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SOME METRICS ON A (4r+3)-SPHERE AND SPECTRA

By

Shiikichi TANNO

Let (S™, g) be a unit sphere in a Euclidean (m-1)-space. In a paper [4]
the author gave an orthogonal decomposition of the eigenspace V, corresponding
to the k-th eigenvalue of the Laplacian acting on functions on (S***!, g). This
decomposition is related to the Hopf fibration: S***!--CP", where CP" denotes
the complex projective space, and we can define a 1-parameter family of Riemann-
ian metrics g(t) such that g(0)==g and the spectrum of each (S5*"*!, g(1)) is
calculatable by this decomposition. In §2 we give a brief review on (S*"*!, g(#)).

The analogous decomposition of V, is possible for the Hopf fibration:
S+ QP7, where QPT denotes the quaternion projective space. The decom-
position is given by Proposition 3.1. We define a 1-parameter family of Riemann-
ian metrics g(t) on S*** such that g(0)=g and the volume element with respect
to g(#) is unchanged when ¢ varies. Then the first eigenvalue @2, of the
Laplacian 4 on (S**3, g(¢)) is given by Proposition 3.2, and we see that
W20 as t—0 and Pl —oo as t—oo. The multiplicity of 4, is given by
Proposition 4.1.

Results of [2]~[5] show that the generalization of Hersch type theorem on
S? to S™ (m=3) or to some homogeneous spaces is impossible. These metrics
in [2]~[5] are related to l-dimensional distributions on manifolds. Metrics on
S#+3 in this paper are related to 3-dimensional distributions. And they give new
examples of compact Riemannian manifolds whose spectra are calculatable.

§1. Preliminaries.

Let &, &, and & be Killing vector fields on a Riemannian manifold (M, g)
of dimension m such that

(1.1) &, &, and &; are orthonormal,

(1-2) [51, 52]:253 ’ [52, 53]:251; [Ea, 5113252 .

By 7., 7. and 7, we denote the I-forms dual to &, §, and &, with respect to g.
Then we obtain
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(L.3) L,‘ﬁ?lzo , L,’17]2:27]:z ’ leﬁs:—‘27]z ,

and the corresponding relations for L: and L:, where L, denotes the Lie
derivation by a vector field X.
We define a Riemannian metric *g by

(1.4) *g=ag+(B—a)n: @01+ 17:Q 9.+ 7R 7,)

for some positive numbers « and . By V and *V we denote the Riemannian
connections by g and *g, respectively.

By {exptX} we denote the local l-parameter group of local transformations
generated by a vector field X. Since each &; is a unit Killing vector field,
{(exp t&,)p} is a geodesic in (M, g) for each point p of M. By (1.3) and (1.4) &;
is also a Killing vector field with respect to *g of constant length §Y2. In
particular, for each point p of M, {(exp&,)p} is also a geodesic with respect to

LemMa 1.1, Let {x()} be a geodesic with arclength parameter t in (M, g).
If {x(t)} is orthogonal to each &; at some point x(t,), then {(D)} is also a geodesic
with respect to *g.

Proor. Since each &; is a Killing vector field, the geodesic {x(f)} is orthogonal
to &; at x(t,) if and only if it is orthogonal to &; at each point x(¢). Let e be a
unit vector field defined on an open neighborhood U of a piece [ of {x(¢)}, such
that ¢ is orthogonal to each &; on U and satisfies e=dx(¢)/dt on [. Then V,e=0
holds on {. By an identity defining *V we get

2%g(*Nee, Z)=2e-*gle, Z)—2%g(e, [e, Z])

on [, where Z denotes a vector field on U. Since *g(e, Z)==agle, Z), we get
*g(*VNee, Z)=ag(V,e, Z)=0 on [. This shows that [ in U and hence {x(¢)} in
(M, g) is a geodesic with respect to *g. Q.E.D.

Let A and *A be the Laplacians with respect to g and *g, respectively.
Then we get

LEMMA 1.2. For a function f on M,
*Af=a AfHE = a L L+ L Lo+ L s

PrOOF. Let p be a point of M and let {&, &, &, e, -+, en} be a field of
orthonormal frames with respect to g defined on an open neighborhood of p
such that {(expie;)p, |t] <e} is a geodesic for each j=4, ---, m. Since (Af)p)
is given by the sum of the second derivatives of f at p with respect to the
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arclength parameter ¢ along mutually orthogonal m geodesics passing through
b, we get
QD=2 (Le;Le, f )(P)Jr; (Le;Le; FXD) -

{(exp 1 B7*%)p} and {(exp ta™'*e;)p} are geodesics with arclength parameter ¢
with respect to *g. Therefore,

CAp=B7 2 LeLe D) Ha™ Z,‘ (Le;Le; f)P),

and we get the identity.

§2. A review on (S**! g(t)).

Let (52"*1, g) be a unit sphere of dimension m=2n-1 in a Euclidean space
Em+1 Em+1 ig considered as a complex Euclidean space CE™' and so let
(x*, ¥*; a=1, -+, n+1) be a natural coordinate system in E™*'. Then we have
an almost complex structure J such that J(x%, y*)=(y*, —x%). If one considers
a point x=(x%, y%) in S™ as a unit vector in CE™*!, and Jx as a tangent vector
at x to S™, we get a vector field € on S™. The 1-form » dual to & with respect
to g on S™ is a contact structure on S™. ¢ is a Killing vector field and called
sometimes a Sasakian structure on (S™, g).

The spectrum of the Laplacian 4 acting on functions on (S™, g) is given by

(2.1) Spec (S™, @)= {A,=k(m+k—1); k=0, 1, ---},
where the multiplicity p(k) of 1, is given by
(2.2) R =n+eCr—msr-2Cp-2, k=2,
and p(0)=1, p(l)=m+1.

We define a l-parameter family of Riemannian metrics g(t) by
(2.3) gt)=tg+{" =t @7 .

Then the volume element with respect to g(¢) is unchanged when ¢ varies, and
the Laplacian 4 is given by

(24) O f=tdf (" —1)LeLsf .

Let V, denote the eigenspace corresponding to the k-th eigenvalue 2, of 4.
L:L: induces a symmetric linear transformation of ¥V, with respect to the usual
inner product and we see that L:L: has non-positive eigenvalues —6*, where
0=k, k—2, ---, k—2[k/2] (where [k/2] is the integral part of k/2). V, has the
following orthogonal decomposition

(2.5) V=V ot Vigmat oo + Vi pesrarm
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such that feV, , satisfies L:L;f+0°f=0. Thus,

(2.6) OAf+te(m+E—1)+ ("™ —1H0%]f=0

for f&V, 4. The first eigenvalue 1, of ®4is (2Zn+t ™)t for *"=m+3 and

A(n+1)t for t-™=m-+3. Consequently, 2,—0 as t—0 and “2,—oco as {— oo,
Since dim V, ,=n(n+2) and dim V,,;=m+1, the multiplicity of °1, is equal

to (m*4-6m-+1)/4 for i ™=m-+3. This is bigger than the multiplicity m--1 of

the first eigenvalue “2,=m with respect to the standard metric.

§3. (5%, g(t)).

Let (S*%, g) be a unit sphere in E*"*D. E'7*Y is considered as a product
space QX -+ X@Q of r+1 copies of the space of quaternions. Let (x%, y%, 2%, w®;
a=1, ---, r+1) be a natural coordinate system in E*“*P. Let {I, ], K} be the
quaternion structure of E*“+Y, If one considers a point x=(x%, y*, 2z, w®) of
S+ as a unit vector in E*“*" and

Ix:(yay _xa’ wa} —Zu>y
Je=(z", —w*, —x%, ¥,
Kx=w", 2%, —y", —x%)

as tangent vectors at x to S'"**, we get a field of orthonormal vectors &,, &, and
&; on S We put

2= (y*9/0x*—x"0/dy* +w"0/0z* —z"d/ow*) ,

2= (2%0/0x*—w*0/0y*—x%0/0z° +y“d/ow*),

I

E5=3" (w*0/0x*+2%0/0y*—y“0/0z* —x"0/0w*) .

Then each &; is the restriction of &f on E!U*Y to S¥*. &, &, and &, are
Killing vector fields and satisfy (1.1) and (1.2). The 3-dimensional distribution
defined by {&,, &, &} is integrable and each integral submanifold is isometric to
a unit 3-sphere. This gives the Hopf fibration: S**—QF".

We define a l-parameter family of Riemannian metrics g(t) by

3. gO)=t"' g+t N9 QN1+ 7 92+ 1 1)

where 7,, ., and 7, are defined similarly as in §1. The volume element with
respect to g(t) is unchanged when ¢ varies. By lLemma 1.2 the Laplacianz >4
and 4 with respect g(t) and g are related by

(32) OAf=tAf -+,
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where we have put L=3; Lz, L:,.

Let V, denote the eigenspace corresponding to the k-th eigenvalue of the
Laplacain 4 on (S"*3, g). Since each L: L, induces a symmetric transformation
of V,, L is also a symmetric transformation of V,. Every eigenvalue of L is
real and non-positive.

PROPOSITION 3.1 For a non-negative integer k, V, has the orthogonal de-
composition ;

V=W o+ Wi poat o + W eestare
such that feW,, o satisfies
OAFA[th(dr+k+2)+ =000 +2)1/=0.

PROOF. V, is identified with the space of harmonic homogeneous polynomials
of degree k in E*“*Y, Let F be an element of V,. We put L":EiLs,;Ls%.
Then L#F|S*+=Lf holds, where | denotes the restriction and f=F|S"* Let

Vi Vit Vit o Vi

be the orthogona! decomposition of V, into eigenspace with respect to L# or L
such that Lf+w,f=0 for f&V,,,, where 1=h=v. We take a point x of S#+s,
Then the integral submanifold W of the distribution {§i, &, &} passing through
x is isometric to a unit 3-sphere (S, g). The restriction of L to W is the usual
Laplacian 4 on (5% g). So, the eigenvalue w, of L must be an eigenvalue of 4
on (S% g) and hence it is of the form 6(6-+2). Since Fis of degree k, the degree
of its restriction to W is one of k, k—2, ---, 0 (for k=even) or 1 (for k==odd).
Thus,
0(0-+2)=k(k+2), (k—2)k, -, (k—2[k/21)(k+2—2[Fk/2]).

Then Proposition 3.1 follows from (2.1) and (3.2).

PROPOSITION 3.2. The first eigenvalue P2; of 4 is given by
2, =8(r+1)¢ for A(r-2)<3¢- s
=4rt4+3t74% for 4(r42)z 3t @08
and ©2,—0 as t—0; PA—00 as t— oo,

PrOOF. This follows from the table of possibility of eigenvalues given in
Proposition 3.1 and the fact that W, , and W, , are non-empty (cf. (1), (iv) in §4).
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§4. On Wk,(;.

In this section we denote x*, -+, w* by xu, -, Wa.

(i) V,=W,, and dim W, ,=4(r+1).

(ii) W, is non-empty. In fact, let / be a harmonic homogeneous poly-
nomial of degree & such that F=F(x,, y;, z;, wy). Let E* be defined by x,=yv,
=z,=w,=0; a=2, --- r+1, and put S?=S"*3~E*. Since

L*F[S*=A(F|S%)=—k(k-+2)(F|S*)

and since k(k+2) is the possible maximum eigenvalue of L of V,, we get
FeW, .

(iii) For k=2g=even, W, , is non-empty. In fact, dim W, , is equal to the
multiplicity of the g-th eigenvalue of the Laplacian on the base manifold QP of
the Hopf fibration.

(iv) dim W, ,=r(2r+3) and W, , is spanned by

it yitaitwi—xi—vi—zi—wk; 2=a=r+1,

XaXpgtYaVstzozstwwg; l=a<f<r+1,
XaYg— VaXs—ZaWpatWezg; 1<a<f=r+1,
XaZgt Yl g—ZaXg—WaYp; l<a<f=<r+1,
W YaZpF2ad g~ WaZp 1<a<B=<r+l.

In fact, let P, denote the space of homogeneous polynomials of degree 2 in
Er*D - dim Py=,,45C,. L* acts on P, with two eigenvalues 0 and —8. Put
Py o={FeP,; L*F=0}. Then dim P, ,=(r+1)(2r+1) and P,,, is spanned by

x5+ yititwd; 1fasr+1,
XaXgtVaystzazgtwaws; 12a<Bsr+1,

XaYVpg=—YaXg—ZaWatWazs; 1Sa<f=r+1,

A

XaZgtYaWs—ZaXg—Wayp; 1Za<fB=r+l1,
XaWp—YaZptZaysg—WaXs; lSa<f=r+1.
Put P, ,={FeP,;L*F4+8F=0}. Then dim P, ,=3(r+1)2r-+3) and P, , is spanned

by

XoVar XaZar XaWay VaZar YaWay ZalWa | 12a=r+1,

Xa—Ya, Xa=—Za, Xa—Wa; lza=r+l,

XaXpg—VaVp, XaXg—ZaZp, XaXp—WWs; 1Za<f=Zr+1,
1

Xa¥ptVaXp, XaVpt2ZaWp, XaYg—WaZs;
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XaZ5—YaWs, XaZpt2aX3, XaZgtways; 1Z2a<B=r+l,
X WstVaZg, XaWsg—ZaVs, XaWptWaxp; l1Sa<f=r+1.

Since V,=P,—{Z, (x3+yi+zi+wd)}, dim W, »=dim P, (—1=r(2r+3).

PROPOSITOIN 4.1. The multiplicity of the first eigenvalue 2, of 4 on
(SIT+3’ g(l)) lS
r@r4+3)  for 4(r2)<3rrumvi,
2r2+7r+4  for A(r42)=3t7 @B,
4(r+1) for A(r42)>3t7@roE,

This is verified by noticing that the multiplicity of “2; is one of dim W,,,,
dim W, ,+dim W, ,, and dim W, ; according to the respective case.

(v) Let P, denote the space of homogeneous polynomials of degree 3.
Then P,=P,,+P,, where P,,={F€P;; L*F+3F=0} and P,,={FeP;;
L#F+15F=0}. dim W, ,=dim P, ,—4(r+1), and W =P, .

Examples of elements of W, are:

2x,(xi+yi+zi+wi) —3x(d+yi+ 24w,
(X Y1Vt 2120 F W0 we) — Y1 (— X1y, — Wi 2ot 21 W, T Y1)
Examples of elements of W, , are:
rlxt—yi—zi—wd, xnz,
2%, Y1 Y2 yixe—xix, .
If r=1, dim W, ,=32 and dim W, ;=80.
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