GORENSTEIN BALANCE OF HOM AND TENSOR

By

Edgar E. ENOCHS and Overtoun M.G. JENDA

By Auslander and Bridger ([1]), Proposition 3.8c)), a finitely generated left R-module C has Gorenstein dimension 0 if and only if there is an exact sequence

$$\cdots \longrightarrow P^{-2} \longrightarrow P^{-1} \longrightarrow P^{0} \longrightarrow P^{1} \longrightarrow \cdots$$

of finitely generated projective left R-modules such that $C = \ker (P^0 \rightarrow P^1)$ and such that the dual sequence

$$\cdots \longrightarrow (P^{1})^{*} \longrightarrow (P^{0})^{*} \longrightarrow (P^{-1})^{*} \longrightarrow \cdots$$

is also exact.

In attempting to dualize the notion of Gorenstein dimension we called such modules C Gorenstein projective modules (see [8]) and then defined Gorenstein injective modules.

Auslander and Buchweitz showed that over certain rings all finitely generated modules have Gorenstein projective precovers (over Cohen-Macauley rings these are their maximal Cohen-Macauley approximations).

An application of their argument shows that over an n-Gorenstein ring all modules have Gorenstein injective preenvelopes.

Over a ring where these precovers and preenvelopes exist, we can apply methods of relative homological algebra (see Eilenberg and Moore [5]) and compute derived functors.

We can then raise the question of balance in the sense of Enochs and Jenda [6]. We can now show that Hom(-, -) is right balanced by Gorenstein projective and injective modules on a suitable category. Similarly we show that $-\otimes$ — is left balanced by finitely generated Gorenstein projective modules (left and right).

1. Gorenstein Injective and Projective Resolutions.

In the following, module will mean left R-module for some ring R (unless otherwise specified).

Received February 3, 1993. Revised September 20, 1993.

DEFINITION 1.1. A left R-module G is said to be Gorenstein injective if there is an exact sequence

 $\cdots \longrightarrow E^{-1} \longrightarrow E^{0} \longrightarrow E^{1} \longrightarrow E^{2} \longrightarrow \cdots$

of injective left *R*-modules such that $G = \ker (E^0 \rightarrow E^1)$ and such that for every injective left *R*-module *E*, the sequence

 $\cdots \operatorname{Hom} (E, E^{-1}) \longrightarrow \operatorname{Hom} (E, E^{0}) \longrightarrow \operatorname{Hom} (E' E^{1}) \longrightarrow \cdots$

is also exact.

REMARK 1.2. In [8] it was argued that if R is left noetherian, every direct summand of a Gorenstein injective module is Gorenstein injective. In ([1], 3.11(b)) it was shown that a similar result for finitely generated Gorenstein projective modules holds.

LEMMA 1.3. If G is a Gorenstein injective left R-module and L is a left R-module of finite projective dimension then $\text{Ext}^{i}(L, G)=0$ for all $i\geq 1$.

PROOF. Letting $\cdots E^{-1} \to E^0 \to E^1 \to \cdots$ be as above and letting $G^{-j} = \ker (E^{-j} \to E^{-j+1})$ for $j \ge 0$ we see that

$$\operatorname{Ext}^{i}(L, G) = \operatorname{Ext}^{i+j}(L, G^{-j})$$

for each such j. But for $j \ge \text{proj. dim } L$, $\text{Ext}^{i+j}(L, G^{-j})=0$ when $i \ge 1$. A similar argument gives

LEMMA 1.4 (Auslander, Bridger [1]). If C is a finitely generated Gorenstein projective module and L has finite injective dimension, then $\text{Ext}^{i}(C, L)=0$ for all $i \ge 1$.

DEFINITION 1.5 (Iwanaga [10]). A ring R is said to be i.e. *n*-Gorenstein if it is left and right noetherian and if it has self-injective dimension at most n on both sides.

Over an n-Gorenstein ring R there are a plentiful supply of Gorenstein injective modules. This follows from

LEMMA 1.6 ([8], Theorem 4.2). If R is an n-Gorenstein ring and

 $0 \longrightarrow N \longrightarrow E^{0} \longrightarrow E^{1} \longrightarrow \cdots \longrightarrow E^{n-1} \longrightarrow G \longrightarrow 0$

is a partial injective resolution of N, then G is Gorenstein injective.

REMARK. If G is a finite group, it is easy to see that the group ring ZG

is 1-Gorenstein, for

 $0 \longrightarrow ZG \longrightarrow QG \longrightarrow Q/ZG \longrightarrow 0$

is an exact sequence of left or right ZG-modules.

But $QG = Q \bigotimes_Z ZG \equiv \text{Hom}_Z(ZG, Q)$ (see [3]) is an injective ZG-module. Similarly Q/ZG is injective.

From this we can show that a ZG-module M is Gorenstein injective if and only if it is divisible as a Z-module.

The condition is necessary since every injective ZG-module is divisible and M is a quotient of an injective module. Conversely, if M is divisible, $\operatorname{Hom}_Z(ZG, M)$ is injective. But $\operatorname{Hom}_Z(ZG, M) \equiv ZG \otimes_Z M$ and there is surjection $ZG \otimes_Z M \to M$. Hence by the preceeding lemma, G is Gorenstein injective.

A similar argument shows that a finitely generated ZG-module C is Gorenstein projective if and only if it is a free Z-module.

DEFINITION 1.7 (Enochs [7]). If N and G are left R-modules and G is Gorenstein injective, then a linear map $\phi: N \rightarrow G$ is called a Gorenstein injective preenvelope of N if the diagram

can be completed to a commutative diagram whenever $N \rightarrow G'$ is a map into a Gorenstein injective module G'.

If furthermore,

can only be completed by automorphisms of G, then $\phi: N \rightarrow G$ is called a Gorenstein injective envelope of N.

Dually, a Gorenstein projective precover and cover $\phi: C \rightarrow M$ is defined (with C and M finitely generated and C Gorenstein projective).

We note that since injective modules are Gorenstein injective and every modules N is contained in an injective module, every Gorenstein injective preen-

velope $N \rightarrow G$ is an injection. Similarly, Gorenstein projective covers $C \rightarrow M$ must be surjective.

PROPOSITION 1.8. If R is n-Gorenstein, every R-module N has a Gorenstein injective preenvelope.

PROOF. We use an argument dual to that in the proof of Theorem 1.1 of [2]. Let X be the class of Gorenstein injective modules and let w be the class of injective modules. Note that by [10] every injective module has finite projective dimension. So in the language of [2], w is a generator for X. Lemma 1.6 above then gives all that is needed for the dual argument to carry through. Hence for each R-module N there is an exact sequence

$$0 \longrightarrow N \longrightarrow G \longrightarrow L \longrightarrow 0$$

with G Gorenstein injective and L of finite projective dimension.

Then if G' is Gorenstein injective, $\operatorname{Ext}^{1}(L, G') = 0$ so $\operatorname{Hom}(G, G') \rightarrow$ Hom $(N, G') \rightarrow 0$ is exact. This means that $N \rightarrow G$ is a Gorenstein injective preenvelope.

REMARK 1.9. There is an alternate proof of this result in [8] (see Theorem 7.2). We note that there, under our hypotheses, we get a somewhat stronger uniqueness result than that in [2] for the X-approximations.

Now we use Theorem 1.8 of [2] and get that if R is *n*-Gorenstein, then for every finitely generated module M there is an exact sequence

$$0 \longrightarrow L \longrightarrow C \longrightarrow M \longrightarrow 0$$

with C finitely generated and Gorenstein projective and L having finite projective dimension (and so finite injective dimension by [10]).

Since then by Lemma 1.4 $\text{Ext}^1(C, L)=0$ whenever C' is finitely generated and Gorenstein projective, we get that $C \rightarrow M$ is a Gorenstein projective precover of M.

DEFINITION 1.10. An exact sequence

$$0 \longrightarrow N \longrightarrow G^{0} \longrightarrow G^{1} \longrightarrow G^{2} \longrightarrow \cdots$$

is called a Gorenstein injective resolution of the module N if each G^i is Gorenstein injective and if $N \rightarrow G^0$, ker $(G^i \rightarrow G^{i+1}) \rightarrow G^i$ for $i \ge 0$ are all Gorenstein injective preenvelopes (equivalently, whenever G is a Gorenstein injective module, the sequence

4

 $\cdots \operatorname{Hom} \left(G^{1}, G \right) \longrightarrow \operatorname{Hom} \left(G^{0}, G \right) \longrightarrow \operatorname{Hom} \left(N, G \right) \longrightarrow 0$

is exact).

In a similar way we define a Gorenstein projective resolution

 $\cdots \longrightarrow C_1 \longrightarrow C_0 \longrightarrow M \longrightarrow 0$

of the finitely generated module M (with all the C_i finitely generated too).

From Proposition 1.8 above we see that if R is *n*-Gorenstein then every module N admits a Gorenstein injective resolution. Also from the above we see that every finitely generated module M admits a Gorenstein projective resolution. Such resolutions are unique up to homotopy.

PROPOSITION 1.11. If R is n-Gorenstein and G is an R-module then the following are equivalent:

- 1) G is Gorenstein infective
- 2) Extⁱ(L, G)=0 for all modules L with pd $L < \infty$ and all $i \ge 1$
- 3) Ext¹(L, G)=0 for all modules L with $pd L < \infty$.

PROOF. 1) \Rightarrow 2) by 2) \Rightarrow 3) is trivial.

3) \Rightarrow 1). By the proof of Proposition 1.8 we have an exact sequence $0 \rightarrow G \rightarrow \overline{G} \rightarrow L \rightarrow 0$ with \overline{G} Gorenstein injective and pd $L < \infty$. By hypotheses this sequence splits so as a direct summand of a Gorenstein injective module G is also Gorenstein injective.

2. Balance of Hom (-, -).

For a ring R we now let $\mathcal{F}\mathcal{G}$ Gor Proj, Gor Inj, $\mathcal{F}\mathcal{G}$ and Mod denote (respectively) the categories of finitely generated Gorenstein projective modules, Gorenstein injective modules, finitely generated modules and all modules.

We now use the language of [6] and attempt to justify our choice of terminology (Gorenstein projective and injective) by proving:

THEOREM 2.1. If R is n-Gorenstein then Hom(-, -) is right-balanced by $\mathcal{G}G$ or $Proj \times Gor$ Inj on $\mathcal{F}\mathcal{G} \times Mod$.

PROOF. We only need prove that if $N \rightarrow G$ is any Gorenstein injective preenvelope of N and if $0 \rightarrow N \rightarrow G \rightarrow L \rightarrow 0$ is exact, then Hom(C, -) leaves the sequence exact for any finitely generated Gorenstein projective module C, and also the corresponding dual result.

Since we know there is some such preenvelope with inj. dim $L < \infty$ we

first prove the result under this assumption. By [10], inj. dim $L \leq n$. Let $0 \rightarrow L \rightarrow E^0 \rightarrow E^1 \rightarrow \cdots \rightarrow E^n \rightarrow 0$ be an injective resolution of L. Since C is Gorenstein projective, there is an exact sequence

$$0 \longrightarrow C \longrightarrow P^{0} \longrightarrow P^{1} \longrightarrow \cdots \longrightarrow P^{n-1} \longrightarrow P^{n}$$

with the P^{i} 's finitely generated and projective. Let $D=\operatorname{im}(P^{n-1}\to P^{n})$. Any map $C\to L$ then gives rise to a commutative diagram

But $D \to E^n$ can be extended to $P^n \to E^n$ which in turn can be lifted to a map $P^n \to E^{n-1}$. Then the usual way of constructing homotopies gives an extension $P^0 \to L$. But $P^0 \to L$ can be lifted to a map $P^0 \to G$ which by restriction gives the required lifting $C \to G$.

In the general case, if $0 \rightarrow N \rightarrow G \rightarrow L \rightarrow 0$ and $0 \rightarrow N \rightarrow G' \rightarrow L' \rightarrow 0$ are both exact and given by Gorenstein injective preenvelopes of N, then there is a commutative diagram

$$0 \longrightarrow N \longrightarrow G \longrightarrow L \longrightarrow 0$$
$$\| \qquad \downarrow \qquad \downarrow$$
$$0 \longrightarrow N \longrightarrow G' \longrightarrow L' \longrightarrow 0$$

giving a homotopy equivalence of the two complexes. But then

$$0 \longrightarrow \operatorname{Hom} (C, N) \longrightarrow \operatorname{Hom} (C, G) \longrightarrow \operatorname{Hom} (C, L) \longrightarrow 0$$

and

$$0 \longrightarrow \operatorname{Hom} (C, N) \longrightarrow \operatorname{Hom} (C, G') \longrightarrow \operatorname{Hom} (C, L') \longrightarrow 0$$

are homotopically equivalent.

Hence if one has zero homology, so does the other, i.e. if one sequence is exact so is the other.

As a consequence we get that Hom (C, -) leaves any Gorenstein resolution $0 \rightarrow N \rightarrow G^0 \rightarrow G^1 \rightarrow \cdots$ exact. A dual argument gives that when G is Gorenstein injective then Hom (-, G) leaves any Gorenstein projective resolution $\cdots \rightarrow C_2 \rightarrow C_1 \rightarrow C_0 \rightarrow M \rightarrow 0$ (by finitely generated Gorenstein projective modules C_i) exact. vpp

3. Dimensions.

A left R-module N is said to have Gorenstein injective dimension $\leq n(G \cdot id N \leq n)$ if there is a Gorenstein injective resolution

 $0 \longrightarrow N \longrightarrow G^{0} \longrightarrow G^{1} \longrightarrow \cdots G^{n} \longrightarrow 0$

of N. In a similar manner we define the Gorenstein projective dimension of a finitely generated module to be $\leq n(G \text{-pd } M \leq u)$.

THEOREM 3.2. If R is left and right noetherian, then the following are equivalent:

- 1) R is n-Gorenstein.
- 2) for every R-module N (left or right), N has a Gorenstein injective preenvelope and G-id $N \leq n$.
- 3) every nth cosyzygy of an R-module (left or right) is Gorenstein injective.
- 4) every finitely generated R-module M (left or right) has a Gorenstein projective precover and G-pd $M \leq n$.
- 5) every nth syzygy in a projective resolution of a finitely generated Rmodule (left or right) by finitely generated projective modules is Gorensteiv projective.

PROOF. 1) \Rightarrow 2). Let $0 \rightarrow N \rightarrow G^{0} \rightarrow G^{1} \rightarrow \cdots \rightarrow G^{n-1}$ be a partial Gorenstein injective resolution of N. We argue that $G=\operatorname{Coker}(G^{n-2} \rightarrow G^{n-1})$ (or Coker $(N \rightarrow G^{0})$ if n=1) is Gorenstein injective. By if $\operatorname{pd} L < \infty$ then $\operatorname{pd} L \leq n$. Hence $\operatorname{Ext}^{1}(L, G)=\operatorname{Ext}^{n+1}(L, N)=0$. So by Prop. 1.11, G is Gorenstein injective.

2) \Rightarrow 3). Given the partial injective resolution $0 \rightarrow N \rightarrow E^{0} \rightarrow \cdots \rightarrow E^{n-1}$ let G =Coker $(E^{n-2} \rightarrow E^{n-1})$ (or=Coker $(N \rightarrow E^{0})$ if n=1). We argue that G is Gorenstein injective.

Let $\operatorname{pd} L < \infty$. Then since we have a Gorenstein injective resolution $0 \to N \to G^0 \to \cdots \to G^n \to 0$ and since $\operatorname{Ext}^i(L, G') = 0$ when G' is Gorenstein injective and $i \ge 1$, we see that $\operatorname{Ext}^{n+1}(L, N) = 0$. Hence $\operatorname{pd} L \le n$. But then an argument as in $1 \Rightarrow 2$ gives $\operatorname{Ext}^1(L, G) = 0$.

 $3) \Rightarrow 1)$ by Enochs-Jenda ([9], Theorem 2.4).

1) \Rightarrow 4) and 4) \Rightarrow 5) are by arguments dual to those for 1) \Rightarrow 2) and 2) \Rightarrow 3), 5) \Rightarrow 1) by ([9], Theorem 2.4).

4. Gext.

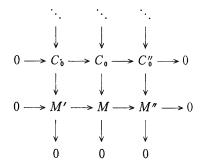
If R is Gorenstein then the right derived functors of $\operatorname{Hem}(-, -)$ computed using either a resolution of M by finitely generated Gorenstein projective modules or one of N by Gorenstein injective modules will be denoted $G \operatorname{ext}^{i}(M, N)$.

Then it is easy to check the following properties of G ext:

- a) $G \operatorname{ext}^{0}(-, -) \equiv \operatorname{Hom}(-, -)$
- b) $G \operatorname{ext}^{i}(C, -)=0$ if $i \ge 1$ and C is a finitely generated Gorenstein projective module.
- c) $G \operatorname{ext}^{i}(-, G) = 0$ for $i \ge 1$ and G a Gorenstein injective module.
- d) For any short exact sequence $0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$ of finitely generated modules left exact by Hom(C, -) when C is finitely generated and Gorenstein projective gives rise to a long exact sequence

 $\cdots \to G \operatorname{ext}^{i}(M'', -) \to G \operatorname{ext}^{i}(M, -) \to G \operatorname{ext}^{i}(M' '-) \to G \operatorname{ext}^{i+1}(M'', -) \to \cdots$

(We note that the condition above is exactly what is needed to construct a commutative diagram



satisfying the obvious conditions).

- e) Any short exact sequence 0→N'→N→N"→0 left exact by Hom (-, G) whenever G is Gorenstein injective gives rise to a long exact sequence ...→Extⁱ(-, N')→Extⁱ(-, N)→Extⁱ(-, N")→Extⁱ⁺¹(-, N')→...
- f) Then are natural transformations

$$G \operatorname{ext}^{i}(-, -) \longrightarrow \operatorname{Ext}^{i}(-, -)$$

which are also natural in the exact sequences as in d) and e).

PROPOSITION 4.1. If R is n-Gorenstein then for a left R-module L the following are equivalent:

- 1) proj. dim $L < \infty$ (and so $\leq n$)
- 2) $G \operatorname{ext}^{i}(L, -) \rightarrow \operatorname{Ext}^{i}(L, -)$ is an isomorphism for all $i \ge 0$
- 3) $Ext^{1}(L, G)=0$ for all Gorenstein injective modules G.

PROOF. 1) \Rightarrow 3) is part of Corollary 4.4 of [8].

3) \Rightarrow 2). 3) implies Extⁱ(L, G)=0 for all Gorenstein injective modules G and

 $i \ge 1$, again by Corollary 4.4 of [8]. Furthermore $G \operatorname{ext}^{i}(L, G) = 0$ for all such G and $i \ge 1$. So for $i \ge 0$ we get a commutative diagram

$$\begin{array}{cccc} G \operatorname{ext}^{i}(L, \, G) \longrightarrow G \operatorname{ext}^{i}(L, \, H) \longrightarrow G \operatorname{ext}^{i+1}(L, \, N) \longrightarrow 0 \\ & & & \downarrow & & \downarrow \\ & & & \downarrow & & \downarrow \\ \operatorname{Ext}^{i}(L, \, G) \longrightarrow \operatorname{Ext}^{i}(L, \, H) \longrightarrow \operatorname{Ext}^{i+1}(L, \, N) \longrightarrow 0 \end{array}$$

For i=0, the two first vertical maps are isomorphism since $\text{Ext}^0(-, -) = G \exp^0(-, -) = \text{Hom}(-, -)$. Hence we get $G \exp^1(L, N) \rightarrow \text{Ext}^1(L, N)$ is an isomorphism. Then induction on *i* gives the desired result.

2) \Rightarrow 1). Since R is n-Gorenstein, G-id $N \leq n$ for all modules N by Theorem 3.2 above. So $G \operatorname{ext}^{i}(L, N)=0$ for $i \geq n+1$ and all N. Hence $\operatorname{Ext}^{n+1}(L, N)=0$ for all N and so pd $L \leq n$.

REMARK 4.2. If R is n-Gorenstein, for all left R-modules M and N $G \operatorname{ext}^{1}(M, N) \rightarrow \operatorname{Ext}^{1}(M, N)$ is an injection.

PROOF. If $N \rightarrow G$ is a Gorenstein injective envelope of N let $0 \rightarrow N \rightarrow G \rightarrow H$ $\rightarrow 0$ be the associated exact sequence. Then we get a commutative diagram

$$\begin{array}{cccc} \operatorname{Hom}\left(M,\,G\right) \longrightarrow \operatorname{Hom}\left(M,\,H\right) \longrightarrow G\,\operatorname{ext}^{1}\!(M,\,N) \longrightarrow 0 \\ & & & \\ & & \\ & & \\ \operatorname{Hom}\left(M,\,G\right) \longrightarrow \operatorname{Hom}\left(M,\,H\right) \longrightarrow \operatorname{Ext}^{1}\!(M,\,N) \end{array}$$

with exact rows. The result then follows.

If we consider the elements of $\text{Ext}^{1}(M, N)$ as classes of short exact sequences $0 \rightarrow N \rightarrow L \rightarrow M \rightarrow 0$ we get that

COROLLARY 4.3. The short exact sequence $0 \rightarrow N \rightarrow L \rightarrow M \rightarrow 0$ corresponds to an element of $G \operatorname{ext}^1(M, N) \subset \operatorname{Ext}^1(M, N)$ is and only if for every Gorenstein injective module G, $\operatorname{Hom}(L, G) \rightarrow \operatorname{Hom}(N, G) \rightarrow 0$ is exact.

PROOF. Let

$$0 \longrightarrow N \longrightarrow G \longrightarrow K \longrightarrow 0$$
$$\| \qquad \downarrow \qquad \downarrow$$
$$0 \longrightarrow N \longrightarrow E \longrightarrow \overline{K} \longrightarrow 0$$

be a commutative diagram with exact rows and $N \rightarrow G$ a Gorenstein injective preenvelope of N and E an injective module. Given a map $M \rightarrow K$, using a

pull-back diagram we get the commutative diagram

$$0 \longrightarrow N \longrightarrow L \longrightarrow M \longrightarrow 0$$
$$\| \qquad \downarrow \qquad \downarrow$$
$$0 \longrightarrow N \longrightarrow G \longrightarrow K \longrightarrow 0$$

and so get the element corresponding to $0 \rightarrow N \rightarrow L \rightarrow M \rightarrow 0$ of $G \operatorname{ext}^1(M, N)$. Then if G' is Gorenstein injective, any map $N \rightarrow G'$ gives rise to a map $G \rightarrow G'$ (since $N \rightarrow G$ is a preenvelope) and so we get the desired map $L \rightarrow G'$.

Now given a map $M \rightarrow \overline{K}$ form the commutative diagram

$$0 \longrightarrow N \longrightarrow L \longrightarrow M \longrightarrow 0$$
$$\| \qquad \downarrow \qquad \downarrow$$
$$0 \longrightarrow N \longrightarrow E \longrightarrow \overline{K} \longrightarrow 0$$

with exact rows. If $0 \rightarrow N \rightarrow L \rightarrow M \rightarrow 0$ has the desired property, then the map $N \rightarrow G$ gives rise to a map $L \rightarrow G$ and so to a commutative diagram

$$\begin{array}{cccc} 0 \longrightarrow N \longrightarrow L \longrightarrow M \longrightarrow 0 \\ & \parallel & \downarrow & \downarrow \\ 0 \longrightarrow N \longrightarrow G \longrightarrow K \longrightarrow 0 \end{array}$$

This shows that $0 \rightarrow N \rightarrow L \rightarrow M \rightarrow 0$ corresponds to an element of $G \operatorname{ext}^{1}(M, N)$ and completes the proof.

If M is taken finitely generated in the previous result, a dual argument gives that the elements of $G \operatorname{ext}^1(M, N)$ correspond to the sequences $0 \rightarrow N \rightarrow L \rightarrow M \rightarrow 0$ such that $\operatorname{Hom}(C, L) \rightarrow \operatorname{Hom}(C, M) \rightarrow 0$ is exact when C is a finitely generated Gorenstein projective module. vpp

5. G tor.

LEMMA 5.1. If R is n-Gorenstein then for a left R-module C the following are equivalent:

- 1) C is Gorenstein projective
- 2) Extⁱ(C, L)=0 for all L with id $L < \infty$ and all $i \ge 1$
- 3) Ext¹(C, L)=0 for all L with id $L < \infty$
- 4) Tor_i(L, C)=0 for all right R-modules L with id $L < \infty$ and $i \ge 1$
- 5) Tor₁(L, C)=0 for all right R-modules L with $pd L < \infty$
- 6) Hom₂(C, Q/Z) is a Gorenstein injective right R-module.

PROOF. 1) \Rightarrow 2) is by 2) \Rightarrow 3) is trivial.

3) \Rightarrow 1). By [2], there is an exact sequence $0 \rightarrow L \rightarrow \overline{C} \rightarrow C \rightarrow 0$ with \overline{C} a finitely generated Gorenstein projective module and id $L < \infty$. By 3), this splits and so C is Gorenstein projective.

2)=>4). Letting M^+ =Hom_Z(M, Q/Z) for any left or right R-module, we have

$$\operatorname{Tor}_{i}(L, C)^{+} = \operatorname{Ext}^{i}(C, L^{+})$$

If pd $L < \infty$ then id $L^+ < \infty$, so $\text{Ext}^i(C, L^+) = 0$ for $i \ge 1$ and pd $L < \infty$. Hence $\text{Tor}_i(L, C) = 0$ for such i and L.

4) \Rightarrow 5) is trivial.

5) \Rightarrow 6) and 6) \Rightarrow 3). Tor₁(L, C)=0 if and only if Ext¹(L, C⁺)=Tor₁(L, C)⁺=0 so using Proposition 1.11 we get our claims.

As a result we get

THEOREM 5.2. If R is n-Gorenstein then $-\otimes$ — is left balanced on $\Im \mathfrak{G} \times \Im \mathfrak{G}$ (finitely generated right R-modules for the first $\Im \mathfrak{G}$ and left for the second) by $\Im \mathfrak{G}$ Gor Proj $\times \Im \mathfrak{G}$ Gor Proj (again left and right).

PROOF. Let $\cdots \to C_1 \to C_0 \to M \to 0$ be a Gorenstein projective resolution of a finitely generated right *R*-module and let *D* be a finitely generated Gorenstein projective left *R*-module. Then

 $\cdots \longrightarrow C_1 \otimes D \longrightarrow C_0 \otimes D \longrightarrow M \otimes D \longrightarrow 0$

is exact if and only if

 $0 \longrightarrow (M \otimes D)^{+} \longrightarrow (C_{0} \otimes D)^{+} \longrightarrow (C_{1} \otimes D)^{+} \longrightarrow \cdots$

i.e. if and only if

 $0 \longrightarrow \operatorname{Hom}(M, D^{+}) \longrightarrow \operatorname{Hom}(C_{0}, D^{+}) \longrightarrow \operatorname{Hom}(C_{1}, D^{+})$

is exact. But D^+ is Gorenstein injective by the Lemma 5.1. Hence this sequence is exact by Theorem 2.1.

So we can now compute left derived functors of $-\otimes$ - computed using Gorenstein projective resolutions of finitely generated modules (see [6]).

These derived functors will defined denoted $G \operatorname{tor}_i(M, N)$.

Then it is easy to check the following:

- a) $G \operatorname{tor}_{0}(-, -) \cong \otimes -$
- b) $G \operatorname{tor}_i(C, -)=0$ if $i \ge 1$ and C is a finitely generated Gorenstein projective right R-module.
- c) $G \operatorname{tor}_i(-, D) = 0$ if $i \ge 1$ and D is a finitely generated Gorenstein projective left *R*-module

d) for any exact sequence $0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$ of finitely Senerated right *R*-modules which remains exact when $-\bigotimes D$ is applied to it with finitely generated Gorenstein projective, there is a long exact sequence

 $\cdots \to G \operatorname{tor}_{i+1}(M'', -) \to G \operatorname{tor}_i(M', -) \to G' \operatorname{tor}_i(M, -) \to G \operatorname{tor}_i(M'', -) \to \cdots$

- e) same as d) but for an exact sequence of left *R*-modules $0 \rightarrow N' \rightarrow N \rightarrow N'' \rightarrow 0$
- f) there are natural transformations

$$\operatorname{Tor}_{i}(-, -) \longrightarrow G \operatorname{tor}_{i}(-, -)$$

for each $i \ge 0$ and these natural transformations commute with the connecting homomorphisms associated with short exact sequences as in d) and e). If i=0 the natural transformations is an isomorphism.

PROPOSITION 5.3. If R is n-Gorenstein then for a finitely generated right R-module L the following are equivalent:

- 1) pd $L < \infty$ (so pd $L \leq n$)
- 2) $\operatorname{Tor}_{i}(L, -) \rightarrow G \operatorname{tor}_{i}(L, -)$ is an isomorphism for all $i \geq 0$
- 3) $\operatorname{Tor}_{I}(L, D)=0$ for all finitely generated Gorenstein projective modules D
- 4) Tor_i(L, D)=0 for all finitely generated Gorenstein projective modules D and all $i \ge 1$.

PROOF. 1) \Rightarrow 4). Tor_i(L, D)⁺=Extⁱ(L, D⁺). By Lemma 5.1 6), D⁺ is Gorenstein injective. Then Lemma 1.3 says Extⁱ(L, D⁺)=0 for $i \ge 1$ and so Tor_i(L, D) =0 for $i \ge 1$.

4) \Rightarrow 3) is trivial.

2) \Rightarrow 1). By Theorem 3.2 G-pd $L \leq n$ so G tor_i(L, N)=0 for $i \geq n+1$. Therefore Tor_i(L, N)=0 for all $i \geq n+1$ and all n. Hence ph $L \leq n$.

4) \Rightarrow 2). This is standard. For example, it is straightforward modification of ([4], Proposition 4.4).

3) \Rightarrow 4). By the definition of a Gorenstein projective module, there is an exact sequence $0 \rightarrow K \rightarrow P \rightarrow D \rightarrow 0$ with P finitely generated and projective and K Gorenstein projective. So $\text{Tor}_{i}(L, D) = \text{Tor}_{i}(K, D) = 0$. Similarly we get $\text{Tor}_{i}(L, D) = 0$ for all $i \ge 1$.

References

- [1] M. Auslander and M. Bridger, Stable Module Theory, A.M.S. Memoirs, No. 94, Amer. Math. Soc., Providence, R.I., 1969.
- [2] M. Auslander and R. Buchweitz, The homological theory of maximal Cohen-Macauley approximations, Soc. Math. de France, Mémoire 38 (1989), 5-37.

12

- [3] K. Brown, Cohomology of Groups, Springer-Verlag, New York, 1982.
- [4] H. Cartan and S. Eilenberg, Homological Algebra, Princeton Univ. Press, Princeton, N. J., 1956.
- 5] S. Eilenberg and J.C. Moore, Foundations of Relative Homological Algebra, A.M.S. Memoirs, No. 55, Amer. Math. Soc., Providence, R.I., 1965.
- 6] E. Enochs and O. Jenda, Balanced functors applied to modules, J. Algebra 92 (2), 1985, 303-310.
- [7] E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (3), 1981, 189-209.
- [8] E. Enochs and O. Jenda, Gorenstein injective and projective modules (to appear in Math. Zeit).
- E. Enochs and O. Jenda, Resolvents and dimensions of modules, Arch. Math. vol. 56, 1991, 528-532.
- [10] Y. Iwanaga, On rings with finite self-injective dimension II, Tsukuba J. Math. 4, 1980, no. 1, 107-113.

Edgar E. Enochs Department of Mathematics University of Kentucky Lexington, KY 40506-0027 U.S.A.

Overtoun M.G. Jenda Department of Algebra, Combinatorics and Analysis Auburn University Auburn, Alabama 36849-5307 U.S.A.