SOME METRICS ON A ($4 r+3$)-SPHERE AND SPECTRA

By

Shûkichi Tanno

Let $\left(S^{n}, g\right)$ be a unit sphere in a Euclidean $(m+1)$-space. In a paper [4] the author gave an orthogonal decomposition of the eigenspace V_{k} corresponding to the k-th eigenvalue of the Laplacian acting on functions on ($S^{2 n+1}, g$). This decomposition is related to the Hopf fibration: $S^{2 n+1} \rightarrow C P^{n}$, where $C P^{n}$ denotes the complex projective space, and we can define a 1-parameter family of Riemannian metrics $g(t)$ such that $g(0)=g$ and the spectrum of each $\left(S^{2 n+1}, g(t)\right)$ is calculatable by this decomposition. In $\S 2$ we give a brief review on ($S^{2 n+1}, g(t)$).

The analogous decomposition of V_{k} is possible for the Hopf fibration: $S^{4 r+3} \rightarrow Q P^{r}$, where $Q P^{r}$ denotes the quaternion projective space. The decomposition is given by Proposition 3.1. We define a 1-parameter family of Riemannian metrics $g(t)$ on $S^{4 t+3}$ such that $g(0)=g$ and the volume element with respect to $g(t)$ is unchanged when t varies. Then the first eigenvalue ${ }^{(t)} \lambda_{1}$ of the Laplacian ${ }^{(t)} \Delta$ on ($S^{4 r+3}, g(t)$) is given by Proposition 3.2, and we see that ${ }^{(t)} \lambda_{1} \rightarrow 0$ as $t \rightarrow 0$ and ${ }^{(t)} \lambda_{1} \rightarrow \infty$ as $t \rightarrow \infty$. The multiplicity of ${ }^{(t)} \lambda_{1}$ is given by Proposition 4.1.

Results of [2] ~[5] show that the generalization of Hersch type theorem on S^{2} to $S^{m}(m \geqq 3)$ or to some homogeneous spaces is impossible. These metrics in [2]~[5] are related to 1 -dimensional distributions on manifolds. Metrics on $S^{4 r+3}$ in this paper are related to 3 -dimensional distributions. And they give new examples of compact Riemannian manifolds whose spectra are calculatable.

§ 1. Preliminaries.

Let ξ_{1}, ξ_{2} and ξ_{3} be Killing vector fields on a Riemannian manifold (M, g) of dimension m such that

$$
\begin{align*}
& \xi_{1}, \xi_{2} \text { and } \xi_{3} \text { are orthonormal, } \tag{1.1}\\
& {\left[\hat{\xi}_{1}, \xi_{2}\right]=2 \xi_{3}, \quad\left[\xi_{2}, \xi_{3}\right]=2 \xi_{1}, \quad\left[\xi_{3}, \xi_{1}\right]=2 \xi_{2} .} \tag{1.2}
\end{align*}
$$

By η_{1}, η_{2} and η_{3} we denote the 1 -forms dual to ξ_{1}, ξ_{2} and ξ_{3} with respect to g. Then we obtain

$$
\begin{equation*}
L_{\hat{\varepsilon}_{1}} \eta_{1}=0, \quad L_{\varepsilon_{1}} \eta_{2}=2 \eta_{3}, \quad L_{\varepsilon_{1}} \eta_{3}=-2 \eta_{2}, \tag{1.3}
\end{equation*}
$$

and the corresponding relations for $L_{\xi_{2}}$ and $L_{\bar{\xi}_{3}}$ ，where L_{x} denotes the Lie derivation by a vector field X ．

We define a Riemannian metric ${ }^{*} g$ by

$$
\begin{equation*}
^{} g=\alpha g+(\beta-\alpha)\left(\eta_{1} \otimes \eta_{1}+\eta_{2} \otimes \eta_{2}+\eta_{3} \otimes \eta_{3}\right) \tag{1.4}
\end{equation*}
$$

for some positive numbers α and β ．By ∇ and $* \nabla$ we denote the Riemannian connections by g and ${ }^{*} g$ ，respectively．

By $\{\exp t X\}$ we denote the local 1－parameter group of local transformations generated by a vector field X ．Since each ξ_{i} is a unit Killing vector field， $\left\{\left(\exp t \xi_{i}\right) p\right\}$ is a geodesic in（ M, g ）for each point p of M ．By（1．3）and（1．4）ξ_{i} is also a Killing vector field with respect to ${ }^{*} g$ of constant length $\beta^{1 / 2}$ ．In particular，for each point p of $M,\left\{\left(\exp t \xi_{i}\right) p\right\}$ is also a geodesic with respect to ＊g．

Lemma 1．1．Let $\{x(t)\}$ be a geodesic with arclength parameter t in（ M, g ）． If $\{x(t)\}$ is orthogonal to each ξ_{i} at some point $x\left(t_{0}\right)$ ，then $\{x(t)\}$ is also a geodesic with respect to ${ }^{2} g$ ．

Proof．Since each ξ_{i} is a Killing vector field，the geodesic $\{x(t)\}$ is orthogonal to ξ_{i} at $x\left(t_{0}\right)$ if and only if it is orthogonal to ξ_{i} at each point $x(t)$ ．Let e be a unit vector field defined on an open neighborhood U of a piece l of $\{x(t)\}$ ，such that e is orthogonal to each ξ_{i} on U and satisfies $e=d x(t) / d t$ on l ．Then $\nabla_{e} e=0$ holds on l ．By an identity defining $* \nabla$ we get

$$
2^{*} g\left(* \nabla_{e} e, Z\right)=2 e \cdot * g(e, Z)-2^{*} g(e,[e, Z])
$$

on l ，where Z denotes a vector field on U ．Since $* g(e, Z)=\alpha g(e, Z)$ ，we get ${ }^{*} g\left(* \nabla_{e} e, Z\right)=\alpha g\left(\nabla_{e} e, Z\right)=0$ on l ．This shows that l in U and hence $\{x(t)\}$ in (M, g) is a geodesic with respect to ${ }^{g} g$ ．

Q．E．D．
Let Δ and ${ }^{*} \Delta$ be the Laplacians with respect to g and ${ }^{*} g$ ，respectively． Then we get

Lemma 1．2．For a function f on M ，

$$
{ }^{*} \Delta f=\alpha^{-1} \Delta f+\left(\beta^{-1}-\alpha^{-1}\right)\left(L_{\hat{\xi}_{1}} L_{\hat{亏}_{1}}+L_{\hat{亏}_{2}} L_{\hat{亏}_{2}}+L_{\hat{\varepsilon}_{3}} L_{\hat{亏}_{3}}\right) f .
$$

Proof．Let p be a point of M and let $\left\{\xi_{1}, \xi_{2}, \xi_{3}, e_{4}, \cdots, e_{m}\right\}$ be a field of orthonormal frames with respect to g defined on an open neighborhood of p such that $\left\{\left(\exp t e_{j}\right) p,|t|<\varepsilon\right\}$ is a geodesic for each $j=4, \cdots, m$ ．Since $(\Delta f)(p)$ is given by the sum of the second derivatives of f at p with respect to the
arclength parameter t along mutually orthogonal m geodesics passing through p, we get

$$
(\Delta f)(p)=\sum_{i}\left(L_{\bar{\varepsilon}_{i}} L_{\tilde{\varepsilon}_{i}} f\right)(p)+\sum_{j}\left(L_{e_{j}} L_{e_{j}} f\right)(p) .
$$

$\left\{\left(\exp t \beta^{-1 / 2} \xi_{i}\right) p\right\}$ and $\left\{\left(\exp t \alpha^{-1 / 2} e_{j}\right) p\right\}$ are geodesics with arclength parameter t with respect to ${ }^{*} g$. Therefore,

$$
(* \Delta f)(p)=\beta^{-1} \sum_{i}\left(L_{\hat{\varepsilon}_{i}} L_{\tilde{\xi}_{i}} f\right)(p)+\alpha^{-1} \sum_{j}\left(L_{e_{j}} L_{e_{j}} f\right)(p),
$$

and we get the identity.

§ 2. A review on ($\left.S^{2 n+1}, g(t)\right)$.

Let ($S^{2 n+1}, g$) be a unit sphere of dimension $m=2 n+1$ in a Euclidean space E^{m+1}. E^{m+1} is considered as a complex Euclidean space $C E^{n+1}$ and so let ($x^{\alpha}, y^{\alpha} ; \alpha=1, \cdots, n+1$) be a natural coordinate system in E^{m+1}. Then we have an almost complex structure J such that $J\left(x^{\alpha}, y^{\alpha}\right)=\left(y^{\alpha},-x^{\alpha}\right)$. If one considers a point $x=\left(x^{\alpha}, y^{\alpha}\right)$ in S^{m} as a unit vector in $C E^{n+1}$, and $J x$ as a tangent vector at x to S^{m}, we get a vector field ξ on S^{m}. The 1 -form η dual to ξ with respect to g on S^{m} is a contact structure on S^{m}. ξ is a Killing vector field and called sometimes a Sasakian structure on $\left(S^{m}, g\right)$.

The spectrum of the Laplacian Δ acting on functions on (S^{m}, g) is given by

$$
\begin{equation*}
\operatorname{Spec}\left(S^{m}, g\right)=\left\{\lambda_{k}=k(m+k-1) ; k=0,1, \cdots\right\}, \tag{2.1}
\end{equation*}
$$

where the multiplicity $\mu(k)$ of λ_{k} is given by

$$
\begin{equation*}
\mu(k)={ }_{m+k} C_{k}-{ }_{m+k-2} C_{k-2}, \quad k \geqq 2, \tag{2.2}
\end{equation*}
$$

and $\mu(0)=1, \mu(1)=m+1$.
We define a 1-parameter family of Riemannian metrics $g(t)$ by

$$
\begin{equation*}
g(t)=t^{-1} g+\left(t^{m-1}-t^{-1}\right) \eta \otimes \eta . \tag{2.3}
\end{equation*}
$$

Then the volume element with respect to $g(t)$ is unchanged when t varies, and the Laplacian ${ }^{(t)} \Delta$ is given by

$$
\begin{equation*}
{ }^{(t)} \Delta f=t \Delta f+\left(t^{1-m}-t\right) L_{\hat{\xi}} L_{\hat{\xi}} f . \tag{2.4}
\end{equation*}
$$

Let V_{k} denote the eigenspace corresponding to the k-th eigenvalue λ_{k} of Δ. $L_{\hat{\xi}} L_{\S}$ induces a symmetric linear transformation of V_{k} with respect to the usual inner product and we see that $L_{\hat{亏}} L_{\xi}$ has non-positive eigenvalues $-\theta^{2}$, where $\theta=k, k-2, \cdots, k-2[k / 2]$ (where [$k / 2$] is the integral part of $k / 2$). V_{k} has the following orthogonal decomposition

$$
\begin{equation*}
V_{k}=V_{k, k}+V_{k, k-2}+\cdots+V_{k ; k-2[k / 2]} \tag{2.5}
\end{equation*}
$$

such that $f \in V_{k, \theta}$ satisfies $L_{\hat{\xi}} L_{\hat{\xi}} f+\theta^{2} f=0$. Thus,

$$
\begin{equation*}
{ }^{(t)} \Delta f+\left[t k(m+k-1)+\left(t^{1-m}-t\right) \theta^{2}\right] f=0 \tag{2.6}
\end{equation*}
$$

for $f \in V_{k, \theta}$. The first eigenvalue ${ }^{(t)} \lambda_{1}$ of ${ }^{(t)} \Delta$ is $\left(2 n+t^{-m}\right) t$ for $t^{-m} \leqq m+3$ and $4(n+1) t$ for $t^{-m} \geqq m+3$. Consequently, ${ }^{(t)} \lambda_{1} \rightarrow 0$ as $t \rightarrow 0$ and ${ }^{(t)} \lambda_{1} \rightarrow \infty$ as $t \rightarrow \infty$.

Since $\operatorname{dim} V_{2,0}=n(n+2)$ and $\operatorname{dim} V_{1,1}=m+1$, the multiplicity of ${ }^{(t)} \lambda_{1}$ is equal to $\left(m^{2}+6 m+1\right) / 4$ for $t^{-m}=m+3$. This is bigger than the multiplicity $m+1$ of the first eigenvalue ${ }^{(0)} \lambda_{1}=m$ with respect to the standard metric.

§3. $\left(S^{4 r+3}, g(t)\right)$.

Let $\left(S^{4 r+3}, g\right)$ be a unit sphere in $E^{4(r+1)} . E^{4(r+1)}$ is considered as a product space $Q \times \cdots \times Q$ of $r+1$ copies of the space of quaternions. Let ($x^{\alpha}, y^{\alpha}, z^{\alpha}, w^{\alpha}$; $\alpha=1, \cdots, r+1$) be a natural coordinate system in $E^{4(r+1)}$. Let $\{I, J, K\}$ be the quaternion structure of $E^{4(r+1)}$. If one considers a point $x=\left(x^{\alpha}, y^{\alpha}, z^{\alpha}, w^{\alpha}\right)$ of $S^{4 r+3}$ as a unit vector in $E^{4(r+1)}$ and

$$
\begin{aligned}
& I x=\left(y^{\alpha},-x^{\alpha}, w^{\alpha},-z^{\alpha}\right) \\
& J x=\left(z^{\alpha},-w^{\alpha},-x^{\alpha}, y^{\alpha}\right) \\
& K x=\left(w^{\alpha}, z^{\alpha},-y^{\alpha},-x^{\alpha}\right)
\end{aligned}
$$

as tangent vectors at x to $S^{4 r+3}$, we get a field of orthonormal vectors ξ_{1}, ξ_{2} and ξ_{3} on $S^{4 r+3}$. We put

$$
\begin{aligned}
& \xi_{1}^{\#}=\sum_{\alpha}\left(y^{\alpha} \partial / \partial x^{\alpha}-x^{\alpha} \partial / \partial y^{\alpha}+w^{\alpha} \partial / \partial z^{\alpha}-z^{\alpha} \partial / \partial w^{\alpha}\right) \\
& \xi_{\frac{\#}{\#}}=\sum_{\alpha}\left(z^{\alpha} \partial / \partial x^{\alpha}-w^{\alpha} \partial / \partial y^{\alpha}-x^{\alpha} \partial / \partial z^{\alpha}+y^{\alpha} \partial / \partial w^{\alpha}\right) \\
& \xi_{3}^{\#}=\sum_{\alpha}\left(w^{\alpha} \partial / \partial x^{\alpha}+z^{\alpha} \partial / \partial y^{\alpha}-y^{\alpha} \partial / \partial z^{\alpha}-x^{\alpha} \partial / \partial w^{\alpha}\right)
\end{aligned}
$$

Then each ξ_{i} is the restriction of $\xi_{i}^{\#}$ on $E^{4(r+1)}$ to $S^{4 r+3} . \quad \xi_{1}, \xi_{2}$ and ξ_{3} are Killing vector fields and satisfy (1.1) and (1.2). The 3-dimensional distribution defined by $\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ is integrable and each integral submanifold is isometric to a unit 3 -sphere. This gives the Hopf fibration: $S^{4 r+3} \rightarrow Q P^{r}$.

We define a 1-parameter family of Riemannian metrics $g(t)$ by

$$
\begin{equation*}
g(t)=t^{-1} g+\left(t^{4 r / 3}-t^{-1}\right)\left(\eta_{1} \otimes \eta_{1}+\eta_{2} \otimes \eta_{2}+\eta_{3} \otimes \eta_{3}\right) \tag{3.1}
\end{equation*}
$$

where η_{1}, η_{2} and η_{3} are defined similarly as in $\S 1$. The volume element with respect to $g(t)$ is unchanged when t varies. By Lemma 1.2 the Laplacians ${ }^{(t)} \Delta$ and Δ with respect $g(t)$ and g are related by

$$
\begin{equation*}
{ }^{(t)} \Delta f=t \Delta f+\left(t^{-4 r / 3}-t\right) L f, \tag{3.2}
\end{equation*}
$$

where we have put $L=\sum_{i} L_{\overline{\hat{亏}} i} L_{\hat{\tilde{i}}}$.
Let V_{k} denote the eigenspace corresponding to the k-th eigenvalue of the Laplacain Δ on $\left(S^{4 r+3}, g\right)$. Since each $L_{\hat{\bar{i}} i} L_{\hat{\varepsilon}_{i}}$ induces a symmetric transformation of V_{k}, L is also a symmetric transformation of V_{k}. Every eigenvalue of L is real and non-positive.

Proposition 3.1 For a non-negative integer k, V_{k} has the orthogonal decomposition ;

$$
V_{k}=W_{k, k}+W_{k, k-2}+\cdots+W_{k, k-2[k / 2]}
$$

such that $f \in W_{k, \theta}$ satisfies

$$
{ }^{(t)} \Delta f+\left[t k(4 r+k+2)+\left(t^{-4 \tau / 3}-t\right) \theta(\theta+2)\right] f=0 \text {. }
$$

Proof. V_{k} is identified with the space of harmonic homogeneous polynomials of degree k in $E^{4(r+1)}$. Let F be an element of V_{k}. We put $L^{\#}=\sum_{i} L_{\varepsilon_{i}^{*}} L_{\varepsilon_{i}^{*}}$. Then $L^{\#} F \mid S^{4 r+3}=L f$ holds, where \mid denotes the restriction and $f=F \mid S^{4 r+3}$. Let

$$
V_{k}=V_{k ; 1}+V_{k ; 2}+\cdots+V_{k ; \nu}
$$

be the orthogonal decomposition of V_{k} into eigenspace with respect to L^{\ddagger} or L such that $L f+\omega_{h} f=0$ for $f \in V_{k ; h}$, where $1 \leqq h \leqq \nu$. We take a point x of $S^{4 r+3}$. Then the integral submanifold W of the distribution $\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ passing through x is isometric to a unit 3 -sphere $\left(S^{3}, g\right)$. The restriction of L to W is the usual Laplacian Δ on $\left(S^{3}, g\right)$. So, the eigenvalue ω_{h} of L must be an eigenvalue of Δ on (S^{3}, g) and hence it is of the form $\theta(\theta+2)$. Since F is of degree k, the degree of its restriction to W is one of $k, k-2, \cdots, 0$ (for $k=$ even) or 1 (for $k=\mathrm{odd}$). Thus,

$$
\theta(\theta+2)=k(k+2), \quad(k-2) k, \cdots,(k-2[k / 2])(k+2-2[k / 2]) .
$$

Then Proposition 3.1 follows from (2.1) and (3.2).
Proposition 3.2. The first eigenvalue ${ }^{(t)} \lambda_{1}$ of ${ }^{(t)} \Delta$ is given by

$$
\left.\begin{array}{rlrl}
(t) & \lambda_{1} & =8(r+1) t & \text { for }
\end{array} \quad 4(r+2) \leqq 3 t^{-(4 r+3) / 3}\right)
$$

and ${ }^{(t)} \lambda_{1} \rightarrow 0$ as $t \rightarrow 0 ;{ }^{(t)} \lambda_{1} \rightarrow \infty$ as $t \rightarrow \infty$.
Proof. This follows from the table of possibility of eigenvalues given in Proposition 3.1 and the fact that $W_{1,1}$ and $W_{2,0}$ are non-empty (cf. (i), (iv) in §4).
§4. On $W_{k, \theta}$.
In this section we denote $x^{\alpha}, \cdots, w^{\alpha}$ by $x_{\alpha}, \cdots, w_{\alpha}$.
(i) $V_{1}=W_{1,1}$ and $\operatorname{dim} W_{1,1}=4(r+1)$.
(ii) $W_{k, k}$ is non-empty. In fact, let F be a harmonic homogeneous polynomial of degree k such that $F=F\left(x_{1}, y_{1}, z_{1}, w_{1}\right)$. Let E^{4} be defined by $x_{\alpha}=y_{\alpha}$ $=z_{\alpha}=u_{\alpha}=0 ; \alpha=2, \cdots r+1$, and put $S^{3}=S^{\lfloor r+3} \cap E^{4}$. Since

$$
L^{\#} F \mid S^{3}=\Delta\left(F \mid S^{3}\right)=-k(k+2)\left(F \mid S^{3}\right)
$$

and since $k(k+2)$ is the possible maximum eigenvalue of L of V_{k}, we get $F \in W_{k, k}$.
(iii) For $k=2 q=$ even, $W_{k, 0}$ is non-empty. In fact, $\operatorname{dim} W_{k, 0}$ is equal to the multiplicity of the q-th eigenvalue of the Laplacian on the base manifold $Q P^{r}$ of the Hopf fibration.
(iv) $\operatorname{dim} W_{2,0}=r(2 r+3)$ and $W_{2,0}$ is spanned by

$$
\begin{array}{ll}
x_{1}^{2}+y_{1}^{2}+z_{1}^{2}+w_{1}^{2}-x_{\alpha}^{2}-y_{\alpha}^{2}-z_{\alpha}^{2}-w_{\alpha}^{2} ; & 2 \leqq \alpha \leqq r+1, \\
x_{\alpha} x_{\beta}+y_{\alpha} y_{\beta}+z_{\alpha} z_{\beta}+w_{\alpha} w_{\beta} ; & 1 \leqq \alpha<\beta \leqq r+1, \\
x_{\alpha} y_{\beta}-y_{\alpha} x_{\beta}-z_{\alpha} w_{\beta}+w_{\alpha} z_{\beta} ; & 1 \leqq \alpha<\beta \leqq r+1, \\
x_{\alpha} z_{\beta}+y_{\alpha} w_{\beta}-z_{\alpha} x_{\beta}-w_{\alpha} y_{\beta} ; & 1 \leqq \alpha<\beta \leqq r+1, \\
x_{\alpha} w_{\beta}-y_{\alpha} z_{\beta}+z_{\alpha} y_{\beta}-w_{\alpha} z_{\beta} ; & 1 \leqq \alpha<\beta \leqq r+1 .
\end{array}
$$

In fact, let P_{2} denote the space of homogeneous polynomials of degree 2 in $E^{4(r+1)}$. $\operatorname{dim} P_{2}={ }_{4 r+5} C_{2}$. $L^{\#}$ acts on P_{2} with two eigenvalues 0 and -8 . Put $P_{2,0}=\left\{F \in P_{2} ; L^{\#} F=0\right\}$. Then $\operatorname{dim} P_{2,0}=(r+1)(2 r+1)$ and $P_{2,0}$ is spanned by

$$
\begin{array}{ll}
x_{\alpha}^{2}+y_{\alpha}^{2}+z_{\alpha}^{2}+w_{\alpha}^{2} ; & 1 \leqq \alpha \leqq r+1, \\
x_{\alpha} x_{\beta}+y_{\alpha} y_{\beta}+z_{\alpha} z_{\beta}+w_{\alpha} w_{\beta} ; & 1 \leqq \alpha<\beta \leqq r+1, \\
x_{\alpha} y_{\beta}-y_{\alpha} x_{\beta}-z_{\alpha} w_{\beta}+w_{\alpha} z_{\beta} ; & 1 \leqq \alpha<\beta \leqq r+1, \\
x_{\alpha} z_{\beta}+y_{\alpha} w_{\beta}-z_{\alpha} x_{\beta}-w_{\alpha} y_{\beta} ; & 1 \leqq \alpha<\beta \leqq r+1, \\
x_{\alpha} w_{\beta}-y_{\alpha} z_{\beta}+z_{\alpha} y_{\beta}-w_{\alpha} x_{\beta} ; & 1 \leqq \alpha<\beta \leqq r+1 .
\end{array}
$$

Put $P_{2,2}=\left\{F \in P_{2} ; L^{\sharp} F+8 F=0\right\}$. Then $\operatorname{dim} P_{2,2}=3(r+1)(2 r+3)$ and $P_{2,2}$ is spanned by

$$
\begin{array}{ll}
x_{\alpha} y_{\alpha}, x_{\alpha} z_{\alpha}, x_{\alpha} w_{\alpha}, y_{\alpha} z_{\alpha}, y_{\alpha} w_{\alpha}, z_{\alpha} w_{\alpha} ; & 1 \leqq \alpha \leqq r+1, \\
x_{\alpha}^{2}-y_{\alpha}^{2}, x_{\alpha}^{2}-z_{\alpha}^{2}, x_{\alpha}^{2}-w_{\alpha}^{2} ; & 1 \leqq \alpha \leqq r+1, \\
x_{\alpha} x_{\beta}-y_{\alpha} y_{\beta}, x_{\alpha} x_{\beta}-z_{\alpha} z_{\beta}, x_{\alpha} x_{\beta}-w_{\alpha} w_{\beta} ; & 1 \leqq \alpha<\beta \leqq r+1, \\
x_{\alpha} y_{\beta}+y_{\alpha} x_{\beta}, x_{\alpha} y_{\beta}+z_{\alpha} w_{\beta}, x_{\alpha} y_{\beta}-w_{\alpha} z_{\beta} ; & 1 \leqq \alpha<\beta \leqq r+1,
\end{array}
$$

$$
\begin{array}{ll}
x_{\alpha} z_{\beta}-y_{\alpha} w_{\beta}, x_{\alpha} z_{\beta}+z_{\alpha} x_{\beta}, x_{\alpha} z_{\beta}+w_{\alpha} y_{\beta} ; & 1 \leqq \alpha<\beta \leqq r+1, \\
x_{\alpha} w_{\beta}+y_{\alpha} z_{\beta}, x_{\alpha} w_{\beta}-z_{\alpha} y_{\beta}, x_{\alpha} w_{\beta}+w_{\alpha} x_{\beta} ; & 1 \leqq \alpha<\beta \leqq r+1 .
\end{array}
$$

Since $V_{2}=P_{2}-\left\{\Sigma_{\alpha}\left(x_{\alpha}^{2}+y_{a}^{2}+z_{\alpha}^{2}+w_{\alpha}^{2}\right)\right\}, \operatorname{dim} W_{2,0}=\operatorname{dim} P_{2,0}-1=r(2 r+3)$.
Propositoin 4.1. The multiplicity of the first eigenvalue ${ }^{(t)} \lambda_{1}$ of ${ }^{(t)} \Delta$ on $\left(S^{t r+3}, g(t)\right)$ is

$$
\begin{array}{lll}
r(2 r+3) & \text { for } & 4(r+2)<3 t^{-(4 r+3) / 3}, \\
2 r^{2}+7 r+4 & \text { for } & 4(r+2)=3 t^{-(4 r+3) / 3}, \\
4(r+1) & \text { for } & 4(r+2)>3 t^{-(4 r+3) / 3}
\end{array}
$$

This is verified by noticing that the multiplicity of ${ }^{(t)} \lambda_{1}$ is one of $\operatorname{dim} W_{2,0}$, $\operatorname{dim} W_{2,0}+\operatorname{dim} W_{1,1}$, and $\operatorname{dim} W_{1,1}$ according to the respective case.
(v) Let P_{3} denote the space of homogeneous polynomials of degree 3. Then $P_{3}=P_{3,1}+P_{3,3}$, where $P_{3,1}=\left\{F \in P_{3} ; \quad L^{\sharp} F+3 F=0\right\} \quad$ and $\quad P_{3,3}=\left\{F \in P_{3}\right.$; $\left.L^{\sharp} F+15 F=0\right\} . \operatorname{dim} W_{3,1}=\operatorname{dim} P_{3,1}-4(r+1)$, and $W_{3,3}=P_{3,3}$.

Examples of elements of $W_{3,1}$ are:

$$
\begin{aligned}
& 2 x_{1}\left(x_{1}^{2}+y_{1}^{2}+z_{1}^{2}+w_{1}^{2}\right)-3 x_{1}\left(x_{2}^{2}+y_{2}^{2}+z_{2}^{2}+w_{2}^{2}\right), \\
& x_{1}\left(x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}+w_{1} w_{2}\right)-y_{1}\left(-x_{1} y_{2}-w_{1} z_{2}+z_{1} w_{2}+y_{1} x_{2}\right) .
\end{aligned}
$$

Examples of elements of $W_{3,3}$ are:

$$
\begin{aligned}
& x_{1}\left(x_{1}^{2}-y_{1}^{2}-z_{1}^{2}-w_{1}^{2}\right), \quad x_{1} y_{1} z_{1}, \\
& 2 x_{1} y_{1} y_{2}+y_{1}^{2} x_{2}-x_{1}^{2} x_{2} .
\end{aligned}
$$

If $r=1, \operatorname{dim} W_{3.1}=32$ and $\operatorname{dim} W_{3,3}=80$.

References

[1] Berger, M., Gauduchon, M and Mazet, E., Le spectre d'une variété riemannienne, Lect. Notes in Math. 194, Springer, 1971.
[2] Muto, H., The first eigenvalue of the Laplacian on even dimensional spheres, (preprint).
[3] Muto, H. and Urakawa, H., On the least positive eigenvalue of Laplacian for compact homogeneous spaces, (preprint).
[4] Tanno, S., The first eigenvalue of the Laplacian on spheres, Tôhoku Math. J. 31 (1979), 179-185.
[5] Urakawa, H., On the least positive eigenvalue of the Laplacian for compact group manifolds, J. Math. Soc. Japan, 31 (1979), 209-226.

Mathematical Institute (Present address) Department of Mathematics
Tôhoku University
Sendai, Japan
Tokyo Institute of Technology
Oh-okayama, Tokyo, Japan

