary to show Theorem 6. Let Q

be the partial ordering {q; 3xCa)( |x |<o) & q : x->2)} which adjoins a Cohen real.

Lemma 7. Let 5=≪/≪|a<a>i>＼<ga＼≪<6>i≫ be an H-gap. Then, it holds

that

VQ ＼="Is is the ideal generated by (Is)v".

Proof. Set /={lsf. Since VQ ＼="lalg", it sufficesto show that

[hQVx<E/fi3;ye/(xC3>).

To show this,let

q^Q & x : Q-name & q Ih x^Ig.

Take a Q-name h such that

9 Ih h : x -> a) & Va<o>!(/a fx</K^≪ N)

For each a<≪i, take ^≪^g and na<a) such that

<?,Ih Vk^x＼na(fJk)<h(k)<ga(k)).

Since ＼QXo)＼=o), there existr^Q and m<w such that

A={a<o)1; qa―r & na=m} is cofinalin <0i.

Set y = {k<(o; m^k & 3r'^r(r'h-k^x)}. It holds that r＼＼-xdy＼Jm.

Claim 1. For any a, ^A and any k<=y, fa(k)+l<gp(k).

Proof of Claim 1. Let a, /3e^4 and &ej>. Take r'^r such that

r'lh k^x.

Since k^m, we have that r' ＼＼-f a{k)<h{k)<g^{k) which implies fa(k)+l<

Qed of Claim 1.

By using Claim 1, define h': ^ -> a) by

/i'(ife)=max{/a(fe);a£i} + l.

Then, it holds that ^aKcDxifa＼yKh'-<Kga＼y) and we get y<=l. □

Corollary 8. Let 5=≪/a|a<o)1>|<^a|a<a)i≫ &e an i/-^aj&. T/zewff /zo/Js

yF ＼="Is is the ideal generated by Us)v"
■
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Proof. This follows from Lemma 7 and the fact that

Fn5>(ffl)CW{Fu; asF & adic & ＼a＼£<o}.D

Proof of Theorem 6. First we shall show that, in Vp,

V5 : H-gap (Is is ^avgenerated).

So, let Q be a P-name such that, Vp |= Q is an H-gap. Take an
^4e7 such that

A(ZK & |^l|^Wx & 56FM.

Since 7Pr4 h CH, we have

VPrA＼=Ia is ^a)i-generated.

Since P=(P＼A)x(P＼(k＼A)) and PsPK*＼^X by Corollary 8,

Vp＼=la is ^ft>i-generated.

To show the reverse implication, let / be a P-name such that

Vp ＼=o)^l and / is ^fth-generated and FinC/.

Take an Se7p such that

Vp ＼=|5|^<Di and I is generated by S.

Then, there exists an A^V such that

AdK, lAl^ot! and SgFu.

Since VPfA ＼=CH, there is a <?eFPM such that

I/PM ＼=Q is an H-gap and 7^ is generated by S.

By Corollary 8, 7P 1=la=L m
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