SOME METRICS ON A (4r+3)-SPHERE AND SPECTRA

By

Shûkichi TANNO

Let (S^n, g) be a unit sphere in a Euclidean (m+1)-space. In a paper [4] the author gave an orthogonal decomposition of the eigenspace V_k corresponding to the k-th eigenvalue of the Laplacian acting on functions on (S^{2n+1}, g) . This decomposition is related to the Hopf fibration: $S^{2n+1} \rightarrow CP^n$, where CP^n denotes the complex projective space, and we can define a 1-parameter family of Riemannian metrics g(t) such that g(0)=g and the spectrum of each $(S^{2n+1}, g(t))$ is calculatable by this decomposition. In §2 we give a brief review on $(S^{2n+1}, g(t))$.

The analogous decomposition of V_k is possible for the Hopf fibration: $S^{4r+3} \rightarrow QP^r$, where QP^r denotes the quaternion projective space. The decomposition is given by Proposition 3.1. We define a 1-parameter family of Riemannian metrics g(t) on S^{4r+3} such that g(0)=g and the volume element with respect to g(t) is unchanged when t varies. Then the first eigenvalue ${}^{(t)}\lambda_1$ of the Laplacian ${}^{(t)}\Delta$ on $(S^{4r+3}, g(t))$ is given by Proposition 3.2, and we see that ${}^{(t)}\lambda_1 \rightarrow 0$ as $t \rightarrow 0$ and ${}^{(t)}\lambda_1 \rightarrow \infty$ as $t \rightarrow \infty$. The multiplicity of ${}^{(t)}\lambda_1$ is given by Proposition 4.1.

Results of $[2]\sim[5]$ show that the generalization of Hersch type theorem on S^2 to S^m ($m \ge 3$) or to some homogeneous spaces is impossible. These metrics in $[2]\sim[5]$ are related to 1-dimensional distributions on manifolds. Metrics on S^{4r+3} in this paper are related to 3-dimensional distributions. And they give new examples of compact Riemannian manifolds whose spectra are calculatable.

§1. Preliminaries.

Let ξ_1 , ξ_2 and ξ_3 be Killing vector fields on a Riemannian manifold (M, g) of dimension m such that

(1.1)
$$\xi_1, \xi_2$$
 and ξ_3 are orthonormal,

(1.2) $[\xi_1, \xi_2] = 2\xi_3, \ [\xi_2, \xi_3] = 2\xi_1, \ [\xi_3, \xi_1] = 2\xi_2.$

By η_1 , η_2 and η_3 we denote the 1-forms dual to ξ_1 , ξ_2 and ξ_3 with respect to g. Then we obtain

Received December 6, 1979

Shûkichi TANNO

(1.3)
$$L_{\xi_1}\eta_1=0, \quad L_{\xi_1}\eta_2=2\eta_3, \quad L_{\xi_1}\eta_3=-2\eta_2,$$

and the corresponding relations for L_{ξ_2} and L_{ξ_3} , where L_X denotes the Lie derivation by a vector field X.

We define a Riemannian metric *g by

(1.4)
$$*g = \alpha g + (\beta - \alpha)(\eta_1 \otimes \eta_1 + \eta_2 \otimes \eta_2 + \eta_3 \otimes \eta_3)$$

for some positive numbers α and β . By ∇ and $*\nabla$ we denote the Riemannian connections by g and *g, respectively.

By $\{\exp tX\}$ we denote the local 1-parameter group of local transformations generated by a vector field X. Since each ξ_i is a unit Killing vector field, $\{(\exp t\xi_i)p\}$ is a geodesic in (M, g) for each point p of M. By (1.3) and (1.4) ξ_i is also a Killing vector field with respect to *g of constant length $\beta^{1/2}$. In particular, for each point p of M, $\{(\exp t\xi_i)p\}$ is also a geodesic with respect to *g.

LEMMA 1.1. Let $\{x(t)\}$ be a geodesic with arclength parameter t in (M, g). If $\{x(t)\}$ is orthogonal to each ξ_i at some point $x(t_0)$, then $\{x(t)\}$ is also a geodesic with respect to *g.

PROOF. Since each ξ_i is a Killing vector field, the geodesic $\{x(t)\}$ is orthogonal to ξ_i at $x(t_0)$ if and only if it is orthogonal to ξ_i at each point x(t). Let e be a unit vector field defined on an open neighborhood U of a piece l of $\{x(t)\}$, such that e is orthogonal to each ξ_i on U and satisfies e=dx(t)/dt on l. Then $\nabla_e e=0$ holds on l. By an identity defining $*\nabla$ we get

$$2^*g(^*\nabla_e e, Z) = 2e \cdot *g(e, Z) - 2^*g(e, [e, Z])$$

on *l*, where *Z* denotes a vector field on *U*. Since $*g(e, Z) = \alpha g(e, Z)$, we get $*g(*\nabla_e e, Z) = \alpha g(\nabla_e e, Z) = 0$ on *l*. This shows that *l* in *U* and hence $\{x(t)\}$ in (M, g) is a geodesic with respect to *g. Q. E. D.

Let Δ and $^{*}\Delta$ be the Laplacians with respect to g and $^{*}g$, respectively. Then we get

LEMMA 1.2. For a function f on M,

$$^{*}\Delta f = \alpha^{-1}\Delta f + (\beta^{-1} - \alpha^{-1})(L_{\xi_{1}}L_{\xi_{1}} + L_{\xi_{2}}L_{\xi_{2}} + L_{\xi_{3}}L_{\xi_{3}})f.$$

PROOF. Let p be a point of M and let $\{\xi_1, \xi_2, \xi_3, e_4, \dots, e_m\}$ be a field of orthonormal frames with respect to g defined on an open neighborhood of p such that $\{(\exp te_j)p, |t| < \varepsilon\}$ is a geodesic for each $j=4, \dots, m$. Since $(\Delta f)(p)$ is given by the sum of the second derivatives of f at p with respect to the

arclength parameter t along mutually orthogonal m geodesics passing through p, we get

$$(\Delta f)(p) = \sum_{i} (L_{\tilde{z}_{i}}L_{\tilde{z}_{i}}f)(p) + \sum_{j} (L_{e_{j}}L_{e_{j}}f)(p) \,.$$

 $\{(\exp t\beta^{-1/2}\xi_i)p\}$ and $\{(\exp t\alpha^{-1/2}e_j)p\}$ are geodesics with arclength parameter t with respect to *g. Therefore,

$$(*\Delta f)(p) = \beta^{-1} \sum_{i} (L_{\xi_i} L_{\xi_i} f)(p) + \alpha^{-1} \sum_{j} (L_{e_j} L_{e_j} f)(p),$$

and we get the identity.

§ 2. A review on $(S^{2n+1}, g(t))$.

Let (S^{2n+1}, g) be a unit sphere of dimension m=2n+1 in a Euclidean space E^{m+1} . E^{m+1} is considered as a complex Euclidean space CE^{n+1} and so let $(x^{\alpha}, y^{\alpha}; \alpha=1, \dots, n+1)$ be a natural coordinate system in E^{m+1} . Then we have an almost complex structure J such that $J(x^{\alpha}, y^{\alpha})=(y^{\alpha}, -x^{\alpha})$. If one considers a point $x=(x^{\alpha}, y^{\alpha})$ in S^{m} as a unit vector in CE^{n+1} , and Jx as a tangent vector at x to S^{m} , we get a vector field ξ on S^{m} . The 1-form η dual to $\hat{\xi}$ with respect to g on S^{m} is a contact structure on S^{m} . ξ is a Killing vector field and called sometimes a Sasakian structure on (S^{m}, g) .

The spectrum of the Laplacian Δ acting on functions on (S^m, g) is given by

(2.1) Spec
$$(S^m, g) = \{\lambda_k = k(m+k-1); k=0, 1, \dots\}$$
,

where the multiplicity $\mu(k)$ of λ_k is given by

(2.2)
$$\mu(k) = {}_{m+k}C_k - {}_{m+k-2}C_{k-2}, \quad k \ge 2,$$

and $\mu(0)=1$, $\mu(1)=m+1$.

We define a 1-parameter family of Riemannian metrics g(t) by

(2.3)
$$g(t) = t^{-1}g + (t^{m-1} - t^{-1})\eta \otimes \eta$$

Then the volume element with respect to g(t) is unchanged when t varies, and the Laplacian ${}^{(t)} \Delta$ is given by

(2.4)
$${}^{(t)}\varDelta f = t\varDelta f + (t^{1-m} - t)L_{\xi}L_{\xi}f.$$

Let V_k denote the eigenspace corresponding to the k-th eigenvalue λ_k of Δ . $L_{\xi}L_{\xi}$ induces a symmetric linear transformation of V_k with respect to the usual inner product and we see that $L_{\xi}L_{\xi}$ has non-positive eigenvalues $-\theta^2$, where $\theta = k, k-2, \dots, k-2\lfloor k/2 \rfloor$ (where $\lfloor k/2 \rfloor$ is the integral part of k/2). V_k has the following orthogonal decomposition

(2.5)
$$V_{k} = V_{k, k} + V_{k, k-2} + \dots + V_{k; k-2[k/2]}$$

such that $f \in V_{k,\theta}$ satisfies $L_{\xi}L_{\xi}f + \theta^2 f = 0$. Thus,

(2.6)
$${}^{(t)} \varDelta f + [tk(m+k-1) + (t^{1-m}-t)\theta^2] f = 0$$

for $f \in V_{k,\theta}$. The first eigenvalue ${}^{(t)}\lambda_1$ of ${}^{(t)}\varDelta$ is $(2n+t^{-m})t$ for $t^{-m} \leq m+3$ and 4(n+1)t for $t^{-m} \geq m+3$. Consequently, ${}^{(t)}\lambda_1 \to 0$ as $t \to 0$ and ${}^{(t)}\lambda_1 \to \infty$ as $t \to \infty$.

Since dim $V_{2,0}=n(n+2)$ and dim $V_{1,1}=m+1$, the multiplicity of ${}^{(t)}\lambda_1$ is equal to $(m^2+6m+1)/4$ for $t^{-m}=m+3$. This is bigger than the multiplicity m+1 of the first eigenvalue ${}^{(0)}\lambda_1=m$ with respect to the standard metric.

§ 3. $(S^{4r+3}, g(t))$.

Let (S^{4r+3}, g) be a unit sphere in $E^{4(r+1)}$. $E^{4(r+1)}$ is considered as a product space $Q \times \cdots \times Q$ of r+1 copies of the space of quaternions. Let $(x^{\alpha}, y^{\alpha}, z^{\alpha}, w^{\alpha}; \alpha = 1, \cdots, r+1)$ be a natural coordinate system in $E^{4(r+1)}$. Let $\{I, J, K\}$ be the quaternion structure of $E^{4(r+1)}$. If one considers a point $x=(x^{\alpha}, y^{\alpha}, z^{\alpha}, w^{\alpha})$ of S^{4r+3} as a unit vector in $E^{4(r+1)}$ and

$$Ix = (y^{\alpha}, -x^{\alpha}, w^{\alpha}, -z^{\alpha}),$$
$$Jx = (z^{\alpha}, -w^{\alpha}, -x^{\alpha}, y^{\alpha}),$$
$$Kx = (w^{\alpha}, z^{\alpha}, -y^{\alpha}, -x^{\alpha})$$

as tangent vectors at x to S^{ir+3} , we get a field of orthonormal vectors ξ_1 , ξ_2 and ξ_3 on S^{ir+3} . We put

$$\begin{split} \xi_{1}^{\sharp} &= \sum_{\alpha} \left(y^{\alpha} \partial / \partial x^{\alpha} - x^{\alpha} \partial / \partial y^{\alpha} + w^{\alpha} \partial / \partial z^{\alpha} - z^{\alpha} \partial / \partial w^{\alpha} \right), \\ \xi_{2}^{\sharp} &= \sum_{\alpha} \left(z^{\alpha} \partial / \partial x^{\alpha} - w^{\alpha} \partial / \partial y^{\alpha} - x^{\alpha} \partial / \partial z^{\alpha} + y^{\alpha} \partial / \partial w^{\alpha} \right), \\ \xi_{3}^{\sharp} &= \sum_{\alpha} \left(w^{\alpha} \partial / \partial x^{\alpha} + z^{\alpha} \partial / \partial y^{\alpha} - y^{\alpha} \partial / \partial z^{\alpha} - x^{\alpha} \partial / \partial w^{\alpha} \right). \end{split}$$

Then each ξ_i is the restriction of $\hat{\xi}_i^*$ on $E^{4(r+1)}$ to S^{4r+3} . $\hat{\xi}_1, \hat{\xi}_2$ and $\hat{\xi}_3$ are Killing vector fields and satisfy (1.1) and (1.2). The 3-dimensional distribution defined by $\{\xi_1, \xi_2, \xi_3\}$ is integrable and each integral submanifold is isometric to a unit 3-sphere. This gives the Hopf fibration : $S^{4r+3} \rightarrow QP^r$.

We define a 1-parameter family of Riemannian metrics g(t) by

(3.1)
$$g(t) = t^{-1}g + (t^{4r/3} - t^{-1})(\eta_1 \otimes \eta_1 + \eta_2 \otimes \eta_2 + \eta_3 \otimes \eta_3)$$

where η_1 , η_2 and η_3 are defined similarly as in §1. The volume element with respect to g(t) is unchanged when t varies. By Lemma 1.2 the Laplacians ⁽¹⁾ Δ and Δ with respect g(t) and g are related by

(3.2)
$${}^{(t)} \varDelta f = t \varDelta f + (t^{-47/3} - t) L f,$$

where we have put $L=\sum_{i} L_{\xi_{i}}L_{\xi_{i}}$.

Let V_k denote the eigenspace corresponding to the k-th eigenvalue of the Laplacain \varDelta on (S^{4r+3}, g) . Since each $L_{\xi_i}L_{\xi_i}$ induces a symmetric transformation of V_k , L is also a symmetric transformation of V_k . Every eigenvalue of L is real and non-positive.

PROPOSITION 3.1 For a non-negative integer k, V_k has the orthogonal decomposition;

$$W_{k} = W_{k, k} + W_{k, k-2} + \dots + W_{k, k-2[k/2]}$$

such that $f \in W_{k,\theta}$ satisfies

$$(t)\Delta f + [tk(4r+k+2)+(t^{-4r/3}-t)\theta(\theta+2)]f = 0.$$

PROOF. V_k is identified with the space of harmonic homogeneous polynomials of degree k in $E^{4(r+1)}$. Let F be an element of V_k . We put $L^* = \sum_i L_{\xi_i^*} L_{\xi_i^*}$. Then $L^*F|S^{4r+3} = Lf$ holds, where | denotes the restriction and $f = F|S^{4r+3}$. Let

$$V_{k} = V_{k;1} + V_{k;2} + \dots + V_{k;\nu}$$

be the orthogonal decomposition of V_k into eigenspace with respect to L^* or Lsuch that $Lf + \omega_h f = 0$ for $f \in V_{k;h}$, where $1 \leq h \leq \nu$. We take a point x of S^{4r+3} . Then the integral submanifold W of the distribution $\{\xi_1, \xi_2, \xi_3\}$ passing through x is isometric to a unit 3-sphere (S^3, g) . The restriction of L to W is the usual Laplacian \varDelta on (S^3, g) . So, the eigenvalue ω_h of L must be an eigenvalue of \varDelta on (S^3, g) and hence it is of the form $\theta(\theta+2)$. Since F is of degree k, the degree of its restriction to W is one of k, $k-2, \cdots, 0$ (for k=even) or 1 (for k=odd). Thus,

$$\theta(\theta+2) = k(k+2), \quad (k-2)k, \cdots, \quad (k-2\lfloor k/2 \rfloor)(k+2-2\lfloor k/2 \rfloor).$$

Then Proposition 3.1 follows from (2.1) and (3.2).

PROPOSITION 3.2. The first eigenvalue ${}^{(t)}\lambda_1$ of ${}^{(t)}\Delta$ is given by

 $^{(t)}\lambda_1 = 8(r+1)t$ for $4(r+2) \le 3t^{-(4r+3)/3}$ = $4rt + 3t^{-4r/3}$ for $4(r+2) \ge 3t^{-(4r+3)/3}$

and ${}^{(t)}\lambda_1 \rightarrow 0$ as $t \rightarrow 0$; ${}^{(t)}\lambda_1 \rightarrow \infty$ as $t \rightarrow \infty$.

PROOF. This follows from the table of possibility of eigenvalues given in Proposition 3.1 and the fact that $W_{1,1}$ and $W_{2,0}$ are non-empty (cf. (i), (iv) in § 4).

§4. On $W_{k,\theta}$.

In this section we denote x^{α} , \cdots , w^{α} by x_{α} , \cdots , w_{α} .

(i) $V_1 = W_{1,1}$ and dim $W_{1,1} = 4(r+1)$.

(ii) $W_{k,k}$ is non-empty. In fact, let F be a harmonic homogeneous polynomial of degree k such that $F = F(x_1, y_1, z_1, w_1)$. Let E^4 be defined by $x_{\alpha} = y_{\alpha} = z_{\alpha} = w_{\alpha} = 0$; $\alpha = 2, \dots r+1$, and put $S^3 = S^{4r+3} \cap E^4$. Since

$$L^*F|S^3 = \Delta(F|S^3) = -k(k+2)(F|S^3)$$

and since k(k+2) is the possible maximum eigenvalue of L of V_k , we get $F \in W_{k,k}$.

(iii) For k=2q= even, $W_{k,0}$ is non-empty. In fact, dim $W_{k,0}$ is equal to the multiplicity of the q-th eigenvalue of the Laplacian on the base manifold QP^r of the Hopf fibration.

(iv) dim $W_{2,0} = r(2r+3)$ and $W_{2,0}$ is spanned by

$$\begin{aligned} x_{1}^{2}+y_{1}^{2}+z_{1}^{2}+w_{1}^{2}-x_{\alpha}^{2}-y_{\alpha}^{2}-z_{\alpha}^{2}-w_{\alpha}^{2}; & 2 \leq \alpha \leq r+1, \\ x_{\alpha}x_{\beta}+y_{\alpha}y_{\beta}+z_{\alpha}z_{\beta}+w_{\alpha}w_{\beta}; & 1 \leq \alpha < \beta \leq r+1, \\ x_{\alpha}y_{\beta}-y_{\alpha}x_{\beta}-z_{\alpha}w_{\beta}+w_{\alpha}z_{\beta}; & 1 \leq \alpha < \beta \leq r+1, \\ x_{\alpha}z_{\beta}+y_{\alpha}w_{\beta}-z_{\alpha}x_{\beta}-w_{\alpha}y_{\beta}; & 1 \leq \alpha < \beta \leq r+1, \\ x_{\alpha}w_{\beta}-y_{\alpha}z_{\beta}+z_{\alpha}y_{\beta}-w_{\alpha}z_{\beta}; & 1 \leq \alpha < \beta \leq r+1. \end{aligned}$$

In fact, let P_2 denote the space of homogeneous polynomials of degree 2 in $E^{4(r+1)}$. dim $P_2=_{4r+5}C_2$. L^* acts on P_2 with two eigenvalues 0 and -8. Put $P_{2.0}=\{F\in P_2; L^*F=0\}$. Then dim $P_{2.0}=(r+1)(2r+1)$ and $P_{2.0}$ is spanned by

$$\begin{aligned} x_{\alpha}^{2} + y_{\alpha}^{2} + z_{\alpha}^{2} + w_{\alpha}^{2}; & 1 \leq \alpha \leq r+1, \\ x_{\alpha}x_{\beta} + y_{\alpha}y_{\beta} + z_{\alpha}z_{\beta} + w_{\alpha}w_{\beta}; & 1 \leq \alpha < \beta \leq r+1, \\ x_{\alpha}y_{\beta} - y_{\alpha}x_{\beta} - z_{\alpha}w_{\beta} + w_{\alpha}z_{\beta}; & 1 \leq \alpha < \beta \leq r+1, \\ x_{\alpha}z_{\beta} + y_{\alpha}w_{\beta} - z_{\alpha}x_{\beta} - w_{\alpha}y_{\beta}; & 1 \leq \alpha < \beta \leq r+1, \\ x_{\alpha}w_{\beta} - y_{\alpha}z_{\beta} + z_{\alpha}y_{\beta} - w_{\alpha}x_{\beta}; & 1 \leq \alpha < \beta \leq r+1. \end{aligned}$$

Put $P_{2,2} = \{F \in P_2; L^*F + 8F = 0\}$. Then dim $P_{2,2} = 3(r+1)(2r+3)$ and $P_{2,2}$ is spanned by

$$\begin{aligned} x_{\alpha}y_{\alpha}, x_{\alpha}z_{\alpha}, x_{\alpha}w_{\alpha}, y_{\alpha}z_{\alpha}, y_{\alpha}w_{\alpha}, z_{\alpha}w_{\alpha}; & 1 \leq \alpha \leq r+1, \\ x_{\alpha}^{2}-y_{\alpha}^{2}, x_{\alpha}^{2}-z_{\alpha}^{2}, x_{\alpha}^{2}-w_{\alpha}^{2}; & 1 \leq \alpha \leq r+1, \\ x_{\alpha}x_{\beta}-y_{\alpha}y_{\beta}, x_{\alpha}x_{\beta}-z_{\alpha}z_{\beta}, x_{\alpha}x_{\beta}-w_{\alpha}w_{\beta}; & 1 \leq \alpha < \beta \leq r+1, \\ x_{\alpha}y_{\beta}+y_{\alpha}x_{\beta}, x_{\alpha}y_{\beta}+z_{\alpha}w_{\beta}, x_{\alpha}y_{\beta}-w_{\alpha}z_{\beta}; & 1 \leq \alpha < \beta \leq r+1, \end{aligned}$$

104

Some metrics on a (4r+3)-sphere and spectra

$$\begin{aligned} x_{\alpha}z_{\beta}-y_{\alpha}w_{\beta}, \ x_{\alpha}z_{\beta}+z_{\alpha}x_{\beta}, \ x_{\alpha}z_{\beta}+w_{\alpha}y_{\beta}; & 1 \leq \alpha < \beta \leq r+1, \\ x_{\alpha}w_{\beta}+y_{\alpha}z_{\beta}, \ x_{\alpha}w_{\beta}-z_{\alpha}y_{\beta}, \ x_{\alpha}w_{\beta}+w_{\alpha}x_{\beta}; & 1 \leq \alpha < \beta \leq r+1. \end{aligned}$$

Since $V_2 = P_2 - \{\sum_{\alpha} (x_{\alpha}^2 + y_{\alpha}^2 + z_{\alpha}^2 + w_{\alpha}^2)\}$, dim $W_{2,0} = \dim P_{2,0} - 1 = r(2r+3)$.

PROPOSITOIN 4.1. The multiplicity of the first eigenvalue ${}^{(t)}\lambda_1$ of ${}^{(t)}\Delta$ on $(S^{\iota r+3}, g(t))$ is

$$\begin{array}{ll} r(2r+3) & for \quad 4(r+2) < 3t^{-(4r+3)/3} , \\ 2r^2+7r+4 & for \quad 4(r+2) = 3t^{-(4r+3)/3} , \\ 4(r+1) & for \quad 4(r+2) > 3t^{-(4r+3)/3} . \end{array}$$

This is verified by noticing that the multiplicity of ${}^{(t)}\lambda_1$ is one of dim $W_{2,0}$, dim $W_{2,0}$ +dim $W_{1,1}$, and dim $W_{1,1}$ according to the respective case.

(v) Let P_3 denote the space of homogeneous polynomials of degree 3. Then $P_3 = P_{3,1} + P_{3,3}$, where $P_{3,1} = \{F \in P_3; L^*F + 3F = 0\}$ and $P_{3,3} = \{F \in P_3; L^*F + 15F = 0\}$. dim $W_{3,1} = \dim P_{3,1} - 4(r+1)$, and $W_{3,3} = P_{3,3}$.

Examples of elements of $W_{3,1}$ are:

$$2x_1(x_1^2+y_1^2+z_1^2+w_1^2)-3x_1(x_2^2+y_2^2+z_2^2+w_2^2),$$

$$x_1(x_1x_2+y_1y_2+z_1z_2+w_1w_2)-y_1(-x_1y_2-w_1z_2+z_1w_2+y_1x_2)$$
.

Examples of elements of $W_{3,3}$ are:

$$\begin{aligned} x_1(x_1^2 - y_1^2 - z_1^2 - w_1^2) , \quad x_1y_1z_1 , \\ 2x_1y_1y_2 + y_1^2x_2 - x_1^2x_2 . \end{aligned}$$

If r=1, dim $W_{3,1}=32$ and dim $W_{3,3}=80$.

References

- [1] Berger, M., Gauduchon, M and Mazet, E., Le spectre d'une variété riemannienne, Lect. Notes in Math. 194, Springer, 1971.
- [2] Muto, H., The first eigenvalue of the Laplacian on even dimensional spheres, (preprint).
- [3] Muto, H. and Urakawa, H., On the least positive eigenvalue of Laplacian for compact homogeneous spaces, (preprint).
- [4] Tanno, S., The first eigenvalue of the Laplacian on spheres, Tôhoku Math. J. 31 (1979), 179-185.
- [5] Urakawa, H., On the least positive eigenvalue of the Laplacian for compact group manifolds, J. Math. Soc. Japan, 31 (1979), 209-226.

Mathematical Institute	(Present address) Department of Mathematics
Tôhoku University	Tokyo Institute of Technology
Sendai, Japan	Oh-okayama, Tokyo, Japan