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By

G. Karpilovsky

Abstract. Let R*G be the crossed product of an arbitrary group

G over a simple ring R. Since G acts on Z{R) and R is simple,

Z(R) is a G-field and the fixed field Z(R)G of G is contained in

Z{R*G). The main result of this paper exhibits a distinguished

basis for Z{R*G) over the field Z(R)G. A number of applications

is also provided. Our method is based on the theory of similinear

monomial representations. In this way we obtain conceptual proofs

of results which otherwise require lengthy computations and ad hoc

arguments.

1. Introduction.

In the past ten years there have been a tremendous surge of activityin the

theory of graded rings and theirimportant special case, namely crossed products.

For a detailed account of the theory, we refer the reader to [4]. The principal

object of this paper is to provide a further development, which is to describe

the center of crossed products over simple rings. We then apply our result to

count nonisomorphic irreducible modules over such crossed products. Among

other applications, we provide information on the number of linearly nonequiv-

alent irreducible projective crossed representations of a finite group over fields.

To describe the main idea and method, let us firstrecall the following piece

of information. Let A be a ring and let G be a multiplicative group. Given

additive subgroups X and Y of A, we write XY for the additive subgroup of

A consisting of all finitesums

We say that A is a G-graded ring, provided there exists a family {Ae＼g<^G}

of additive subgroups of A indexed by G such that the following two conditions
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hold:
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A ― C& A

AxAyQAxy for any x, jyeG.

It is immediate that Ax is a subring of A with 1^AX. Let U(A) denote the

unit group of A. We say that a unit u<=U(A) is graded if it liesin Ag for

some geG. We shall refer to such g as the degree of u and write

g=deg(w).

It is clear that the set GrU(A) of all graded units of A is a subgroup of

U(A) and that the sequence of group homomorphisms

deg

1 ―> U(A1) ―> GrU(A) ―> G ―> 1 (1)

is always exact except possibly at G. We say that A is a crossed product of

G over A, written A=At*G, provided the sequence (1) is exact. In case (1)

is an exact splitting sequence, we shall refer to A as a skew group ring of G

over Au The ring A is said to be a twisted group ring of G over A, if for

all g^G, there exists ge^nt/CA) such that g centralizesAu In the particular

case where AX^Z{A) we shall refer to AX*G as a twisted group algebra of G

over i4i. For any subset X of A, let CA(X) be the centralizer of J^ in A If

G acts on a ring R, we say that R is a G-ring and write i?G for the fixed

ring of G defined by

RG={r^R＼8r=r for all g^G}.

Now let us look at the question of the justificationfor restrictingour atten-

tion to crossed products over simple rings.

Assume that A is a G-graded ring. What can be said about the center of

A? The following general observation is due to Dade [1].

n
Fix g^G, write 1= S aj&i for a suitable positive integer n and suitable

at<=AB, bi^Ai-i, ISi^n, and for any vgC/A), put

n

Manifestly, if A is a crossed product of G over Au we may put gy=gyg~1

where g^U{A)(~＼Ag. Then gy is a unique element of A satisfying agy=gyag

for all ag<^Ag. Furthermore, gy^CA(A1) and, provided yeZ(Ai), sy(EZ(Ai).

The group G acts as automorphisms of the rings CA(Ai) and Z(AX), with any g^G

sending any ;ye C^(i4i)and y<=Z{Ax), respectively,into 8y. Itis then immediate that
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Z{A)=CA{Alf.

Unfortunately, nothing more can be said about Z{A) under these general

circumstances. Since the problem of description of Z(A) seems so intractible

one needs to impose more hypotheses to make any progress. The situation

where A is a crossed product of G over a simple ring At is favourable for the

following two reasons. First of all,Z(Ai) is a G-field and the fixed field Z(Ai)G

of G is contained in Z(A). Thus we may attempt to describe Z{A) by exhibiting

a distinguished basis over Z{Aif.

The second reason can be explained as follows. For each geG, fix a unit

g of
^4
in Ag with /=1, and denote by Go the normal subgroup of G consisting

of those geG for which conjugation by g induces an inner automorphism of

Ax. Of course, the definitionof Go does not depend upon a choice of units

g, g<BG. Without loss of generality we may assume that g<^CA(Ax) for all

ge Go. It turns out that if Ax is simple, then CA(AX) is a twisted group algebra

of Go over the field Z(Ay). Thus CA(AX) is a vector space over the field Z(AX)

with distinguished basis {g＼g<=G0}. The latter fact allows us to use the theory

of semilinear monomial representations on graded vector spaces developed in

Section 2, to provide the desired description of Z(A). This has the advantage

of preparing the way for dealing with more complicated situations,where ad

hoc arguments are less easy to find.

2. Similinear monomial representations on graded vector spaces.

Let X be an arbitrary set. By an X-graded space over a field F we under-

stand a pair (V, (Vx)), where V is a vector space over F and (Vx) is a family

of one-dimensional subspaces of V indexed by X such that

V=RVX.
x<=.X

Let V be a vector space over a fieldF. A semilinear transformation of V

is any additive homomorphism /: V-*V for which there exists an automorphism

<p of F such that

f(Zv)=<p(X)f(v) for all 2gF, v^V.

Note that the automorphism <pis uniquely determined by /. A semilinear

transformation / of V is said to be nonsingular if / is a bijection. It is clear

that under the composition of mappings the set of all nonsingular semilinear

transformations of V constitutesa group; we denote this group by GS(V) and

refer to it as the general semilinear group of V. For each f^GSCV), let <bf
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be the associated automorphism of F. Then the map

f GS(V) ―>AutF

is a homomorphism whose kernel is the general linear group GL(V) on V. In

particular, GL(F)<]GS(F).

Let X be an arbitrary set and let (V, (V*)) be an X-graded space over a

field F. By a semilinear monomial representation on a group G on (V, (Vx)) we

mean a homomorphism

r: G―+GS(V)

such that for all g^G, ＼~{g)permutes the Vx, xgI Given such a P, F be-

comes a G-field and we write X>-+gJLfor the automorphism of F corresponding

to n(g). Note also that p determines a homomorphism 7" from G to the

permutation group of the set X, where for all g^G and x, y<=X

Y(g)x=y if and only if r(g)Vx = Vy.

Thus G acts on the set X and we denote by G(x) the stabilizer of xeX,

that is

G(x)={g^G＼T(g)x=x}.

We say that an element x of X is T-regular if there exists a nonzero vx

in Vx such that

F(g)vx=vx for all geG(x).

We shall refer to a G-orbit of X as being [~-regularif each element of this

orbit is [^.-regular. By the fixed-point space of P we understand the set of

those yeV for which

＼^(g)v=v for all gsG.

It is clear that the fixed-point space of P is a vector space over FG, the

fixed fieldof G.

We have now accumulated all the information necessary to prove the follow-

ing result. Its future application will dispel any notion that semilinear monomial

representations form an exotic class of representations.

Theorem 1. Let X be an arbitrary set,let (V, (Vx)) be an X-graded space

over a field F and let

F: G―>GS(V)

be a semilinear monomial representation of G on (V, (Vx)). Let Z be a full set
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of representativesfor the finite[~-regular orbits of X and, for each z^Z> let

Lz be the sum of one-dimensional subspaces of V indexed by the elements of the

orbit containing z. For each z^Z, fix 0^d2gF2 with F~(g)vz=vzfor all g^G(z).

(i) If x^X is ["-regular, then so are all the elements in the G-orbit of x

(ii) // W is the fixed-point space of P, then

(a) W=R(Wr＼Lz)

(b) Wr＼Lz={ 2 nr(g)vz＼l^FG^}
S^TZ

where Tz is a left transversal for G(z) in G containing 1

(c) // {Xt＼i<=I}is an FG-basis of FGW, then

1 23 'JiRtfKlie/}

is an FG-basisof Wr＼Lz

(d) // dimF<oo and G is a finitegroup, then dimW<c° and
F pG

dimW=

FG

S(dimFG<2>)

Proof, (i) Let xeZ be H-regular let y&X be any element in the G-orbit

of x. Then there exists g^G such that

r(g)Vx=Vy and G(y)=gG(x)g-＼

Since x is P-regular, there is a non-zero v* in Vx fixed by all P(/i) with

h^G(x). Because H(5'"1)Vr£=Fa;,we may write fx^CK^"1)^^ for some non-

zero vy in Vy.

Now assume that t^G(y), say t=ghg~1 with h<=G(x). Then we have

proving (i).

(ii) Denote by F a full set of representatives for the orbits of X and, for

each 3>eF, let Lv be the sum of one-dimensional subspaces of V indexed by

the elements of the orbit containing y. Then

V=RLy
y&Y

rect sum of G-＼

w=e (WnLy)
yeY

is a decomposition of V into direct sum of G-invariant subspaces. Hence

Let v= *2>vx, vx<bVx, belong to W and assume that vt=t0 for some fsX
xex

Then for all geG ＼T{g)vt^Vrag-)twhich ensures, in view of the equality
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F.(g)v=v, that

o^n(g)vt=vngn.

In particular,if g^G(t), then n(g)vt=vtl proving that t is [~7-regularand

hence, by (i), that t belongs to a P-regular orbit. Moreover, since the number

of 0=frvx<^Vx is finite,t belongs to a finite[^-regular orbit. Thus

w=@(wr＼Lz)

proving (a).

Given v^Lz, we may write uniquely

since {["(^IgeTj) is an F-basisfor Ut. Hence v^Wr＼Lz if and only if

n(h)v= S ^,r(/≫≪K= S a,r(£)v, forall /igG (1)

Given AgG and geT2, let gh^Tz be definedby hg^ghG(z). Then

hg=ghth for some th(EG(z)

and therefore

r(/^,=rte*)rfo)v,=r.tefc)t>,.

Thus (1) is equivalentto

23 **,DteJt>,= S Xgr(g)v, for all AgG
ser2 ≪er.

(2)

Taking into account that {gh＼g^Tz}=Tzt we deduce that (2) is equivalent

to

hXg=XBh for all h^G,g^Tz. (3)

Now put X=Xt and assume that (3) holds. Then, taking g=l, h^Tz and

h^G(z), we obtain

hX=Xh and ^gFGw for all h^Tz. (4)

Conversely, suppose that (4) holds. Fix /ieG, g^Tz and write hg=ghth

for some th^G(z). Then we have

*xg=＼'X)h'X='*tn=g*x=xth

proving (3), and thus (b) is established.

n
Given ^gFG(z), we may write k= S fJ-i^ifor a unique m2>1 and unique

≪!,･･･, un in Fff. Then
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= s fti( s ;ur(s)t>≪)

t=i ＼≪er2 /

and therefore, by (b), Wr＼Lz is the FG-linear span of

Is *;unte)f,iie/}

Furthermore, if the equality

i=l ＼g<BT,
･
)=≫

409

(5)

holds, then by (5) we have S s%r~(g)vz=R. But then ^=0 and hence each Ui=0f

proving (c).

Finally, assume that dimF<oo and that G is a finitegroup. Then X is a

finiteset, hence so is Z and, since

appealing to (a) and (c). ■

dimFGC2)<co for all z^Z, (d) follows by

FG

3. The center of crossed products over simple rings.

Throughout this section, i?*G denotes a crossed product of a (possibly

infinite) group G over a simple ring R. For each g^G, we fix a unit g of

R*G in (R*G)g with 1=1 and define

a: GxG―> U(R)

by _

a(x, y)=xyxyl (x, y&G).

We write Go for the normal subgroup of G consisting of all those gsG

for which conjugation by g induces an inner automorphism of R. It is clear

that the definitionof Go does not depend upon a choice of units g, g^G. For

each g^G0, let lg(=U{R) be such that

grg-x―l-gxrlg for all rGi?.

Then g=2.gg is clearlyin CR*G(R). Thus we may, and from now on we

shall, assume that

g£ECR*G(R) for all g^G0. (1)

As has been observed earlier, the formula sr―grg~l, r^Z{R) or r^CR*G(R),

g^G, provides an action of G on Z(R) and CR*G(R)- Since G acts on Z(R)

and R is simple, Z{R) is a G-field and the fixed field Z{R)G of G is contained

in Z(R*G). Our aim in this section is to provide a distinguished basis for

Z(R*G) over the fieldZ{Rf. The following two preliminary results will clear

our path.
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Lemma 2. With the notation above, the following properties hold:

(i) CR*G(R)=Z(R)*Go is a twisted group algebra of Go over the field Z{R).

(ii) Z(R*G)=(Z(R)*G0)G.

Proof, (i) It follows from (1) that

Z(R)*G0

Conversely, let x

= { 2 xgg＼xg<=Z(R)＼QCR*G(R).

= 2 xgg<E:CR*G(R) and let xg^0 for some g^G. Then
geG

rxg=xggr for all rei?.

Hence Rxg ―xgR is a nonzero ideal of R and thus R=Rxg=xgR. It

follows that xs is a unit of i? such that

gr=x~g xrxg for ail rGi?.

Therefore g^G0 and, by (1),

r―gr―x~exrxg for all r^R

which shows that xg(EZ(R). This proves that CR*G(R)QZ(R)*G0 as required,

(iii) Direct consequence of (i) and the fact that Z(R*G) consists of all

elements of CR*G(R) which commute with all g, g&G. m

The discussion has now reached a point where, in order to make further

progress, we need to bring in the notion of a-regularity.

We say that g^G is a-regular, provided g satisfies the following two

conditions:

(a) ge=G0

(b) There exists a nonzero v in (Z(R)*G0)e such that xv=vx for all xe CG{g)

Since each nonzero v in (Z(R)*G0)g is of the form v=Xg for som Oi^X^Z(R)

and some g^G0) we see that g^G0 is a-regular if and only if there exists

Q^X^Z(R) such that

xXa(x, g)=Xa(g, x) for all x^CG(g). (2)

Thus, if G acts triviallyon Z(R), then g^G0 is a-regular if and only if

a(x, g)=a{g, x) for all x^CG(g)

while if R*G is a skew group ring of G over R (i.e. if a(x, y)=l for all

x, y^G) then each g^G0 is a-regular.

The following observation will enable us to take fulladvantage of Theorem 1.



The center of crossed products over simple rings 411

Lemma 3. Let F=Z(R), V=F*G0 and, for each g^G0> put Vt={Xg＼X^F}

(i) (V, (Ve)) is a Go-graded space over the field F,

(ii) For each g^G, the map P(|f): V-^V defined by

r(g)(v)=gvg~1

is a nonsingular similinear transformation of V,

(iii) The map P: G-*GS(V) is a semilinear monomial representation of G

on {V, (Vg)) such that,

(a) For each xeG0, G(x)=Cg(x),

(b) An element g^G0 is [".-regularif and only if g is a-regular. In parti-

cular by Theorem 1, if g^G0 is a-regular, then so is any G-conjugate of g,

(c) Z(R*G) is equal to the fixed-point space of V.

Proof, (i) Direct consequence of the fact that {g＼g<^G0) is an F-basis

of F*G0

(ii) The map f~(g)obviously additive and is a bijection. Since for all

X^F, v^V,

the assertion follows.

(iii) Owing to (ii),each f~Xs)^GS(V) and since f~(g) permutes the Vx,

xgG0, n is in fact a semilinear monomial representation of G on (V, (V^)).

Let y denote the corresponding homomorphism from G to the permutation group

of the set Go. Then, for each geG, xeG0, 7(g)=gxg~1 and thus G(x)=CG(x).

This proves (a) and (b), by applying (a) and the definitionsof ^-regularity and

P-regularity. Property (c) being a consequence of Lemma 2(11),the result

follows. m

We say that a conjugacy class C of G contained in Go is a-regular if g

is a-regular for some (hence for all) g in C.

We are at last in a position to attain our main objective, which is to prove

the following result,a particular case of which is due to Yamazaki (5).

Theorem 4. Let R*G be a crossed product of a group G over a simple

ring R and let Z be a full set of representativesfor finitea-regular classes of

G. For each z^Z, choose 0=£r2eZ(i?) such that

8rza(g,z)=rza{z, g) for all g^CG{z)

let {Xi,z＼i^Iz}be a Z{R)G-basis of Z(R)cg<>＼ let Tz be a left transversal for

CG(z) in G containing 1. and put
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= 2 g{Xt.trtXgzg-1) (*eT,)

(i) ＼J{vitt＼i=It} is a Z(R)°-basisof Z(R*G)
z<=Z

(ii) If G is finite,then dim Z(R*G) is also finite and is given by the

Z(R-)Gfollowing formula

dim Z{R*G)= S ( dim Z(R)co^)

(iii) Z(R*G)=Z(R)° is and only if {1} is the only finitea-regular class of

G

Proof, (i) Keeping the notation of Lemma 3, put vz=rzz. Then our

choice of rz ensures that t>2=£Qis in Vz and that ＼~{g)vz=vzfor all geCc(z).

Moreover, for each XeF0^^ and g^Tz,

nrxg)vz=8xrxg＼rzz)^nsrz{gzg-1),

= garz){gzg~l).

The desired conclusion is therefore a consequence of Theorem l(a),(c) and

Lemma 3(a),(c).

(ii) If G is finite,then dimF=|G0| is also finite. Hence the required
F

assertion follows from Theorem l(ii)and Lemma 3(a),(c).

(iii) Direct consequence of (i) M

4. Applications.

The aim of this section is to provide a number of applications of Theorem

4. All conventions and notations introduced in Section 3 remain in force. In

particular, R*G denotes the crossed product of an arbitrary group G over a

simple ring R, Z a full set of representatives for finitea-regular classes of G

and, for each zgZ, Tz is a left transversal for CG{z) in G containing 1.

Theorem 5. Assume that G acts triviallyon Z(R) {e.g. R*G is a twisted

&rnuf> vine of G over R). Then

(i)
( l±gzg-l＼z^z) is a Z{R)-basis

of Z(R*G). In particular, if Go is

finite, then dim Z(R*G) is also finite and is equal to the number of a-regular

classesof G.

(ii) // G is abelian, then Z is a subgroup of G and {z＼z<=Z} a Z(R)-basis

of Z(R*G).
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Proof, (i) Keep the notation of Theorem 4. Since G acts trivially on

Z(R), we can choose rz―＼for all zeZ. Futhermore, we also have

Z(R)g=Z(R)=Z(R)°gw .

Hence |/2|=1 and we can choose Xt,z=l. Now apply Theorem 4(i).

(ii) Assume that G is abelian. Then, Z consists of all ^-regular elements

of G and, for each zeZ, CG(z)=G, so as Tz we can choose {1}. This proves

that {z＼z^Z} is a Z(i?)-basis of Z(R*G), by applying (i).

Assume that zu z2eZ. Then zxzz=a(zu z2)ziZ2 and a(zu z2)^Z(R) since

z,,z,gG,. Taking into account that Zi^Z(R*G) and Z(R)QZ(R*G), i=l,2,

we conclude that z1z2<^Z(R*G). Thus, by definition zxz2is a-regular. Finally,

assume that zgZ. Since

zz-x=a{z, z-l)-l^Z{R)QZ{R*G),

we see that z'^Z^R^G). Hence z~x is a-regular and therefore r'eZ as

required. m

Theorem 6. Let R*G be a skew group ring of a group G over a simple

ring R, let Z be a full set of representatives of finite conjugacy classes of G

contained in GQ and, for each zElZ, let {XilZ＼i(=Iz}be a Z(R)G-basis of Z(R)cg<z＼

Put

Then

Vi.z= 23 "XtMzg'1) O'e/,)

＼J{vi,z＼itElz}is a Z(R)G-basis of Z(R*G)

2G2

Proof. Since R*G is a skew group ring, each g^G0 is a-regular.

more, in the notation of Theorem 4, we can put rz―＼. Now apply

4(i). m

Further-

Theorem

Our next applicationof Theorem 4 is concerned with counting nonisomorphic

irreducible i?*G-modules.

Theorem 7. Let R*G be a crossed product of a finitegroup G over a simple

ring R and assume that

dim i?<oo and that char RK ＼G＼.

Denote by n(R*G) the number of nonisomorphic irreducible R*G-modules.

Then
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(dim Z(R)°o^)

with equality if Z(R)G is a splittingfieldfor the Z{Rf -algebra R*G.

Proof. By hypothesis, R*G is a finite-dimensionalalgebra over the field

Z(R)G. Furthermore, since char R X ＼G |, R*G is semisimple by Maschke's

theorem [4]. Hence

n(R*G)£ dim Z(R*G)

with equality if Z(R)G is a splitting fieldfor R*G. Now apply Theorem 4(ii).

m

As an easy consequence of Theorem 7, we derive

Corollary 8. Let R*G be a crossed product of a finite group G over a

simple ring R. Assume that the following three conditions hold:

(i ) G acts triviallyon Z(R) (e.g. R*G is a twisted group ring of G over

R).

(ii) R is finite-dimensionalover Z{R).

(iii) charR)(＼G＼

Then the number of nonisomorphic irreducible R*G-modules does not exceed

the number of a-regular classesof G. The equality holds if Z{R) is a splitting

fieldfor the Z(R)-algebra R*G.

Proof.

Theorem 7.

By hypothesis, Z{R)G―Z{R) and so the result follows by virtue of

m

5. Protective crossed representations.

Throughout this section, G denotes a finite group, V a finite-dimensional

vector space over a field F and Z2(G, F*) the group of all 2-cocycles of G

over F* defined with respect to a specified action of G on F. Given ≪e

Z2(G, F*), we write FaG for the corresponding crossed product of G over

F. Thus FaG is a free left ^-module with basis {g＼g^G} and with multipli-

cation defined distributivelyby using the identities

xy=a(x, y)xy for all x, y^G

xl-xlx for all i£G,/iGF

where xl denotes the image of X under the automorphism of F corresponding

to x. In what follows we always choose 1=1 so that a(g, l)=a(l, g)=l for
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all geG.

The concept of a projective crossed representation of G over F was intro-

duced by Jacobson [3] (under the name projective representation). An important

application of projective crossed representations was provided by Isaacs [2],

whose used the matrix form of such representations.

Our aim in this sectionis to apply Theorem 4 in order to provide information

on the number of linearly non-equivalent irreducible projective crossed represen-

tations. Since no adequate formal treatment of projective crossed representations

is available in the literature, we will provide all relevant details which are

required for our purposes.

In what follows we write GS(V) for the general semilinear group of V,

that is the group of all nonsingular semilinear transformations of V. A mapping

p: G-^GS(V)

is called a projective crossed representationof G over F if there exists a mapping

a: GxG―> F*

such that

(i)

(ii)

p(x)p(y)=a(x, y)p(xy) for all x, y<=G

To stress the dependence of p on V and a, we shall often refer to p as an

a-representation of G on V. For each geG, let /g be the automorphism of F

determined by p(g). Then one immediately verifiesthat

(a) The formula gX=lg(X), g^G, X^F, provides an action of G on F.

(b) a^Z2G, F*＼ where Z＼G, F*) is defined with respect to the action of

G on F given in (a).

Assume that

p: G―>GS(V)

is an a-representation of G on V. If a(x, y)=l for all x, jyeG, then we say

that p is a crossed representation of G over F. Thus a crossed representation

of G over F is just a homomorphism p : G->GS(F). In case each p(g)<=GL(V),

we refer to p as a projective representation of G over F. Hence /> is a

projective representation if and only if it determines the trivialaction of G on

F. Finally, if p is both crossed and projectiverepresentation, then p is nothing

else but a linear representation of G over F.

Let p: G^>GS(V) be an a-representation of G on V. The degree of p,

written deg p, is defined as the dimension of V. A subspace W of V is said

to be invariant if W is sent into itselfby all semilinear transformations p(g).
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^gG. We say that p is irreducible,if 0 and V are the only invariant sub-

spaces of V. The representation p is said to be completely reducible if for any

Invariant subspace W there exists another such subspace W such that V=WQ)Wf.

We refer to p as being indecomposable if V cannot be written as a nontrivial

direct sum of invariant subspaces.

Two projective crossed representations

Pi: G ―> GS(7,)

are said to be linearly equivalent if there exists a vector space isomorphism

f:Vl-*Vt

such that

P2(g)=fpi(g)f-1 for all ^gG.

It is an immediate consequence of the definition that linearly equivalent

projective representations determine the same action of G on F and their cor-

responding cocycles are equal.

The following result shows that the study of a-representations with a fixed

action of G on F is equivalent to the study of FaG-modules.

Lemma 9. Let F be a G-field and let a^Z＼G, F*), where Z＼G,F*) is

defined with respect to the given action of G on F. Then, there is a bijective

correspondence between a-representations of G which determine the given action

of G on F and FaG-modules. This correspondence maps Ibijectivelylinearly

equivalent {irreducible, completely reducible,indecomposable) a-representationsinto

isomorphic (irreducible, completely reducible, indecomposable) FaG-modules.

Proof.

rise to the

v<bV, geG

defined by

Let p be an a-representation of G on the space V which gives

given action of G on F. Then p(g)(Xv)=8Zp(g)v for allIgF,

Hence, a straightforward verificationshows that the map

f:FaG―>End(F)

/( S xag)= 2 xgp(g) {xgeF)

>hism. Hence V becomes an FaG-modu

[Hxgg)v=^xgp(g)v xg^G, v(=V.＼geG / see

is a ring homomorphism. Hence V becomes an FaG-module by setting

Conversely, given an .FaG-module V, V is a vector space over F and we

define£>(g)eEnd(F)by p(g)v=gv. Then p{g) is invertibleand
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p{g)(Xv)=g(Xv)=:*Xgv=*Xp(g) for all AeF, g&G, v^V

Thus each p(g) liesin GS(V) and the automorphism of F determined by

p(g) coincides with that determined by g. Furthermore, by the definitionof

p, we have p(l)=lv and p(x)p(y)=a(x, y)p(xy) for all x, y^G. Thus p is an

^-representation of G on V which determines the given action of G on F. This

sets up the desired bijective correspondence.

Let p be an a-representation of G on the space V. A subspace W of V

is invariant under all p(g), g^G if and only if W is an i^^G-submodule. Hence

the correspondence maps bijectivelyirreducible (completely reducible, indecom-

posable) ^-representations into irreducible (completely reducible, indecomposable)

FaG-modules.

Finally, a straightforward argument shows that two a-representations are

linearly equivalent if and only if the corresponding i^G-modules are isomorphic.

So the lemma is true. m

We are now ready to prove

Theorem 10. Let F be a G-field,let a<=Z＼G, F*), let X be a full set of

representativesfor the a-regular classesof G and let charFI ＼G＼. Denote by n

the number of linearly nonequivalent irreducible a-representations of G which

determine the given action of G on F. Then

n^ 2 dimFco^

XBX FG

with equality if FG is a splittingfield for the FG-algebra FaG.

Proof. Since G is finite,the field extension F/FG is also finite. The

desired conclusion is therefore a conseauence of Theorem 7 and Lemma 9. ■
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