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ON PRIME TWINS

In honorem ProfessorisSaburo Uchivama annos LX nati

By

Hiroshi Mikawa

1. Introduction.

It has long been conjectured that there exist infinitely many prime twins.

There is even the hypothetical asymptotic formula for the number of prime

＼(y,2k)= S A{n)A{n-2k)

where A is the von Mangoldt function,then it is expected that

(*)

with
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W{y, 2k)^<5{2k){y-2k) as y -> oo

c(2£)=2n(i--^)n(

2x^y£x8/5~e

)
p

p

1

2

No proof of these has ever been given.

But it is well known that the above (*) is valid for almost all k^y/2.

Recently, D. Wolke [4] has refined this classicalresult. He showed that in

£>0

the formula (*) holds true for almost all k<x. Moreover he remarked that,

on assuming the density hypothesis for L-series,the exponent 8/5 may be

replaced by 2.

In the present paper we shallimprove thisexponent beyond 2.

Theorem. Let s,A and B>0 be given and

2x£y£xs~s.

Then, exceptpossiblyfor O(x(log x)~A)integersk^x, we have

＼(y,2k)=&(2kXy-2k)+O(y(＼og y)~B)

who.rp.tha imtiliprl.O-r.nnstfinisda-handnnl.vnn p..A and.R_
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Within the frame work of Wolke [4], we use H.L. Montgomery and R.C.

Vaughan's technique on Circle method. They applied P.X. Gallagher's lemma

in Fourier analysis [1] to the major arc. As for the minor arc, we also appeal

to Gallagher's lemma. Then we utilize C. Hooley's devices for estimating a

mean square of the trigonometric sums over primes in short intervals.

We use the standard notation in number theory. Especially, in, used in

either fh/n or congruence modulo n, means that mm = 1(mod n). For a real

number t, we write (p(t)^lQ-t + l/2, e{t)--=e27ritand ||f||=minU-n|. The

convention n~N means that N<n^N'<2N for some AT'. The symbol F de-

notes a positive numerical constant, which is not the same at each occurrence.

2. Lemmas.

Lemma 1. Let 2<A<N/2. For arbitrarycomplex numbers an, we have

f*2iV"
[ I S ane(j8n)|2dj3≪J-2＼ I S aB|2df+J(sup|aJ)2

with an absolute ^-constant.

Lemma 2. Define

S(q,A)= S [iN＼ 2 l{n)A(nWdt

where # means that if 1 is principal then X(n)A(n) is replaced by A(n)―l. Let

s, A and B>0 be given. If q^(＼ogN)B and N'^+^J^N1'', then we have

S(,q,A)<(qA?N(＼ogN)-A,

where the implied constant depends only on s, A and B.

Lemma 1 is a minor modification of [1, Lemma 1]. Lemma 2 is an ana-

logous estimation on primes in almost all short intervals, and easily verified by

using the same tools as that used by Wolke [4, p. 531].

Lemma 3. For anv s>0. we have

k 4W&, ^)i/2^i/2+£(i+
d / v

where the implied constant depends only on s

d>

Lemma 4. Let k be a positiveinteger. If n^X, then



A(n)
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= s(-iy+i(.) s

.7=1 ＼] /nr-njnj+1-n2j=n
(logni)//(ny+i) ― ju(n2j).
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Lemma 3 is the Hooley's version of bounds for incomplete Kloosterman sums

[3, Chapter 2]. Lemma 4 is the combinatrialidentityof D. R. Heath-Brown

＼2,Lemma 11.

3. Proof of Theorem.

Let £,D and E>0 be given and i be a large parameter. Define

x1+£<N<N'S2N<xs-s, k<x,

S(a)= S A(n)e(an),

Q1=(＼ogx)ZD, Q=Nl≫,

J#=U U /,.≪, /,.≪=[-
^-,

-+

m=lQ-＼ l + Q-HxM.

Furtheremore, we write

ri+Q-i r
＼S(a)＼2e(-2ka)da=＼

JQ-1 J

We shall show that, for any positive constant E

(3.1)

and

(3.2)

i

M qlQ1 (p2

(£)

07)

M
)m

qQ

cq(-2k)(N'-N)+O(N(logN)D-E)

£ f 'cxA^logAO^
jm

]

where the implied constants in the symbols 0 and < depend only on s, D

and E. Wolke [4] obtained essentially the same inequalitiesin the range 2x <

N<xs/b~s. Hence, following the argument of [4], we may derive Theorem

from (3.1) and (3.2).

First we consider the major arc M. For a<=Iq,a, write a = a/q+fi. We

then have, with the convention in Lemma 2, that

S(a)= ^-zS)r(Z)Z(a)nSvX(n)J(n)e(i3n)+O((logiV)2)

<p{q)n~N <p{q)n~N

+ -fr- SOTfl) S Z(n)^(nM^n)+O((log7V)2)
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We write

(3.3)
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=^,?^n)+^s,T{ma＼kxMAw^n)+o^°sNn-

=a+b+O((logNn say.

I ＼a＼zda―A2 and ＼ ＼b＼2da=B2. By Cauchy's inequality, we have

I = [ ＼a＼2e(-2ka)da+O(A(B+QogN)2)+B
JM

By the familiarmethod, we have that

2+(logA04).

(a. o) =1

= S
^＼cq{-2k){{N'-N)+0{k)+0{qQ)}

(3.4)

asQi (p＼q)
cQ(-2kXN'-N)+O(N(＼ogN)'E),

since Q<x and x1+e<N. Simply,

(3.5) ,42≪iVloglogAr.

We proceed to estimate B. By Lemma 1, we have

qsQi ISaSq J |^|sl/gQ
(a,g)=l

4
t S r(Z)Z(c) 2 Z(n),4(n)e(j8n)

*dj8

CO(^)ZC9) ≪~JV

= S -4-vf S 2 |r(Z)IV(0) 2 Un)A(n)e(Pn)
2rf/3

≪ S -fr S {(^Or2
SSQi ^(^) ZC9)l JiV

S X(n)A(n)
*dt+qQ(logNy＼

t<nS£+gQ/2 " J

≪ 2 ~Y<qQT2<?(<l, Q/2)+Q^Q{＼ogN)＼
esQi<p(q)

where 3{q, A) is definedin Lemma 2. Since q^(＼ogN)2D and Q―N1/4,we may

apply Lemma 2 to
<f
(q,Q/2). Thus, by Lemma 2, we have

5sClog log iV- S (qQ)-2<?(q, Qffl+QSQQogN)*

esQi

(3.6) <N(＼ogN)2D~E', E'=2E+l.

In conjunction with (3.3),(3.4),(3.5) and (3.6), we get the required estimation

for (3.1).

Next we consider the minor arc m.

/= 2 l^ijj^^m*'^^y*-^
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In case of ||ai―az＼＼>x~＼＼ogN)D=l/2A,the corresponding integral is

<x(logiV)-*(j^ X|5(a)|2^)2

<xN＼logN)2-D.

In another case, we write ai―a2=^. Thus,

(3.7)
K^＼m＼S(a)＼^mii/JS(a+^＼2d^da + xN＼logNrD.

AVe note that S(a) has the period 1. By Lemma 1, the inner integral is

≪[ ＼S(a+P)＼*dp
IIftI<119.A

(3.8) ≪z/-2
f27V
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Here we use the followinglemma. We postpone the proof of Lemma 5 until

Lemma 5. For a real number a, define

C2N
/=/(≪, J)= | S A(n)e(an)＼2dt

JN t<n&t + J

Suppose that ＼a―a/q＼^q 2 with {a, q)―l. Then, for any small £>0, we have

/≪(log^)F{JA^(A^1/3fJg-1/2+(^)1/2)+JW1-£+J3}

where the implied constant depends only on s.

Now. for anv ≪em. there exist a and a such that

a ―
a

q
^q~＼ (a,g)=l and Qi<q^Q.

Since

Q1<q£Q=N1'i<x(logN)-3D<J/Q1,

N x3-e x＼＼ogN)-9D4i(J/Q1f,

we have, by Lemma 5, that

J(a, J)≪J8JV(log/Wr1'2

uniformly for a<=m. Combining this with (3.7) and (3.8), we get

/<xf S(a)＼zda-J-Z sup J(a, J)+xAr2(logNf~D
Jm aGin

≪xNH＼osN)F-D.
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This gives (3.2) and, apart from the verification of Lemma 5, completes our

proof of Theorem.

4. Proof of Lemma 5, preliminaries.

In this section we provide for the proof of Lemma 5. Throughout this

section we assume that

(4.1) a ―
a

Q
^q~2 with (a, q)=l and q<A<N/2.

Let / and g be arbitrarysequences such that |/(n)|^logn and ＼g(n)＼^v5(n)

logn. Moreover, let U and V be parameters and define

Jlu=
p2iV

I S g(n)e(amn)＼zdt

JN t<mnit + A
miU

/nl7.K=
SIN

I S ( 2 g(n))e(adl)＼*dt

and

f 22V

t<mnst+A
m~J7

f(m)g{n)e{amn)＼ 2dt

In order to estimate the above integrals we use the elementary lemma; If

KX^Y, then

(4.2) 3 min(-, T^-r)<(-+X+q)＼ogqX.

Lemma 6.

/ I u<(＼ogNf{AN(Ag-1'i-＼-(qA)1'i)+A＼N/Uf^Ai}

Proof. Since N^t<mn<Lt+A<3N, we may attach the conditionN<mn

^3N. We widen the range of integralto [0,3Ar]. Expanding the square, we

interchange the order of summation and integration. Thus,

/I≪ 2

N<mini, m2
mi, n^a

2 g(n1)g(n2)e(a(m1n1―m2n2))-meas.u : mini―A^t<mini＼
pi3N { 2=1, 2. j

If ＼m1n1―m2n2＼>d,then meas.{ }―0. Since niini―d>N―A>0 and mtni^ZN,

the condition0<Lt^3N is weaker than max(mi≪i,m2n2)―d?^t<mm(m1n1, m2n2).

Hence, we see

meas.{ }=max(0, A―＼mi.nl―m2n2＼).

The diagonal terms, m1ni=m2n2, contributeto / I at most



(4.3)
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JN(logN)F.

For the non-diaeronal terms, sav S, we write ＼m,nx―mzn2＼=r. Then,

5=2 Re S

0<rsJ
(J-r)e(ar) 2 g(nl)g(n2) S

rel-≫2

mi, m26U

1

25

The condition on the innermost sum is equivalent to

N(r)=max(n1U, n2U+r, N+rXm^^ZN

min1 = r(modn2).

This congruence is soluble if and only if (nu n2)＼r. Write n^―rtilijii,n2) and

r*=r/(ni. n9). Then the innermost sum is eaual to

_ 3iV-7V(Q)

<m^

+0

= 0 + 0', say.

3N_

Ml
, m = ni*r*(mod?22:ic)[

/＼N(O)-N(r)＼ ＼

＼ [wi, n2] /

Here we note that N(0) is independent of r. Changing the order of summation,

0 contributes to I T

(4.4)

<S ajgCnOgCn,)!
r

N

n
I 2(J-rMar)|

Crej,n2)s4 I Mx n2j o<rsi
(n1,n2)lr

≪WogNf 2-^ ･A min(^, -JL-)
nsJ n ＼n ＼＼an＼＼/

≪JMlogATWs -minC-,
^-rY)1'2

＼niJ n ＼n ＼＼an＼＼//

cJJVOogWJtf-^+teJ)1'2),

by partialsummation, Cauchy's inequality and (4.2). Since ＼N(r)―N(0)＼^r^d

and w...<3A/Vm.-<3A//77.the contribution of 0' is

＼g(n1)g(n2)＼
M8]

<J'(2-!^Hy+J≪(Sls(n)|)≫

＼n Tl / n

A

≪(logN)F(AZ+A＼N/UJ).

Combining this with (4.3) and (4.4), we get the required bound for / I

Lemma 7.

JJLu.v<(＼ogNY{AN(Aq-ll*+(q£)lil)+A*＼+A＼Nl-l+N'ltU*i*Vi).
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Proof. Put

a(d)= 2 g(n).
mn=dmiU.niV

By the similarargument to thatin Lemma 6, we have

(4.5) /H (＼ogNf{JN(Jq-1'2+(dqy'2)+d3} + R

where

with

R=A 2 | 2 a(dMdi)W(d1*,di*,r*)＼
0<rsJ (di,do)|r

TidS, d2*, r*)=<p(r,°
-yfy

dt*＼ ./ N+r

d2*) ^[dud,!

We proceed to estimate R. write

(di, dz)=d, di=m,ni=dmn

mx ― am n

Then

a(di)=

d2*=d

bn. d―ab

(mn, d)=l

2 g(bn),
abmn=di

a(d2)=a(8d)

dz*

r* = &

)

WidS, d2*,r*)=W(mn, d, k).

Next, we decompose the range of variables d and m into the sum of [2j, 2-y+1]

type intervals. Let D, M run through powers of 2, and D^UV, M<^U. We

then obtain O((logA02) sums of the sum with d^D, m~M. If DM^N^V'1,

then we use the trivialestimation |?P"|<1. Thus, we see

(4.6) R<AiN1~t-＼-AlNtV sup s

(d,n)=l

2 4>(

(.m.d)=l

T

dmn

mn )l

where the supremum is taken over D, M, T ,r and n such that D^UV, M<U,

T^3N, r^A and n£V.

Here we use the well known lemma; For arbitraryreal numbers xm and

H>2, we have

I S ^Um)l≪77+ 2 "7-1 2 <K/**m)l

(4.7)

Now, we choose H=DMVNZS~＼ Then H>2,

a

d

DM

"S^-ff + 2 1 2 2 e(

(<i,n)=l (m,d)=l

=iV1"3sy-1+S-rS(/i),
h h

since DMV>N1'tt. Thus,

dmn ) ＼

mn )
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Furthermore, bv partialsummation and Lemma 3, we see

sm<i+ijMN)＼hk'dy"dm"(i+7)

≪(1+w)^(?-^)"!i(≫!)1'!+Ma)-i

27

(4.8) < N5°U3/2V5'2.

In conjunction with (4.5), (4.6), (4.7) and (4.8), we get the required bound for JU

T T1UA/TA R If 11^ A than inn hniin

jmu JN(logNr(u + - +
~+q)＼ a U /

Proof. We may impose the restrictionN/2U<n<3N/U. Then we extend

the interval of integral to [0, 6iV]. Moreover, by Cauchy's inequality, the in

tegrand is

IY!l2<<rY!lffmMI2.Y!IV!l2

(4.9)

'≪■■ m n

.^l/(m')l＼,.&,^,,
1,&tf≫'>*≫'W≪≫≪c≫.-≫.≫

t<mni, mnzSt+A

Now, we perform the integration. If m＼nx―n2＼>d, then the integral vanishes.

Since mni<2U-3N/U-6N and mni-A>U-N/2U-A>Q, the end points of the

integral have no effect on. Hence, the value of integral is exactly equal to

max(0, A―m＼nx ―n%＼).

(4.10)

m~U n~N/U ° '

As to the non-diagonal terms, S say, we write ＼n1―n2＼=r, getting

S=2Re 2
0<rs4 iV/2!7<n,n-r<3NjU

g{n)g{n―r) 2 e{amr)(A―mr)

0<msJ/r

Since U<m^J/r in the innermost sum, we see r^A/U. Thus, by partial

5≪ 2, 2 ＼g(n)g(n-r)＼-4 mm(-fT＼)
0<rzAiVn~NlU ＼r ＼＼ar＼＼/

Combining this with (4.9) and (4.10), we get Lemma 8.
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5. Proof of Lemma 5.

Unless

(5.1) N1/3<4/2 and g<J<N/2,

then Lemma 5 is trivial. So we may assume (5.1). Since n^3N, we appeal

to Lemma 4 with X=8N and k=3. A{n) is decomposed into a linear combina-

tion of 0(1) sums

A*(n)= S (Iog≪i)/*(n4)/i(n5)ju(n6).
nl712re3n4rl57l6=re

It is sufficientto show Lemma 5 with A* in place of A. Moreover, we may

assume min(Mi, nz, n3)=n3, for the other cases are similarly treated. We then

see that
n^(SiV)1/3 for /=3, 4, 5,6.

Put n'=n3nin5n6. Let v>2 be a parameter, and z~v＼ We divide the integrand

of / according to the following three cases.

(1) n'£z and nx>Nll*v,

(2) n'^z and n^Nll2v,

(3) n'>z.

Let S(i) denote the corresponding sum to case (i).

In case (1), we may write

A*(n)= (log njgin')

with ＼g{n)＼^T5{n). By partial summation and Cauchy's inequality, we have

PlS(DI2^≪(logiV)2 sup yi≪.

In case (2),

A*(n)= S (Iogn1)g(nl)

2 (

with ＼g(n)＼£T4(n)

In case (3), since

Hence,

rzN

S (logni)s(n'))

ni£Nl/2v,n' Sz=v4

|S(2)|M*<(logAT)2 sup /nB.O4

USN1IZV

vi=z<n' = nzn4n5ne^( max n*)4
f= 3,4.5.6
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there existsan index i such that

v<ni^(3Ny<3.

So we may write

29

A*(n)=
bbSb

ttnMn")

with |/(n)|^l, ＼g(.n)＼f^T5(n)logn.Decomposing this interval into the sum of

＼2j,2-*+1]type intervals, we see

r2N

|2(3)|2<iK<(logA02 sup /mtt

C<U<2^!/3

By the above argument, we have

/≪{ sup Jlu+ sup JHu,vi+ sup jmu}(logN)＼
uyN1!^ utiN1/2R v<u<2N1/3

Because of (5.1), all of the assumptions in (4.1)and Lemma 8 are satisfied. We

choose v=N2s with any 0<s<l/200. Thus, by Lemmas 6, 7 and 8, we get

J<(＼ogN)F{AN(Jg-1'i+^Q)ll2)+^}

+JHlogN)F(N/N1'2v)2+J2N1-s+J2N7HN1'2vr2(vi)i

+JN(log N)f(ni≫+―+― +q)
＼ q v I

≪(log N)F{ JN(Jq-1>2+(dq)ll*+N1/!i)+A*Nl~*+A3},

as required.

This completes our proof.
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