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Abstract. Let R be a commutative ring with identity.The main

resultof thepaper is the following:

THEOREM. Let f :Z ―≫X be a UV" '-mapping from a compactum

Z of dimension < n onto a compactum X. If H" (/"'(x); R) = 0 for

all x G X, then a ―dimRX < n.

As its consequence, we have a characterization of compacta X of

a ―dimRX < n.

Theorem. A compactum X admits a UV'1'1-mapping f :Z ―≫X

from a compactum Z of dimension < n onto X such that

Hn(f-＼x);R) = Oforall xeX if and only if a-dim
RX<n.

1. Introduction

This paper is to devoted to investigation of compacta that admit acyclic UVn~x-

resolutions of compacta of dimension < n.

Let X be a compactum and G be an abelian group. The notation

" c - dimG X < n " means that every mapping f: A―> K{G,n) of a closed subset A

of X to an Eilenberg-MacLane space K(G,n) can be extended over X and should

be read as cohomological dimension of X with respect to G is at most n. The

existence and the construction of resolutions have played an important role in

cohomological dimension theory. The first,a beautiful result, was given by

Edwards and Walsh [Wai:

Edwards-Walsh Theorem. A compactum X is of c-dimzX<n if and

onlyif thereexistsa compactum Z of dimension < n and a cell-likemapping

f:Z->X.
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A similarcharacterizationof cohomological dimension modulo p was given

by Dranishnikov [Dr,]:

DRANISHNIKOV THEOREM. A compactum X is ofc-dimz <n if and only if

there existsa compactum Z of dimension < n and a UV"~X-mapping f : Z ―>X

such thatH" (/"'(jc);Z) = 0 for all xe X .

Both results have been extended to non-compact metrizable spaces and non-

metrizable compact spaces. See Rubin-Shapiro [R-S], Marde sic -Rubin [M-R]

for the integral case, and Koyama-Yokoi [K-Y] for the modulo p case. However,

there is no similar characterization of rational cohomological dimension (see [K-

Y]). Thereby the author and Yokoi [K-Y] introduced the notation "approximable

dimension" as a generalization of cohomological dimension.

Definition. Let G be an abelian group, n be a natural number and £ be a

positive number. A mapping y/:Q-^P between compact polyhedra is (G,n,e)-

approximable if there exists a triangulation T of P such that for any triangulation

M of Q there is a mapping y/': | MM | ―>| rfn) | satisfying the following conditions:

(i) d(y/＼W＼iMMi)<e,

(ii) for any mapping a :| T(n> ＼―> K(G,n), there exists an extension

ft:Q^K(G,n) of ≪oi//'.

DEFINITION. A compactum X has approximable dimension with respect to a

coefficient group G of at most n {abbreviated, a ―dimGX<n) provided that for

every mapping / : X ―>P of X to a compact polyhedron P and a positive number

£, there exists a compact polyhedron Q and mapping <p:X ―>Q,＼ff:£?―≫P sucn

that

(i) d(f,y/o(p)<£,

(ii) y/is(G, n,e) -approximable.

An advantage of approximable dimension is the following resolution theorem

[K-Y]:

THEOREM A. Let G be an abelian group. If a compactum X is of

a ―dimGX<n, then there exists a compactum Z of dimension <n and a

UV~] mapping f : Z -> X such that H" (/"'(*);G) = 0 for all x e X .

In thispaper we will show that a-dimGX is the necessary condition for the

existence of acyclic UV"~l-resolutionsif G is a commutative ring with identity.
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Combining with Theorem A, we give a characterization of compacta which admit

acyclic UV"~{-resolutionsfrom n-dimensional compacta. Commutative rings with

identity are, for example, Z,Zp,Q,Z(p),R,... etc. Thus, our characterization may

cover rather wider class of coefficient groups.

The position of approximable dimension is, in fact, between cohomological

dimension and the covering dimension. We list the fundamental properties of

approximable dimension [K-Y]:

PROPOSITION. For a compactum X and an abelian group G, we have the

following inequalities:

c - dimc X<a- dimG X < a - dimz X < dim X.

On the other hand, ifG-ZorZp, then a - dimG X-c- dimG X .

Therefore our characterization may be considered as an extension of

Edwards-Walsh and Dranishnikov Theorems. We note that any compactum is a

UV"~X-image of a n-dimensional compactum (see [Dr,]). Hence UV"~l-mappings

of compacta of dimension < n do not have a partin dimension theory unless other

conditions are stated.

The author would like to express his thank to Professor J. Dydak for his

helpful discussion.

2. The results

Theorem B. Suppose R is a commutative ring with identity.If a compactum

X admits a UV"~l-mapping / : Z ―>X from a n-dimensional compactum Z onto X

such that H" (/"'(*);/?)= 0 for all xeX, then a - dim , X < n.

Proof. Assume that Z is a closed subset of RN for sufficientlylarge N. Let

us take a mapping g: X ―>P of X to a compact polyhedron P and a positive

number e > 0. We choose a triangulation T of P such that mesh [7] < e .Then

[|r(")|,^(i?,n)] = /f"(ir(/"|)Ri?si?e...ei?ei?/mli?c...ei?/m/i?.

Thus, [| T(n) ＼,K(R,n)] is the direct sum of s + t commutative rings with identity.

For each i = l,...s + t, let OLi:|T(n) ＼―>K(R,n) be a mapping that represents the

identity of the z-th direct summand of the above formula.

Consider the mapping g °/: Z ―> P. Since dim X = n, there exists a mapping

h:Z-^＼T(n)＼ such that d(h,g°f)<£. Moreover, h can be extended over some

neighborhood of Z in RN keeping the distance condition. Thus, we may assume
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that (by the same symbol) h:O―>＼ T(n) | is a mapping of a neighborhood O of Z in

if"to | Tin) | such that

(1) d(h＼z,gof)<£.

For an arbitrary point xeX , because 0 = H"(f~* (x);R) - [f~l(x),K(R, n)],ai

°h＼f_l(x)―0for all i ―l,---s + t. Hence we can have an open neighborhood

0^ of f~＼x) in O such that

(2) diam[h(Ox)]<£,

(3) ai°h＼Ox=*0foT3l＼i = l,― s + t.

Let consider the open collection {Ox ＼x e X] in O which covers Z. Then,

because / is UVn~], we can find an open collection U in O which covers Z and

satisfies the following conditions:

(4) /"'(f(UnZ)) = UnZfor each t/ M,

(5) for a simplicial pair (A", L) such that L z> ^T(0) and a mapping £:| L |―> O such

that for each simplex s of K, ^(＼snL＼)dUs for some Useli, there exists an

extension £:| K{n) u L| ―> O of ^ such that for each simplex 5 of K,

£:(|s n ^(n) |) c OJ(V) for some x e X.

We call the collection U a n-refinement of {Ox |jcg X} (see [Dy] §8).Next,

by (4) we take a finite open cover V of X such that

(6) /~'(V)<* U, where <* means a star-refinement,

(7) V<* g-l({st(v,T)＼vGT{0)}).

Then there exists a subpolyhedron N of the nerve N(V) of V and a surjective

mapping (p: X -$ N such that

(8) <p-＼st(V,N))<zV for each vertex VeN.

Here TV is the subcomplex of N(V). Thereby each vertex V of N can be

considered as a member of the covering V. For each vertex V of N, by (7) and

(8), there exists a vertex y/(V) e T(0) such that

(9) cp"1(jf(V, TV)) c g-1(rt(y(V), T)).

Clearly, (9) defines the mapping w : Af ―> T, and we can easily see that

(10) d(y/°(p,g)<2£.

Next, we will show that y/ is (i?,≪,3£)-approximate. In the definition of

(G, /t,e)-approximability we considered an arbitrary triangulation of Q. However,

itis sufficientto consider an arbitrary subdivision K of N. For each vertex w of

K,

(11) w £st(V(w), N) for some vertex V(w) e N(0).

Then we choose an arbitrary point n(w) e Z such that

(12) u(w)e/-'(V(w))cZ

For any simplex s = (wo,wl,...wk) of K, the vertices V(wo),V(wl),...V(wk)

span a simplex of N. Hence
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(13) ntoV(w,.)*0.

Hence (13), (12) and (6) imolv that

(14)

119

Mw0), Mw,),..., /i(w,) e uf=0 /-' (V(w,.)) c *f(/"' (V(w0)), /"' (V)) c Us

for somef/j g M.

Then the condition (5) implies that there exists a mapping £:I K(n) I―≫O such

that

(15) for each simplex s of K, £(|snK(n) |)c Ox(s)for some x(s)eX.

Here we note that, following the above notation, V^ c Ox(s) for each simplex 5

of A".

Now we will show that the composition hot, :| K(n) ＼―>|T(n) ＼ satisfies the

required conditions.

Claim 1. diho|,y/1,^<,>,)< 3e.

Proof of Claim 1. For an arbitrary point ze＼Kin)＼,let take the carrier s

= (wo,w,,...,w.),k <n,of z .Then

f'(z)cn%.)cg
/=0

l(st(y/(V(w0)),T)),

V(z)erf(y(V(wo)),r).

Hence we have thatforany point u e <jP~'(z),

d(y/(z),g(u))<2e.

On the otherhand, by (14) and theconstruction,

V(wo),fi(wl),...,ii(wk)e{Jrl(V(wi))c:st(f-{(V(wo)J-＼v)))<zUs,

^(z)e^≪w0,w1,...,w,≫cOr(v),

and Usa0x{s). Hence, because /"'(f'^c^nl, the conditions(1) and (2)

yieldtheinequality:

d(h o£(Z),g(u))< d(h o£{Z),h(u))< diam[h(Orl,,)]<£,

where U E /~'(k)c Z.It follows that

d(h o£(z),^(Z)) < d(h o ^(z),g(w)) + rf(s(K),v^(z)) < 3e,

where u is an arbitrary point of q> '(z). Thus, we have Claim 1.
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Claim 2. For any mapping a＼＼T(n)|―>K{R,n),there exists an extension

P : N = |K | -> K (R, n) of a °/io£.

Proof of Claim 2. First, we note that a°h＼Ox―0 for all xeX. For, the

homotopy class [a] can be represented as a linear combination:

[a] = rl[al] + - + rs[all]+ (rs+1+m,R)[as+1] + - + (rs+t+m,R)[as+l],

where r{,---,rs+te R and rs+i+mtR,i = 1,･･-,?,is the coset of rJ+/ modulo m,./?. For

each r 6 /?, the homomorphism 9r:R^>R given by 0rO) = nc induces a mapping

9r:K(R,n)^K(R,n) such that Brlf= 0r : Kn(K(R,n)) -≫Kn(K{R,n)). Then

_ [>[≪,] fori = l,...,s

[6 oa.] = {
r ' [(r + m,._si?)[a,.] for i = s + l,...,s + t.

Hence the condition (3) implies that aoh＼o ―0 for all x e X.

Now it suffices to show that the mapping a°ho^ can be extended over the

(h + 1)-skeleton ＼K{n+l)＼.For each (n + l)-simplex s of K, by (5), £(＼ds＼)czOxM

for some x(s) e X. Hence by the above discussion, ao/jo^||A|=0. Thereby there

exists an extension fls:＼s＼―>K(R,n) of aofto£| . Then let us define the

mapping p :| Kin+l) | -> K(R,n) by

P＼lsl= Ps for each(n +1) - simplex s of K.

Thus, we have a desired extension and thereby Claim 2.

By Claims 1 and 2, 1// is (R,n,j£)-approximate. It follows that

a - dim^ X < n.

By Theorems A and B, we have the characterization of a-dimRX<n in

terms of acyclic UV"'1 -resolutions. The Proposition says that it may be

considered as an extension of both Edwards-Walsh and Dranishnikov theorems.

THEOREM C. Let R be a commutative ring with identity. Then a compactum

X is of a ―diniflX < n if and only if there exists a compactum Z of dimension < n

and a UV""1 -mapping f: Z -≫X such that H" ( T1 (x);R) = 0 for all x e X.

THEOREM D. Let G be a finitely generated abelian group. Then for every

compactum X we have the equality a ―dimG X = c ―dimG X .

Proof. By the Proposition it suffices to show the inequality

a - dimc X < c - dimG X. In the case GI TorG & 0, c - dimG X = c - dimz X. Hence

the Proposition induces the inequality.
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Thus, we may assume that G = TorG. Then by Dranishnikov Theorem (see

[Dr3] for more detail), there exists a compactum Z of dimension <n = c-dimc X

and a UVn~l -mapping / : Z -≫X such that if" (/"'(jc); G) = 0 for all jce X .

Thereby Theorem B implies the inequality a -dimG X<n = c- dimG X.

REMARK. It may be possiblethat Theorem D is an easy consequence of

Proposition. However, we do not know whether the equality

a-dimG(BH X = max{a-dimG X,a-dimH X} holds. If it does, it easily implies

Theorem D.
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