TAME TRIANGULAR MATRIX ALGEBRAS OVER SELF-INJECTIVE ALGEBRAS

By

Mitsuo HOSHINO and Jun-ichi MIYACHI

Dedicated to Professor Hisao Tominaga on his 60th birthday

Throughout this note, we will work over a fixed algebraically closed field k. The notations and the terminologies will be the same as in [6], [9] and [10]. Let Λ be a finite dimensional self-injective algebra and assume that Λ is basic, connected and non-simple. For an integer $p \ge 2$, denote by $T_p(\Lambda)$ the algebra of the $p \times p$ upper triangular matrices over Λ . We ask when $T_p(\Lambda)$ is tame. So we assume further that Λ is representation-finite. Otherwise, $T_p(\Lambda)$ has to be wild [13]. Then, as well known, the universal cover of the stable Auslander-Reiten quiver of Λ is isomorphic to a Dynkin-translation-quiver $\mathbb{Z}\Lambda$ [7], where $\Lambda = A_q$ $(q \ge 1)$, $\mathbb{D}_q(q \ge 4)$ or $\mathbb{E}_q(6 \le q \le 8)$, and Λ is called the Dynkin class of Λ . Our aim is to prove the following

THEOREM. Let Λ be as above. Then, $T_2(\Lambda)$ is tame if and only if Λ has Dynkin class A₃.

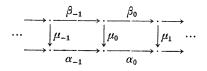
REMARK 1. The case p>2 is rather easy. Denote by $J_p(\Lambda)$ the ideal of $T_p(\Lambda)$ consisting of the strictly upper triangular matrices. Suppose p>2 and $p\geq r\geq 2$. Then, $T_p(\Lambda)/J_p(\Lambda)^r$ is tame if and only if Λ is a Nakayama algebra of Dynkin class A_q and (p, q, r) = (3, 2, 2), (4, 1, 3) or (4, 1, 4) (cf. [11]).

REMARK 2. For a Dyinkin-translation-quiver Z Δ , the mesh category $k(\mathbb{Z}\Delta)$ is known to be locally bounded [2], and it is not difficult to check the following: i) $k(\mathbb{Z}\Delta)$ is locally representation-finite if $\Delta = \mathbf{A}_q(q \leq 4)$; ii) $k(\mathbb{Z}\Delta)$ is locally support-finite and tame if $\Delta = \mathbf{A}_5$ or \mathbf{D}_4 ; iii) $k(\mathbb{Z}\Delta)$ has a finite quotient which is wild if Δ is otherwise.

Proof of Theorem

Let us consider first the case where Λ is a Nakayama algebra. Suppose that Λ is a Nakayama algebra of Dynkin class \mathbf{A}_q . Then, $T_2(\Lambda)$ has the following universal Galois covering U:

Received August 6, 1986.

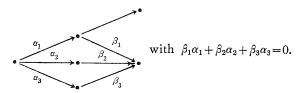


with $\alpha_i \mu_i - \mu_{i+1} \beta_i = \alpha_{i+q} \cdots \alpha_{i+1} \alpha_i = \beta_{i+q} \cdots \beta_{i+1} \beta_i = 0$ for all $i \in \mathbb{Z}$. If $q \leq 2$ then U is locally representation-finite [4], if q=3 then U is locally support-finite and tame [12], and if $q \geq 4$ then U has a finite quotient which is wild [12]. Thus, in this case, $T_2(\Lambda)$ is tame if and only if q=3.

In what follows, we assume that Λ is not a Nakayama algebra. Then, there is no DTr-invariant module [5]. Notice also that Λ is a Nakayama algebra if Λ has Dynkin class $\mathbf{A}_q(q \leq 2)$.

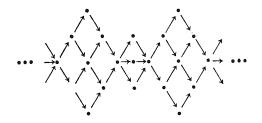
Consider next the case where Λ has Dynkin class $\mathbf{A}_q(q \ge 4)$, $\mathbf{D}_q(q \ge 4)$ or \mathbf{E}_q ($6 \le q \le 8$). Then, as easily seen, the Auslander-Reiten quiver of Λ has the following full subquiver:

and, as a quotient, the Auslander algebra over Λ has the following algebra:

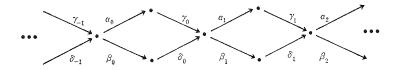


This is a concealed hereditary algebra of type $\tilde{\tilde{D}}_4$. Notice that $T_2(\Lambda)$ is representation equivalent to the Auslander algebra over $\Lambda [1]$, because Λ is assumed to be representation-finite. Thus $T_2(\Lambda)$ is wild.

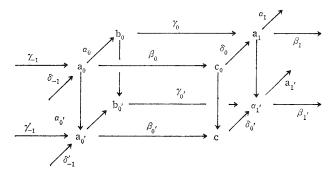
It only remains the case of Λ having Dynkin class A_3 . Then, the universal cover of the Auslander-Reiten quiver of Λ is the following:



384

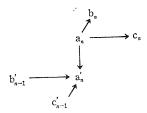


Thus, since Λ is standard [8], Λ has the following universal Galois covering: with $\gamma_i \alpha_i - \delta_i \beta_i = \alpha_{i+1} \delta_i = \beta_{i+1} \gamma_i = 0$ for all $i \in \mathbb{Z}$ [4]. Hence, by [3], it suffices to prove that the following locally bounded category U is locally support-finite and tame:



with $\alpha_{i+1}\delta_i = \beta_{i+1}\gamma_i = \alpha'_{i+1}\delta'_i = \beta'_{i+1}\gamma'_i = 0$ for all $i \in \mathbb{Z}$ and with all the squares commutative.

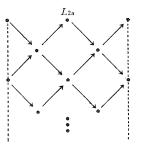
For each $n \in \mathbb{Z}$, let A_{2n} be the following full subcategory



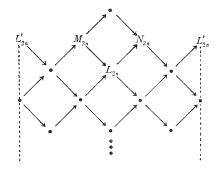
this is a hereditary algebra of type $\tilde{\mathbf{D}}_5$, and let B_{2n} and B_{2n}^* be the full subcategories obtained from A_{2n} by adding b_{n-1} and b'_n respectively, these are tilted algebras of type $\tilde{\mathbf{E}}_6$. Then, the full subcategory $B_{2n} \cup B_{2n}^*$ consisting of the objects of B_{2n} and B_{2n}^* is, as an algebra, isomorphic to

$$\begin{bmatrix} k & DL_{2n} & k \\ 0 & A_{2n} & L_{2n} \\ 0 & 0 & k \end{bmatrix}$$

where $L_{2n} = {1 \choose 0}^{1^0}$ is a regular module:



The vector space categories $\operatorname{Hom}(L_{2n}, \mod A_{2n})$ and $\operatorname{Hom}(\operatorname{mod} A_{2n}, L_{2n})$ belong to the pattern $(\tilde{\mathbb{D}}_5, 2)$, and ind $(B_{2n} \cup B_{2n}^*) = P_{2n} \cup R_{2n} \cup Q_{2n}$, where P_{2n} consists of the objects of ind B_{2n}^* with restriction to A_{2n} being preprojective, Q_{2n} consists of the objects of ind B_{2n} with restriction to A_{2n} being preinjective and R_{2n} consists of the regular objects of ind A_{2n} except that the above tube changes to the following:

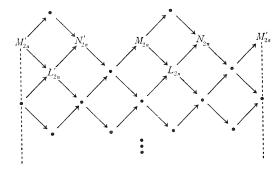


Thus, $B_{2n} \cup B_{2n}^*$ is tame.

Further, let C_{2n} and C_{2n}^* be the full subcategories obtained from B_{2n} and B_{2n}^* by adding c_{n-1} and c'_n respectively, these are tilted algebras of type $\tilde{\mathbf{E}}_7$. Then, $C_{2n} \cup C_{2n}^*$ is isomorphic to

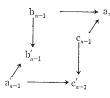
$$\begin{bmatrix} k & DL'_{2n} & k \\ 0 & B_{2n} \cup B^*_{2n} & L'_{2n} \\ 0 & 0 & k \end{bmatrix}$$

and the vector space categories $\operatorname{Hom}(L'_{2n}, \operatorname{mod}(B_{2n} \cup B^*_{2n}))$ and $\operatorname{Hom}(\operatorname{mod}(B_{2n} \cup B^*_{2n}))$, L'_{2n} are isomorphic to $\operatorname{Hom}(L'_{2n}, \operatorname{mod}B_{2n})$ and $\operatorname{Hom}(\operatorname{mod}(B^*_{2n}, L'_{2n}))$ respectively. Hence, both of them belong to the pattern ($\tilde{\mathbf{E}}_{6}$, 3). We have ind ($C_{2n} \cup C^*_{2n} = P'_{2n} \cup R'_{2n} \cup Q'_{2n}$, where P'_{2n} consists of the objects of ind C^*_{2n} with restriction to $B_{2n} \cup B^*_{2n}$ lying in P_{2n} , Q'_{2n} consists of the objects of ind C_{2n} with restriction to $B_{2n} \cup B^*_{2n}$ lying in Q_{2n} and R'_{2n} coincides with R_{2n} except that the above tube changes to the following:



Thus, $C_{2n} \cup C_{2n}^*$ is tame.

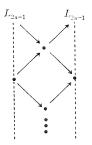




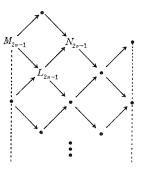
this is a hereditary algebra af type \tilde{A}_{33} , and let B_{2n-1} and B^*_{2n-1} be the full subcategories obtained from A_{2n-1} by adding a_{n-1} and a'_n respectively, these are tilted algebras of type \tilde{E}_6 . Then, $B_{2n} \cup B^*_{2n}$ is isomorphic to

$$\begin{bmatrix} k & DL_{2n-1} & k \\ 0 & A_{2n-1} & L_{2n-1} \\ 0 & 0 & k \end{bmatrix}$$

where $L_{2n-1} = {1 \atop 1}^{1} {1 \atop 1}^{1}$ is a regular module:



The vector space categories $\operatorname{Hom}(L_{2n-1}, \operatorname{mod} A_{2n-1})$ and $\operatorname{Hom}(\operatorname{mod} A_{2n-1}, L_{2n-1})$ belong to the pattern (\widetilde{A}_{33} , 1), and $\operatorname{ind}(B_{2n-1} \cup B^*_{2n-1}) = P_{2n-1} \cup R_{2n-1} \cup Q_{2n-1}$, where P_{2n-1} consists of the objects of ind B^*_{2n-1} with restriction to A_{2n-1} being preprojective, Q_{2n-1} consists of the objects of ind B_{2n-1} with restriction to A_{2n-1} being preinjective and R_{2n-1} consists of the regular objects of ind A_{2n-1} except that the above tube changes to the following:

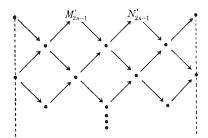


Thus, $B_{2n-1} \cup B^*_{2n-1}$ is tame.

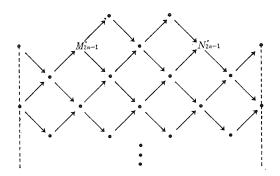
Further, let C_{2n-1} and C_{2n-1}^* be the full subcategories obtained from B_{2n-1} and B_{2n-1}^* by adding b'_{n-2} and b_n respectively, these are tilted algebras of type $\tilde{\mathbf{E}}_7$. Then, $C_{2n-1} \cup C_{2n-1}^*$ is isomorphic to

$$\begin{bmatrix} k & DN'_{2n-1} & 0 \\ 0 & B_{2n-1} \cup B^*_{2n-1} & M'_{2n-1} \\ 0 & 0 & 0 \end{bmatrix}$$

where $M'_{2n-1} = {}^{0}_{1}{}^{0}_{0}{}^{0}_{0}$ and $N'_{2n-1} = {}^{0}_{0}{}^{1}_{0}{}^{1}_{0}{}^{1}_{0}$ are regular modules:



The vector space categories $\operatorname{Hom}(M'_{2-n1}, \operatorname{mod}(B_{2n-1} \cup B^*_{2n-1}))$ and $\operatorname{Hom}(\operatorname{mod}(B_{2n-1} \cup B^*_{2n-1}))$ are isomorphic to $\operatorname{Hom}(M'_{2n-1}, \operatorname{mod} B_{2n-1})$ and $\operatorname{Hom}(\operatorname{mod}(B_{2n-1} \cup B^*_{2n-1}))$ are isomorphic to $\operatorname{Hom}(M'_{2n-1}, \operatorname{mod} B_{2n-1})$ and $\operatorname{Hom}(\operatorname{mod}(B^*_{2n-1}, N'_{2n-1}))$ respectively, thus belong to the pattern $(\tilde{\mathbf{E}}_{6}, 3)$. We have $\operatorname{ind}(C_{2n-1} \cup C^*_{2n-1}) = P'_{2n-1} \cup R'_{2n-1} \cup Q'_{2n-1}$, where P'_{2n-1} consists of the objects of $\operatorname{ind} C^*_{2n-1}$ with restriction to $B_{2n-1} \cup B^*_{2n-1}$ lying in P_{2n-1} , Q'_{2n-1} consists of the objectes of ind C^*_{2n-1} with restriction to $B_{2n-1} \cup B^*_{2n-1}$ lying in Q_{2n-1} and R'_{2n-1} coincides with R_{2n-1} except that the above tube changes to the following:

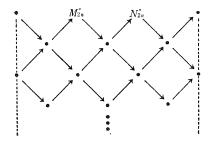


Thus, $C_{2n-1} \cup C^*_{2n-1}$ is tame.

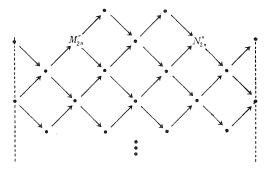
Now, for any $l, m \in \mathbb{Z}$ with $l \leq m$, let $A_{l,m}$ be the full subcategory consisting of the objects of the $A_n, l \leq n \leq m$. Then, for each $n \in \mathbb{Z}$, A_{2n-1}, a_{2n+1} is isomorphic to

Γk	DN_{2n}''	ך 0
0	$C_{2n} \cup C^*_{2n}$	M''_{2n}
0	0	k _

where $M_{2n}'' = \frac{0}{11} \frac{0}{100} \frac{0}{00} 0$ and $N_{2n}'' = \frac{0}{000} \frac{1}{000} \frac{1}{000} 0$ are regular modules:



The vector space categories $\operatorname{Hom}(M_{2n}^{"}, \operatorname{mod}(C_{2n} \cup C_{2n}^{*}))$ and $\operatorname{Hom}(\operatorname{mod}(C_{2n} \cup C_{2n}^{*}), N_{2n}^{"})$ are ismorphic to $\operatorname{Hom}(M_{2n}^{"}, \operatorname{mod} C_{2n})$ and $\operatorname{Hom}(\operatorname{mod} C_{2n}^{*}, N_{2n}^{"})$ respectively, thus belong to the pattern ($\tilde{\mathbf{E}}_{7}$, 3). We have ind $A_{2n-1}, _{2n+1} = P_{2n}^{"} \cup R_{2n}^{"} \cup Q_{2n}^{"}$, where $P_{2n}^{"}$ consists of the objects of $\operatorname{ind}(C_{2n}^{*} \cup A_{2n+1})$ with restriction to $C_{2n} \cup C_{2n}^{*}$ lying in $P_{2n}^{'}, Q_{2n}^{"}$ consists of the objects of $\operatorname{ind}(A_{2n-1} \cup C_{2n})$ with restriction to $C_{2n} \cup C_{2n}^{*}$ lying in $Q_{2n}^{'}$ and $R_{2n}^{"}$ coincides with $R_{2n}^{'}$ except that the above tube changes to the following :

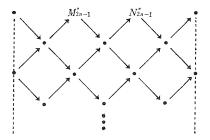


Thus, A_{2n-1} , a_{n+1} is tame.

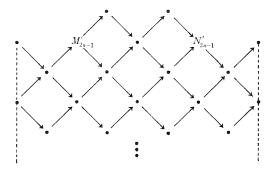
Similarly, for each $n \in \mathbb{Z}$, $A_{2n-2, 2n}$ is isomorphic to

k	DN''_{2n-1}	0	٦
0	$C_{2n-1}\cup C^*_{2n-1}$	M_{2n-1}''	
0	0	k	

where $M_{2n-1}'' = {}_0 {}_{1000}^{0000}$ and $N_{2n-1}'' = {}_0 {}_{0000}^{0010}$ are regular modules:



The vector space categories $\operatorname{Hom}(M'_{2n-1} \mod(C_{2n-1} \cup C^*_{2n-1}))$ and $\operatorname{Hom}(\operatorname{mod}(C_{2n-1} \cup C^*_{2n-1}))$, N''_{2n-1}) are isomorphic to $\operatorname{Hom}(M''_{2n-1}, \mod C_{2n-1})$ and $\operatorname{Hom}(\operatorname{mod}(C^*_{2n-1}, N''_{2n-1}))$ respectively, thus belong to the pattern $(\tilde{\mathbf{E}}_{7}, 3)$. We have ind $A_{2n-2}, 2n = P''_{2n-1} \cup R''_{2n-1} \cup Q''_{2n-1}$, where P''_{2n-1} consists of the objects of $\operatorname{ind}(C^*_{2n-1} \cup A_{2n})$ with restriction to $C_{2n-1} \cup C^*_{2n-1}$ lying in P'_{2n-1} , Q''_{2n-1} consists of the objects of $\operatorname{ind}(A_{2n-2} \cup C_{2n-1})$ with restriction to $C_{2n-1} \cup C^*_{2n-1}$ lying in P'_{2n-1} , Q''_{2n-1} and R''_{2n-1} coincides with R'_{2n-1} except that the above tube changes to the following :



Thus, A_{2n-2} , $_{2n}$ is tame.

Finally, for any $l, m \in \mathbb{Z}$ with $l \leq m$, $B_l \cup A_{l,m+1}$ is the one-point extension of $A_{l,m+1}$ by M_l and the vector space category $\operatorname{Hom}(M_l, \operatorname{mod} A_{l,m+1})$ is isomorphic to $\operatorname{Hom}(L_l, \operatorname{mod} A_l)$. We have $\operatorname{ind}(B_l \cup A_{l,m+1}) = \operatorname{ind}(B_l \cup B_l^*) \cup \operatorname{ind} A_{l,m+1}$. Next, $C_l \cup A_{l,m+1}$ is the one-point extension of $B_l \cup A_{l,m+1}$ by M'_l and the vector space category $\operatorname{Hom}(M'_l, \operatorname{mod}(B_l \cup A_{l,m+1}))$ is isomorphic to $\operatorname{Hom}(M'_l, \operatorname{mod}(B_l \cup C_l^*))$ and belongs to the pattern $(\tilde{\mathbf{E}}_6, 3)$. We have $\operatorname{ind}(C_l \cup A_{l,m+1}) = \operatorname{ind}(C_l \cup C_l^*) \cup \operatorname{ind} A_{l,m+1}$. Finally, $A_{l-1,m+1}$ is the one-point extension of $C_l \cup A_{l,m+1} = \operatorname{ind}(C_l \cup C_l^*) \cup \operatorname{ind} A_{l,m+1}$. We have $\operatorname{ind}(C_l \cup A_{l,m+1})$ is isomorphic to $\operatorname{Hom}(M''_l, \operatorname{mod}(C_l \cup C_l^*))$. We have $\operatorname{ind} A_{l-1,m+1} = \operatorname{ind} A_{l-1,l+1} \cup \operatorname{ind} A_{l,m+1}$. Therefore, ind $U = \bigcup_{n \in \mathbb{Z}}$ ind $A_{n-1,n+1}$. We are done.

References

- [1] Auslander, M.: Representation dimension of artin algebras, Lecture Notes at Queen Marry College, London. 1971.
- [2] Bongartz, K. and Gabriel, P.: Covering spaces in representation-theory, Invent. Math. 65 (1982), 331-378.
- [3] Dowber, P., Lenzing, H. and Skowroński, A.: Galois coverings of algebras by locally support-finite categories, Proc. Puebla 1984, Springer LNM 1177, 91-93.
- [4] Gabriel, P.: The universal cover of a representation-finite algebra, Proc. Puebla 1980, Springer LNM 903, 68-105.
- [5] Hoshino, M.: DTr-invariant modules, Tsukuba J. Math. 7 (1983), 205-214.
- [6] Hoshino, M. and Miyachi, J.: Tame two-point algebras, Tsukuba J. Math. (To appear).
- [7] Riedtmann, Chr.: Algebren, Darstellungsköcher, Überlagerungen und zurück, Comm. Math. Helv. 55 (1980), 199-224.
- [8] Riedtmann, Chr.: Representation-finite self-injective algebras of class An, Springer LNM 832 (1980), 449-520.
- [9] Ringel, C. M.: Tame algebras, Springer LNM 831 (1980), 137-287.
- [10] Ringel, C. M.: Tame algebras and integral quodratic forms, Springer LNM 1099 (1984).
- [11] Skowroński, A.: The representation type of group algebras, in: Abelian groups and modules, Udine 1984, CISM 287, 517-531, Wien-New York 1984.
- [12] Skowroński, A.: Tame triangular matrix algebras over Nakayama algebras, J. London Math. Soc. (2) 34 (1986), 245-264.
- [13] Skowroński, A.: On tame triangular matrix algebras, Bull. Polish Acad. Sci. Math. 34 (1986), 517-523.

Institute of Mathematics University of Tsukuba Ibaraki, 305 Japan