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ON THE GLOBAL EXISTENCE OF CLASSICAL SOLUTIONS

OF SECOND ORDER FULLY NONLINEAR HYPERBOLIC
EQUATIONS WITH FIRST ORDER DISSIPATION

IN THE EXTERIOR DOMAIN

By
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Abstract

In this paper, we establish global existence and uniqueness theo-
rems of solutions of second order fully nonlinear hyperbolic equations

with first order dissipation 1n the exterior domatn, in the case that

data are sufficiently small and smooth and that the space dimension

nz3. Furthermore, we investigate some decay theorem
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Introduction

Let £ be an unbounded domain in an n dimensional Euoclidean space R" with
compact and € boundary 0f. Let us denote time variable by ¢ or x, and space
variables by x=(x., ---, x,), respectively. For differentiation, we use the symbols
D,==0,==0/0t and 8,=(0,, -+, 8,) with 9,=98/dx;, j=1, ---, n. In this paper, we
consider the following initial-boundary value problem:

O =dtu+du—Adu-t+F(, x, Au)y=f in 9=[0, o) 2,
(P) u=0 on 9'=[0, «wo)xof,
u(0, x)=¢(x), (9, u)(0, x)=¢(x) in £,

where A=378% Au=(u, Aw), Au=(Diu, D%u, d.u, 3,Diu, ), Diu=0u, -,
), Diu=(09,u; 1=4, j=n).

When the equation is quasilinear or semilinear with dissipation and 2 is £”
or bounded, global existence and uniqueness theorems and the study of the prop-
erties of solutions of problem (P) and so on have been treated by many authors
(cf. [37, [71, [12], [147, [16], [20], [21] and further references in these papers).
In the case @=R" it is well-known that by the method due to Dionne [2], we
can reduce fully nonlinear equations to quasilinear systems and hence we need
not consider essentially fully nonlinear equations in R™ Applying results due
to Matsumura [7], we can thus show global existence and uniqueness theorems
of Cauchy problem for @(u) with sufficiently small and smooth data. But, when
2 has boundary, we can not use such a method due to Dionne. In the case that

o

2 has boundary and @(w) is fully nonlinear, we must treat essentially phenomena
what is called “ derivative loss”. In order to overcome such difficulties, we can
use a well-known excellent method due to Nash [137 (also Moser [97). In fact,
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Rabinowitz [15] established a global existence theorem of periodic solutions of
fully nonlinear dissipative wave equation of the form: dju—diu-+adu=cf(t, x, Au)
(a>0), when n=1, £ is bounded and ¢ is sufficiently small, by applying what is
called the Nash-Moser technique. Recently, Shibata [18] showed global existence
and uniqueness theorems and decay theorems of solutions of mixed problem for
general second order fully nonlinear hyperbolic operators with dissipation of the
form: X7oa,(t, x)8,0,u— 7 joray;(, x)0:0;u-+ 2o, x)0u--c@, D)u+FE, x, Au),
when 2 is bounded and data are sufficiently small and smooth, by also the Nash-
Moser technique. And also, applying the Nash-Moser technique to bifurcation
theorem, Craig [1] showed the existence of non-trivial branches of periodic
solutions for fully nonlinear dissipative wave equation of the form: Gfu-+ad,u—
du—mu+F@, z, Au)=0 (a>0, me R*), when £ is bounded, which is an extension
of Rabinowitz’s result [15].

The purpose of this paper is to show global existence and uniqueness theo-
rems and some decay theorem of solutions of mixed problem (P), in the case that
data are sufficiently small and smooth and that £ is unbounded with compact and
C= boundary. We introduce the following assumptions, which will be assumed
throughout this paper.

AssuMPTIONS. 1° The space dimension nz=3.

2° The nonlinear function F(f, x, 2), 1={(g, /T), is real valued and belongs
to the space $=([0, 00)x @ X {Ae R 2+ m+0%: |21 <1},

3° In the case: n=5, F satisfies the following conditions: F(t, x, 0)==0,
(d ), x, 0)=0®,

4° In the case: 3=n=4, Fisof the form: F(t, x, A=F.¢, x, )+F¢, x, ),
A=(y, 3), where F, and F, satisfy the conditions: £\, x, 0)=0, (dzF)(, x, 0)=0,
Fut, x, 00=0, (d Fp), x, 0)=0, (d3F(, x, 0)=0.

In this paper, we shall show the following

MAIN THEOREM®. Let Assumptions hold. (1) (Existence). Let m be an
integer z2. Then there exist some positive constant ¢ and a suffictently smalil

positive constant 8, depending essentially only on n, m and F having the following
properties: if data ¢o, ¢: and f for problem (P) satisfy the m-th order compati-

(1) S*(@), » being an open set, is the set of all functions defined in some open set
&= w such that their partial derivatives of order =% all exists and are continuous and bounded.
We denote the norm of B* by |||l gs-

(2) Here, we have written d,G=(3G/dw, -, 8G/dv;) and &iG=(G/dvdv;; 124,
j<k), when v= (v, ==, ¥).

(3) Notations used in Main THezoreM Wwill be defined in the part of Notations below.
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bility condition dejined in §10 below and an inequality:

||¢o||2,2%+3+[n/2]+ ”951 e svo4tnrant1 f [2,q<n>,z?'n+1+[n/21

’\LU<7’Z>(”¢0”1‘%+2+H¢1“1,7n+1+|f§1,1,%>§.5,

then there exists a solution ueC™([0, c0) % Q) of problem (P) with
[u Ioo.p(n),m“{" | Aulz,o, m-2t | /T“ [0 1/2. m-25 0O »

for any 9 with 0<d0<d,. Here, m=2max(m-—1, 2[n/27+7)-+9+2[n/2]. ()
(Uniqueness). There exists a small number §, with 0<8,=<1 having the following
properties: if u and v are C*([0, o)X ) solutions of problem (P) for the same
data and satisfy the conditions: 1ulw o000, 10w o1 then u=v.

Now, we give some examples of @(u).
ExaMpPLE. (i) @(uw)=0u+du——~ vdlf——
Vv 14-337,(0,u)°
(i) Ow)y=0%u+0,u—du+ g(u), where gu)=C>(R") is real-valued and satis-
fies the condition: (d/du)’g(0)=0, j=0, 1, 2 (for example, g(u)=1u").
(i) O(uw)=0%u+0,u—du+ 7 o(0;u)+ 7 120(0:0,u)%

Our proof of (1) in MAIN THEOREM is a straight forward adaptation of a
quadratic iteration scheme with a process of “smoothing” because of “loss of
derivatives” at each step in the iteration. This technique is well-known as the
Nash-Moser technique ([9], [13]). In order to show the convergence of our
iteration scheme, it is important to show L? and uniform decay estimate for
linearized problem, which will be shown in Part 2. In particular, the results of
decay estimates are new and will be shown mainly by means of technique known
in the field of perturbation theory in Part 1 and §8 and §9 in Part 2.
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Notations

For any multi-indices a=(a,, -, a,) and B=(B8,, ---, B) where «; and S;

are non-negative integers, we put
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05=07" - 05", lal=a;+ - tag, al=a; ! a,,
a—B=(ar—Py, -, @n—Pa), (Z):a!/(a~‘8)! al,
and a=p means «;=8; for any j. For a non-negative integer N, we put
DY¥u=@3u; |a| £N), DYu=({0%u; j+|a|=N),
DY¥u=0%u; la|=N), D¥u=(0{03u; j+|aj=N).
For any open set © in R™ and p with 1< p=<oco, we denote the usual L? and

locally L? spaces defined on © by L?(@) and L2.(0), respectively. For functions
f and g, we put

(. o=\ f-2dx, Iflon=(],1 717¢x)", 1=p<co, 1flo.mess suplfl.
For a vector valued function A=(h,, -+, hs), we put
e hgr e Ry, RP= R Tt (Rl = Sealhlo .
Further, we put
1 flo.px=ID% fllo.s, Ao, py=3ulbsllorpn
HY(©)={fL?O); | fllo, v <o0}.

By Hp(©) we denote the closure in Dirichlet norm of smooth scalar valued func-
tions with compact support in ©, where Dirichlet norm is defined by

lifte={, | DLr 1

When 0= or =R", for simplicity we use the following abbreviations:

(f, ©=(f, @a, Wfle=Iflor, flov=0Flerx, WA=l
(f, @'=, @&, 1= leme, [Flpx=1lpm w5, WA=F1zm.

For Banach spaces 4, and %, B(4,, 4;) denotes the Banach space of all bounded
linear operators on 4, to 4, and we denote its operator norm by ||y, ay-
In particular, when H=40,=4, for simplicity we write B(¥)=B(4, %) and
Il =N llgw. 4. For an open set w in one dimensional complex plane C, a
Banach space 4 and an open set © in R", by Anal(w; ) (resp. CY(O; %)) we
denote the space of all 4(-valued functions which are holomorphic in @ (resp.
N-times continuously differentiable in ©). We put C¥@; 4)={ucsC©; %);
supp u is compact and contained in @}. In particular, we put CY(©)=C?Y(©; C) and
CYE)=C¥©; C). For p with I=p=co and a non negative integer N, we put

PN (E) =M CH 0, o) ; HY (),
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where C¥([0, c0) ; HY /(@)= {1 ; u=v in (0, o) for some veC¥((—oo, o) ; HY I (O)}.
For ue&?¥(©®) and a non negative real number k, we put
[2lo.5. e y=sup(+D* 1DV ult, Hlo.p -
For any closed interval [a,b] (—oo<a<b=<oo) in R' and ueML,C/([a,b];

HE-9(0)), where Ci([a, b]; Hy(O)={u; u=v in (a, b) for some v&C((—o0, );
H%ON} (7 is a non negative integer), we put

!ulﬁ,p,[a,b],N: Sup Hﬁwu(f, ')“O,p .

aztsh
For simplicity, when ©=£ or R", we use the following abbreviation:
[lp ev=tlopen, |Ulpenv=luloseny,
[l e v = ulrn, pew s (Ulbtenv=Ulrr pa,ow-
For any positive integer L, we put
Ef={ueert(o); dju@, x)=0, j=0, 1, ---, L—1},
E'={ue E*nC* ([0, ©); Hy0)), 0+u(0, x)=0}.
For any >0 and open set © in R*, we put
o,={xe0; |x|<r} (©#R", B,={xeR"; |x| <1},
L{o)={fe LYR"™); supp fCO.}.

Throughout this paper, r, denotes a fixed positive real number with B, DR"—£.
Choose a C=(R™)-function =(x) so that =(x)=1 in B,  and r(x)=exp(—|x|% in
R*—B, ... Using =(x), we define weighted L? norms {-> and ¢{->" as follows:

p={alrinds, y={ wnifrde.

We define Banach spaces 4 and 4’ as follows:

I={fe L () Dif><oo, f=0 on 802}, I ={f€LL(R"; <D%f) <oo}.

We denote the Fourier transform of f(x) by f(é)::(fff)(&)zgexp(—Vi»i:'ixf)f(x)dx,
and also the inverse Fourier transform of g(& by g(x)=(F~'g)(x)=2x)™"
xfexp(v/=1x8)g(@)de, where &= x&it - Fxabn, 1=y o, xa), £+, £

For positive integers s, 7, a function H=H{, x, v), v=(y;, .-+, v;), defined on
[0, o)X @ X R?, vectors u="(uy, -, 1), v;=@i, -, v)<R*, we put

(dIHYE, x, udvy, -, viy=(0H/0ny - 0)t, x, -+ )]y mmyi=o -

For the space dimension n, we define functions p(n), g(n), a(n) by
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1 if 3=n=4 5/4 if n=3 3/2 if n=3
o(n)= , pn)=y 3/2 if n=4, ¢gln)={ 7/4 if n=4.
0 if n=25 n/4 if nz5 n/4 if nz=b5

Finally, throughout the paper, the letter C without subscripts will be used to
denote various constants. Further, if a constant depends on A4, B, --- and we
need to emphasize this fact, we shall write C(4, B, ---).

PART 1

Local energy decay of solutions of the mixed problem
for the operator 0}+0,—4

§]1. Statement of main results of part 1.

In this part, under the assumption: n=3, we shall determine the rate of
local energy decay of solutions of the foilowing mixed problem:

(0¢4+0;, —DHu=0 in @,
(L.1) =0 on 9.
u(0, x)=¢(x), @,u)0, x)=¢,(x) in 2.

We shall show the following in this part.

THEOREM 1.1. Assume that n=3. Let v, be a fixed large number with
B.,DR*—£, M and N any non negative integers, and r and v’ any real numbers
with v Zzrzv,+3. Then, there exists a positive constant C=C(r, ¥’, M, N) such
that if @i, ¢ C=(82) have supp do, supp ¢ 2, and satisfy the compatibility con-
dition defined in (6.3) in §6 below and usC=(82) is the unique solution of (1.1),
then

S.Q |D¥a,§vu(l‘, x)|Zd-x§C(l+t)'(7l+21v)[ll¢ol]2,M+N+3+”¢1"2.M+N+2] .

Under the assumption that the domain & is non trapping, it is well-known
that the rate of local energy decay of solutions of the mixed problem of the
wave operator is n ([6], [22], [23], [24]). But, in our case, we don’t need the
assumption that £ is non trapping by virtue of the dissipative term: d..

Since the proof of Theorem 1.1 is somewhat long, we here give a sketch of
the proof. The strategy follows Murata [11]. For any fe L¥£2), by R(z)f we
denote the solution of Dirichlet problem: (4+z*—+/—10)R(z)f=f in £, R(z)f=0
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on 992. In §2, we show that R(z)f € Anal({r&C; Im <0} ; H{)HNC(R'— {0} ;
H3(2)). Further, by virtue of dissipation we can show that |[R(@)f|,=Clz|* as
|z|—co, reR'. In §3, we define the fractional power of derivatives by means
of the terminology of Besov spaces. In §4, for fe L}R"), by Ri(z)f denoting
the solution of the equation: (4+72—+/—17t)u=f in R", we show that z¥R(z)/

is (% erN)-times differentiable near r=0 in the sense defined in §3. In §5, we
show that R(z) is a small perturbation to Ry(z) near r=0. It follows from this
result that ¥ R(z) is also (-% +N >-times differentiable near z=0. In §6, roughly
speaking, we put u(f, x):(1/27r)SR(r)fe""‘I”dr. Then, by using a theorem that
the decay order with respect to ¢ of the Fourier transformations of ("Z_ +N )—times
differentiable functions is —g——HV, we can show that the assertion of Theorem 1.1

holds for this function u(t, x).

§2. Definition and some properties of an inverse operator R'(7) in «.

Throughout part 1, we write
@1 Il=0-1s, B-1=0-1s, m={reC;Rer#0, Inc<1/2},

ke={reC; Rer=0, Im <0}, r=r\Ik:.
By integration by parts, we have
(2.2) (A4 —v=1)u, u)=—llull+ @~ —=1)ul’,
for any ue Hp()NHY$) .

The following two lemmas are well-known (see Lax-Phillips [6, Lemma 1.10of §1

in Chapter IV and (1.11) of §1 in Chapter V).

LEMMA 2.1. Let ue Hp(2) and ve H(R™). Then there exists a positive con-
stant C=C(n) such that

[, Jultde<Crial for any rzro, |, 1*dxCrUbl)® for any r>0.

LEMMA 2.2. If ueH)Q) and due L¥Q), then all second derivatives of u
are square integrable and
| D2l = C{fl dull =+l

By using (2.2), the Cauchy-Schwartz inequality, Lemmas 2.1 and 2.2 and

well-known Riesz’s theorem, we have
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THEOREM 2.3.  For each v&x, there exists a bounded linear operator R'(z)
on L¥8) to HYQNH(2) such that for any fe LXQ), R'()f satisfies the equation :
(A4t~ —1)R' (@) f=Ff in £, and the estimates:

@23) IR =CCIfN, IR @A=SCLEOIA, DR @fFISCLENf],

where
Co(@)=(Rez||2Imz—1])"! if v€k, and =(|z|+!c|®) ' if rx,,

Col)[1+|(Re o)*—(Im o)*+Im ¢ | V2 if c€x,,
(Izl+1zl?? if 7€k,
Colr)=1+ 22— \/':;17|C0(T)+C1<T) if rex.

(2.9) CI(T):{

Let = and ¢, be any points in #. Formally we put
(2.5) Co)= 2 {l(ri—v —1o)—(— v/ —12) IR ()} 7 .

In view of Theorem 2.3, if ¢ is close to 7, the series on the right of (2.5) con-
verges in B(L* ) norm and it is easily checked that for such 7, its limit is
indeed the inverse of the operator: 14[(c>—+/—1t)—(2—+/—17)]R'(z,). It
follows from this that for such z, the equation: (4+7*—~+/—17)R'(z)C(z)f=/ in
£, holds. So, we see easily from Theorem 2.3 that R'(t)=R’(r,)C(r) for such z.
In particular, we have that R’(r)e Anal(x; B(L¥Q); H{2)N\H)2))). So, differ-
entiating the both side of the equation: (4+c*—+—10)R'(z)f=/ in Q with
respect to r, we have by Theorem 2.3

THEOREM 2.4. Let R'(z) be the same as in Theorem 2.3. Then R'(t) belongs
to Anal(k; B(L¥2): H{D)NHu()).
Furthemore, the following estimates hold:
@/00)Y R () f| <C(N, )|z [ HIf ],
li@/00)* R (x) FI=C(N, »Ifl,
1D%(0/00)" R"(2) fI|<C(N, v)| |- |l /I

for any v>0, integer N20 and re R" with |7| >v.

§3. Definition and some properties of the space C*,

In order to investigate the regularity of R’(r) near =0, we shall define the
fractional power derivatives by means of the terminology of Besov spaces and
show some their properties in this section. Throughout §3, % is a Banach space
with norm |-|4. First, we introduce the following space.
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DEFINITION 3.1. Let N be a positive integer and k=N-+¢ with 0<¢=1. Put

Cr=CHR"; H)={ucsCY R, IONC(R'— {0} ; 9); (u)p a<co},

where
Cud e, a=3% RRI <§i)]u uup]hl 7
{ NCEY wet () ww)| de it 0<o<1,
(uds, qm (é’;)’u z‘)) de+sup|h| ™

( f%—)yu(z-wh)——2(%)”74(” h)+(-§;>Nu(r) ‘ﬂdr :

J
R1

C* is a subspace of the usual Besov space B! (R'; 4) (see Muramatsu
[10]). In the following theorem, we shall give a sufficient condition in order that
f belongs to C~

TEHOREM 3.2. Let N be a positive integer and 4 be a Banach space with
norm |-|g.  Assume that feC>(R'—{0}; 4)NCY ' ; #) where [=(—2, 2).

(i) Let k=N+o with 0<o<1 and f satisfy the following condition (a).
(@) For any rel— {0},
o) <cn) for any i =0, N—1
’("d%) f(t)lﬁ: (f) for any integer j<=[0, N—17,

;T )N“f(z')

Then, feCHR; 4) and | satisfies the following :
D ea=Clo, N)CS), 1/(@)—fO)|a=Clo, NYC()]z]°.

(i) Let k=N+1 and f satisfies the following conditions (a) and (b).
(@) There exist foe X and a K-valued function f,(t) defined on I such that

() 1@ zciniere, |(

=CN|t

( ) F@)=Fsloglel - frz) for vel— (0}
(b) For any te=I—{0},
d\i ) . _ )
() r@1e=C) for any integer je[o, N1,

d

N+
[la=0h, h@lascn, [(5) 1ol =l

’( 4,>N”f<f)|ﬂ_§c(f>lfl -2

dr
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Then, feCHR'; %) and [ satisfies the following :
Cea=CN, o)C(f), [F@)—fO)[4=CN, o)C(f) ]

Theorem 3.2 follows immediately from the following four elementary lemmas.

LEMMA 3.3. Let f(r)aCHR*— {0} ; 90). If there exists a positive number <1
such that | f(@)|a=C(H)|z|77F, |d~r-f(z") ﬂ;EC(f)lrl"“z, then for any he R*—{0},

[ et m—r@lade=co)cnin”

LEMMA 3.4. Let f(0)eC¥B'— {0} ; &). If there exist fo= 9 and a H-valued
Sfunction [.(t) such that f(v)=71, luglrl—‘rfl(” and if for any reR'—{0} the

estimates: | fol «SCU), 111020, | 4 1] 2011 and [( ) 7@ 2
C(f)|r]"% hold, then for any he R'— {0}

[ 1 tam—2f+ R+ £@) ade =448 log DC) A1,

LEMMA 3.5. Let f(r)eCYR'— {0} ; I)INCE*; «). If there exists a posi-
tive number o<1 such that for any r€ R'— {0} the eslimates: | f(r)|«=C(f) and

””*f(T g()(f)h[”” hold, then for any h, r=R'-- {0}

[fet+h)— @ ]a=Cla)U)h].

LEMMA 3.6. Let f(r)eCHR'— {0} ; H). If there exisis a positive number

o d AN

o<1 such that the estimates: | [@\«=C(), | £ 1@ zcniel, |(L)F@)],
<C()lz| " hold, then

[" |t w—re1- 1 0| dezcocniale,

Proor of Lemmas 3.3-3.6. Lemma 3.5 follows immediately from elementary
calculus, so we omit the proof. Lemma 3.6 follows from Lemma 3.3 and Taylor
series expansions. Since the proof of Lemma 3.3 is essentially the same as that
of Lemma 3.4, we shall prove only Lemma 3.4. First, we shall treat the case
that A>0. Putting J(h, ©)=|f(t+2h)—2f(c+h)+ f(t)| 4, we divide the integral
I(h)::gaj J(h, 7)d7 into four parts, that is, [(h)=2%..{;(h) where [&h)zf](h, 7)dr,
Ig(h):ga_h](h, 7)dT, [3(}1)?;S‘inh](h, o)dr, 14(/1);&:2"7(}1, o)dr. First, we estimate

I,(#1). By Taylor series expansions we have that for >0,
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Joh, r)é’S:S:Kfi—)zf(r%ﬁ%—v)lﬂd@dnéc(f)szgz(r%-ﬁ+37)'2d by .

Thus, by Fubini’s theorem we have
R{h =
(3.1) L(h)§C(f)§ogo [SO(T+6+ n)‘zdr]dﬁdp:@ log 2)C(/)h .

Next, we estimate [,(h). By the assumption, we have

0
~h

6D L[ et @ladet || £+ R f0)]ads

h 0
<aC(Nh+C(| | Nogle+hi—log el |dr+{ Tlog|e-+hi~log|z||dz
By elementary calculus, we have
h h N
(3.3) S log|z--h|—log 7| |df:50[10g<f+h>-1og ldr=(2 log 2h,

hl2

(3.4) So_h[loglﬂ—hl—loglr!Idr:go [log(h—z)—log £]dz

+ 5:12[10g r—log(h—1)]dr=(2 log 2)h .

Combining (3.2), (3.3) and (3.4), we have

3.5) I,(h)£ (444 log 2)C(NHh .
In the way similar to the proof of (3.5), we have
(3.6) I, (hy=(4+4log 2)C(NHh.

Finally, we estimate I,(h). By the assumption, Fubini’s theorem and Taylor
series expansions, we have
-2h[(Ch(Ch
37) ran=cn| ([ e+ 0+91-dody |ar
h h % s
=C( f)SO dﬁSo dnjnwvaﬁn) 'de=(2 log 2C(f)h.

Combining (3.1), (3.5), (3.6) and (3.7), we have I(h)=(4+8log 2)C(/)h if A>0.

Since f(—r) satisfies the same assumption as that imposed on f(z), we have also

I(h)=(4+8log 2)C(f)| h] if h<0, which completes the proof of Lemma 3.4.
Q.E.D.

Finally, we shall give a result which shows the decay order of the Fourier
transformation of functions belonging to ¢*. When 4 is a Hilbert space, such
a result is proved, for example, in Murata [11]. He showed it by using the
interpolation theory. Here, we give an elementary proof due to Muramatsu.
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Although we can show such a theorem for more general Besov space defined on
R™ without changing the essential part of the proof given below, for simplicity
we shall show only a theorem which we need in this paper.

THEOREM 3.7. Let 4 be a Banach space with norm |-|4. Let N be a posi-
tive integer and ¢ be a positive number =1. Assume that feC¥*°(R'; ). Put

g©=1/20)" f@exp(v/=1te)dz. Then,
g a=CA+ D) N (Dvso.x -

PRrROOF. Since (g;)jf(r)el,’(ﬂl;ﬂ[), 7=0, ---, N, noting the identity:

(V=104 exp(v/~ Ltr)=exp(v/~1tz), we have by integration by parts that

3.8) gO)=(vV=11)(l /2::)51[(—%)” /(f)]expwiizf)df .

For simplicity, we write Aa(r)=(1/2n)(d/dz)? f(z). Since f(r)eL'(R'; %) and
f(—7) also belongs to C¥*?, we may show the theorem in the case that f=1.
So, we assume that =1 below. Choosing %(s)e C5(R!) so that Z(s)=0if |s|<1/4,
Is|=2 and =1 if 1/2<|s| =1, we put X(s)=%(|s]). Choose an integer 7 for t so
that 2¢-'<1<(2%. We have

(3.9) 17 Sth(r)e":I "er(

V=1t < 9ia
gmh(r)e dr}ﬁ(:2

§Zi"sup1X(2”‘s)S h@e T de]
$>0 R1 H
By the Fourier transform, we have

(3.10) 1(5)Ex<2~is)geﬁi'”h<f)dr: FALFAEE)F RN

=(1/2m)e ”[SQ(X(Z""~))(r’)h(f—r’)dr’]dr .
On the other hand, we have
(3.11) FAQR () =22, 2i§2<2if'>dr':2nx(0)=o :
Combining (3.10) and (3.11), we have
(3.12) I(s)::21'5@‘/"7“U)AC(ZZ'I'/)[h(r-"—T’)—h(r)]d':’]dr .

First, we shall consider the case that 0<o<1. By Fubini’s theorem, the defini-
tion of ¢¥*? and (3.12) we have
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(3.13) rtez2 etz ede {1177 he =)o) ade |
S22 D na| | 1H2D]de

=279y 120 21742 D
Combining (3.9), (3.10) and (3.13), we have the theorem in the case that 0<o <L
Next, we shall consider the case that g=1. Since %(s)=¥(—s),
(3.14) 22 =1—2"").
From (3.12) and (3.14) it follows that
@15 I=2{e | L@t te)—2ae) + he—e))de’ dz.

By Fubini’s theorem, the definition of ¢¥** and (3.15) we have

(3.16) [1(s) I‘eéZi"SIf((zir’)! Ed dr’glh(r +¢')=2h(x)+ hr—7)) [« ]2' | 1dT
SRy |12 2

=2-i((4m) {1 R 42 ) r

Combining (3.9), (3.10) and (3.16), we have the theorem in the case that =1,
which completes the proof of the theorem.

§4. Behavior of R,(r) near r=0.

For fe L%R™), r>0, we can put

1) Ro(@)f =(2a) | @ VT |19 e, ce R,

In fact, since |f&)| =CIfIII=C)|f]’ because of the fact that fe LXR™) and
since n=3, Ror)f is well-defined for any z=R'. It follows immediately from
the definition of R.(z)f that

(4.2) A+ 22—~ 1) Ro(2) [ = f in R™.

The following theorem is the main result of this section.

THEOREM 4.1. Assume that n=3. Let fe LXR", a be a multi-index with

Qélaié?. and R,(7) be the same as in (4.1). Put [:[—— —%, é—}%()}. Then, the

following four assertions hold.



On the global existence of classical solutions 15

1° Ryo)feC=(; 9", where 9’ is the same as in Notations.

2°  For any integer je[o) n+ ],gd“g],

lifﬂ(a/af)j(a/ax)“Ro(f)f= 11101} (0/07)(0/0x)*Ry(z) f .
3° If n+la| is odd, for any cel

(0/37)(@/0x)* Ro(0) [>' =C(j, a, N fI
for any integer 7<[0, (n+|a|—3)/2],

ntial

<(6/6r)"(8/6x)“1?0(r)f>’<::c(]'y a, r)“f”/IT[ -+ + 2]

. . —1
for any integer j_\é_ji |;¥| .

4° If n+|al| is even, there exist fo= L (R™) and an L (R™)-valued func-
tion f,(z) such that
(0/0r)*H1a1=212@/9x)* Ro(7) f=f o log |z | + f1(2)
and the following estimates hold for any rel:
S’ =CIFI, f1@ =CL 1,
(0/97)/(0/9x)*Ro(2) />' <Cr, j, )l I
for any integer j<=[0, (n+|a|—4)/2],

n-lal

0/0)(@/3x)* Ro(x) [ > =Clr, 1, )| fI 2|90+

for any integer ]3“2@

In particular, combining Theorems 3.2 and 4.1, we have

COROLLARY 4.2. Assume that n=3. Let p(z) be a C3(R") function such that
p@)=11f |t|£1/4 and =0 if |z|=1/2. Let Ry(t) be the same as in (4.1). Then,
for any multi-index a with |a| =2, integer N=0 and f< LXR"),

p@T¥IR () f eCT Y (R )
Furthermore, the following estimates hold for any reR'— {0} -
Cp@)c" T Ry(0) [ az)atsy, 5. =Cln, a, N, p, NI,

CO3LR.(D)f = Ro(0) f 1" =Cla, N[ f1".

Now, we are going to show Theorem 4.1. Choosing X(£)=C3(R"™) so that
Xé)=1if |€]|=1 and =0 if |&]|=2, we put: R(c)f=S(c)f-+T()f where
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@.3) S(f)f:(27r>‘“gX@)e”"“ff(E)(rgw«/—i —|E)ds,
T()f = @m) 1A ey 70—/ e |&]97de

Since |@/00)/(zt—~/—1r— €% ZC(HUA+1£]?) for E&supp(l— (&) and 'V {0},
it follows from Parseval's equality and differentiation under integral sign that

{3/82Y@/3x)*T () [ =C, )| FI

for any multi-index a with |a|=2, integer j and z=/\J{0}. This shows that
all the assertions in Theorem 4.1 hold for T(z)f. So, we shall show that all
the assertions in Theorem 4.1 also hold for S(z)f. First, we note the following

two facts:
(4.4) \SN/(’!‘Q'-«/;I'T——SQ)MléZM-sN‘”’

| for any N and M with N=22M =0, r<I and s=0,
(4.5) EHIG) I<C(a>S<1+l ) f(x) | dx = Cla, N fI

for any multi-index « and fe Li¥R™. Let pi(z), k=0, 1, -, j, be polynomials
defined by the following formula

(4.6) 3/ (22—~ — 11— &) =T o )2 — v/ — 1z —|E|H)7F

Here, it follows immediately that pi(z)=(—1)’j1(2r—+/—1)/. Since |7* —s/—17
—1£]?| = |z|, it follows from differentiation under integral sign, (4.5) and (4.6) that

e/ i) (6)
72,.}.,\/_,_”1'7__ 15'2)}3-“

A7) (0/3Y@3/0x)°S@) f = Sheopl(r)Cn)" S( dé

§|Ctl+n 1

~zz‘;;:op;;@)(zn)wg = kHdsgm‘:le‘“/ji“”‘”sm"X(sm)f(sw)dS,,,

if 0. Here, by dS, we have denoted the surface element on the unit sphere :
lo|=1. Since |t*—+/—1lz—s*|Z|z]>0 if z#0, it follows from (4.7) that the
assertion 1° in Theorem 4.1 holds for S()f. If |a|-+n—1=2(7+1), noting (4.4),
(4.5) and (4.7), we have by Lebesgue’s dominated convergence theorem that

lim (0/07)7(@/0x)"S(x)f = lim (0/07)(0/9x)*S(0)f ,
|@/0)@/0x)*S)f | =Clr, &, DSV, 7=l

This shows that the assertion 2° and the estimates for any integer

je[(), n+1(211~§] in the assertions 3° and 4° of Theorem 4.1 hold for S(z)f.
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Now, we are going to show that the rest of assertions in Theorem 4.1 hold
also for S(z)f. For this purpose, we need the following lemma. Since we can
show it by elementary calculus, we omit its proof.

LEMMA 4.3. Let M and N be integers with 0=N<2M. Put
. 1 1
Iyu@={'s" fet—v/Zle=sy¥ds, cel=|-7, 5]~ 0.
o 27 2
Then, the following facts hold.

1° If N s odd and M%,N,Z.-,, =1, then there exist complex constants dy, u

depending only on N and M and C=({r; |t|=1/2}) functions py. u(t) depending
also essentially only on N and M such that

Iy.u(@)=dy y(log|z| - —1tan"'2/c(1—*)+pn. u(7) .

2° If N is odd with M— JY;]

% u depending only on N and M and C=({reR"; |t|£1/2}) functions ph u(c),
7=1, 2, depending also essentially only on N and M such that

=2 or N is even there exist complex constants

d;’)Mﬂ}v,M(T>THM+N;I 4+ u(7) if t>0,
Iy, u()= N1 )
Ay utthy a@ ] b u(c) if ©<0.

Now, we return to the proof of Theorem 4.1. We may show that the fol-
lowing two assertions hold for J(;; x, r):;:Se“"”ef“X(E)f(E)(rzmx/:IT— [E|2)-I-1dE,

in order to show the rest of assertions of Theorem 4.1.

Assertion 1°. Let j be an integer= _ﬂflgl—l Then,
4.8) 7G5 % DI 2C0, 5, I A7)+ ™5 for any cel,
Assertion 2°. If n+|al is evenand j= ﬂil—;” 2 , there exist foe L (R")
and L3 .(R™-valued functions f,(z) such that
4.9) JG s %, D)=fologlz|+fi(o),
(4.10) S'=C a, PN, i@ =CF, a, DIFI” for any cel.

First, we shall show Assertion 1° just mentioned. Using a polar coodinate

system, we can write

—'1raf)r.s:§|fu+n—rlx(sw>f‘(sw) ds

o (/= 1T—shit

2 gV
(Dadswg
=]

()=

4.11) IG5 % 2=
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By Taylor series expansion, we have

(12) V) flso) = FO+ Bilgdx, o5+ Hitx, 0, p, )dps*

where
gi(x, @) =G N713/05) e Y (s0) [(s0) | smy, P21,

4.13)  Hilx, @, p, $)=(1—p)" (=1 1)"1@/30) e Y(6w) [(60)| 5mps, =1,
k=2j+3—(n+lal).

Using (4.12) and Iy y(z) defined in Lemma 4.3, we can rewrite J(;; x, 7) as

follows :

@10 JG; x5 9=] [0 uinos i@+ S0 D s 50

w|=1

Sk+n+|a[A1

Since f<= L%R"), we have
Loy calfL,
(4.15) lg:(x, ) =Clr, A+ DL,

(1, 0, 0, 9ldpsci, nat1=DMAI

bn— el —
Noting the facts that ;+1-— e %n ,2,,_;_2_+(]~Ml’_+__,’_§;_,_l,) and that
j?__ri{:—lg—l-—m—lﬁ, and applying Lemma 4.3 to (4.14), we have by (4.4) and (4.15)

that Assertion 1° holds.

Finally, we shall show Assertion 2°. Since n+]«| is even and j= —Tif—lg—ll»%-,
using (4.11), (4.12), (4.13) with /=1 and Lemma 4.3-1°, we have
-2
(4.16) J (ﬂf,,,'%l_,,__, x, )=/ log|z|+/,(2)
where

fo:S wadswdml—%n—l‘(nHal)/Zf(O);

F@=[ 0 dSuldiarin-imeias(—v =T tan~2/e1 %)

+,¢.a.+n,1,(nm,nm(r)}Jf«»

oF 1 grtialds "
+Slw|=1{go[gf)}{1(x’ @ £ S)dp] (tr—A/—1g—gt)Hiani }w dSu,




On the global existence of classical solutions 19

and d; ; and g, ;(r) are the same as in Lemma 4.3-1°. It follows immediately
that

(4.17) S’ =Clr, a, PN, i@ =Cr, a, DI for cl.

Combining (4.16) and (4.17), we have that Assertion 2° holds, which completes
the proof of Theorem 4.1.

§5. Behavior of R(r) near r=0.

Throughout §§5 and 6, by » let us denote a fixed constant =r,+3 (cf.
Notations). By integration by parts, we have that for any ¥ =C(Q)
(5.1) (du, u)y=—fullP.

Thus, by (5.1), Lemmas 2.1 and 2.2 and well-known Riesz's representation theo-
rem, we have

THEOREM 5.1. Assume that n=3. Then there exists an operator R’'(0)e
B(LX8); HY(D), where HY(Q)={ve Hy(Q); | D2v] <o} (cf. (2.1)), such that for
any feL¥Q)

RO)f=f in &,

IR AN=COHISI, TDZROfI=COISf] .
Now, we introduce the following operator.
DEFINITION 5.2. Let R'(z), r&x and R’(0) be the same as in Theorems 2.3
and 5.1, respectively. By R(r) we denote the operator:
(5.2) R(z): L 2)—y9

that is obtained from R’(z) by contracting the domain of definition of R’(z)
according to the formula (5.2) and considering its range in a wider space 4 (cf.
Notations).

From Theorem 2.4 it follows that R(z)e Anal(k; B(LYX2):9). Below, we
shall investigate the regularity of R(z) near r=0. Choosing ¢, p=C=(R™) so that

¢=1if |x|=r—1 and =0 if |x]|=7,
(5.3)

¢=11if |x|2r—2 and =0 if |x|=r—3.
Using ¢ and ¢, we introduce the operators P and Q.

DEFINITION 5.3. Let Ry(zr) be the same operator as in (4.1). For fe LX),
we define P and Q by the following formulae:
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P)f=1—@)R()Qf)+ R (0) ],
Q@) f=237.,0,6 3, Ro() P fo))+Ap- Ro(e)( fo) —(2*—+/—1)p- R'(0) f
—2307-10,¢-0,(R/(0) /) —4d¢- RO f .
Here, fo=/f if x=8£ and =0 if xeR"—0.

The following lemma for P and @ just defined follows immediately from
Definition 5.3, Theorems 2.3 and 5.1, Lemma 2.1, Corollary 4.2 and well-known
Rellich’s theorem (cf. Mizohata [8, Theorem 3.37).

11 . .
LEMMA 5.4, For re[—~— ——], we have the folowing three assevtions:

4’ 4
(i) P)eB(L¥Q);9),
(i) Q(z) is a compact operator on LUL) to LU,
(i) for any fe LXQ) (4+>—V—10)P@)f=f—Q)f in Q.

We are going to show the following lemma, which is one of the most
important lemmas in this part.

LEMMA 55, Assume than n=3. There exists a positive constant ¢, such that
||1——Q(O)IIB(L3<Q”?560, where Q(z) is the same as in Definition 5.3.

Proor. Since Q(0) is a compact operator on LX) to L), in view of the
well-known Riesz-Schauder theory, we have only to show the following.

G.4) If f=L%0Q) and (1—QO)f=0 in 9, then f=0.

So, we assume that fe L2(2) and (1—Q0))f=0 in £ in the course of the proof.
By Lemma 5.4-(iii), we have

(5.5) PO)f=0 in £.

In order to show that (5.5) implies that /=0, we need the following two lemmas.

LEMMA 5.6. Assume that n=3. For any fe LX),
(1) MR N =CHI SN,
(1D NDIROI"=CIHIFI” (cf. Notations).

LEMMA 5.7. Assume that n=3. Let H¥(Q) be the same as in Theorem 5.1 and
HYyR"={ue LL(R™); [lull’ <oo, |D2ull’<oo}. The following two assertions are
valid.

(1) If ueHYW) and du=0 in 2, then u=0.
(i) If veHYR™ and dv=0 in R™ then v=0.
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Deferring the proofs of Lemmas 5.6 and 5.7, we continue the proof of Lemma
5.5. Combining Lemma 5.6 and Theorem 5.1, we have that for any fe L¥0)

IPOA=COIS,
IDLPOI=COI/

(5.6)

from which it follows that P(0)f € H3(). Thus, combining (5.5), (5.6) and Lemma
5.7, we have

(5.7) 0=PO)f =(1=@)RAO)PS0)+¢R(O)f in 2.

In particular, combining (5.3), (5.7) and the fact that 4R’(0)f=f, we have
(5.9) RO f=f=0 in 2,.,.

Put

,,,J RWO)f if x4,
“lo it rer-g
From Theorem 5.1, (5.3) and (5.8), we obtain
(5.9 ueHHy(R"Y), du=f,=¢f, in R"

Thus, since u— R (0)(¢fo)= HH(R™) and d(u—R,(0) (¢ fo))=0 in R™ because of the
fact (5.9) and Lemma 5.6, we have by Lemma 5.7-(i1) that

(5.10) u=R,0)¢f, in R

In particular, it follows from (5.10) and the definition of u that
(5.10) Ro0)¢fo)=R0)f in £.
Combining (5.7) and (5.10)’, we have

(5.11) RO ¢fo)=0 in 2.

Noting the fact that 4R.(0)(¢fo)=¢fo, we have by (5.11) that
(5.12) ¢fe=0 in £.

Combining (5.3), (5.8) and (5.12), we have that f=0, which shows that (5.4) is
valid.

In order to complete the proof of Lemma 5.5, we prove Lemmas 5.6 and 5.7.
ProOF of Lemma 5.6. By (4.1), we have
5.19 Ru(O)f=— (@) {e 470 [€] 245 .

From differentiation under the integral sign and Parseval’s equality, Lemma 5.6-
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(ii) follows immediately. In order to prove Lemma 5.6-(i), first, we shall show

(5.14) lim p-zg | R(0)f |?dx=0 for any fe& LYR™.

psizis2p

In fact, we note that the following formula holds (cf. Mizohata [8, p. 991):

(5.15) —(27r)‘"ge‘/:”5|§| “rdE—cn | x| if n23,

where cn:—Z‘zn‘”/ZF(-ﬁ:2jz> (I' is the Gammer function). Combining (5.13) and
(5.15), we have

(5.16) RO f =caf 1)/ 1x—y1"*dy

Taking p>2r and noting that fe LiR"™ and that n=3, we have from (5.16)

~

,,M"MMB [ F(DIdy=Cn, N fI p~™.

GID o RO Px=Co

psizis s|zis2

Thus, (5.14) follows from (5.17).

Now, we shall show that Lemma 5.6-(i) follows from (5.14). Choosing
WUx)eCP(R™ so that X(x)=1 if |x|=1 and =0 if |x|=2 and 0=X=<1. Since
03R,(0)f belongs to L¥B,) for any s>0 and multi-index a with |a|=2 because
of Corollary 4.2, we have by integration by parts that

(5.18) zyzlgx@—’xna,ko(()) flrdx=— SX(p‘Ix) f- RO F dx

+27p~|(dt)(o 7 0) | Ru(O)f I*dx

Here, we have used the fact that 4R,(0)f=F. Since supp AXC {x=R"; 1= |x|=2},
Xpx)=1 on |x|=<p and fe LYR"), it follows from Lemma 2.1, (5.14) and (5.18)
that
(5.19) HiRo(O)fHIZ:LimS l/p]aﬂ’?o(o)f|2dx§C limglfl | Ro0)f |dx

) 1 z1< oo

tx

1/2
<cIri(| RO f1%dx) T SCrIA - IRAOS

z|

Lemma 5.6-(i) follows from (5.19), which completes the proof of Lemma 5.6.

PrROOF of Lemma 5.7. First, we shall show that for any ue Hp(£2)

(5.20) lim p“2S Jul?dx=0.
p—eo PEEIELT)
In fact, since CP(£2) is dense in Hp(R) with respect to the norm ||| and since

(5.20) is valid for any element of Cy(2), it follows immediately from Lemma 2.1
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that (5.20) is also valid for any element of Hp(%2).
Let X be the same as in the proof of Lemma 5.6. Noting that u=0 on 0%,

we have by integration by parts that
(5.21) ‘;-;ISQmp*x)\aju | 2dx:2“’p“2S(AX)(p”x)| wltdx .

Here, we have used the fact that Ju=0. Letting p—oo in (5.21) and using
(5.20), we have ||u|?==0. Combining this and Lemma 2.1, we have u=0, which
completes the proof of Lemma 5.7-(i). By the same method as in the proof

just mentioned, we can show Lemma 5.7-(ii). So, we omit the proof of Lemma
5.7-(ii). Q.E.D.

Combining Definition 5.3, Lemma 5.5 and Corollary 4.2-(ii), we have

LEMMA 5.8. Let ¢, be the same as in Lemma 5.5. Then there exists a small

positive constant d<1/4 such that

"1“Q(T>||B(L§(Qn:=>C'o/2 if rel—d, d].

From Lemma 5.8, it follows that the inverse operator (1—Q(z))"'e B(L¥£2))
of the operator 1—Q(z) exists and that

[A=Q@)  swzon=2/co if cel[—d, d].
Combining this and Lemma 5.4, we have that for any f e LA and r€[—d, d]
(5.22) (A+72—v—10)P@@)(1—Q@) ' f=f in 2, P@)A—Q@)'eB(LYD); I).

Since |*—+/—1t— &2 2CE)(A+1€]Y if te[—d, d]—{0}, we have R (r)e
B(LXR™ ; HYR™). Thus, P(0)(1—Q(x) '€ B(LLULY); Ho(DNHYL), re[—d, d]
— {0}. Combining this and (5.22), we have the facts that (4+¢*—+/ —12)R(7)f
—P()(1—Q(z) ' f)=0 in £ and that R'(c)f —P(x)(1—Q(x)) ' f € Hi(EHNH(£2). By
integration by parts we have that R'(z)f=P(t)(1—Q(z))"'f for r€[—d, d].
Furthermore, since P(0)(1—@Q(0))~*f satisfies the equation: APO)YA—-QO)-*f
=/ in £ and the condition: POY1—QO)*f=H3($2) and since it follows from
Theorem 5.1 that R’(0)f satisfies the same equation: 4R’(0)f=f in £ and the
same condition: R/(0)feH%2), by Lemma 5.7-(i) we have also that R'(0)f=

POYX1—=QO)f.
Summing up, we have showed

LEMMA 5.9. Let d be the same as in Lemma 5.8. Then, R(z)=P(r)1—-Q(z))™*
for re[—d, d1.
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Combining Lemmas 5.8 and 5.9, and Theorems 3.2, 4.1 and 5.1, we have

THEOREM 5.10. Let r be a fixed constant =r,+3 mentioned at the beginning
of this section. Assume that n=3. Lel d be the same as in Lemma 5.8 and p(z)
a C2(RY-function such that p(t)=1if |z|=d/4 and =0 if \v|=d/2. Then, for
any integer N=0, multi-index o with la| <2 and f=L¥8), we have that
o(D)TNosR(x)f belongs to cHIDEN(RY. q),
Furthermore,
Lp(x)e¥0sR() )t n. a=Cln, N, p, o, IS

§6. Proof of Theorem 1.1.
In this section, we consider the following problem:
(0340, — DHu=0 in 9,
(6.1) u=0 on 92,
u(0, D=¢y(x), @.1)0, x)=¢,(x), in 2

where ¢, = C~(£2), supp @o, SUDPD 6,82, and rzro+3. It is well-known that
(6.1) is C=-well posed under the compatibility condition (6.3) below (cf. Tkawa
r47). We define u,(x) successively by

(6.2) u()::¢o, u1:¢1, uj=~*uj_l+duj_z, ];2
The compatibility condition for (6.1) is the following :
6.3) u(x)=0 on 082, j=0.

It follows immediately from the definitions of u; that 6{u(0, x)=u;(x), j=0.
Furthermore, we have that for any p with 1=p=co and non-negative integers
7 and N,

(6.4) 12,05 w ZC, 7, NIl @ollp, w5+ 1h3ll o, a1 -

We shall represent u in terms of R(z). For this purpose, choosing ¢(t) &
C=(RY) so that ¢(H)=1 if 1=1/2 and =0 if 1=1, we define g,(t, x) by

(6.5) g,t, x)=01+8,— HIXHbup(0t*/ R gt),  j=0.
Put
6.6) bz, x)z:—:gme“*i”g]a, X)dt .

It follows from (6.2) and (6.5) that if 7=1
©.7) Pgi0, =0, O0=k=j—L
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Using (6.4) and (6.7), we have by integration by parts that
6.8 arhe, o xSCWN, MY+ 2Dl gol, wesestlI1gila wase ],
hj< Anal(C.; CoH(2NNC™RY; C%,(82,) .
Here we have put C.={reC;Imc<0}, C{ (@)= {veC~(Q); v=0v" for some
veCy(B,)}. Put
(6.9) w,it, 1= " RO, dr
First, we shall show that u=w; for any j=0. It follows from Theorems 2.4 and
5.10, Definition 3.2 and (6.8) that
(6.10) R(t)hyr, Y= Anal(C.; HNCUR'; 9).
Noting that the resolvent equation:
(6.11) R@)=(c*—+/—10) ' —(c*— v/ =17)'R(x)4,
holds, we have by (2.3) and (2.4) in Theorem 3.3 and (6.8) that
(6.12) DER@hyz, H=CN)Re 7|20+ |2 ]) 7 Clidolla. jost [ rle, oo

if reC. and |Re | =1. Using Cauchy’s integral formula, we have by (6.9),
(6.10) and (6.12) that

6.13)  wit, x)= zlng eV TRt A/ Tl oY (v~ 1, )dp

-0

for any ¢=0. Furthermore, it follows from (6.12) that
(6.14) wyt, x)eCI((—o0, 0); J).
Since |7?—+/—17| i;—%llm 7|*z2 if |[Rec|=1and Imr<—2, it follows from (6.12)

and (6.13) that
<wit, - P=Cre " [ldolle. jest [ Falle, j4e]

for any ¢=<-—2 and ¢<0, which shows
(6.15) wit, x)==0 if {<0 and x=Q.
Noting that R(¢)h(z, -)=0 on 62 and combining (6.14) and (6.15), we have
%w,0, x)=0, 0sk=j+1,
w;=0 on 082

(6.16)

Using (6.5), (6.6), (6.11) and (6.13), we have

6.17) wit, x):&igj(s, X9 s+ (2, x)
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where

1 (=tv-10
S e TIER(OA (T, M= 1) dr, a<O.

fit, == 5=

—eta/~10

Here we have used the fact that —21;51;;;0@“3 t(p?— ) Idr=¢~'—1 if >0 and
=0 if t<0. It thus follows from (2.3), (2.4), (6.6), (6.8), (6.12) and (6.17) that
(0348, — Dw,(t, x)=g,lf, x) In 2,
DRf o, - DE=CONGollssastHIPallaass] -

In view of an usual energy method (cf. Lax-Phillips [6. the identity (1.2) in
Chapter V), we have from (6.16) and (6.18) that

(6.18)

(6.19) u(t, )= u ()" e NPt)—wlt, x) for any j=0.
Now, we shall estimate w;{, x). Choose p(r)eC7(R") so that p(r)=
|z]=<d/4 and =0 if |¢|=d/2, where d is the same as in Theorem 5.10. Put

o Wi, x):z}g e T o R@ Az, )z,
witt, )= 5| U= pE) RO, )z
It follows from (6.8), (6.20) and Theorems 3.7 and 5.10 that
6.21)  <D2Fw,t, N=Clr, NYL+[t)) 2NN p(2) DL R(z) by, T
<Clr, YA+t BT dolls. o5+ ills j+2], for any integer N=0.

On the other hand, we have by (3.8), (6.8), (6.20) and Theorem 2.4 that for
any integer M =0

<ang3'(t, W=ECWM, N, 7’)(1+Il|)”M[:H¢0“z,j+3+“¢1“2,j+2:] s OéNéJ.,
(6.22) <Dy wit, -N=CWN, M, A+ 1t ol jrstldills joa], 0SN=j—1,
<DL wit, N=CIN, M, YA+t olla jeatIPslla 121, O=N=j—2.

It thus follows from (6.19), (6.20), (6.21) and (6.22) that for any r, ' =r,+3 and
>0
0¥ u(t, e, 00 =CWN, r, ¥ )LH" PNl dolls, wsst I Palle n+e],

(6.23)  IDLFult, o, .00 =CWN, r, r YA+ "2 N golls. nretlI@ille, vasd,
| DZoY ut, )“!7 . 0=C(N, r, 1 )(1+t)'(n/2)”1\,[”¢0”2.Nl-5+”¢1HZ.N+4]-

The assertions stated in Theorem 1.1 follows from (6.23) in the case that M=<2,
In order to estimate higher order derivatives of u, we need the following
well-known a priori estimate for 4.
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LEMMA 6.1. Let 7, . be any positive numbers with r,>v,=r, and g€
HY+(8,) such that g=0 on 0. Then,

1D¥ 2 gle, . <Cr, )CIDYdglo, o+ glo,, 1.
Since it follows from (6.1) that
(6.24) AoF u(t, x)=0of “*ult, x)+0Y 7 ult, x) in 2,
applying Lemma 6.1 to (6.24), by induction we can show the following:
(6.25) 1D¥otult, e, .=Clr, v/, N, MYA4)" 2 N[ bolla, yssrsst | Pulle wrarse]

for any r, »’=r,+3 and ¢>0, which completes the proof of Theorem 1.1.

PART 2

Some estimates for linearized problems

In this part, we give L? and uniform decay estimates of solutions to linear-
ized problems. These estimates will be used in order to show the convergence
of our iteration scheme defined in part 3.

§7. L*estimates for some hyperbolic equation.

In this section, we shall obtain LZ*estimates of solutions of the following
linear equation :

Lu=(1+a’t, x)0u+m,a't, x)0,0,u—I2 ;o84 at(t, x))0:0,u
+ A+, )0, u-+ b, x)0u-tct, x)u=f(, x) in D,
7D u=0 on 9,
u(0, x)=(0,u)©, x)=0 in 2,
where 9;;==1 if /=7 and =0 if i#; and f satisfies the condition:
(7.2) feE Lz=2
{cf. Notations).
Throughout this section, without fear of confusion, for simplicity we write
u;=0u, we=0u, [vBl-=lvlt, o=, lv®OI=]v, )a.,
W, W)=, wO)=0q ), wt, e,

and all functions are real-valued.
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We impose the following assumptions on the coefficients of the operator ..

AssuMPTION 7.1. Put A=J{, )=’ x), 7=0, -, n; a¥{, x), i, j=
1, -, n; B, x), 7=0,1, -, n; c@ x).
1° Each component of A is a #=([0, co)x 2)-function.
2° @it x)=ai't, x) for all (¢, x)=[0, co)x 2.
3° For any £=(&, -, &)ER" and (¢, x)<[0, 00) X 2,

N . PR
3 (0 e, )62 ‘2‘15 |2

o 1
4 ]aolm,o,(»é?-

° 0 n ] 1
5 1b |oo.a‘o+2j:o‘ajaj]w,o.oé“‘-

2

Under Assumption 7.1, £ is a strictly hyperbolic operator with first order
dissipative term. It thus follows that for any data f satisfying (7.2) there exists
a unique solution ue B (cf. Ikawa [4]). The following is the main result of

this section.

THEOREM 7.2. Let L be an integer =2 and Assumption 7.1 be fulfilled. Let
dy be a small positive number defined in Lemma 1.3 below and % be a positive

number. Assume that the estimates:

(7.3) [ Alw005dy, hAlossgi=1

hold. Then, the solution uc E™ of the equation (7.1) for a data feE™ satisfies
the following two estimates:

(7.4) [ ]a.c0.70. . =CL, TV flao st [ Aleto a2l [ o070, for any T>0,
7.5 lulsoot 1 Dulo o1 =CL, PO lorsg oo Al eg, 2] flarsg.0].

Since to obtain the estimate (7.4) is easier than the estimate (7.5) and since
both methods are essentially the same, we shall show only the estimate (7.5)
below. In order to show the estimate (7.5), we need following two lemmas.

LEMMA 7.3. Let di(x), i, =1, -, n, be real-valued &=(2)-functions and
satisfy the following conditions:
(i) d¥v=d%,
(ii) for any §=(&, -, &) ER™ and x& Q2 Z?,j:l(ﬁiﬂ-d”(X))&&%%I§|2,
(i) |1 D|w1=Z1 where D=(d"(x); i, j=1, -, n).
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Then, there exists a small positive absolute constant d, such that if |D|-<d, then
for any integer M =0 and (& HY**(QNHp()

1 D¥ 2L, = CCLY U N, s+ (11D e a7 -+ IEND)
where y=(4d+37 ;-,d"(x)0;0,)C.

LEMMA 7.4. Let I(t), J(t) be non-negative continuous functions such that for

some positive constants ¢, p and t the estimate:
J(ngc§”<1+s)-l~ﬂ1<s>ds~+- J@) for any t>1,

holds and p(1+7)*z2c. Then

max {(s)=2 maxj (s).

TEsst TESsSt

To prove Lemma 7.3, we note the following two points.

(i) From assumptions (i), (ii) and (iii) in Lemma 7.3, the operator 4+ X7 ;..;d;;0:0;
is strongly elliptic in £2.

(ii) Since |D]|. is sufficiently small, we can consider the operator 4437 ;..,d;0:0;
as a small perturbation of 4 outside a ball B,.; (r=7,).

Choose ¢, ¢=C=(R") so that ¢=1 in B, and ¢=0 in R"—B,.,;, and that
¢=1 in R"—B., and ¢=0 in B,. In view of the point (i) just mentioned, we
can estimate ¢{ by using Theorem Ap. 2 in Appendix | and the usual manner
of estimating a second order strongly elliptic operator with zero Dirichlet condition
in bounded domains. In view of the point (ii) just mentioned, we can estimate
¢C by using Theorem Ap. 2, the estimates for the Laplacian 4 in R® and the
estimates for { in £.,,. From this point of view, we omit the detailed proof
of Lemma 7.3. Since Lemma 7.4 follows from an easier calculation, we also
omit its proof.

Now, we shall show the estimate (7.5). As is well-known, without loss of
generality, we may assume that u e C>([0, o) ; HENH(2)) (cf. Ikawa [4] and
also Shibata [18, the proof of Theorem 4.107). Differentiating (7.1) N-times
(N=0) with respect to ¢, we write the resulting equation as follows:

(14 a0y Pu+ 25 a’0¥ 10u—208 j24(d:4 a'9)0,0,08 u-+(1-+6%0¥ Yu
(7.6) +32,090,0F u+N 240,008 0,u— N 37 ;,(0,a*)0:0,0{¥ P *u
+pN)cu=fy in 9,

where (N—-1)*=N—1 if N=z1 and =0if N=0, p(N)=1if N=0and —0if N=1,
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f if N=0,
oY f— 30 {07 (a98,0,;u)— a’3} *'9,u—Noa?-9F 0,u}
(7'7) fN: B B o n
'%‘23;:1 {a{v(a“aiaju)—a”aiajafjuf]\\’aza”-aidj@?"iu}
+ I (OF (B0 ,u)— bl oY uy 0 (cu)  if N=1

Multiplying (7.6) by d)*'x and integrating over 2, we have by integration by
parts

1

7.8 L a0+ g TGt a0, D0

+((l+b°—%2}ioa§)8?’“u, 07 )+ 337 (3D u, D)

L@k, 3,91 W+ S 0,97 w, D) p(N e, O )

+ NS 7o(add,dF u, 37 *u)—N(ZF 11(a99,0,0N -0 u, OF " w)=(f v, OF 0.

When N1, in order to estimate the terms: a}’8:0,0F 'u, differentiating (7.1)
(N—1)-times with respect to f, we write the resulting equations as follows :

7.9) 27 21(8iy4+ 080,07 u=(1+ a0 ut a0l 0u+ol T g
where
(7.10) gy-1=—27 ;loF NaY9:0;u)—a*0.0,08 ~'u]
+ 27008 H(a?9,0,u) — 73,07 ul+0F T [(1-+b"0,1)
+ 3708 T (B70,u) +oY T eu) .
When N =1, applying Lemma 7.3 to (7.9) and using (7.3), we have
@10 DR @i = eolloy S OIHIDF ud) |+ gy O+ 1 D208 @]

for some absolute constant ¢,. Let z be a large positive number determined later.
Integrating (7.8) from ¢ to t (>7) and using Assumption 7.1, (7.8), (7.11) and the
Cauchy-Schwarz inequality, we have

t

(7.12) HD‘ai"u(ﬁH“rg 0 *1u(s)*ds

o[ 1D U@+ NAD (L4971 DB u(s)*ds

—!—N?gi(l+s)‘2‘2’7(H6§N“”+ N gow-o+ (&) P+ DBE 2 u(s)d s

4 4
+o s e leds + 1 s 1ds |
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for some absolute constant ¢;>0. Here, we have used the fact that
(7.13) [A@, )+ DAG, 0 S [Alw 14y, .04+D77 for t>0.
Next, multiplying (7.6) by 0¥u and integrating over £, we have by integra-

tion by parts that

(7.14) g;((ln'“a(’)a?’“u, 0 u)—(aiod * u, O u)—((1+4a"of +'u)

— N ta(a@iof u, OF u) 3374 (a?0) Fru, 9,;0F u)
+ 28 521((0e5+ a*)0:0F u, 0,08 w)+ 27 ;-.(a¥9,0) u, 3 u)

%: *gt—(a?’ u, 08 1)+ 7-o(070 0,1, 0F u)+ N X7-o(afdf 0,u, 37 w)

—N 27 -(ad0:0,0(" 0", 0F u)+-p(N)cu, 0 u)=(fn, 0¥ u).

+

Integrating (7.14) from 7 to ¢t (>7) and using Assumption 7.1, (7.9), (7.12), (7.13)
and the Cauchy-Schwarz inequality, we have

(7.15) [0 w1+ D0y @+ | 1 D9 u(s)|ds
¢
a0 u@ I+ 1D @)1+ oV (1-+9)= 7 u(s)ds
+N (s 17 DI ) e
HI+N) (149717 D9y u(s)eds
+ N ) LI £ g0+ (9T

@t paneds|

for some absolute constant ¢,>0. Applying Lemma 7.4 to (7.15), we have that
there exists a positive large number r=17(/N) depending only on N such that

(7.16) 08 u(®)*+ llDlaf"u(t)H2+S:IIDIG?'M(S)II‘3dS

SO ID3Y w(@ I+ 18 w1+ = o) (-2
XLIDBEY = us)|*+ 105~ F F() P+l g -1y +(s)1*1d s
Hasransaolas] it e

Now, we shall investigate the total energy decay. Multiplying (7.6) by
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0¥+ and integrating over [z, t]x§2, we have by integration by parts, the
Cauchy-Schwarz inequality, Assumption 7.1, (7.3) and (7.16) that

(7.17) rsaDlagfu<t>u2+g’sssawmsm?ds

<CN, m[a+r>nDla;Vu<r>uzuagvumuz+<1~p<N>>gj<1+s>-l-v
X1 -0% ()2 g -n s ()P DN -2 u(s)[*1d s
+giu+s)1+v||f_,v<s>j|2ds] it 1>z,

In fact, when N=0, multiplying (7.6) with N=0 by {9,u and integrating
over £, we have

1 d 1 )
(7.18) —2‘ “""(<1+ao)tuu Uy)— = ((thut, U)— "‘(aout, uL)"‘TZZ?:](“'}'tuh Uy)

1 . ] -
Zz j= x((011+ﬂ Ntu,, ui)A—Zztb,j:l(azjtui; uj)“i“}:?,jﬂ((l}]tui, Us)
2 dt 2

1 . .
*_2‘ ?,j:x((aij+0”)uty uﬂ—k((l—{—b“)tu,, qu’Z;‘ﬂ(b]fuj; uy)+(ctu, uy)

::(f) tut) .

Since for any y>>0 the inequalities:

afftuy, 1) S - laPO RO,

() | = FOPstl a1,
v
and

1 ; \
[(ctu, us)l ?:;*4;'Il6(t>ﬂﬁofllu(l)HZ%-vtll u, (O
hold, integrating (7.18) from ¢ to ¢ (>7) and using (7.16) with N=0, we have

7.19) D@+ sho()lds
e[l D@+ | (9T f@ s
+ e et DR lai sl ds

e shut s+ (Sl adOlls

37 el aF (O Deuls)*ds
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: -
%—ST(E?,J’:l(OU“% lla (S ) Diuls)l*ds
¢ .
+ | (Spallbs) s 1D ) 2

] le@lestu@ s+ 14517 s]
for some positive constant ¢, Since it follows from (7.3) and (7.13) that
e zstuts 1tds smaxi w1 § -+ 1-1ds =00 maxiuo),
we have from (7.3), (7.13), (7.16) with N=0 and (7.19) that

¢
D ()14 N |12+§r8 10cu(s)*ds

<Cn)| A+0ID u@I+ | a5y £)1ds

if £z7, which shows (7.17) with N=0. When N=1, we can show (7.17) in the
same manner. So, we omit the proof of (7.17) in the case that N=1.

Since
V9 U A Z L sl 0] 917 SO L. o,
it follows immediately from (7.4), (7.16) and (7.17) that
(7.20)  Tuleo, 0t 100 o120 SCWN, DL f vl 1490 Q=N 27 30,0
Hlgw-vtlenot [DOY 0 uls0,0) 4 | floov+ [ Alwo vesl S 200

In particular, (7.5) with L=1 follows from (7.20) with N=0, (7.3) and (7.7).
Now, using (7.20), we shall show (7.5) with L =2 by induction. When L=2,
we have from (7.11) and (7.20) with N=1 that

(7.21) |Dzulz,1/z,ugc(1, 77)[| £l 2>1+7,,0+ | s ot |g0|2,1/2,0+ | D'y Iz,llz,o] .
It follows from (7.3), (7.5) with L=1 just showed and (7.7) that

|f1|2;1+1],0§C(ID_1u|2,0,0+'f12,1+1],1)§clf|2’1+0,17

(7.22)

|g012,1/2,o§C(IDlu12,1/2,a+]ulz,o,o)§C|f|2.1+ﬂ,o-
Combining (7.21), (7.22) and (7.5) with L=1, we have
(7.23) |D2u|2,1/2,0§C|f|2,1+W.1,

which shows (7.5) with L=2.
When L =3, assuming that N=2 and that the estimate (7.24) below is already
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proved for smaller value than N-+1, we shall prove
(7.24) [OF 1K DKl 1100 SCINICI f Lo veg v H 1A v waa | a4 y.0]

for any integer K with 0= K=N+4-1.
It follows from (7.11) and (7.20) that

(7.25) D=0 OV EDEuly 10 0 2COVI o e s Tl gneila 100
+‘Diraiv‘lule.llz,o‘i‘lfzv|2,1+,y,0] .

Applying the induction hypotheses, Assumption 7.1, Leibniz’s formula and Theo-
rem Ap. 2 in Appendix I to (7.7) and (7.10), we have

lfN[2.Hv;,()gc([v)[lf{zﬁp,iv":“EJ”m.Hr;,.V+1!f[zu,;.a]y
[gb'»1[2,1/2,0§C(N>[If|2‘1+q,N»1+l<14|oo.1+77,N|f[2,z+7;Ao] .

(7.26)

Combining (7.25) and (7.26), and applying the induction hypotheses to the term:
| DY Y1), 1795, We have

(7.27) k=0l OF T EDE U oo 0 SCINIL S | 2sag. v H [ oo 14 g 5[ S 214900

which shows that (7.24) is valid for each K with 0=K=2.

Now, we shall show (7.24) by induction on K. Assume that K =3 and that
(7.24) is already proved for smaller value than K. Applying Lemma 7.3 to (7.9)
with M=K—2, we have

(7.28) [ DEBF K]y g0 o SCINYL flovre v I DE (L4200 F 1) [5.1700
1A a2 E ]y, 17, g oatDfa | DE(a78,08 1) |5,1/0.0
F3 a0 g kst L@ v g e s k-0
A | Ao o, ol |80, wva-rF 1 floo wei-xct 1 @nrr-xl20.0]

By using Leibniz's formula, Theorem Ap. 2, (7.3), (7.10) and the induction hypo-
theses, we have

(7.29) [ DE=*((14 a3 ** K u) o, 170.0F 7 | DE(@3,0 K1) [2.170,0
SCINLIDE-20F " F o | 10,0+ | DETOF R0 l5 1700
+ e i5® DE-*igd| oI DEDWOY 2 Euls 1re.0]
SO Lassg vt Tl 1eg van | S lveg o0
+ 2K Ao 14 g, k-2l S o140 g wrowi-r+ [ Al 1ap. viavi-& ) [loig,0]]

SCN S eraq a7t (P ISR I PP It
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(7.30) [A+anoy+e-%y L2172, g3t 20 | aja]a?wzaku [21/2. 53
éC(N)[I f]Z,l-Hf],N--l‘i_ |JI°°,1+7],N!f|2,l+y,O:| ’

(7.31) lgN-x-yA’]2,1/2,K—2:<:C<N)Uf|2,1+}7,N~1“'T“Iuﬂiw,1+y.1v|f|2,1+y<oj,
(7.32) |u4io<.1/z,K~2’DNH'Ku]z,o,oéc(-N)[lJllm,1/2,1{-2|f|2,1+77,4v+2~fi

+|L’Q|w.1/2,K—2lJl|w;1+;7,N+3~K|f%2>1+7,,o]
=CNLHS laovwg -ttt [ Ao 1a g, w1 Fletigo0d s

(7.33) |v'“co,1/2.1{—2]f]z,o.N+1—K§C(N)|:I flz,lﬂ;,N«z’l"‘ ]u”'”m,mr},N—1|f|2,1+71,0:] B
(7.34) [ Al 12 k-2l Eva1-x 20,0

SCN) Ao vag, ksl 1 Tevag war-g 1A e e vaz-x [ [ 2145.0]
SCNL f levsn, w1 I Aoy rag v 1 f Larag.0d -

Combining (7.28)-(7.34), we have
IDEOY Ful oo e SOV f la1a g vt Al 1ag wa1 ) £l 1vg.0] 5

which shows that (7.4) is valid for any A with 0SK=N-1. This completes the
proof of Theorem 7.2.

§8. Uniform decay estimate for the operator 92+4-0,— 4.

In this section, we shall investigate the rate of the uniform decay of solutions
of the following mixed problem :

(0340, — DHu=0 in 9,
8.1) u=0 on 9/,
u(0, x)=ao(x), (0.u)0, x)=¢,(x) in L.

By (¢, ¢1;t, x) we denote the solution of the mixed problem (8.1) with initial
data ¢, and ¢,. Here, initial data ¢, and ¢, satisfy the conditions (8.2) and (8.3)
below.

(8.2) Let us define uy(x), 7=0, by the formulae (6.2). Then all u; satisfy the
condition (6.3) (compatibility condition for (8.1)).

(8.3) There exist @¢, ¢,=S(R™ such that gy=g¢,, ¢:=¢, in 2 and for any p
with 1=p=oco and integer N=0, the estimates: ||$jllfp,N§C(p, Nl 5, v,
hold for j=0, 1.

It is well known that there exists one and only one C=-solution @(@,, ¢:; ¢, x) of
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the equation (8.1) with initial data ¢,, ¢, satisfying the conditions (8.2) and (8.3).
The following is the main theorem of this section.

THEOREM 8.1.  Assume that n=3. Let N be a non-negaiive integer and ¢,
¢1€C“(§) initial data satisfying the conditions (8.2) and (8.3). Let @(¢e, ¢1; t, x)
be a solution of the equation (8.1) with initial data ¢, ¢1. Then, the following
estimates hold :

Ig(¢o, ¢1§ Moo nre v
gC(N, n)[”¢0”2 N+2[n/2]+5+’ ll¢1”2 N+2[n/2]+4’+‘ ”QZSGHI.O“{" “¢1H10] »
lg(ﬁbo» ¢1; oo nrs n SCN, n)l:”gﬁl)”zN+2[n/2]+5+”¢1”2’N+2[n/2]+4:| .
In order to prove Theorem 8.1, we shall need the following two lemmas.
LEMMA 8.2. Assume that n=3. Let r be a fixed number Zvr,+3 and N a
non-negative integer. Assume that ¢, ¢,=C>(2) satisfy the conditions (8.2) and
(8.3) and supp ¢,C2,, j=0,1. Let g be any C=([0, 0)x2) function with

supp gCR' X {x=BR"; r<|x|=r+1}. Then there exists one and only one solution
u=C([0, 00)x Q) of the following mixed problem :

@3+0,—NHu=g n 9,
u=0 on 9,
u(0, x)=go(x), (@.u)0, x)=¢,(x) in Q,
and the following two estimates are valid for u.
(1) If 1glanis nea<<00, then for any v’ >v
ID¥utt, Moy o.0=Clr, 7/, NYAAD"(I@ollo, was+ 1 Pillz. vro | &2 nm w12) -
() If n=5 and | gls nia wea< o0, then for any v’ >v

”ﬁNUU; ')“QT"Q‘OZE::C(VC r, N)( +) (ol N+3++H¢1“2,N+2+ [glo nrs wes)

LEMMA 8.3 (A. Matsumura [7]). Let v(t, x) be a solution of the following
Cauchy problem with initial data Go, ¢, S(R™):

(0140, — DHy=0 in [0, co) X R™,

Then, the following two estimates hold. For any integers ;=0 and N=0
IDY8tu(t, YE=CN, LA 2N DD B] tnsorsrew s+ I Gulls cnssmenes
FIgalli 14,047,
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IDY3iu(t, SO, DA 9N DDTNG G o pmins v Gulletnrme s -

Lemma 8.2 follows immediately from Theorem 1.1 and well-known Duhamel’s
principle. So, we omit the proof of Lemma 8.2. Representing a solution v(f, x)
in terms of Fourier transformations, we can prove Lemma 3.3 by direct calcu-
lations. So, we also omit the detailed proof of Lemma 8.3, which is given in
Matsumura [7].

Now, we shall prove Theorem 8.1, below. For any data $y and ¢, in (8.3)
let us denote by u, the solution of the following Cauchy problem :

(@340, —DHu,=0 in [0, o)X R",
100, X)=@o(x), @u)O, x)=¢,(x) in R".
Choosing r=r,+3 and X(x)€ C3(R™) so that X(x)=1if |x|=r and =0 if {x|=r-+1,

we put

(8.4

&5 uyt, x)=ult, x)—A—=X(x)u,, x),

‘ g(t, x)=2 27,0,0(x)-0,u,{t, x)+4Ux)-wE, x) .

It follows from Lemma 8.3 and (8.3) that for any integer N =0
[(L—1)t1 |, nr2, 5w SCAN, )Ll Golle,nrore v+ @ille cnrme v+ ol i+l 401,
|(1=2)t2 o, s, ¥ SCON, Wl folle.tnrorewsstIpilecnranend s
supp gCRIX {xeR"; r=|x|=rt+1},

B.7)  1&lwnin ySCWN, WIGollaarnsvretIdillacnraensrtldoli+ligill,
| leo.nre. v SCIN, m)Uolls.tnsore waet I Bullecnrnensad .

Furthermore, it follows from the definition of u, that

@340, —Du,=g in @,

(8.8) u,=0 on 9/,

1,00, x)=X(x)go(x), @u:)0, x)=X(x)g,(x) in L.

It thus follows from Lemma 8.2 and (8.7) that

©8.9)  IDYuslt, o,z
<C(r, N, m)(1+0""[ || golle. wesstnrortl @ille, wrarcnsmtligollilI el ],

and that if n=5

810)  [1D¥uslt, Mo,y :=Cr, N, m)A+HD7L Golle, vrsstniantlalls wrsrcaral

Choosing ¢(x)=C=(R") so that ¢(x)=1if [ x| =>r+2 and =0 if {x|=<r-+1. Since
og=0, ¢px¢,;=0, j=0, 1, we have
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(0340, — A(u)=h(t, x) in [0, o)X R,

8.11)
(@uo)0, x)=(0:(pu))(0, x)=0 in R",

where h(t, x)=37%,0;¢(x)-0;u.(t, x)+(4)(x)-us(t, x). Since the fact that
supp 0fu,(0, x)T 2,4, for any i=0 follows immediately from (8.7), (8.8) and the
fact that supp XC B,.;, we have by the fact that ¢=0 in B,,, that

(8.12) (0th)(0, x)=0 for any 7=0.
It thus follows from well-known Duhamel’s principle that
8.13) E‘V(¢u2):S:5”QO(O, h(s, ); t—s, x)ds.

Here, by G,(8,, 6,;t, x) we have denoted the solution of the following Cauchy
problem with initial data 8, 6, :

©@3+0,—DHw=0 in [0, co)X R™,
w(0, x)=0,(x), ©:w)0, x)=0,(x) in R"

In view of Lemma 8.3, we have from (8.13) and the definition of the function
h(t, x) that

GBI el nre v SO, msupl (14— 5015y 7 d s+

XL sz, watnim+ 111 s2,0]

=CWN, 7, n)[lule,.ﬂ,z,n/z,NHn/zlﬂ:];
and that if n=5

i
(B15) [1ts]o, e w SO, )] 0p [ (1= ) (149 4514 7] Ur L st
=CN, 7, n)| uler+1,2.n/4. N4Tn/2141

Here, we have used the fact that [hIl,n,2,0;§C(r)[u,z!gm,m,g,l, which follows
from the Cauchy-Schwarz inequality. Combining (8.9), (8.10), (8.14) and (8.15),
we have that

(8.16) [l nre, v SCIN, M Golls, wassotnsart I @alle, wassanrat I dolliHllbill ],
and that if n=5
(8.17) Jueleo, nra n SCN, n)[!lgfmllz N+s+z[n/2z+ﬂ¢1nz, Nasteinson] .

On the other hand, we have by (8.9), (8.10) and well-known Sobolev’s imbedding
theorem that
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(8.18) A =uslce nre, v SCIA=P)tla] g, nre, w1002
SCN, WU Golls, wesvernratlpills, vsararnrmt I goli+ 6l
and that if n=5
(8.19) A =tts] o nra, v ECI A=) te] 0, s, w 1500721
ZCIN, n)CIGolle. vrsvoatnrentIBs e, wsasecnren] -

Combining (8.5), (8.6), (8.16), (8.17), (8.18) and (8.19), we get the theorem, which
completes the proof of Theorem 8.1.

§9. Uniform decay estimate for some hyperbolic equation.

In this section, we shall investigate the rate of the uniform decay of solutions
to the following mixed problem :

d+a’, ))ofu+3ja’C, $)8,0,u—37 ;48,4 a(t, x))0:0,u
+A+0', )0+ 01, 2)0utclt, X)u=f in D,
u=0 on 9,

u(0, x)=(00.u)(0, x)=0 in 2.

9.1

The following is the main result of this section.

‘THEOREM 9.1.  Assume that n=3. Let a, a¥, b’, ¢ be the same as in (9.1)
and put A=Alt, x)=(A'(t, x), c(t, x)), where A=At x)=(a’t, x), j=0, -, n:

a¥t, x), i, j=1, -+, 0; bit, x), j=0, o, n). Let L be a non-negative integer
and K=L+2[n/2]+5. Let p(n), g(n) and o(n) be the same as in Notations.
Assume that A satisfies Assumption 7.1 and the condition (7.3) with p=p(n)—1
that if n=5

(92) l‘-”w,p(n),ﬂél: IJIw,p(n),K+1<OO;

and that if 3<n<4
9.2 qu,]w.y(n),oﬂl"]C]oo,q(n).o‘wl"|J’lz,1/z,o+]€]2,1.o§2;
IJ”m.mm,K’*“!Clw,q(n),K<00-
If w is a solution of the equation (9.1) with data fEEY satisfying the condition:
]f’z,q(n))}(‘[ U(”)If|1,1,o<ooy
then for any N with 0=SN=L
iuioo.mn),NI—EC(N, n)[]flz,q(n).N+2En/2]+5+'7(n)Ifll,l,o

(Ao piny, vaetnsedre T ()| € o, g(ny, Neensaw )| flegey.0].
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To show Theorem 9.1, we need the following two preliminary lemmas.

LEMMA 9.2. Asswme that n=3. Let L be a non-negative integer and K=
L-+2[n/21+4. Let p(n), qln) and o(n) be the same as in Notations. Let u be

a solution of the equation:
(@3+0,—DHu=f in @,
(9.3) u=0 on 9,
1(0, \)=@,u)(0, x)=0 in 2,
where feEX satisfies the condition:
9.4) [ agmy, x Fo) [ o<,
9.5) f=0 in [0, co)x2p
for some large R with Q.0R"—Q. Then for any integer N with 0<N=ZL
V2] pny v SCR, N, M| f e qon. wastnimeat oM f lrnol.

LEMMA 9.3. Let R be a large number with QrDOR*—-Q, N a positive integer,
£=0 and fe&>Y(2g) with 0110, x)=0, j=0, 1, -+, N—1. Then there exists a
solution wee& ¥+ Qg with olu0, x)=0, i=0,1, -, N+1 of the equations:
02+, —DHu=f in [0, 00) X §2r and u=0 on [0, ) X8R, where 02 is the boundary
of 2p.

Moreover, u satisfies the estimale:

IM.@R, o v =CR, R, N floge e v,
if 1flopar n<oo.

PrROOF of Lemmas 9.2 and 9.3. Lemma 9.3 follows immediately from Theo-
rem 4.10 of [18], so we may show only Lemma 9.2. It follows from the fact
that feEX that we EX+1 Using this fact and (9.5), we have by Duhamel’s

principle
(9.6) DY ult, x):StENQ(O, s, ); t—s, x)ds
0

where ¢ is the same as in Theorem 8.1. When 3<n=4, we have by (9.6) and
Theorem 8.1 that

15%utt, eSO, f{ WHE=) 049 ds (1 s w1 s

+ ' (].-{—(fws))'"“(l'{“S)—q(n)dS' [ f 12, qtny, N4otnsates
t12 |

=C(N, T'L)(l“!'t)_p(m[!f!z.q(m,Iv+2r_nm+4+0'(n){f|1,1,0] .
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When n=5, using the facts that (14 [¢])"**< LY(RY) and that %=p(n):q(n), we
have from (9.6) and Theorem 8.1 that
9.8) 1DYu(t, )w=CWN, n)A48)""" | f |1 g0, ysatnrmss -
Combining (9.7) and (9.8), we have
Lo, pmy, v SCIN, mLL S Lo gy, wastnraieat o) f o],

which completes the proof.
To prove Theorem 9.1, the following lemma is essential, which we can
prove by Lemmas 9.2 and 9.3.

LEMMA 9.4. Assume that n=3. Let L be a non negative integer and K=
L+2[n/2]+4. Let p(n), q(n) and o(n) be the same as in Notations. Let u be a
solution of the equation (9.3) for fEE¥X which satisfies the condition (9.4). Then
u satisfies the estimate:

iulm,p(n>,N§C(N, n)[]f‘z.q(n).zvn[n/zju“f"(i(n)|f|1.1,o]
for any integer N with 0SN=<L.
ProoOF. Let R be a large number with 2, DR"—£. Choose CP(R™)-functions

é(x) and ¢(x) so that ¢(x)=1 if x=fy and =0 outside Lp,, and ¢(x)=1 if
xE€ Pz and =0 outside £24,,. Let v be a solution of the equations:

0540, —Do=¢(x) /¢, x) in [0, )X Lg4s,
v=0 on [0, o0)X02x.s,
v(0, x)=00)0, x)=0 in 2g.s,
where 0Q2z., is the boundary of £2z.,. It follows from Lemma 9.3 that
9.9 V] 2psseam. y1=CR, n, KO f g v
for any integer N with 0= N<K. Put u=¢v+w. Then, w satisfles the equations:
(03 +0,—DHw=g in 9,
w=0 on 9/,
w(0, x)=0,w)(0, x)=0 in £,

where g=(1—¢)f+2 27-00,¢-0,0+4P-v. Noting that supp gCR' X (R"—L5), we
have by Lemma 9.2 that

(9.10) [, peny, v SCN, n)[lg[2<q(n),N+2[n12]+4+0(n)lg‘ Liod-
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Since supp ¢ 2pss, we have by the Cauchy-Schwarz inequality, (9.9) and the
fact that ¢(n)>1 that

]gl2.q(n),N+ﬁ[n/2]+4§cuvy n)lfb,mm,mzfn/zzuy

(9.11)
|glx.1,0§C(n)[1f|1,1,o+‘f]e,q(m,o] .

Combining (9.10) and (9.11), we have the desired inequality, which completes the
proof.
Now, we prove Theorem 9.1. Put g=a*ulu+3%,a%0,0,u—37 j1090,0;u-t
2obi0u+cu. Then, we rewrite the equation (9.1) in terms of g as follows:
(03+0,—DHu=f-—g in 9,
u=0 on 97,
u(0, x)=00,)(0, x)=0 in 2.

Since it follows from Theorem 7.2 and the fact that f&EX that ue KX+, we
have that f—geEX-!. Applying Lemma 9.4, we have

(912) lu|m,p(n),N§C(N, 71)[!f|2.q(n),1’\l+2[n/2'l+4+Iglz,q(n,\,N+2[n12]+4
+o(n)[|flx.1,o+lg|1.1,033

for any integer N with 0=SN=<L. Put N'=N+2[n/2]+4. Note that p(n)+ —E

=4¢(n)>1 and that p(n)=q(n)=—- if n=5. Using Theorem 7.2 with 5=p(n)—1,

4
(9.2), (9.2)" and Theorem Ap. 2 in Appendix I, we have

|glz.q(n).zv'§c(n, n)[l‘—’q’lm,p(n),N' Iﬁil)lulz,uzo‘}"|C|m.q(n),N' [ls,0,0
(9-13) ‘+‘lf]2,p(n),N'+1+Iu’”w,pm),Nwzlf[2,p<n).0]
=C(N, n)[lfiz,p(n),Nf+1+(!tﬂ]co,p<n>,N'+z’Jr“U(n)|C}w.q(n).N')lflz,p(n),o:]-

When 3=n<4, it follows from Theorem 7.2 with p=p(n)—1, (9.2)" and the
Cauchy-Schwarz inequality that

(9.14) lgll,y,néc(hﬂl|2,1/2.o,5]D1u’|2‘1/2.0+|C12,1,o|u!2,0,0)§clf|2,p(n).1 .

Combining (9.12), (9.13) and (9.14), we get the desired estimate, which completes
the proof of Theorem 9.1.
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PART 3

Proof of main theorem

Throughout part 3, we assume that the assumptions stated in Introduction are
fulfilled and use notations defined in Introduction and Notations.

§10. Compatibility condition.
For ueC~(9) with u=0 on @', we define f, @i, ¢ by
[, \)=0+0,—~DHu-t+F@, x, Au),
Go(x)=u(0, x), G lx)=0,u(0, x).

(10.1)

Furthermore, we put

(10.2) u(x)=0{u)0, x), j=2.

In this section, under some smallness assumption imposed on ¢, ¢, and f, we
shall represent u;, j=2, in terms of ¢, ¢ and f. And then, by using such
representations, we estimate u;, j=2, by ¢ &1, f.

(10.3) us+¢i— Ao+ FO, x, Digo, Didpy, u)=f(0, x).

Putting 2=(2’, 2%, v) where V=, A, =+, Au, Aijy 5, J=1, -+, n), 7=, Ao, -+,
Aon) and v=21,, we consider the following non-linear equation:

(10.4) Y =v4Ae—XEidis+FO, x, 2, 27, v)—g=0.

Here, we have put U=, 27, v, x, g). Since F(, x, 0)=0, (0,0, 0, x,0) is a
solution of the equation (10.4). Since (d )0, x, 0)=0 and Fe 3*([0, ooy 2 X
{|2] £1}), there exists a positive small constant ¢y depending only on F such

that |0% /ov|=1/2 if || =crand x X 2. The following lemma thus follows from
the implicit function theorem.

LEMMA 10.1. There exist a sufficiently small positive number d, and a
C=(2 % {Q, 27, @) (A 1+127 1+ gl £d.}) function »(x, X', 27, g) such that v is
uniquely determined, v(x, 0, 0, 0)=0 and

W(Zlv 2”: U(X: li/, 2”7 g)r Xy g):(); Z‘f Xe-(:)- and IZI|+[2’/i'+‘[g|§d2

From Lemma 10.1, we obtain

(10.5) us(x)=v(x, Digo(x), Didy(x), F(O, x))
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if @ollee st1P1lle s+ 1O, Hew=de.
Differentiating the first equation of (10.1) j—2 times with respect to { and
restricting {=0, we get the linear equation with respect to u; j=3. So, we can

easily prove the following by induction on ;j=3.

LEMMA 10.2. There exists a small positive constant ds=d, such that the
equations :
u(x)=y,(x, Digy(x), DI (x), (DI21)0, x)), 722,

hold for some = functions v; with vi(x, 00=0 if |dollw o+ 1@ile 110, HwZds

Applying Theorem Ap. 4 in Appendix II to the representation of u;(x) given
in Lemma 10.2, we can easily show the following.

LEMMA 10.3. Let ¢o, ¢, and [ be the same as in (10.1) u;, j=2, be the same
as in (10.2) and d; the same as in Lemma 102, If |¢ollo st @il +1 (0, HMeuZds,

then the inequalities:
lilp v SCh, o NOUI@all g wesH il e HHDTHY 21O, 5]

hold for any integers N=0 and j=2 and p with 1=p=oco,

In view of Lemmas 10.2 and 10.3, we introduce the compatibility condition

for the problem (P) as follows.

DEFINITION 10.4. Let d, be the same as in Lemma 10.2 and N an integer
=2. We shall say that ¢¢(x), ¢,(x) and f(t, x) satisfy the N-th order compati-
bility condition if ¢, ¢, and [ satisfy the following two conditions:

(1) lgolle et N@illeo s+ O, D=,

(i) The functions ¢, ¢, and u,(x)=v,(x, Dige(x), Di¢:(x), (DI-2f)(0, x)), j=2,
.-, N, vanish on 802, where v;, j=2, are the same as in Lemma 10.2.

§11. Smoothing operator.

In this section, we shall define a smoothing operator which will be needed
to define our iteration scheme. Choosing ¢(x)eS(R"), H(H)eS(RY) so that

Smﬁ(x)dxr:l , Sknx“qi(x)dxzﬂ, la =21,

(1L1)
=0 if 1<0, Smgb(z)dl:l, szfgb(t)dt:f(), =0,

If ¢ is the inverse Fourier transformation of a C5(R") function which is 1 near
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the origin, ¢ satisfies all the conditions (11.1) about . The existence of a
function such as ¢ follows immediately from Boas' theorem (cf. [19]).

Since the boundary of £ is compact, via local map, by using Seeley’s exten-
sion theorem ([17]), we can show the existence of a function u’ defined on
[0, o)X R* for any function u defined on [0, o)X 2 satisfying the following
properties :

w'@, x)=u, x) on [0, )X,
(11.2)

[u' | e n=C, Ry N)Ulp ey
for any p with 1= p=co, non-negative real number k& and non-negative integer
N. Furthermore, if 8ju(0, x)=0, j=0, 1, ---, N, we can construct an extension
w’ of u such that u’ satisfies (11.2) and the conditions: d{u’(0, x)=0, j=0, 1,
..., N (N is a non-negative integer).

Using such an extension u’ of u, we define the smoothing operator S(0)u,
0=1, by

(11.3) S(H)uEE:SM(?"”QS(H(X-—y))(/)(ﬁ(tfs))u’(s, ydsdy.

Of course, S(#) depends on the manner of extensions of functions, but the manner
of extensions is independent of functions. So, when we define S(6), we fix the
manner of the extension of functions. The following facts are valid.

LEMMA 11.1. Let 8=1, k=0, p be a real number with 1S5p=co and N, M
non-negative integers. Let S(8) be a smoothing operator defined by (11.3). Then,

following three assertions are valid.
(i) For any u with |u|, px=00
1SV ut)p s v=CP, by N)ulp sn, @SOWO, x)=0 for any i=0.
(ii) For any ueC¥ ([0, 00)X Q) with ||y, ¢ x<c0,
[(1—S@)ulp, £,0=Cp, oy NYO ¥ |ulp o -

(i) If M>Nz=0, for any usC¥([0, c0)x Q) satisfying the conditions: ||, k. »
<o gnd @iu)0, x)=0, =0, 1, -, N—1

|S(0)u|p,k,M§C(I), k, N, M)ﬂM‘NIulp,k,N.

ProoOF. (i) The assertion (i) follows immediately from differentiation under
the integral sign and the fact that ¢(t)=0 when ¢<0.
(ii) When (¢, x)e[0, c0)x 2, from Taylor series expansion, (11.1) and (11.2), we
obtain
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a-seyu=[ """ Jas] [la—orav-np| 5 sy

~00 ft/2 ) laj+i=N

x 2?2, @it psh, x‘—py5‘1)9[9(5)@'(}’)}(1(0dyE[Hrfg.
Since the inequality :
(11.4) (I4+0/A+t—psf-H=2
holds if s=6t/2 and 0=p=1, applying (11.4) to I,, we have
(11.5) Hilp wo=Cp, by LYO Y ulpan
Next, since #=1 and ¢(s)=S(RY), we have that
(11.6) |0kp(s)] =Clk, N, DL+ F(1+[s])
if 0t/2=s<6t. So, applying (11.6) with 7=0 to I,
(11.7) [ L] p 5.0 SC(p, B, NYE V0|50 .

Combining (11.2), (11.5) and (11.7), we obtain the assertion (ii).
(iii) By differentiation under the integral sign and integration by parts, we obtain
9
(118) assOu=0-* 1"\ | 61 gt
X (008 u Y t—s67, x—yO Ddsdy

for any 7 and multi-index o with j4|a|=M, where [ and B are some number
and multi-index satisfying the conditions: [+]3]=N, 0=p=<a and 0=/
Applying (11.4) with p=1 and (11.6) with /=7—/ to (11.8) in the manner similar
to the proof of (ii), we obtain the assertion (iii) from (11.2), which completes the
proof.

§12. Construction of an iteration scheme.

Let s be a positive large integer given in MAIN THEOREM, data ¢, ¢,
and f for (P) satisfy s-th order compatibility condition. Let uj(x), j=2, be
functions defined in Definition 10.4 for ¢,, ¢, and f. Choosing p()eCHR’) so
that p(f)=1 if [#]<1/2 and =0 if |t]=1, we put

(12.1) v(t, 1)=(ou, (/7 Vp(t), where ug=go, U;=g,.
From Lemma 10.2, Definition 10.4 and (10.2) we obtain
(12.2) L f— (0240, — v+ F(t, x, Av)]],_o=0, for j=0,1, -, m—2.

If u is a solution of (P), putting
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(12.3) ult, x)=v(t, x)-+wl, x),
we have that w(t, x) satisfies the following equation:

Lw+GE, x, Aw)=g in 9,

(12.4) w=0 on 97,
w(0, D)=@w)0, =0 in £2,
where
G, x, Aw):S:(l—r)(dﬁF)(t, %, AvtrAw)(Aw, Aw)dr,
(12.5) L= 49— Dw-H(d P, %, Av)dw

g=f—(04-+0,—Dv+F(, x, Av)).
In particular, it follows from (12.2) that
(126) geEﬁL'l

if @o, ¢, and f satisfy the conditions stated in MAIN THEOREM. Therefore, we
may solve the equation (12.4) under the assumption that g satisfies the condition
(12.6), in order to show the existence of solutions of (P).

To end this section, we give an iteration scheme to solve the equation (12.4),
following Klainerman [5]. First, by w, we denote the solution of the following
equation :

Lwy=g in 9,

(12.7) we=0 on 9’,
w0, x)=(3;wo)(0, x)=0 in £.

We define w,, p=1, successively by

(12.8) Wp=Wp-y+Wp1= 200+ w, .

We must define w;, j=0. For this, first of all, we introduce some notations.
Let S(-) be a smoothing operator defined in §11, and # a large positive fixed
number >1. Put

(12.9) Sp,w=S0,)w, 6,=6°.
We define linear operators L,, p=0, by
(12.10) Lyw=_Lw-(d;G)t, x, S, Aw,)Aw,

and error terms ¢}, ¢y and ¢, by
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o, =(d G, x, Awp) v, —(d, 000, x, SpyAwp) Ay,

(12.11) e"=Gt, x, Aw,)—G, x, Awy)—(d:G)¢, x, Aw,) Dby,
e,=chted.

We define the summation E,, p=0, of error terms by

(12.12) E,=X%le;, pz=l, E,=0.

Finally, we put

1219 20=—S,[Gt, x, Aw,)],
Gp=—(Sp—Sp-1)Epo1—Spep-1—(Sp,—S,-1)GE, x, Aws), p=L

Now, let us define 1w, p=0, by the solution of the following linear equation :
Lyw,=g, in 9,
(12.14) w,=0 on 97,
W ,(0, x)=(8,1,)(0, x)=0 in L.
In particular, we have from (12.10)-(12.14) that
(12.15)  Lwpn+G, x, Awye)=g+1—=S)G, x, Aw)+(1—=Sp)E,+ep.

We shall show the following in § 14 below.

LEMMA 12.1. Let m be an integer =2. Put B=max[2[n/2]+7, m—1], I=
2B+1 and =L +2[n/2]+8. Assume that the assumptions 1°-4° stated in Intro-
duction hold. Then there exist a sufficiently small positive constant 0, and a large
positive constant d(im) depending on # having the following properties: for any

8 with 0=0=0s, if G0, ¢: and f are data for (P) satisfying the #m-th order com-
patibility condition and the condition:

I Golls, 2inssatnrortI@alle, emsnsrnssrt 1 1o, qon, eimarstnra
+o(m)golls, ot @il msnt 1 f 1L al=d/d(m),
then there exists a solution LZ)jFF;ﬁ of the equation (12.14) such that
(i) | At la.o0. 1t | Atsls, s, 2005770 if 0=L=L,
(ii) | A |, pny, L S805 P47 if 0=L=L.

Here d(m) and 8, will be defined in § 14.
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§13. Some lemmas to estimate non-linear term.

Throughout this section, F, G and v are the same as in §12. In this section,
we shall give some lemmas which are needed in order to estimate G(, x, Aw),
the error terms ej, ¢f and the coefficients of the operator L,. First, we shall
give a lemma needed to estimate the coefficients of the operator L,. For this
purpose, we define the coefficients vectors A'(¢, x, AU) and A, x, AU) by

A, x, AN=(a’t, x, AU), j=0, 1, -, n;
(13.1) a¥(t, x, AU), 7, j=1, -, n; b@t, x, AU), j=0, -, n),
A, x, ADY)=(A@, x, AU, ct, x, AU)),
where a’, a%/, b, ¢ are defined by the following formulae :
(18.2)  (d:G)t, x, ANYAW =37 0ai(t, x, AUBPW —37 _iaiit, x, AUDIW
+3%bit, x, AUYOW 4+, x, AUW .
Of course, without loss of generality, we may assume that ¢¥’=g’". We have
LEMMA 13.1. Assume that the assumption 1°-4° in Introduction are fulfilled,

that all semi-norms appearing below are finite and that | Avle o ot | AU e, peny, 0 =1.

Then, the following five assertions are valid.

(1) [AC, AU)|oo,p<n),L§C(L)[|AUIW. powr, Lt [ Av] a0, 1]

(ii) If 3=n=4, |e(-, AU)]OG,q(n),L_S:C(L)[IAUlw,p(n),L"l"|Avl°c,0,L:}-

(iii) If 3§n§4: IJZ/("' 1 AU)|2,1/2,0+IC<”' ’ AU)Iz.l,nécmAU|2,0,0+!EU|2,1/2,03-
V) [daf ), Av)] e g, e SCL) Av]wo, 1, -

(V) [daF)-, Av)]a1,0=ClAvly 0.

Proor. Since d;F(t, x, 0)=0, (iv) and (v) follow immediately from Theorem
Ap. 3 in Appendix II. We may write symbolically

(13.3) (d.G)e, x, AU)AW:Sir(l »»»»» rNd3F), x, Av+rAUYdr(AU, AU, AW)

+ 25:(1--r)(d§F}(t, x, Av+rAUNdr(AU, AW).
In view of (13.3), we may write symbolically

(13.4) Al x, A(/):S;r(l~vr)(d3F)(t, x, Adv+rAUYdv(AU, AU)

+2j‘(1—r)(dap>(z, x, Av4rAUYdr AU .
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Applying Theorem Ap. 2 in Appendix I and Leibniz’s formula to (13.4), we have
the assertion (i). If 3=<n=<4, we may write symbolically

(13.5)  (d:6), x, /IU)/IW:S:r(lmr)(diF)(L‘, x, Av+rAUYdr(AU, AU, AW)

+2§ (L=rNd2P)t, x, Dvbr AU dr(AU, AW)+(d3F)¢, x, Av)(AU, AW)

1
1A
+{a=rrare, x, Ao+ravyav, av, awar.
It thus follows from (13.2) and (13.5) that
(136)  lcCo, AD)|mqn 15| [(@F)C, Avir AUXAU, AU o g, 27

+ | d3F(-, Av)AUL"’Jl‘”)’L )

Since the fact that (diF,)(@, x, Av)=0 if ¢>1 follows from the facts that
(diF)(, x, 0)=0 and that v=0 (cf. (12.1)), noting that 2p(n)=q(n) and that
[ AV w00 | AU |0 pemy.0=1 and applying Theorem Ap. 2 and Leibniz's formula
to (13.6), we have the assertion (ii). Finally, it follows from (13.5) that

(13.7) [A (-, /1U)|2‘1/2,0+|C("‘ » AUH‘&,:.(»

gcz[g;udm(---, Av+r AUNAU, AUY|s 1 odr

+{ 1Ry, Dotr ATV Ly e odr+ R, A AU 0]

Since (d3F)(t, x, Av)=0 if t>1, noting that p(n)>1 and that | AU | pmy.0 =1, We
obtain the assertion (iii) easily from (13.7). This completes the proof of the
lemma.

Now, we introduce the following notation which will be needed in order to
estimate e¢j. We put

(13.8) (@, AU, AW)=(d;G)¢, x, AUYAW —(d,G)(¢, x, S(O)AU)AW) .

Here S(@), @=1, is the smoothing operator defined by (11.3). We have

LEMMA 13.2. Assume that all semi-norms appearing below are finite, that the
assumptions 1°-4° in Introduction are fulfilled and that | AU |w py, ot | AV] w001
Then the following two assertions are valid.

(i) For any integer L=0,
Ie,(@, Al]v /”V)l&q(n),L
SCULYNA=SON AU o pemr. 1l AW 0,00 | AW [3,175,0)
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HNA=SONAU |, iy, ol | AW |0, 24T AW [17,1)
F (| Av a0, 2+ AU |, pey, 1)
XANA—=SO) AU |, peay, ol | AW 150,67+ | AW |5 12,00} 7.
(i) If 3=n=<4, for any integer L=0,
1e"(©, AU, AW)|11 1
SCLLIA=S@NAU | ,0, 21 AW | 5.0,07+ [ (1=SON AU | 5,0,0| AW | 5,0,
FUAU |, 0,17 [ AV 0,0, ) [ (L=SO) AU | 2,0,0| AW | 2,0.0
N A=SONAU |g, 110, ) AW 0,172, 0 | A=SON AU |5, 170,0] AW 15,121
F (AU w0, 2 | A0, 2) | A=SON AU [5,178,6 | AW |5,112,0] -
ProoF, (i) First we assume that n=5. Applying (13.3) to (13.8), we may
write symbolically
(13.9) €@, AU, AW)
zgiglr‘l(lwr)(dﬁﬁ‘)(t, %, Av+rS(@)AU +sr(1—SO) AU)drds
X (AU, AU, 1—S(@)AU, AW)
+S:r(1—r)(d31’)(t, x, dv+-rS@)AVYdr[(1—SONAU, AU, AW)
HS@) AU, 1—SO)AU, AW)]
47253}(1—7)((131?)@, %, Av+7S@) AU +sr(1—S(6)) AU)drds
X (AU, (1-S@ONAU, AW)
+25:(1f«r)(d2F1)(t, x, Av+rS@)AU)Ydr({(1—SONAU, AW) .
Noting that p(n)=g(n), n=5, and that | Av|w,o0+ | AU} pm),«=1 and applying
Leibniz’s formula, Theorems Ap. 2 and Ap. 3 and Lemma 11.1-(i) to (13.9), we

obtain the assertion (i) when n=5.
Next, we assume that 3=n=<4. It follows from the assumption 4° in Intro-

duction that
1310 [W-r@tF)e, x Av+rS©) AVAA(1-SO) AU, AW)
—_—S:(1~r)(d§F1)(t, X, /TU—HS(@)/IU)W(Q.mS(@))/TUJrZW)

+(diF, x, Av)(1—=S(0) AU, AW)
+S:(1~—r)2(d§F2)(t, x, Av+rSO)AU)dr(S(O) AU, (1—SO)AU, AW).
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Noting that (diFu)(t, x, Av)=0 if t=1, that |Av]w oo+ AUlw ymy o=1 and that
p(n)Jr—i—:q(n) (3=n=4), and applying Leibniz’s formula, Theorems Ap. 2 and
Ap. 3 to (13.9) and (13.10), we obtain the assertion (i) when 3<n<4.
(i) Using Leibniz’s formula, Theorems Ap. 2 and Ap. 3, the Cauchy-Schwarz
inequality, and the fact that p(n)>1, we have
2[ 1P =3P Y, Aot rS(O) AU +5r(1—S(O) AL)drds
X(AU, A=S@ONAU, AW)|i11
=CDMA+ AU oo, 14 1AV 0. ) AU oo iy ol (A=SON AU (20,61 AW [ 20,0
AU, e, £/ A=SON AU | 5,0,0] AW [2.0.6
AU oo oy o[ (L=SONAU | 2.0, 1.] AW [ 1,0,
H 1 AU o peny, ol (L=SO) AU | 5,0,6| AW [ 26,27,

S:l(lfr)dfFl)(---, Av+rSO)YAUYdr(1—SONAU, AW)| .11
SCOLAF | A0 w0, 14 AU |0, N A=SONAU 5170 0l AW | 4.1/2.0
“§“ I(I*'S(@Di[]lﬁ,xlzlliW'z,llz.ﬁ‘[(1'"5(@))/TU!2‘1/2,0] /TWIL’J/&L] -

We can estimate other parts of (13.9) and (13.10) in the same manner. So,
noting that (d3F3)(4, x, Av)=0 if t=1 and that | AU |e pony ot | AV peny.0 =1, We
obtain the assertion (ii). Q.E.D.

Finally, in order to estimate the error term e/, we introduce the following :
(13.11) e"(AU, AWNy=G(, x, AU+ AW)—G(t, x, AU)—(d,G)¢, x, AUYAW .
Using Taylor series expansions, we may write symbolically

1
]

e"(AU, /IW):S {(dG)t, x, AUAsAWYAW —(d ,G)(¢, x, AUYAWYds.

Thus, in the same manner as in the proof of Lemma 13.2, we can show the
following lemma. We omit the proof.

LEMMA 13.3.  Assume that all semi-norms appearing below are finite, that the
assumptions 1°-4° in Introduction are fulfilled and that

’/ll’lw‘o.o'?/{l/& ]/l{]!w‘p(n),oigl/étx I‘4W|cc,11(n),0'£<1/4'

Then the following two assertions are valid.
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(i) For any integer L =0,
le”(AU, AW s, qm. 2
SO AV w0, 14 [ AU Lo, pns. 24 T AW Lo, . 2| AW | r, a0
X (| AW | 2,0,0t | AW |2,175.0)
1AW Lo, pemr, 2l AW L5004 1AW 15,172,0)
1 AW |y,
A1 AW Lo, gy, ol | AW a6, 14 AW Lo 12 2]

14W]2,0,0+]/TI/V‘2,1/2,0)

(ii) If 3=n=4, for any integer L =0,
le” (AU, AW)| 111
SO AW g0, 1 AW [o.0,0 L AW o1y, ] AW fo 2.0
H( A0 0,2+ AU oo, pens, 11 AW o, g, £YT AW [ 0,0 [ AW [3,12,0)].

§14. Proof of convergence of the iteration scheme.

In this section, we shall prove Lemma 12.1. Throughout this section, we
use the notations defined in §§ 12 and 13. Since it follows from Theorem Ap. 3,
Lemma 10.3 and Sobolev’s inequality that

[(daF)(, AV, pinr.

=CF, Ml gole. messtnrmtIPille meostnrant [ Floo mezscnral,
there exists a small positive number §, such that
(14.1) [(daF)C s AV)]w00=d1/2, [daF ), AV o pmr i =1/2

if ”9’50”2,ﬁL+4+En/2]+|l¢’1”2, 1ﬁ+3+[n/21+If|2,0,171+2+[n,’2]§51. This fact guarantees the
hyperbolicity of the operator .£ (cf. Assumption 7.1 and the condition (7.3)). We
have

LEMMA 14.1. Let & be a positive number =min(l, d;) where 6, is the same
as in (14.1). Let d(m)>1 be a large number which will be defined by (14.4)
below. If data ¢, ¢, and | for (P) satisfy the m-th order compatibility con
dition and

ll¢o||2,2m+3+[n/2]+’”l]s;”z,:zﬁwza-[nm]’* |f[z,q<n),21‘n+1+[n/2]
+(7(n)[u¢0”1,ﬁ+z+ﬁ¢1“1,ﬁw-l‘i‘Ifll,z,ﬁz]f:zls/d(m),

then there exists one and only one solution woe E™ of the equation (12.7) satisfying
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the estimates:
| Awol 5,0, -2t | Aol g 1o -2<8, | AWwoleo, pimy, in-2<8 -
Proor. First, we note the following estimates: if all semi-norms appearing
below are finite
142) lglp 02 SC, by DL f 1 e H @l o msscrHldullp st 110 merd,
[(d 2P, A0 g0t SCL, PGy et 1allp mrrert 1S o0 merd,s

for any p with 1=<p=oo, real number k=0 and integer L=0. In fact, (14.2)
follows immediately from Theorem Ap. 5 and the facts that F(t, x, 0)=0 and
that (d,F)¢, x, 0)=0. Since it follows from (14.1) and the facts that d< ¢, and
d(m)>1 that the operator . satisfies Assumption 7.1 and the condition (7.3), we
obtain from Theorems 7.2 and 9.1 and (14.2) that

(14.3) | Awo) 0,32 | Ao, 12 -2
=ey(MLf Lo geny.om-1t [ Golla, sinr T 1Bill2, 2
F (I Poller, st 45+ I Pillee, 242 f o0, 2)
X f 1o qom, st 1Bols, ratl @ulle ma) ],
fAwolw, penr. £
=) Bolle,sinrt I Pulleomt | f 1o g, 2
oMU f 1 a+ Gl mratldalls s
+(lgollo, 2+t I Palleo,2mss+ 1/ oo, 0, )
X fls.am, w+ I @olle, mratllPulle, asn) 5

for some large positive constants ¢,(s#) and c,(/%). Applying Sobolev’s inequality
to (14.3) and noting that d<1, we obtain that there exists a large positive number

d{m)>1 such that
(14.4) | Awols.o, io-2t | Aol 5170, -2<0, | AWoleo pemy, <8,

‘if |!¢0”2.27ﬁ+3+[n/2‘1+”¢1”2.zr‘h+2+tn/2]+ Iflz,q<n),2ﬁ+1+tn/2]+ U(n)[|f|1.1.ﬁt+H¢Olll-ﬁb+2+
I¢:lly m:1]=8/d(sm). This completes the proof of the lemma.
Now, we shall prove Lemma 12.1 by induction on j. Thus, we assume that
[A.21 for p=1, tby, -, Wy-1, are alreay defined and all the statements of Lemma
12.1 are already proved for W, -, Wy-1.

Under the assumption [A.2], we shall prove that 1, is also well-defined and the
assertions of Lemma 12.1 also hold for 1, Let ¢ be a sufficiently small positive
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fixed number. In the course of the proof, all constants depending essentially on
f, m, 7, n, @ and B will be simply denoted by C and ali constants depending on
L, for arbitrary non-negative integer L, will be denoted by C;, respectively.

The following lemma follows from Lemmas 11.1 and 14.1, Theorem Ap. I,
the induction hypotheses [A.2] and the fact that {#;};-¢ ... is the geometric
series. The proof is essentially the same as in Klainerman [5, p. 79-p. 8071 and
Shibata [18, Lemmas 5.4 and 5.11]. So, we omit the proof.

LEMMA 14.2. Let the assumptions [A.1] and [A.2] be fulfilled. Put w;,=
Wot Dieetis, =0, 1, -, p—1. Then the following seven assertions are valid for

all 7=0,1, -, p—1L

(i) w,eE™

(i) [S;4w;la 00+ 184wl 100 1 £CL367 77 if —B+Lzr.
(i) 1S;4wile 0+ 1S;Aw; 010 . £C3 if —B+L=—z.
(iv) |1Sjdw;le pon, 1 =Cr3078+E if —B+Lzz.
(V) 184w, le, yonr, 1 =CL00754E if —p+L=—v.
(vi) [A=S)Aw;ls 01+ (1—=S)Aw;]s 10 =COO7FE  dif 0<L=L.
ViD)  [(L=S)Aw;]w, piny, L ZCHO7FHE if 0sL=E.

Now, we are going to estimate the error term e¢,. Since
lAvlm,o,oéctuébo"z,ﬁm+3+rn/2]+”¢1 Hz,ﬁz+2+[n/2]+ |f|2,0,ﬁ1+1+[n/2]]

and since
IAv|oo,o,ﬁ*z/‘C[||¢oH2,2ﬁ1+3+[n/2J+ ]I¢1H2,2ﬁl+2+[n/2]+ |f]2.o,2771+1+[n/2ﬂ »

we obtain from Lemmas 14.1 and 14.2 that there exists a positive small number

d, such that

| Aw;le, peny,0=1/4 for 0=7=p—1,

IAw'Ioe, n), 51/4 for OS:]gp—l,
(145) J p(n),0

| AV, 0.0=1/2,

[ AV o, 5 ZCO for some positive constant C,

if the assumptions [A.1] and [A.2] and the following assumption hold:
[A-Bj H¢0”2,1‘h+3+[n/23+”¢1”‘2.77L+2+[7L/2J+ |f]2,0,1~n+1+[n/2]§52 .

Let ¢’ and ¢” be the same as in (13.8) and (13.11), respectively. We have
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(14.6) of=e'(0;, Aw;, Aw,), ef=e"(Aw, Aw,), e;=ejtef.
The following lemma thus follows immediately from (14.5), (14.6) and Lemmas
13.2, 13.3 and 14.2.

LEMMA 14.3. Let the assumptions TA. 17, [A.2] and [A. 3] be fulfilled. Then,
the following three assertions are valid for all j=0, 1, -, p—L
(i) e,e BEEnCH9).
(i) lejlaqm,r=C05%8%  if 0SL=L.

(i) Ie,ll,l,Lg()b‘zﬁ;Zﬁ*L if 0=L<I and 3=n=4.
Now, we are going to estimate g,. For this purpose, we begin with

LEMMA 14.4. Let the assumption [A. 1], [A.2] and TA.3] be fulfilled. Then
the following five assertions are valid.
(1) GG, x, w)=ENCH).
(i) 16, Awo)legm. 1 =CO* if 0=L=L.
(i) |(1—SpGC, Awe)ls qm, L SCF05PE if 0<L=F,
(1=8, )G, Aw g 1 ZC0°0528°F if 0=L=L.
(V) 1(Sp—Sp-n)GCor, Awe)ls qemy, 1 =CE05* 5 if L=0.
(v) If 3=n=4,
|GGy Awn) 1,1 SCF if 0=L=L,
[A—=S)G(-, Awe)l11,0=Co%03; P+,
[(Sy=Sp-)G(+, Awo) |11 =CO03 .
ProOF. (i) The assertion (i) follows immediately from Lemma 14.1 and the

facts that G(t, x, 0)=0 and that Aw,e E*nCH®).
(i) It follows from (12.5) that

(14.7) Gl x, Awn)zgi(l—r)(diF)(t, 2, Av-brAw)(Awe, Awodr .

If n=5, noting that p(n)=g¢(n) and applying Leibniz’s formula and Theorem Ap.
2 to (14.7), we obtain from Lemma 14.1 and (14.5) that for O;:’LSE
|G< ) Awo)!z,g(nx 7,§C[(1+ I ch!w.n, 7)( 1 Awa]z,n,o ] Aw, [x p(n),o)

+ | /1100!2,0,1;1 Awn!w. 1)(n),0+ 1 Awn!z,a o!/!w()fm‘p(m,L]écag-
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If 3=n=4, it follows from the assumption 4° in Introduction that we may write
symbolically

(14.8) G, x, Awo):gl(1~7')(djﬂ)(t, x, Av+rAw)(Awe, Aw)dr
0

g @, Ay, Aw)+{(1—rdsF)

X, x, Av+rdw)(Aw,, Aw,, Awy)dr.
Since (d3F.)(t, x, Av)=0 if t=1, applying Leibniz’s formula and Theorem Ap. 2
to (14.8) and noting that p(n)+%:q(n}, p(n)>1 and 0<d=1, we obtain from
Lemma 14.1 and (14.5) that for 0= L=L

[G(--, Awo)lz,q(m,L

SCLA+1 Awolw,o,0) | Awola10.0] Ao, pear, 0+ ] Atwola, 12,21 At | 5w
] Awol s vse0l Aol e, peny, 27+ | Aol a0, 2] Aol pcan. 0
F 1 Awols,0,0l Awolw, peny, L+ Aol w0, )| Awo ], 0.0(] Ao, 5n,0)*
A Awol s, 0, 1l Awsler, pia. o)+ AWala.0,0] AWl o, p s, 2] Ao, pear.o]

=Co%

Thus, we have the assertion (ii).
(iii) It follows from Lemma 11.1 and the assertion (ii) just proved that

14.9) [(1=SpGC, Awo) s, gm0 SCOZEIG(+, Awo) |2 ey, SCHOFFZCH0 %2,

L A=SG, Awd) s g, i SCPSCHO, L
Here, we have used the fact that [ =28-+1 and #,=1. It follows from Theorem
Ap. 1 that for 0=L=L

(14.10) IDL(1~SP)G(--', Awo)lz.q(n),o
SCUA=S)GC, Aw s, gmy, o) P L—S)NG, Awols, gnr, )™ E

Combining (14.9) and (14.10), we have the first assertion of (ili). Noting that
6,=0-6,,, we have the second assertion in the same manner.

Giv) If L>f, we obtain the assertion (iv) from Lemma 11.1-(iii) and the second
inequality of (14.9). If 0=L=IL, noting that S,—S, ;=1—S, ,—(1—S,), we
obtain the assertion (iv) from the assertion (iii) just proved.

(v) Applying Leibniz’s formula, Theorem Ap. 2, and the Cauchy-Schwarz

inequality to (14.8) and noting that p(n)+vij:q(n) and that 0<d=1, we obtain

from Lemma 14.1 and (14.5) that for OngZ
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(14.11) |GG, Awelsn, e SCLA+] A w0, )| D5, 17000

+ Zwo|z,1/2,LI/Twolz’xlz,o"i‘E(lAwo'2,0,0)2+ | Awolz,o,Ll/lwob.o.o
JF(I'TLf/lwolm,o,L)’Awolw,p(n),o(]Awolz,a\o)z‘F‘ | AwOlW,p(n),L('/1w0|2,0,0>2]
Cé?,

A

which shows the first assertion of (v). The other assertion of (v) are able to
be proved by using the first assertion of (v) just proved, Lemma 11.1 and Theo-
rem Ap. 2, in the same manner as before. This completes the proof.

Next, we estimate the summation F, of error terms e;, /=0, ---, p—1.

LEMMA 14.5.  Lef the assumptions [A.11-[A.3] be fulfilled. Put E,=>2le,,
p=1. The following nine assertions are valid.

(i) E,=EL~CH9).

(i) |Epls qom, 1 SC36,28+F if 0SL<I, L—28>r.

(iii ) 1Epls g, 1 2CO? if L—2B<—1.

(iv) |Eply1, 1 SC30,°P+F if 0SL<FL, L—2B>r, 3sn=4.
(v) |Epli=Co if L-2B<~1, 3sn=4.

(Vi) [A=Sp-DEploqm. 1 =CH02PE [(1—=S)E |5 gny, 1 =C3052F 42
if 0sL<f.
(Vi) [(1—=Sp-)Ep |11, 1 SCO*0,2F+L,

[(1=Sp)Ep| 1 L SCHG,2P+E if 0SL=L, 35sn=4.
viil)  [(Sp—=Sp-0Eple.qn). 1 =C80:28+%  for any L=0 if 3=n=4.
(ix) [Sp—=Sp-DEp]11,0=Co%052F if 3=n=4.
Proor. The assertion (i) follows immediately from Lemma 14.3. The
assertions (ii)-(v) follows from Lemma 14.3 and the fact that {0} ;-1 is a

geometric series. In the same manner as in the proof of Lemma 14.4, we can
show the assertions (vi)-(ix). So, we omit the proof. Q.E.D.

From (12.13), Lemmas 11.1, 14.3, 14.4 and 14.5 we obtain
LEMMA 4.6, Let the assumptions TA.1]-[A.3] be fulfilled. Then,
(i) g,=E=.

(ii) ]glzyq(n),LécLi}Zﬁfﬁ'% for any L=C.

(iii) fgp|1,1.o§C520j;2ﬂ if 3=n<d.
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(iv) goeﬁm.
(V) 1goleqmy, 2 =CL0%0:%+ L for any L=0.

(vi) lgolx,l,éCﬁzﬁazﬂ if 3=n=4.

Now, we shall estimate w, by using Theorems 7.2 and 9.1. For this purpose,
first of all, we have to examine if the operator L; satisfies Assumption 7.1 and
the conditions (7.3), (9.2) and (9.2). Since

Lyw=0%+0,—Dw+(d ,;F)t, x, Av)Adw+d )¢, x, S;AdwAw ,

we represent the last term symbolically in terms of coefficient vectors A’ and ¢
defined by (13.1) and (13.2) as follows:

(d:G)¢, x, S;Adw) Aw=A'Q, x, S;Aw) Aw+c@t, x, S;Adw)w .

Therefore, combining Lemmas 13.1, 14.1 and 14.2 and (14.5), we obtain

LEMMA 14.7. Let the assumptions [A.1]-[A.3] be fulfilled. Put
J]-:(J,(t, x, S,-ij), C(t, X, Sj/le)).
Let dy be the same as in Theorem 7.1. Then there exists a small positive constant

0y such that if 0=0=d; then the following eight assertions are valid for all
j:07 1) T p'

Ci) daF)C, AV par, 2 [ Ayl peny, L SCLOOTFHE if —B+Lzr, L<in.
Cii ) HdaF)Co ) A0y, 1+ 1Al o, piny 1 2CO if —f+L=—r.
(i) [(daf)(C, Av)|eo par it | Al peny 1 =1

(V) [(daF)(, AV)]wo.0t [ Aylw0.0=d,

(V) K)o ot [ A Gy SjAw) s e ot oG, SjAw)lo10=1.

(vi) [(dF)(- » AU)Iz,q(n),o‘+' | A s Sj/]wj”m,p(n),ﬁ' IC( B Sjij)|w,q(n>,o§1
if 3=n=4,

(vii)  [(diF)(--, AU)|w,qcn>,L+|Jl(“' ) Sj/le)leo,p<n),1.+|€("' ) Sjij)|w.q(m,L
=Cr307% L if —B+L>7, 0ZL<m and 3=n=4.

(viii)  [(daF)C, Ao gonr, o LA, S;AW) [ peny, 2+ (o) S;Aw ) e, giny, Lt SC3
if —B+L=Z—7, 3=n<4.

It follows from Lemma 14.7 that the operator L, satisfies Assumption 7.1
and conditions (7.3), (9.2) and (9.2)". Thus, applying Theorem 7.2 with p=p(n)—1
and Theorem 9.1 to (12.14), we obtain from Lemmas 14.6 and 14.7 that



60 Yoshihiro SHIBATA

iAwplz,o‘L'%I/‘Iu./p12’1/2.L§CL526525+L+!,
(14.12) ﬁ
[ At |0, SC1 5205 LF2nIRET
for Ongf. Choose 6,>0 so small that

(14.13) 3, max C, <1

0sLslL
where C; is the same as in (14.12). Put
(14.14) do=min(J;, 0, 0, Gy
where 38y, 85, 0; and 3, are the same as in (14.1), [A.3], Lemma 14.7 and (14.13),
respectively. We obtain from (14.12)-(14.14) and the fact: B=2[n/2]+7 that if
0<8=4d, and

"950“2 21h+3+[n/2]+ ”951“2 2rh+-z+[n/2]+ ]f ] 2,q(n), e +1+in/2l

+<f(n)(||¢oH] 771+2+“¢1”1.ﬁx+1+ I I | 1,1, w)=0d/d(m),
then

IA7L‘p|2,o,L+|/pr|2.1/-z,1,§505‘5+L) IAwp|w,p(n),L§50;5+L

for 0= L=<TL, which shows that i, also satisfies the assertion of Lemma 12.1.
To complete the induction, it remains only to verify that i, satisfies the

assertion of Lemma 12.1. In view of Lemmas 14.6 and 14.7, its proof follows

exactly as before. We have completed the proof of Lemma 12.1, just now.

§15. Proof of main theorem.

First, we shall prove the existence of solutions of (P). Since S=max[m—1,
20n/2714-77, it follows from Lemma 12.1 that there exists a function weC™(DNE™
such that

(15.1) W= 30t ;4 Wo,
(15.2) | Awls, 0 m-st 1 Aw s ssem-st | AW, pny, m-2=C8,

where C=2(20—1)/(0—1). Furthermore, we obtain from (12.7) and (12.14) that
(15.3) w=0 on 2, w(0, x)=@,w)0, x)=0 in 2.

On the other hand, combining (12.15), Lemmas 14.3, 14.4 and 14.5, we have
(15.4) | Lw+G(---, Aw)’glz,o,ngc[l w— wp+1!2,0,2

+ @26, Awgert 8 Mw—wy O Aw—Auy)|,
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F1A=S)Ep 500+ lenln o0t | (1—S)G(, Awo)iz,o,o]
<C(69-P+5%628%) for any p=0.

It follows from (15.4) and the fact: weC¥ Q) (m=2) that Lw+G{, x, Aw)=g
in @. Therefore, in view of §12, putting u=v-+w, we obtain that u is a
solution of (P), which completes the proof of the existence of solutions of (P).

Next, we shall prove the uniqueness theorem. For this purpose, we begin
with

LEMMA 15.1. Let R and T be any positive numbers with R>r, (cf. Notations)
and p be a large fixed number with pz2(n+1). Put

F={x1; x€, |x|ER+p(T—1), 0=t=T}.

Let aj, j=0, -, n, a4, i, j=1, -, n, b;, j=0, -, n, ¢ be real valued C'(9D)

functions such that

(155) JE“S%;E)F{((Z]} ]:0) e, M, aij7 i: j:l, I ( bj; ]:0; e, N, C)Igl/zy

(15.6) a;=aj.
Let us define a linear operator L by
L=040,— A+ 00,0,0,— D8 101,00+ D-obd;+C .
If ueC¥9) satisfies the equations:
Lu=0 in I,
(15.7) u=0 on [0, TIX08,
1(0, x)=(0,u)(0, x)=0 in pipr (cf. Notations),

then u=0 in I.

Proor. We prove the lemma by well-known energy method. It follows
from the fact p=2(n41)
(15.8) [no(l4-a4)—2Fn;a,10u)*—2[ 3% -1n 0+ a:,)0;uld.u
+ 110 D=1 a45)0,u0;u
Zno{1—=A@w)*—2p (n+A) | Diul|0:u|+1—A) | Diul?}t 20
nos=p(L+ )%, = x| (L)), j=1, -, .

Noting (15.6), we have the identity:
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1 “ -
(15.9)  Lu-dou=50.L(142)0u)+TT=(0:;+a:)0:ud;u]
1 -
+_2‘Z?:laj[aj(dtu)gj_'E?j:laj[<5ij+aij>aiuatu]

({5 Brdse b} Ew - S (S0 bdd

w"é‘2?}‘:1(65al‘])aiuaju_‘“fua;u].
Now, we introduce the following notations:
I(ty, t)={t, x); x€Q, |x| SR+p(T—1), hzt=h}
for any f,, t; with 0<t,<t, =7,
G)={xeQ, |x|SR+p(T—0} for any t with 0=¢=T.

Integrating (15.9) over I7(0, s), we have by the divergence theorem and (15.5),
(15.7), (15.8) and (15.9) that

(15.10) Sm (@.ult, )2+ | Diut, x)|% dx
ézSG(z) {(1+a0(t, x))(atu(t, x))2+2?j:1(5rij+azi]'<t, x)>alu(l7 x)a,"u(t’ x)}dx

e[, 1@uts, OP+1Dbus, )1 uls, x7) dsdx

for some constant ¢ depending only on g and n. Here, we have put

le sup |(D—lafr ]:09 e, N, ﬁlaij; iv ]:17 e, N, b_?" ]:Oy () F)[+1'
&, el
For any #t, t, with 0=¢, <1, =T, let us put

Bty t)=_sup | 1@uts, 0+ Diuts, 014 dx.

0S8sty

We have by the Cauchy-Schwarz inequality that

(15.11) S (s, x)lzdxégsg s|@a)(r, x)|2drdx
G(s) 0JG(8)
;sgg @), 0)|2drdx 25°EQ, s).
0JG(r)
Here, we have used the fact that G(r)DG(s) if 0=r<s=<T. Combining (15.10)
and (15.11), we have

(15.12) EQ, HhEcA,A-+THEQ, 1).
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(15.12) that E(0, t)==0 for 0=t=<t,, which implies that =0 in 170, t,). Replacing
0 by t, and ¢, by 2{, and repeating the argument just mentioned, we have that
u=0 in (¢, 2t,). A finite number of iterations of this argument implies that
u=0 in I(0, T)=I" This completes the proof of the lemma.

Now, we shall show the uniqueness theorem by using Lemma 15.1. Let u,
v be C*D) solutions of (P) satisfying

(15.13) [Au]w o050, .

Here 0, is a positive constant determined later. Put w=u—v. By Taylor series
expansion, we have

@3~ D+ (aF)C 7, 0 Aut(1-0) 40)d0 Aw=0 in 9,
(15.14) w=0 on 9/,
w(0, x)=0©@.w)O0, x)=0 in £.

First, we shall prove u=v in [0, 1]x 2. For this purpose, we may show that
w=0in {¢ x); [x|ER+p(l—1), x=8£, 0=t<1} for any R>r,. If we choose
d; so small that

(15.15) 20, Mo, 2 H11@:2)(0, o, 4170, HlZds,

where f=(0{+0,—NDu+F({, x, Au) and d, is the same as in (10.5), we have by
(10.5) that

@0, x)=@u)©0, x)=v(x, D2u(0, x), DLu(0, x), F(0, x)).
This implies
&
0

o(t, x)=u(0, xH—S @), x)ds,
(15.16) Ca)t, )=@u)0, )+ @s, x)ds,

@), =@, )+ @s, xds |
For any ¢, t; with 0=<¢,<t, <1, let us put
I, t)={(, x); x€Q, |x| ER+p1—1), t,<t=t}
where y is the same as in Lemma 15.1. Put
(15.17) p= sup |[(Av), x)|.

, el 0, n

It follows from (15.13), (15.16) and (15.17) that
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(15.18) sup  |(Awv)(s, x)| Stpteln)d,

s, el o, n
for some constant ¢(n) depending only on n. On the other hand, since d;F(t, x, 0)
=(, we can choose d, small so that
(15.19) Id,F, x, DIZ1/2 if (¢, 0)eD, |2 =0.,
Therefore, if we choose g, and £, so small that
(15.20) c(n)6,=6,/2, pti=0./2,

we have by (15.13), (15.18) and (15.19) that

(15.21) lgzd;F(z‘, %, B Au-+(1—0) A)do] <172

i
t

for (¢, x)=1'(0, t,). Since u, veC¥D), S:sz(z‘, x, 0Au+(1—0)Av)d6 =CH(D). By
this and (15.21) we have that the linear operator a%+8;~,4+§:d R, x, 6 Adut
(1—&) Av)d 6 satisfies all conditions in Lemma 15.1. So, applying Lemma 15.1 to
(15.14), we have that w=u—v=0 in I'(0, t,). In particular, u(, x)=v(ty, x),
(8,1)(to, x)=@)(ty, x), and (@3u)t, x)=(0%)(t,, x). Replacing 0 by & and ¢, by
2t, and repeating the argument, we have that w= u—y=0 in I'(t, 2t,) without
changing the choise of 4,. Because, §, depends only on d, c(n) and 0, (cf.
(15.15) and (15.20)) and J, depends only on F(t, x, 2). A finite number of itera-
tions of this argument implies that w=v in ['(0, 1). Since we can choose R
arbitrarily large, we have u=v in [0, 11X £. Since J, depends only on ds, ¢(n)
and J,, we can show by repeated use of the argument just mentioned that u=v
in @ without changing the choice of 8, This completes the proof of the

uniqueness theorem.

APPENDIX
I. Interpolation inequality

THEOREM AP. 1 (Interpolation inequality). Let OCR™ be a domain. Assume
that the boundary of © is compact and C=, or =R™, or that O=R". Assume
that all semi-norms appearing below are finite. Then, the following three assertions
are valid for any integers N and M with 0=SN=M and p with 1=p=<oco.

(1) ID¥llo.n=Clllo. )™ UIgllo, o)™ ™.
(ii) For any closed interval I=[a, bJCR' (—oo=a<b=00),

IDNf‘O,zJ.I,(Vf—EC([flO,p,I.O)l—(NiM)([fIO.:D,I,M)N/M'
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(ili) For any non-negative real number k.
ID¥glo.p, w0 =Cl glo, s, k,o)]‘(N/M)({g‘O,P, gan)V L

Here all the constants C are independent of the functions ¢, f and g.

Proor. First, we shall prove the theorem in the case of ©@=R"* The
assertion (i) is the well-known classical interpolation inequality. Using a rep-
resentation theorem due to Muramatsu [10], we can show the following in the
same manner as in the proof of Lemma 2.2.4 in Shibata [18].

(Ap.1) DY g4 e 0=Cl gl e, @0 g4, )12
where [g]Z,,,}N:surf(]+lt|)kIlDNg(t, Iy If © satisfies the assumption of the
LER

theorem, via local map, using an extension theorem due to Seeley [17], we can
the following three assertions.

(Ap.2) For any ¢ defined on O, there exists ¢ defined of R™ such that ¢=¢' in
¢ and “gﬁ'“;)zv;/CHSb”OpN

(Ap.3) For any f defined on 1X0O, there exists [’ defined on R™*! such that
f=7" omIx0 and |50 5=ZC|flo.p 1 n

(Ap.4) For any g defined on [0, o0) X0, there exists g’ defined on R™*' such that

g=g on [0, 0)xX0 and g’ s v=Clglo.p & n-

Here, if we fix the manner of the extension of functions, all the constants C
appearing in (Ap.2)-(Ap.4) depend essentially on only %, N, I, p and © but
independent of ¢, f and g. Combining (Ap.1)-(Ap.4), we have the theorem,
which completes the proof.

The following theorem is also proved in Shibata [18, Lemma 2.2.9]. We can
show it by using Theorem Ap.1 and the following elementary inequality :

a? bl 1 1
a-b=- -+, where a, b=0, 1<p=<co and =+ —=1.
P q b P g
THEOREM AP. 2. Let O be the same as in Theorem Ap. 1. Let the semi-
norms appearing below be finite. Let p, g, k, k' be real numbers with 1=p,
g=oo, k, k'20 and I, 1" be any closed intervals in R' and M, N, i, j be non-
negative integers with i=M and j<N. Then the following six inequalities hold.

10 “SD'HpM”S[}”q Iv’gc[iigﬁf)“p,i”(/)”q,M+N-—t+’ ”¢“p,M+N-j”¢Hq,J]’
2° N@lpalflo s v =CUSlp sl flo rasn-itNDlp ssw-51Fla 1,5
3% Mgl al flow v =CLUSn, i) flao ke w-sH Gl p asn—51 [l 0,51
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4° !flp,I,M'glq,I’.N:<:C[|f‘p,1,i|g|q.I',M+N~i+!f‘ip,l',}rli-h’-;“g‘q,[r“«'].
55 ‘flpyl,M!glq‘k.NéC[[flp.I,i'glq,k,M+N~i“:‘!f‘p,I,M+N«j1g]q,k,j]‘
6° If'p,k,Mlg!q‘k'.;’\’éc[:lflp,k,i|g|f1‘ poan-i 1 o ewev-il @la w5

Here all the constants C appearing in 1°-8° are independent of ¢, ¢, j and g and

we have omitted the index @ in semi-norms.

II. Moser’s lemma

Using Theorem Ap. 1 and the well-known technique essentially due to Moser
[9], we have the following theorem (see also Klainerman [5, Lemma 5.1] and
Shibata [18, Lemma 5.127).

THEOREM AP. 3. Let O be the same as in Theorem Ap. 1. Let u=(u,, -, uy)
with u;eC™([0, ©)x0), j=1, -, s, and |ulo.«oo=l. If HU, x, w)y=H(, x, wy,
v wy) is a @0, o) xOX fwe R |w| =1} function, then for any integer Nz0
(i) JHC, ul, NeoworSCL, HY1+|ulo w0 1)

Movreover, if H(t, x, 0)=0, then
iy JHC, ule, Nowoz=CL, H)lulo,wo, 1

Here, we have assumed that semi-norms appearing above are all finite.

THEOREM AP. 4. Let N be a non-negative integer and 1=p=oco. Let © be
the same as in Theorem Ap. 1, H(x, w)=H(x, wy, -, ws) be a $°(OX {weR;
lw|=1}) function and w(x)=(w(x), -, wx)) with w;&H{(©O) and |wlle,-=1.
Assume that H(x, 0)=0. Then,

HHC-, w(-Dlle.p, v=C©O, p, Nwllo,p. 5

PrOOF. Combining Theorem Ap. 1 and the well-known Nirenberg-Gagliardo
inequality, we obtain

[D%wllo, kpr,0=C(p, O, 1, RYwllo,m o) P (Nwlo.p, )"
Thus, by means of the technique which is used to show the well-known Moser’s

lemma [9], we can show the theorem. Q.E.D.

THEOREM AP. 5. Assume that all semi-norms appearing below are finite. Let
b0, ¢y and f be data for (P) and v a function defined by (12.1) for ¢o, ¢1 and f,
and H(, x, ) a @3>0, o)X XA 1Y) function satisfying the condition:
H(, x, 0)=0. Then for any p with 1=p=co and integer L=0

| H(--, A’/‘)!p,o.l‘éC(L, ﬁ)['l¢o“n1ﬁ+2+lf{ H¢1”p,ﬁ’z+1+L‘+‘lflp,ryﬁwl,]~



On the global existence of classical solutions 67

ProOOF. Since H(, x, 0)=0, we may write symbolically
H(t, x, Av)=H@, x, Av)Av

for some H. It thus follows that there exists a B([0, co)yx @ xTI) function
G(t, x, 7) (I" is some compact set) such that G(¢, x, 0)=0 and

(Ap. 6) HG, x, Av)=G@, x, Diuz(x), -+, Diuy(x)),

where u,;=¢, and u#,=¢,. Since p(t)=0 if =1, we may assume that G(t, x, 7)
=0 if t=1. We have from (Ap.6) that for any integer L=0

(Ap.7)  DMH(, x, Av)=3k=DY@F VG, x, Dius(x), -, Diuglx)).

Of course, it follows from the fact: G(t, x, 0)=0 that 0f-¥G(¢, x, 0)=0. Therefore,
applying Theorem Ap. 4 to (Ap.7), we have

(Ap.8) IDEHE, -, A, =CL, PSPl D2u,l, 1.

Combining (Ap.8) and Lemma 10.3, we obtain the desired estimate, which com-
pletes the proof.
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