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MORITA EQUIVALENCE FOR RINGS WITHOUT IDENTITY

By

P.N. Anh and L. Marki

In the paper [1] Abrams made a first step in extending the theory of

Morita equivalence to rings without identity. He considered rings in which a

set of commuting idempotents is given such that every element of the ring

admits one of these idempotents as a two-sided unit, and the categories of all

left modules over these rings which are unitary in a natural sense. He proved

that two such module categories over the rings R and S, say, are equivalent

if and only if there exists a unitary left i?-module P which is a generator, the

direct limit of a given kind of system of finitelygenerated projective modules,

and such that S is isomorphic to the ring of certain endomorphisms of P.

The aim of the present paper is to extend this theory in two ways: to

cover a wider range of rings, and to transfer more of the classical Morita

theory. Firstly, one can weaken the condition of commutativity of the idem-

potents in question: it sufficesto require that any two of them have a common

upper bound under the natural partial order (i.e., any two elements of the

ring admit a common two-sided identity), a condition which is fulfilledby all

regular rings (regular in the sense of Neumann). Whenever one has such a

system of idempotents, then any larger system, in particular, the set of all

idempotents, is also such, which is not the case for the systems of Abrams.

Secondly, by a suitable modification of some homological lemmas we obtain also

the two-sided characterizations of Morita equivalence, arriving thus at a

complete analogy to the classicalcase of rings with identity. Our presentation

is a combination of those in Anderson-Fuller [2], §§21-22,and Bass [5] (see

also [6], Chapter II). This machinery allows us to avoid the elaborate con-

struction of Abrams. As examples we describe, among others, those rings

with local units which are Morita equivalent to division rings and primary

rings, respectively. The Rees matrix rings studied in [4] turn out to have a

natural place in this theory.

The theory we present here is a counterpart of the theory of Morita

duality developed by Yamagata [10]. On the one hand, we shall use the same

modified Hom-functors but for projective and not injective modules, and on the
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other hand, It turns out that every Morita equivalence class of rings with local

units contains rings with enough idempotents, i.e.,rings considered by Yamagata.

Notice also that the module categories we consider are full subcategories

of the categories of modules over unital overrings of the respective rings with

local units. Nevertheless, Sato's [8] theory of equivalence does not apply

because he considers the usual Hom-functors, which does not work in our case.

1. Preparations.

Definition 1. R is a ring with local units if every finitesubset of R is

contained in a subring of the form eRe where e―eze.R.

We calla left module M over R unitary if RM=M, i.e., for each m^M

there are rlt･■■,rn<^R and mu ･･･,mn^M such that r1m1+ ･･･+rnwn=m. If

i? is a ring with local units then this implies that for every finite subset

M'aM there is an idempotent eei? such that em=m for all m^M' By

R Mod we denote the category of unitary left i?-modules together with the

usual i?-homomorphisms. Dually, Mod R denotes the category of unitary right

i?-modules. Similarly to the case considered in Abrams [1], R Mod (or Mod R)

is a complete and cocomplete additive category. We call a bimodule unitary if

it is unitary on both sides.

In what follows, R denotes a ring with local units. The most important

thing for us is to find those modules in R Mod which play the role of the

progenerators in the case of rings with identity. Of course, projective gener-

ators make sense in R Mod for this a categorical notion; however, RR is

neither finitelygenerated nor projective if R has no identity, and the notion

we need ought to include RR, too. Therefore we define:

Definition 2. Pe R Mod is a locally projective module if there is a direct

system (Pt)i<=iof finitely generated projective direct summands of P together

with projections <pi:P-*Pi such that <ptfactors through <p} whenever i^j, and

such that lim Pi―P. Notice that RR is locally projective if R has local units,

as Re is a projective direct summand of R for every idempotent eei?, and

the multiplication maps <pe:R->Re satisfy the condition on (pi if we define

e^f^ef―fe―e.

The role of progenerators will be played by the locally projective gener-

ators in R Mod. But before turning to them, we shall establish homological

properties of locally projective modules. In doing so, we shall need a more

restrictive notion instead of the Horn-sets. For the sake of convenience, homo-

morphisms of modules will be written opposite the scalars.
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Notice that the usual definitionof tensor product makes no use of the

identity in the ring, hence it makes sense in our case, too.

The following Propositions 1.1-1.5 and 1.7 can be proved along the same

lines as in the case of rings with identity (see e. g. Anderson-Fuller [2], §20),

therefore we present them without proof. Before stating Proposition 1.1,

observe the following. If R and 5 are rings with local units and
SN and SUR

are unitary then Homs(U, N) is a lefti?-module by putting, for ^eHom5(f7, N)

and r<ER, r<f>;us=U>-*{ur)$<^N. The submodule RHoms(U,N) is the largest

unitary i?-submodule of Eoms(U, N). By R Homs(U, ―) we denote the functor

induced bv the maDoiner N>-^R UomAU. N).

Proposition 1.1. For all M, M'gR Mod, m£l, 0eHomB(M, MO, />"£

mpu :r^mr (re/?) (^ws ,0: M->/? Homp(/?, M))

and

Pt'7>-*Y0$ (T^R HomR(R, M)).

Then p :＼rmo&-*R HomR(R, ―) is a natural isomorphism.

Proposition 1.2. For allM, M'^R Mod and ^6Homfi(M, M'), put

(r(g>m)ftM=rm {r^R, m^M) {thusptM:i?(g)M->M)

and

fj.M'R&)<f>*-*<f>.

Then ft:R(£) >1rMod is a naturalisomorphism.
R

Corollary 1.3. For all e2=eei? and M^R Mod, eR6§M^eM.

Proposition 1.4. Let d:RUs―>RVs be a bimodule homomorphism between

unitary bimodules RUS and RV s where R and S are rings with local units. Put,

for all M,M'^R Mod and 0eHomfi(M, M'),

rim-.y^e-y (r^SEomR(V,M)),

rj^id^d'd (.8sESHomR(V,0)). : -

Then 7]:S HomiJ(F, ―)―>SHomR(U, ―) is a natural transformation between two

functors from R Mod to S Mod. Moreover, if d is an isomorphism then rjis a

wnf.urnl.isnm.nvhhism..

Before stating the next proposition,observe the following. If Ns and

RUs are unitary, then Y＼oms{N,U) is a left i?-module if we put, for all

$<=Eoms(N, U) and r<=R, r^:n^N^r{(f>n). Then R Roms{N, U) is a unitary
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left i?-module. Similarly, if RM is any unitary left i?-raodule then Homfl(M, U)

is naturally a right S-module and hence HomR(M, U)S is a unitary right

S-module. Further, notice that s(K(g)M) e S Mod whenever SKR and RM are
R

unitary modules.

Proposition 1.5. For every triple(RP} RUS> sM) such that RP is a finitely

generated protective module, there is an isomorphism of abelian groups

f]:Hom*(P, £/)(g)M->Homfi(P, URM)

defined via

f]{yRm): p<->pytg)m

thatis natural in each of the three variables P, U, M.

Corollary 1.6. For every triple of unitary modules (rPs, rUs, sM) such

that
RP is locally

projective and Pf is a finitelygenerated left R-module for all

/!=/g5) there is an isomorphism of left S-modules

7]:S EomR(P, U)S^M-> S Hom*(P, U^)M)

defined via

{yRm)y): p*-^pyRm

that is natural in each of the three variables P, U, M.

PROOF. It is routine to verify that rj is a homomorphism which is natural

in each variable. Next we show that rj is injective. In fact, assume

(lYi<S>mi)rj―O. Since j-jGS Hom^P, U)S, there is an idempotent /2=/gS with

fTif―lfi f°r a11i- By assumption the left P-submodule Pf is finitelygenerated,

hence it is contained in a finitely generated projective direct summand P' of

P. By P/=JP7cP/(l-/)=P/cP/(l-/)( where P'(l-/)= (/>£?' | P'/=0},

we obtain that P/ is also projective. By (Eyi^m^rj―^, the homomorphism

0': Pf-^U<g)M: />/>->Ipji0mi is trivial Therefore by Proposition 1.5 we have

2YtRra*=O in Hom*(P/, £7)<g)M, but Homfl(P/, U)=f Homfl(P, U)S, hence

Sji^mi must be zero in S Hom(P, U)S(&M. For proving the surjectivity of rj,

if 0 is any element in S HomR(P, URM), then there is an idempotent /8=/eS

with f<f>=$. Consider the restriction§' of 0 to Pf which is a finitelygenerated

projective direct summand of RP. By Proposition 1.5, there is an element

ZfiRmi of Hom^CP/, U)RM which corresponds to $'. Extend y＼ to a yt
s

denned on P by putting (P(l―f))fi=0. Now itis clear that (Iyi<S)mi)7]=f$=fi,

and we are done.
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Proposition 1.7. Let Ps, RUS and RM be unitary modules such that Ps is

finitelygenerated and projective. Then there is an isomorphism of ahelian groups

■q:P^S EomR(U, M) -> HomR(Hom5(P, U), M)

defined via

y(P<S>T):d&Eoms(P, U)^(dp)T

that is natural in each of the three variables P, U, M.

Corollary 1.8. Let RPS> RUS and RM be unitary modules such that Ps is

locally projective and eP is a finitelygenerated right S-module for all idempotents

e*=e<=R. Then there is an isomorphism of left R-modules

f]:P^S Hornet/, M)->R HomR(R Homs(P, U)R, M)

defined via

{pRy)7):5^R Homs(P, U)R>->(dp)r

that is natural in each of the three variables P, U, M.

Proof. It is routine to verify that 57is a homomorphism which is natural

in P, U and M. Assume now (Zpi<S>Yi)r)=0. Since RP is unitary, there is an

idempotent eei? with ePi=pi for all i. From our assumption it follows that

eP is a finitelygenerated projective direct summand of Ps. Since (^Pi<S>Y^V―^>

the element <j>of YiomniyiomsieP, U), M) defined by 8^=I(dpi)yi) d^Homs(eP, U),

is zero. Hence we can apply Proposition 1.7 and obtain that the element

2piRTi is zero in eP<S>S HomR(U, M) and therefore it must be zero in

P(g)S Hom/j(Z7, M), too. The surjectivity of rj is seen as in the proof of

Corollary 1.6.

Corollary 1.9. Let RPS and SN be unitary modules such that Ps is locally

projective and eP is a finitelygenerated right S-module for every idempotent

eei?. Then there is an isomorphism of left R-modules

rj:P6Z>N-* R Homs(Homs(P, S)R, N)

definedvia

(pRn)y: <5eHoms(P, S)R^(dp)n

thatz'.snatural,in P and N.

Proof. Putting R=S, U―S and N―M in Proposition 1.7, we obtain that

fj:P§§N―>Hom5(Homs(FJ 5), TV) is an isomorphism of abelian groups which is
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natural in- P and N, provided that Ps is finitelygenerated and projective. In th<

general -ca.se,it is straightforward to check that fjis a homomorphism of lef

i?-modules which is natural in P and N. Next we show that rj is injective

In fact, assume (2r£iRni)i?=0. Since RP is unitary, there is an idempoten

eei? such that epi=pi for alli, and eP is a projective right S-module for PL

is locally projective. Now the element <f>of Hom,s(Homs(eP, S), N) defined b}

d$=2(dpi)ni is zero since (2pi<g)ni)7]―0,and by the remark made at the

beginning of the proof we have that 2pi<g)ni is the zero element in eP&)N

hence it is-the zero in P<g>N, too. The surjectivityof i＼is seen as in the proo"

of Corollary '1.6.

Lemma 1.10. Let
RP

be a locallyprojectivegenerator, and let S be a subring

of End/jP having local units such thatPeModS, SEndRP=S, and Pf is a finitely

generated submodule of RP for every idempotent /eS. Then

1) Ps is a locallyprojective generator,

2) the mapping 1: i?―>EndsP: r*-*Xr,where Xr:p^rp, is an embedding of R

into EndsP such that (EndsP)(X(R))=X(R).

Proof. By the assumption, P can be considered as a unitary P-S-bimodule.

Since
RP

is a generator, it generates Re for any idempotent eei?, i.e., there

are a natural number n and a unitary left Pv-module P' such that Pn^ReQ>Pr.

Then it follows

(End*P)^HomK(P＼ P) = UomR(Re, P)cHom*(P', P)~eP^EomR(P/, P).

This fact implies, since End^P is a ring with identity, that eP is a finitely

generated right End/jP-module, i.e., there are finitelymany elements plr ･･■,pk

eeP such that every element pe.eP can be expressed as p―p^^ ■･-+pk$k

where <f)x,■■■,^eEndijP. On the other hand, we know that PeModS, hence

there is an idempotent /sS with pif=pi for alli and then p=pi(f^>i)+ ■■･+

Pk(f$k)- Since f(f>u･･■,f$k are contained in S by the assumption, we see that

eP is a finitely generated right S-module. Since eP is a projective right

EndijP-module and every right S-module can be considered as a right End^P-

module, we deduce immediately that eP is a projective right S-module, too.

Furthermore, if elf e2ei? are idempotents such that ex^e2, then the map

(pex'P―*e1P:p'―>exp factors through the corresponding map <per All this shows

that Ps is locally projective.

For any idempotent /g5, Pf is a finitelygenerated projective left P-module

by the assumptions, hence there is an idempotent eei? with PfQ)T^(Re)71 for

a natural number n and a unitary left P-module T. Therefore
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(eP)n^tnomR(Re, p)2n= HomR((Rer, P) = HomR(Pf, P)cHomfl(T, P)

=fSmomR(T} P)

which implies, since S has local units, that Ps is a generator.

Since RP is a generator, RR is a sum of homomorphic images of
RP, but R

as a ring has local units, and so annR(P)=0 must hold. This implies that the

mapping X, which is clearly a homomorphism, is an embedding. In what fol-

lows we shallidentify R with the subring X(R) of End^P.

In order to see (EndsP)R=R, take any p<=(EndsP)R. Since R has local

units, there is an idempotent eei? such that pe―p. As eP is a finitely

generated right S-module, we have eP=pxS-{- ･･･+pnS. Let K denote the

submodule of RPn generated by (pu ･･･,pn). Since RP is a generator, if is a

sum of homomorphic images of RPn, i.e.,(plt ･･■,pn)=Xi$1+ ･･･+xk0k where

xlt ･･･, xk^Pn and $u ･･･,<f>k:Pn-+K. As PeModS and 5 has local units,

each xt is contained in a (Pf)n, /2=/eS, so we can replace each <j>iby f$t.

Now f$t: Pn^>K can be considered as an n X n matrix with entries from

fEndRP, by one of our assumptions we have SEndRP=S> hence each /0* can

be considered as an element of Sn, the ring of nXn matrices over S. All this

shows that p―pe can be considered as an endomorphism of {Pn)sn and there-

fore we have

pi.Pi,- ,Pn)=p(x1{f<!>x)+ - +xk{f<j>k))={px1){f"01)+ - +{pxk){f<j>k),

and here {pxi){f^i)^Pnf^ilQK for /=1, ･･･, k. Hence p(plf ― ,pn)<=K=

R(Pi, ■■■,Pn), thus we have that p ―pe―re for some rei?.

2. The Morita equivalence.

Theorem 2.1. Let R and S be equivalent rings with local units via inverse

equivalences G : R Mod->S Mod and H: S Mod-^-i? Mod. Set

P=H(SS) and Q=G(RR).

Then P and Q are naturally unitary bimodules RPs and sQr such that

1) RP, Ps, sQ> Qr are locally projective generators and

S EndRP=S=(EndRQ)S, (End,P)R=R=R EndsQ :

2)

3)

4)

RPs = EomR(Q, R)S^R Homs(Q, S), sQssHom5(?, S)R^S HomR(P, R);

G = SUomR(P, -), i7=*i?Hom5(Q, -) ;

Gs<5(g)-, H=PR-;

5) identifying sQr with S HomR{P, R) and S with S HomR(P, P) {see 2 and

1 above), consider the bilinear Products
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(-,-): PXQ-+R :(p, q)-=pq^R ,

<-, -> : QXP-+S: (q, />>=(-, #eS;

then P(&Q and Q(R)P become rings if we put (pi<S>gi)(p2<S>qz)=p1<S><,q1,/>2>tf2and

(Qi(&Pi)(q2(&p2)=qi<8>(Pi,Qt)Pi,and we have R = PRQ and S^Q<g)P.

Proof.

isomorphism

By Proposition 1.1, R^R Hom^i?, R), moreover, this is also an

of rings; furthermore, G yields the isomorphism of rings

EndR(RR)=Ends(sQ), and therefore Q can be considered as a right i?-module.

In order to show that QR is unitary, take an arbitrary element q^Q. Since

Q―＼J{G(Re):e2=e<=R}, there is an idempotent gei? such that q^G(Re). Now

the right translation pe^EndsQ induced by e acts as an identity on G{Re),

hence qe=q. Similarly, P is a unitary right 5-module. It is clear that

Qe^=G(Re) is a finitelygenerated left S-module.

Since
RR is a

locally projective generator, the same holds for SQ, too. In

the same way,
RP

is a locally projective generator. Now we can apply Lemma

1.10 and obtain that Ps and QR are also locally projective generators and it

holds REndsQ=R=(EndsP)R and S=SEndRP=(EndRQ)S, and our first claim

is proven.

Next we turn to the proof claim 3). Since G and H are equivalences, for

every Me R Mod we have the left S-isomorphism

Hom.≪(S. G(M))sHomft(#(S), M)=HomR(P, M).

Furthermore, by Proposition 1.1, G(M) = SYLoms(S, G{M)) is

morphism in M. All this shows that G = S Homfl(P, ―)

H=REoms(Q, ―), and claim 3) is proven.

Now we have

a natural iso-

and similarly

sQR=sG(R)R=SHomR(P, R) = SEomR(P, Homs(P, P)R),

and thereis also an S-i?-bimodule isomorphism 57between S Hom^F, Homs(P, P)R)

and Homs(F, SEomR(P, P))i?= Hom5(P, S)R defined by

>?(r)eHoms(P, SHom*(P, P))R : a^f]{r)a^SHomR(P, P):b^P^{ay)b

for every element y^SHornR(P, RomS(P, P)R). (For proving that f} is an

isomorphism, notice that its inverse is br}"1(a):a<^P>-+a(ab).) Hence we get

sQR^Homs(P, S)R. Similarly we have RPs^UomR(Q, R)S~RHoms(Q, S).

Now Proposition 1.4 and Corollary 1.9 together with claims 2) and 3) proven

just above yield



Morita equivalence for rings without identity

H^R Homs(Q, -)=*/? Homs(Homs(P, S)R, -)^PR-

and similarlyG^Q<S)―･

To prove 5), consider the mapping

X: P&Q-+R: S/>,(8)9i->S(/>i,qt)

9

It is clear that X is a homomorphism of abelian groups. Next,

*[(/>iR0i)(/>2<8>02)]=-a[/>i<8)<?i,/>2>?2]=(£i, <<?i,P≫>gi)=(Pi<gi, &>, q*)

= ((Pi, Qi)p2, qz)={pi, qi){pt, gz)=X(pi0Qi)X(p20g2),

hence 2 is a ring homomorphism. Since RP is a generator, RR is a sum of

homomorphic images of P, so every rei? can be written as a finite sum

r=^ipi<f>i, pi^P, $i<EHomR(P, i?). Now Ps is unitary and S has local units,

hence there is an idempotent /eS such that pv=-Pif for all i. Therefore we

can replace 0* by f<pi=gi^Q, and then r=S/>i9i=^(S/>iR9i). Thus the

mapping ^ is surjective. Finally, suppose that 2(/>*> 9i)=:0. Since Qfl is unitary,

there is an e^R such that gte=gi for all z, and by the surjectivity of A,

e can be written as JXp'j, g'}). Now we have J}pi<g)qi=TiPi(S)giC>-!lpj,gfj)=

TiPi^Qiipj, q'j).At this point, notice that for any p'^P and q, q'^Q, q(pf,q')

eQgHom(F, R) and (q, />'>?'£(?gHom(i>, R), and for all pe=P it holds

p{q(P',q'))={p, q){p',q')={{p, q)P',q')={p<q, p'>, q')={p, <q, PW), hence q(p',q')

=(.q,p/s)qf≪Therefore we can continue:

HpiRqi=Y>PiR(qu Pj>qj='Zpi<gi> pj>0Qj=mpt, Qi)PjRg'j
i,j i,j i,j

=S(S/><, qi)P'jRqj=O,

which proves that X is injective.

Finally we consider p: Q(g)P-+S : StfifS^i^ZXtfi, Pi}- It is clear that p is

a homomorphism of abelian groups. The fact that p is a ring homomorphism

and the injectivityof p are proven in the same way as was done for X above.

To prove the surjectivity, consider first an idempotent /eS. Since Pf is a

finitelygenerated projective left i?-module, there are a P'ei?Mod, an idem-

potent e^R, and a natural number n such that PfRP'^(Re)n. Denote by

Pu ･"
>
Pn the canonical image of the basis {e)u ･■■,(e)n of (Re)n. Then every

element p^Pf admits a unique decomposition p=(r1e)p1+ ■■■+(rne)pn. Denote

by Qi (i=l, ･･･,n) the mapping which assigns to each p^Pf the corresponding

element rte. Clearly, this qt is a homomorphism from Pf to Re^R. We

extend gt to the whole of P by putting CP(l―/))#i=O (here 1―/ makes sense

for / is an endomorphism of RP) and denote this extended mapping also by gt.
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By the definition of qt we have, for every peP, (/>,qi)=(pf) qt) and pf=

H(Pf,qi)Pi. Therefore p5Xqit pi>=X(P, Qi)Pt=Pf for all pt=P, hence /=

2<<7t,Pi)- Finally,if seS and />eP are arbitrary, then s=fs for an idempotent

f=<Qi,Pi>^S, and then ps~pfs=p{Tl<qi,Pis>s)^'Z{p,qi){piS)=plliqi,piSy, i.e.,

s=2<^i, />jS>,and we are done.

The usual definitionof a Morita context makes no use of the identities of

the rings, hence it makes sense in our case. Now we have:

Theorem 2.2. Let R, S, RPS, sQr, {,):PxQ-*R, <,>:£xP->S be a

Morita context where R, S are rings with local units and P, Q are unitary

bimodules. Then PR― '.S Mod->i? Mod and Q<S>―: R Mod->S Mod are equiva-

lances inverse to each other if and only if both (,) and <, > are surjective.

Proof. If PR~ and Q0― are inverse equivalences then the surjectivity

of (,) and <, > follows from 5) in Theorem 2.1. Conversely, if these mappings

are surjective then they induce surjective bimodule homomorphisms from

r(PRQ)r to R and from si.QRP)s to S. Next we see that these homomorphisms

are also injective. Indeed, let 2(/>i, Qi)=0. Since QR is unitary, there is an

eei? such that qie―Qi for all i, and by the surjectivity of .(,), e can be

written as 2(#, Qj)- Now we have 2/><R?i=2]!>i<8>?i(2/>>,q'j)='£PiRqi(Pj,Qj)

=2/>i<SKtfi,Pj>Qj=^Pi<Qi> #><8#=2(/><, qi)pjRqj=?XIXPu ?*))#<8# = 0. The
i,j i.) i.i 1 i

injectivityof <, > is proved dually. Now we obtain, for every Me R Mod and

iVeSMod, P0(QRM)s(P(g)Q)RM^i?RM=M and similarly QR{P<$N) = K

Remark. In Taylor [9] Morita contexts with surjective mappings are

shown to yield Morita equivalence, and vice versa, for central separable algebras

over a commutative ring with identity. However, central separable algebras

need not have local units and the converse implication does not hold either.

Corollary 2.3. For any rings R, S with local units, R Mod and S Mod

are equivalent if and only if Mod R and Mod S are equivalent.

Next we proceed to characterize Morita equivalence in a way similar to

the case of rings with identity. Conform to that terminology, call a unitary

bimodule
RMS

balanced if the canonical homomorphisms S->EndRM and i?-≫End,sAf

are injective and, identifying R and S with the corresponding subrings of

endomorphisms of M, it holds SEndRM=S and (EndsM)R=R.

Theorem 2.4. Let R, S be rings with local units and G : R Mod-*S Mod,

H: S Mod―>i? Mod be additive functors. Then G and H are equivalences inverse
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to each other if and only if there exists a unitary himodule RPs such that

1) both RP, Ps are locally projective generators,

2) rPs is balanced,

3) G = SHomR(P, -) and H^PR-.

Moreover, if P satisfiesthese conditions then, putting Q=SHomR(P, R), sQr

is a balanced bimodule, both SQ and QR are locally projective generators,

H^RHoms(Q, -) and GsQ0-.

Proof. The necessity of the conditions as well as the final assertion

follow from Theorem 2.1. To prove the sufficiency,let M^R Mod be arbitrary.

HThpn wp bnvp

Cor. 1.8 Prop. 1.3

HG{M) =*P&S Hom^P, M) s /?HomR(i? Homs(P, F)i?, M) s

Prop. 1.1

^RHomR(R, M) s M.

On the other hand, for any NeSMod,

Cor. 1.6 Prop. 1.2
GH(N)^SHomR(P, PRN) =* SUomR(P, P)S(g)N^SRN = N.

Following Abrams [1], now we present a concrete way to construct rings

with local units Morita equivalent to a given ring R of this kind,

For a locally projective module P, the endomorphisms of each Pt extend

to endomorphisms of P when composed by (pi, and in this way the endo-

morphism rings of the components Pt form a direct system of subrings of

EndieP. Their limit 5=lim EndRPi consists exactly of those endomorphisms of

P which factor through one of the projections <J>i.The ring S has local units

because if the endomorphism seS factors through <ptthen, choosing a Pj which

contains Pi and the image of s (notice that the latter is finitely generated

hence such a Pj exists),the projection (ps is a unit to s. Now it is clear that

PeModS and SEndRP=S. If, in addition, RP is a generator then by Lemma

1.10 we obtain that Ps is also a locally projective generator and
RPS

is

balanced. Then Theorem 2.4 says that the functors SHomR(P, ―) and P<g)―

are inverse equivalences between i?Mod and SMod. Furthermore, it is also

clear from the above that, for any Me R Mod, 5 EomR(P, M) consists exactly

of those i?-homomorphisms from P to M which factor through one of the <pt.

Therefore 5 Homfi(P, M) is, as an abelian group, just the direct limit of the

HompCP,-. M). Thus we have:
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Theorem 2.5 (cf. Abrams [1]). Two rings R, S with local units are Morita

equivalent if and only if there exists a locally projective generator RP such that,

using the notation above, 5=limEndfiPf.

Remark. Let R be an arbitrary ring with local units, and consider the

module RP= 0 Re. (Notice that if e,f are idempotents with Re=Rf then this
e2=e&R

left ideal appears (at least) twice in the decomposition of P.) Clearly, RP is a

locally projective module. By Theorem 2.5, the ring S=lim En6.RRe is Morita

equivalent to R. To every idempotent eei? we can assign the endomorphism

de of P defined to act identicallyon the direct component Re and as a zero on

all other components. Clearly, the de are orthogonal idempotents in S, and by

the definitionof 5 we have

S= 0 deS= ,0 Sde

This shows that S is a ring with enough idempotents in the sense of Fuller

[7]. Thus every Morita equivalence class of rings with local unitscontains

rings with enough idempotents (which are even more specialthan the rings

consideredin Abrams [1]). A theory of Morita dualityfor rings with enough

idempotents is presentedin Yamagata [101.

3. Examples and applications

Of course, all the examples given in Abrams [1] are examples for our

theory, too; we are not going to list them again.

Example 1. Every regular ring is a ring with local units (but not neces-

sarily in the sense of Abrams [1]). Indeed, let a!, ･･･, an be arbitrary elements

of a regular ring R. Then there is a g=g2^R such that aig=ait i=l, ■･■,n,

further there is an /=/2ei? such that fai―au i―1, ■･■, n, and fg=g. Putting

e=: g-hf―gf, it is straightforward to check that e2=e and aie=ai=eai,

i-l, ■･･, n.

Proposition 3.1. // R and S are Morita equivalent rings with local units

and R is regular then S is also regutar.

Proof. By Theorem 2.5, 5 is a direct limit of endomorphism rings of

finitelygenerated projective Z?-modules. Since R is regular, all these rings are

regular, too, and the same holds for 5, being the union of these endomorphism

rings.
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Example 2. Let R be a ring with identity, S be a Rees matrix ring over

R with canonical decomposition S=SeReS, ez=e<^S, eSe=R (for the definitions
eSe

of the notions occurring in this example, see Anh-Marki [4]). If S is finitely

orthogonal with respect to e, then S is obviously a ring with local units. Now

Se is a finitely generated projective left S-module. For any Me S Mod and

raeM, consider the mapping pm: Se->M: se>-^sem. These pm's together define

a homomorphism from (SeYM:> to M whose image is SeM=Se(SM)=(SeS)M=

SM=M. This proves that Se is a generator for SMod. By Theorem 2.5, 5

is then Morita equivalent to Ends(Se)^eSe=R.

In what follows, a ring S as in Example 2 will be called a finitelyorthog-

onal Rees matrix ring.

Next, observe that §21 in Anderson-Fuller [2] makes no use of the identity

in the given rings, all the results (and proofs) presented there are valid for

our module categories, too. Thus we have:

Proposition 3.2 (cf. [2], Corollary 21.9). Let R and S be equivalent rings

with local units. Then R is primitive or a ring with zero Jacobson radical if and

only if S is such.

Proposition 3.3 (cf. [2], Proposition 21.11). Equivalent rings with local

units have isomorphic lattices of ideals; in particular, one of them is simple if

and only if so is the other.

We can also prove the following.

Proposition 3.4. Let R and S be equivalent rings with local units. If both

R and S are commutative then they are isomorphic.

Proof. Consider the unitary bimodule RPS given in Theorem 2.1. Since

R is commutative, for any idempotent e<aR, R is the direct sum of the rings

eR and {l-e)R, and we have P^RePRR{l-e)P=eRePRa^R(X-e)P. Now 5,

being a ring of certain endomorphisms of RP, also decomposes into a direct

sum Si0S2, and again by Theorem 2.1, Si and S2 are equivalent to eR and

(l―e)R, respectively. By the construction of P, eP is finitelygenerated as an

S-module, hence also as an Si-module. Then eR=EndePsv and since Sx is

commutative, we obtain an embedding of Sx into eR, but then eP is finitely

generated as an ei?-module, hence also as an i?-module. Herefrom we conclude

that rP is a finitely generated i?-module for every rei?, hence by the com-

mutativity of R, r can be considered as an element of S, and similarly, every

element of S can be considered as an element of R, whence the assertion
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follows.

Contrary to the case of unital rings, it is not true that if R and S are

equivalent rings with local units then their centres must be isomorphic. In

fact,if R is any ring with local units, N is a countably infinite set and RfN

denotes the ring of NxN matrices over R with finitelymany non-zero entries,

the RfN is a finitelyorthogonal Rees matrix ring over R (see [4]), hence it is

Morita equivalent to R by Example 2, and RfN is centreless.(We thank Dr. G.

Abrams for calling our attention to this simple example.)

Now we characterize rings which are Morita equivalent to rings of certain

'nice' kinds. The firstresult is essentially Corollary 4.3 in Abrams ["1*1.

Proposition 3.5. A ring R with local unitsis Morita equivalent to

with identity if and only if there existsan idempotent eei? with R=ReR.

is the case then R is Morita equivalent to eRe.

a ring

If this

The proof is the same as that of Corollary 4.3 in [1], therefore it is

omitted here.

PROPOSITION 3.6. A ring with local units is Morita equivalent to a division

ring if and only if it is a simple ring with minimal one-sidedideals.

Proof. Let R be a ring with local units which is Morita equivalent to a

division ring D. By Proposition 3.5 there is an idempotent eei? such that eRe

and R are Morita equivalent. Given any finite subset X of R, X＼J{e} has a

local unit/; then XQfRf, R^RfR^RefR=ReR=R, so R=RfR, and by Prop-

osition 3.5 fRf is Morita equivalent to R, hence also to D. Now fRf, being

a ring with identity Morita equivalent to the division ring D, must be iso-

morphic to a full matrix ring over D. Theorem 1 in Anh [3] tellsus now

that R is a simple ring with minimal one-sided ideals.

Conversely, if R is a simple ring with minimal one-sided ideals then it is

regular, hence a ring with local units. On the other hand, for any primitive

idempotent e<=/?, eRe is a division ring and ReR=R. By Proposition 3.5, R is

then Morita equivalent to eRe.

Remark. Notice that, by a result of E. Hotzel (see Corollary 3.5 in [4]),

simple rings with minimal one-sided ideals are just the finitelyorthogonal Rees

matrix rings over division rings.

By a primary ring A we mean a ring with identity whose factor A/J{A)

by its Jacobson radical is a simple artinian ring such that idempotents can be

lifted. If, moreover, A/KA) is a division ring then A is said to be a local
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ring. A ring R is said to be a stronglylocally matrix ring over a (unital)

ring S if for every finitesubset UQR there is an idempotent eei? such that

UQeRe and eRe is isomorohic to the matrix rinsrS*.for some n.

Proposition 3.7. A ring R with local units is Morita equivalent to a

primary ring if and only if R is isomorphic to a strongly locally matrix ring

over a local ring. If, in addition, RR and Rr are protective modules then R is

isomorphic to a finitelyorthogonal Rees matrix ring over a local ring.

Proof. Let R be Morita equivalent to a primary ring. By Proposition 3.5

there is an idempotent e£i? such that eRe and R are Morita equivalent, hence

eRe is Morita equivalent to a primary ring 5. Now both eRe and S are rings

with identity, hence eRe isomorphic to fSnf for an idempotent / in a full

matrix ring Sn over 5. Here J(fSnf)=fJ(Sn)f, so fSnf/J(fSnf)=fSnf/fJ(Sn)f

=f(SJJ(Sn))f where / denotes the image of / under the canonical homo-

morphism of Sn corresponding to J(Sn), the last ring is obviously simple and

artinian, and it is also clear that the idempotents can be lifted. Therefore eRe

is itselfa primary ring, hence there is an idempotent g^eRe such that gRg is

a local ring. Now we have (eRe)g(eRe)=eRe and, by R=ReR, also R=ReR=

ReReR―ReRegeReR=ReRgReR=RgR. Hence, by Proposition 3.5, the bimodule

RRggRg induces Morita equivalence between R and gRg. Furthermore, similarly

to the case treated in Example 2, Rg^R Mod is a finitelygenerated projective

generator. Then by Lemma 1.10, RggRg is a locally projective generator. The

canonical components of RggRg are free modules, being finitelygenerated pro-

jectives over a local ring. Therefore the endomorphism ring of each of them

is a finite matrix ring over gRg, and the assertion follows from Theorem 2.5.―

The converse is obvious by Proposition 3.5.

Suppose now that, in addition, RR and RR are projective. Then in the

proof above, RggRS and gRggR are also projective,hence they are free modules,

for gRg is a local ring. Now [4], Theorem 3.1 says that R=RgR is a Rees

matrix ring over sRs. and it is finitelyorthogonal for R has local units.

Proposition 3.8. A ring S with local units is Morita equivalent to a two-

sided perfect local ring R if and only if S is an orthogonal Rees matrix ring

S＼11/IISU

Proof. Suppose that R and S are Morita equivalent. By Theorem 2.1,

there exist locally projective bimodules RPS and SQR such that S = Q<g)P. Since

R is perfect, RP and QR are projective, and since R is local, projectives are
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free. Now the assertion follows from [4], Theorem 3.1. The converse is

obvious by Example 2.
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