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SOME METRICS ON A (4r+3)-SPHERE AND SPECTRA

By

ShukichiTanno

Let (Sm, g) be a unit sphere in a Euclidean (m+l)-space. In a paper [4]

the author gave an orthogonal decomposition of the eigenspace Vk corresponding

to the &-th eigenvalue of the Laplacian acting on functions on (S2n+1, g). This

decomposition is related to the Hopf fibration: S2n+1-*CPn, where CPn denotes

the complex projective space, and we can define a 1-parameter family of Riemann-

ian metrics g(t) such that g(0)―g and the spectrum of each (S2n+1, g(t)) is

calculatable by this decomposition. In §2 we give a briefreview on (S2n+1, g(t)).

The analogous decomposition of Vk is possible for the Hopf fibration:

Sir+s-^QPr, where QPr denotes the quaternion projective space. The decom-

position is given by Proposition 3.1. We define a 1-parameter family of Riemann-

ian metrics g(t) on Sir+3 such that g(Q)=g and the volume element with respect

to g(t) is unchanged when t varies. Then the first eigenvalue c% of the

Laplacian ayJ on (Sir+S,g(t)) is given by Proposition 3.2, and we see that

CO>R1―>0as t―>0 and c%―>oo as t-+oo. The multiplicity of c% is given by

Proposition 4.1.

Results of [2]~[5] show that the generalization of Hersch type theorem on

S2 to Sm (m^3) or to some homogeneous spaces is impossible. These metrics

in [2]~[5] are related to 1-dimensional distributions on manifolds. Metrics on

S4r+3in this paper are related to 3-dimensional distributions. And they give new

examples of compact Riemannian manifolds whose spectra are calculatable.

§1. Preliminaries.

Let £i,$2 and £3be Killing vector fields on a Riemannian manifold (M, g)

of dimension m such that

(1.1) fi,£2and £3are orthonormal,

(1.2) Ki,fJ=%, K.,W=2ei, Ki,≪=2f,.

By t?!,7/2and >73we denote the 1-forms dual to fa, f2 and |3 with respect to g.

Then we obtain
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(1.3) L*iVl=0, L*lVi=2Va, LhVs=-2V2>

and the corresponding relations for L;2 and L:s, where Lx denotes the Lie

derivation by a vector fieldX.

We define a Riemannian metric *g by

(1.4)
*g:=ag+(P~a)(VlRVl + 7]2(3Vi+rj3(g)V3)

for some positive numbers a and /3. By 7 and *7 we denote the Riemannian

connections by g and *g, respectively.

By {exp tX} we denote the local 1-parameter group of local transformations

generated by a vector field X. Since each ft is a unit Killing vector field,

{(exp t£i)p}is a geodesic in (M, g) for each point p of M. By (1.3) and (1.4) ^

is also a Killing vector field with respect to *g of constant length /31/2. In

particular, for each point p of M, {(exp /£*)/>}is also a geodesic with respect to

**.

Lemma 1.1. Let {x(t)＼ be a geodesic with arclength parameter t in (M, g).

If {x(t)} is orthogonal to each £,:at some point x(t0), then {x(t)} is also a geodesic

with respect to *g.

Proof. Since each t-tis a Killing vector field,the geodesic {x(t)＼is orthogonal

to £i at x(ta) if and only if it is orthogonal to $t at each point x{i). Let e be a

unit vector field defined on an open neighborhood U of a piece / of {x(t)}, such

that e is orthogonal to each $t on U and satisfies e=dx(t)/dt on /. Then lee―0

holds on /. By an identity defining *7 we get

2*^*7a≪, Z)=2e-*g(e, Z)-2*g(e, [≪, ZJ)

on /, where Z denotes a vector field on U. Since *g{e, Z)=-ag(e, Z), we get

*g(*lee, Z)―agC7ee, Z)―Q on /. This shows that / in U and hence {x(t)} in

(M, ^) is a geodesic with respect to *g. Q. E. D.

Let A and *A be the Laplacians with respect to g and *g, respectively.

Then we get

Lemma 1.2. For a function f on M,

*Af=a-WMp-1-a-iXLeiLSl + Ls%Lh+LetLh)f.

Proof. Let p be a point of M and let {glt£z,f3, g4,･･･,gm} be a field of

orthonormal frames with respect to g defined on an open neighborhood of p

such that {(exptej)p, ＼t＼<e}is a geodesic for each j=4, ･･･, m. Since (Af)(p)

is given by the sum of the second derivatives of / at p with respect to the
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arclength parameter t along mutually orthogonal m geodesies passing through

p, we get

(A/)(£)=2 (LfiLfi/)(/≫)+S {Le.Lejf)(p).

{(exp tfi~ll2£;i)p}and {(exp to"1/2ey)/)}are geodesies with arclength parameter t

with respect to *g. Therefore,

(*Jf)(p)=P~l S (L^L./X^+a-1 S (LejLe/)(p),

and we get the identity.

§2. A review on (S2n+1, g(t)).

Let (S2n+1,g) be a unit sphere of dimension m―2n + l in a Euclidean space

Em+l. Em+1 is considered as a complex Euclidean space CEn+1 and so let

(x", y" ; a=l, ･■■, n+1) be a natural coordinate system in Em+l. Then we have

an almost complex structure / such that J(xa, ya)~(ya, ―xa). If one considers

a point x=(xa, ya) in Sm as a unit vector in CEn+＼ and Jx as a tangent vector

at x to Sm, we get a vector field£ on Sm. The 1-form 57 dual to£with respect

to 5" on S"1 is a contact structure on S . $ is a Killing vector fieldand called

sometimes a Sasakian structure on (Sm, g).

The spectrum of the Laplacian A acting on functions on (5m, g) is given by

(2.1) Spec (Sm, g)= {Xk = k(m+k-l); k=0, 1, ･･･},

where the multiplicity pt{k)of Xk is given by

(2.2) /A≪)―m+ kCk~~m+k-iCk-2., K = 2 ,

and ju(O)=l, ^(l)=m+l.

We define a 1-parameter family of Riemannian metrics g{t) by

(2.3) ^^r^+a"-1-?-1)^^

Then the volume element with respect to g(t)is unchanged when t varies, and

the Lapiacian COJ is given by

(2.4) <ti4f=tdf+(t1-m-t)LsL*f'.

Let Vk denote the eigenspace corresponding to the k-th eigenvalue lk of A.

LzL? induces a symmetric linear transformation of Vk with respect to the usual

inner product and we see that L=L? has non-positive eigenvalues ―d2, where

d=k, k-2, ･･■,k―2[&/2] (where [>/2] is the integral part of k/2). Vk has the

following orthogonal decomposition

(2.5) V /,== Vk. *+ Vk, 4-2+ **■+ Vk; k-tX.kli＼
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such thatf(EVk,0 satisfiesL*L§f+d*f=O. Thus,

(2.6) (t)J/+[^(m+^-l)+(^"m-0^2]/=0

for /gFu. The firsteigenvalue(% of COJ is (2n+rm)t for rm^m+3 and

4(n+l)t for rm^m+3. Consequently,(%^0 as f->0 and a)^1-*oo as t-*oo.

Since dim F2,0=^(w+2) and dim Fi,i=m+1, the multiplicityof coiiis equal

to (ra2+6ra+l)/4 for rm=m+3. This is bigger than the multiplicitym+1 of

the firsteigenvalue mX, = m with respectto the standard metric.

§3. (Sir+＼g(t)＼

Let (S4T+3,g) be a unit sphere in EHr+1＼ Eiir+l)is considered as a product

space Qx ■■■xQ of r+1 copies of the space of quaternions. Let (xa, ya, z", wa ;

a=l, ･■･, r+1) be a natural coordinate system in EHT+1＼ Let {/,/, K} be the

quaternion structure of E4(r+l＼ If one considers a point x―(xa, ya, za, wa) of

S4r+3 as a unit vector in £4(r+1)and

Ix=(ya, -xa, wa, -za),

Jx~(za, ―wa, ―xa, ya),

Kx=(wa, za, -ya, ―x")

as tangent vectors at x to Sir+3,we get a fieldof orthonormal vectors £x,|2 and

£3on 54r+3. We put

£*= 2 (yad/dxa-xad/dya + wad/dza-zad/dwa),
a

£f=S (zad/dxa-wad/dya-xad/dza+yad/dwa),

c! = S {wad/dxa+zad/dya-yad/dza-xad/dwa).
a

Then each £<is the restriction of £f on £^r+I> to Sir+S. £lf$t and £8are

Killing vector fieldsand satisfy(1.1) and (1.2). The 3-dimensional distribution

defined by {$u £2,£3}is integrable and each integral submanifold is isometric to

a unit 3-sphere. This gives the Hopf fibration: Sir+s-*QPr.

We define a 1-parameter family of Riemannian metrics g(t) by

(3.1) g(t)=t-1g+(ttr≫-t-1XVlRT}1+Va<8)Vt+Va<g>Vi)

where y]1}rj2and rj%are defined similarly as in §1. The volume element with

respect to g(t)is unchanged when t varies. By Lemma 1.2 the Laplacian3 WA

and A with respect g(t) and g are related by

(3.2) wdf=tJf+(t-ir≫-t)Lf,
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where we have put L=2i -^i-^fr

Let Vk denote the eigenspace corresponding to the k-th eigenvalue of the

Laplacain A on (S4r+3,g). Since each L^tL^t induces a symmetric transformation

of Vk, L is also a symmetric transformation of Vk. Every eigenvalue of L is

real and non-positive.

Proposition 3.1 For a non-negative integer k, Vk has the orthogonal de-

composition ;

such thatf^Wk,d satisfies

wA/+[^(4r+£+2)+(r4r/3-O0(#+2)]/=O.

Proof. Vk is identified with the space of harmonic homogeneous polynomials

of degree k in EHr+1＼ Let F be an element of Vk. We put L* = 2; L^L^.
*i si

Then L*F＼Sir+a=Lf holds, where | denotes the restriction and f=F＼Sir+s. Let

vk=vk;1+vk;2+-+vk.,v

be the orthogonal decomposition of Vk into eigenspace with respect to L* or L

such that L/+wft/=0 for f^Vk.h, where l^/i^v. We take a point x of S4r+3.

Then the integral submanifold W of the distribution {t;ltf2, £3} passing through

x is isometric to a unit 3-sphere (S3, ^). The restriction of L to I-F is the usual

Laplacian A on (S3, g). So, the eigenvalue (yA of L must be an eigenvalue of A

on (S3, g) and hence it is of the form 0(6+2). Since F is of degree &, the degree

of its restriction to W is one of k, k―2, ･･･, 0 (for &=even) or 1 (for /e―odd).

Thus,

6(d+2)=k(k+2), (k-2)k, ■■■,(fc-2[fe/2])(ife+2-2|jfe/2]).

Then Proposition 3.1 follows from (2.1) and (3.2).

Proposition 3.2. The first eigenvalue wAi of coA is given by

^^=8(r+l)t for 4(r+2)^3r(4r+3)/3

=4r/+3r4r/3 for 4(r+2)^3r(4r+3)/3

and wL-*0 as f->0: (°^,->oo as t-+oo.

Proof. This follows from the table of possibility of eigenvalues given in

Proposition 3.1 and the fact that Wul and W2,0 are non-empty (cf.(i),(iv)in §4).
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§4. On Wk.g.

In this section we denote x", ■■■, wa by xa, ■･･, wa

(i)

(ii)

V1=W1.i and dim Witl=^r+l).

Wk, k is non-empty. In fact,let F be a harmonic homogeneous poly-

normal of degree k such that F=F(xu ylr zu wx). Let E4 be defined by xa=ya

=za = wa=0; a=2, ■■■r+1, and put S:5:=S4r+3n£4. Since

L*F＼S*=J(F＼ 53)r=-k(k+2)(F＼ S3)

and since k(k+2) is the possible maximum eigenvalue of L of Vk, we get

F<=Wk.k.

(iii) For &=2g=even, Wk,0 is non-empty. In fact, dimWk,0 is equal to the

multiplicity of the q-th eigenvalue of the Laplacian on the base manifold QPr of

the Hopf fibration.

(iv) dim W2,(i=r{2r-＼-?>)and W2,0 is spanned by

x＼+ yl+zl + w'}―xl― yl―zl―wl: 2^a£r+l,

XaXp+yayp+ZaZji + WaWp

xayp ―yaxp―zawp + wazp

xaz [j~＼-y aw p-zax p-w ay p

xaWB―yaZB+zayg―waZa ;

I^a<j9^r+1

l^a<5^r+l

In fact, let P2 denote the space of homogeneous polynomials of degree 2 in

EHr+1＼ dim P2=4r+BC2. L# acts on P2 with two eigenvalues 0 and ―8. Put

/>2.0={FePs

PUt P,,0

by

IJF=O}. Then dim P8l0=(r+l)(2r+l) and F2,0is spanned by

xaxp+yayp + zazp+wawp ; lSa< fi^Lr+l,

Xay^-yax^―zaw?+waz?; I^a<j9^r+1,

xazp+yaWp―zaxp―wayp; l^a<iQ^r+l,

xawp ―yaz[i+zayp―waxp; I^a<j9^r+1.

= {FeP2 ;L#F+8F=0}. Then dim P2,2=3(r+l)(2r+3) and P22 is spanned

xaya, xaza, xawa, yaza, yawa, zawa ; l^a^r+l,

xl―yl,xl―zl,xl ―wl; l^a^r+l,

xaxp―yayp, XaXp―ZaZp, xaxiS―wawp; l^£a<^r+l,

xay8+yaxp, xayp+zawp, xay^ ―waz?; liga<fi^r+l,
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xazp―yawp, xaz,3+zax?, xazp + wayp; l^a</3^r+l,

xawp-{-yazp, xawp―zayp, xawp + waxp; l^a</3^r+l.

Since V2=P2- {J]a (xl+yl+zl+wl)}, dim ^2,0=dim P2iO-l = r(2r+3).

Propositoin 4.1. 77ig multiplicity of the first eigenvalue c% 0/ coi o?t

r(2r+3) /or 4(r+2)<3rC4r+3)/3,

2r2+7r+4 /or 4(r+2)=3r<4r+8>/8,

4(r+l) /or 4(r+2)>3rC4r+3)/3.

This is verified by noticing that the multiplicity of co/?iis one of dim W2i0,

dim W^o+dmi Wltl, and dim W^.x according to the respective case.

(v) Let P3 denote the space of homogeneous polynomials of degree 3.

Then P,=PZ, a+P3,3, where Pu={Fg?3; L*F+3F=Q} and P8iS={F<=P8;

L#F+15F=0}. dim^3,1=dimP3,1-4(r+l), and ^3,3=^3,3.

Examples of elements of W3ll are:

2x1(xl-＼-yl+zlJrw'i)―3x1(xl+yl+zl+wl))

x1(xLx2+y1y2Jrzlz.i+iv1iv2)~y1(―x1y2―w1z2+z1iv~zJry1x2).

Examples of elements of Ws,3 are:

Xi(xi―yl―zl ―wl), xxyxzx,

1x1yiy2-＼-y＼x2―x＼x2.

If r=l, dim iy,.,=32 and dim P^, .=80.
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