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GORENSTEIN BALANCE OF HOM AND TENSOR

By

Edgar E. Enochs and Overtoun M. G. Jenda

By Auslander and Bridger ([1]), Proposition 3.8c)),a finitelygenerated left

/?-module C has Gorenstein dimension 0 if and only if there is an exact sequence

... > p-2 > p-i > po > pi > ...

of finitely generated projective left i?-modules such that C=ker(P°->P1) and

such that the dual sequence

> (P1)* ―> (P0)* ―> (P-1)* ■―>...

is also exact.

In attempting to dualize the notion of Gorenstein dimension we called such

modules C Gorenstein projective modules (see [8]) and then defined Gorenstein

injective modules.

Auslander and Buchweitz showed that over certain rings all finitely gene-

rated modules have Gorenstein projective precovers (over Cohen-Macauley rings

these are their maximal Cohen-Macauley approximations).

An application of their argument shows that over an n-Gorenstein ring all

modules have Gorenstein injective preenvelopes.

Over a ring where these precovers and preenvelopes exist, we can apply

methods of relative homological algebra (see Eilenberg and Moore [5]) and

compute derived functors.

We can then raise the question of balance in the sense of Enochs and Jenda

[6]. We can now show that Hom(―, ―) is right balanced by Gorenstein pro-

jective and injective modules on a suitable category. Similarly we show that

―0― is left balanced by finitelygenerated Gorenstein projective modules (left

and ricrhtY

1. Gorenstein Injective and Projective Resolutions.

In the following, module will mean left i?-module for some ring R (unless

otherwise soecified).
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Definition 1.1. A left i?-module G is said to be Gorenstein injective if

there is an exact sequence

^ P~l ^ E^O s. EH Z?2

of injective left i?-modules such that G=ker (E°~>E1)and such that for every

injective left /^-module E, the sequence

･･･Horn (E, E-1) -^ Horn (E, E°)―-> Horn (E lEl) ―> ■■■

is also exact.

Remark 1.2. In [8] it was argued that if R is leftnoetherian, every direct

summand of a Gorenstein injective module is Gorenstein injective. In ([1],

3.11(b))it was shown that a similar result for finitely generated Gorenstein

projective modules holds.

Lemma 1.3. // G is a Gorenstein injectiveleft R-module and L is a left

R-module of finite projective dimension then Ext*(L, G)=0 for all z>l.

Proof. Letting ･■･E-1-^E°->El-≫ ･■■be as above and letting G~s =

ker(E-J-≫E-)+1) for /^0 we see that

Ext'(L, G)=Exti+)(L, G->)

for each such j. But for /^proj. dim L, Exti+J'(L, G~j)=R when /^l. A

similar argument gives

Lemma 1.4 (Auslander, Bridger [1]). // C is a finitely generated Goren-

stein projective module and L has finiteinjedive dimension, then Ext*(C, L)=0

for all z2^1.

Definition 1.5 (Iwanaga [10]). A ring R is said to be i.e. n-Gorenstein if

it is left and right noetherian and if it has self-injectivedimension at most n

on both sides.

Over an n-Gorenstein ring R there are a plentiful supply of Gorenstein

injective modules. This follows from

Lemma 1.6 ([8], Theorem 4.2). // R is an n-Gorenstein ring and

0 ―>N ―> E°―> E1 ―> > En~l―> G ―> 0

is a partialinjective resolution of N, then G is Gorenstein injective.

Remark. If G is a finite group, it is easy to see that the group ring ZG
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is 1-Gorenstein, for

0 ―>ZG-^QG ―> Q/ZG ―> 0

is an exact sequence of left or right ZG-modules.

But QG=Q<g>zZG=Homz(ZG, Q) (see [3]) is an injective ZG-module.

Similarly Q/ZG is injective.

From this we can show that a ZG-module M is Gorenstein injective if and

only if it is divisible as a Z-module.

The condition is necessary since every injective ZG-module is divisibleand

M is a quotient of an injective module. Conversely, if M is divisible,

Eomz (ZG, M) is injective. But Homz (ZG, M)=ZG(g>zM and there is surjec-

tion ZG(g)zM-^M. Hence by the preceeding lemma, G is Gorenstein injective.

A similar argument shows that a finitelygenerated ZG-module C is Goren-

stein oroiective if and onlv if it is a free Z-module.

Definition 1.7 (Enochs [7]). If N and G are left i?-modules and G is

Gorenstein injective, then a linear map <j):N―>G is called a Gorenstein injective

preenvelope of N if the diagram

N
t

G

i

G

can be completed to a commutative diagram whenever N―>G' is a map into a

Gorensteininjectivemodule G'.

If furthermore,

6N―^G

G

can only be completed by automorphisms of G, then <j>:N^G is called a Goren-

stein injective envelope of N.

Dually, a Gorenstein projective precover and cover <fi: C―+M is defined (with

C and M finitelygenerated and C Gorenstein projective).

We note that since injective modules are Gorenstein injective and every

modules ./Vis contained in an injective module, every Gorenstein injective preen-



4 Edgar E. Enochs and Overtoun M.G. Jenda

velope N―*G is an injection. Similarly, Gorensteln projective covers C-+M

must be surjective.

Proposition 1.8. // R is n-Gorenstein, every R-module N has a Gorenstein

injective preenvelope.

Proof. We use an argument dual to that in the proof of Theorem 1.1 of

[2]. Let X be the class of Gorenstein injective modules and let w be the .class

of injective modules. Note that by [10] every injective module has finitepro-

jective dimension. So in the language of [2], w is a generator for X. Lemma

1.6 above then gives all that is needed for the dual argument to carry through.

Hence for each i?-module N there is an exact sequence

0―>N―>G―> L―>0

with G Gorensteininjectiveand L of finiteprojectivedimension.

Then if G' is Gorenstein injective,Extx(L, G')= 0 so Hom(G, G')->

Horn(N, G')-*0 is exact. This means that N―>G is a Gorenstein injective

preenvelope.

Remark 1.9. There is an alternateproof of this resultin [8] (see Theo-

rem 7.2). We note that there, under our hypotheses, we get a somewhat

stronger uniquenessresultthan thatin [2] for the X-approximations.

Now we use Theorem 1.8 of [2] and get that if R is n-Gorenstein,then

for every finitelygenerated module M thereis an exact sequence

0 ―> L ―> C ―> M ―> 0

with C finitely generated and Gorenstein projective and L having finite pro-

jective dimension (and so finiteinjective dimension by [10]).

Since then by Lemma 1.4 Extx(C, L)=0 whenever C is finitely generated

and Gorenstein projective, we get that C-+M is a Gorenstein projective pre-

cover of M.

Definition 1.10. An exact sequence

0 ―> n ―>G° ―> G1 ―> G2 ―> ■･･

is called a Gorenstein injective resolution of the module N if each Gl is Goren-

stein injective and if N-^G°, ker(Gi^Gi+1)-^Gi for ≫^0 are all Gorenstein

injective preenvelopes (equivalently, whenever G is a Gorenstein injective

module, the sequence
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-Hom(G＼ G)―>Hom(G°, G)―^Eom(N, G) ―> 0

is exact).

In a similarway we definea Gorensteinprojectiveresolution

>CX―>C0―>M―>0

of the finitelygenerated module M (with allthe Ct finitelygenerated too).

From Proposition1.8 above we see thatif R is n-Gorenstein then every

module N admits a Gorensteininjectiveresolution. Also from the above we

see that every finitelygenerated module M admits a Gorenstein projective

resolution. Such resolutionsare unique up to homotopy.

Proposition 1.11. // R is n-Gorenstein and G is an R-module then the

following are equivalent:

1) G is Gorenstein infective

2) Ext*(L, G)―0 for all modules L with pdL<c≫ and alli^l

3) ExtKL, G)=0 for all modules L with pd L<oo.

Proof. 1)=#) by 2)=}3)is trivial.

3)=H). By the proof of Proposition1.8 we have an exact sequence 0->G

-^G-^L-^0 with G Gorenstein injectiveand pdL<oo. By hypotheses this

sequence splitsso as a directsummand of a Gorensteininjectivemodule G is

also Gorensteininfective.

2. Balance of H0m(―, ―).

For a ring R we now let 33 Gor Proj, Gor Inj, <3G and Mod denote (re-

spectively) the categories of finitely generated Gorenstein projective modules,

Gorenstein injective modules, finitelygenerated modules and all modules.

We now use the language of [6] and attempt to justify our choice of ter-

minology (Gorenstein projective and injective) by proving:

Theorem 2.1. // R is n-Gorenstein then Hom(―, ―) is right-balanced by

SQGor ProixGor Ini on SSXMod,

Proof. We only need prove that if N―>G is any Gorenstein injective

preenvelope of N and if 0―>-./V―>G―>L―>0is exact, then Hom(C, ―)leaves the

sequence exact for any finitelygenerated Gorenstein projective module C, and

also the corresponding dual result.

Since we know there is some such preenvelope with inj. dimL<oo we
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firstprove the result under this assumption. By [10],

L^E°^E1^ >En-^0 be an injective resolution of L

projective, there is an exact sequence

inj. dim L<,n. Let 0―≫･

Since C is Gorenstein

Q > Q > pa > pi > ... > pn-l . > pn

with the pt's finitely generated and projective. Let D=im(P"~1-^>Fre). Any

map C-^L then gives rise to a commutative diagram

0―>c―>P°―> >Pn~1―>D―>0

V V V V
0 ―> i ―> E°―> > En~l―> En ―> 0

But D-^En can be extended to Pn^En which in turn can be lifted to a map

Pn^En~l. Then the usual way of constructing homotopies gives an extension

P°―>L. But P°-*L can be lifted to a map P°-*G which by restriction gives

the required lifting C-+G.

In the general case, if 0->N^G-+L-*Q and O^N―"G'-^Z/^O are both exact

and given by Gorenstein injective preenvelopes of N, then there is a commuta-

tive diagram

0―>M―> G ―> L ―>0
I

0 ―^iV―*G'―> L' ―>0

giving a homotopy equivalenceof the two complexes. But then

0 ―> Horn (C,N)―> Horn (C,G) ―> Horn (C, L) ―> 0

and

0 ―> Horn (C, N) ―-> Horn (C, G') ―■*Horn (C, L') ―> 0

are homotopically equivalent.

Hence if one has zero homology, so does the other, i.e. if one sequence is

exact so is the other.

As a consequence we get that Horn (C, ―) leaves any Gorenstein resolution

0-*A/->G:o―G1-^ ■･･exact. A dual argument gives that when G is Gorenstein

injective then Hom(―, G) leaves any Gorenstein projective resolution ･･･->C2―>

Cj―>C0―*M―>0 (by finitely generated Gorenstein projective modules Ct) exact,

vpp
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3. Dimensions.

A left i?-module N is said to have Gorenstein injective dimension <^n(G-id

N^n) if there is a Gorenstein injective resolution

0―> jv―>G°―>GX―>-Gn―>0

of N. In a similar manner we define the Gorenstein projective dimension of a

finitelygenerated module to be ^n(G-pdM^u).

Theorem 3.2. // R is left and right noetherian, then the following are

equivalent:

1) R is n-Gorenstein.

2) for every R-module N (left or right), N has a Gorenstein injective preen-

velope and G-idN^n.

3) every nth cosyzygy of an R-module (left or right)is Gorenstein injective.

4) every finitely generated R-module M (left or right) has a Gorenstein

projective precover and G-pdM^n.

5) every nth syzygy in a projective resolution of a finitely generated R-

module (left or right) by finitely generated projective modules is Goren-

steiv projective.

Proof. 1H2). Let O-WV-^G0-^1-* >Gn~l be a partial Gorenstein

injective resolution of N. We argue that G―Coker (Gn~2-^Gn~1) (or Coker

(N―>G°)if n=l) is Gorenstein injective. By if pdL<oo then pdL^n. Hence

Extx(L, G)=Extn+1(I, JV)=O. So by Prop. 1.11, G is Gorenstein injective.

2H3). Given the partialinjective resolution 0-*N^E°-> >En~1let G =

Coker (En~2^En-1) (or=Coker(N-≫E°) if n=l). We argue that G is Gorenstein

injective.

Let pdL<oo. Then since we have a Gorenstein injective resolution Q-+N

-*G0-^ >Gn^0 and since Ext*(L, G')=0 when G' is Gorenstein injective and

i^>l, we see that Extn+1(L, N)=Q. Hence pdL^n. But then an argument as

in 1)=#) gives Extx(L, G)=0.

3)=41) by Enochs-Jenda ([9], Theorem 2.4).

1)=}4) and 4H5) are by arguments dual to those for 1)=}2) and 2)=)3), 5)=^

1) by ([9], Theorem 2.4).

4. Gext.

If R is Gorenstein then the right derived functors of Hem (―, ―) computed

using either a resolution of M by finitely generated Gorenstein projective
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modules or one of TV by Gorenstein injective modules will be denoted

G ext'(M, N).

Then it is easy to check the following properties of G ext:

a) Gext°(-, -)=Hom(-, -)

b) G ext*(C, ―)=0 if /^l and C is a finitely generated Gorenstein projec-

tive module.

c) Gext*(―, G)=0 for i^>l and G a Gorenstein injective module.

d) For any short exact sequence 0^M/-^M-≫M//―≫0 of finitely generated

modules left exact by Hom(C, ―) when C is finitely generated and

Gorenstein projective gives rise to a long exact sequence

> G extW, -)-*G extf(M, -) ― G ext*(M''-) -≫G exti+1(M", -)->･･･

(We note that the condition above is exactly what is needed to con-

struct a commutative diagram

0―>

0―->

I

Cb
i

1

0

I

Co
I

M
I

0

I

I

w―>o
I

0

satisfying the obvious conditions).

e) Any short exact sequence Q-≫N'-^N-*N//^0 left exact by Hom(―, G)

whenever G is Gorenstein injective gives rise to a long exact sequence

･･･― Ext'(-, N') ― Ext'(-, N) -> Ext*(-, N") - Exti+1(-, NO - ･･･

f) Then are natural transformations

Gext'(-, -)―≫Ext*(-, -)

which are also natural in the exact sequences as in d) and e)

Proposition 4.1. If R is n-Gorenstein then for a left R-module L the fol

lowing are equivalent:

1) proj. dimL<oo {and so^n)

2) G ext*(L, ―)―>Ext'(L,―) is an isomorphism for all i^O

3) ExtHL, G)=0 for all Gorenstein injective modules G.
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Proof. 1)=}3) is part of Corollary 4.4 of [8].

3)=)2). 3) implies Ext*(L, G)=0 for all Gorenstein injective modules G and

z^l, again by Corollary 4.4 of [8]. Furthermore G ext*(L, G)=0 for all such

G and z^l. So for zJ^O we get a commutative diagram

G ext*(L, G)―>G ext*(L, //)―> G ext*+1(L, N) ―> 0

Ext*(L, G) ―> Ext4(L, //) ―> Exti+1(L, iV) ―> 0

For z"=0, the two first vertical maps are isomorphism since Ext°(―,―)=

Gext°(―, ―)=Hom(―, -). Hence we get G extx(L, N)-*Ext＼L, N) is an iso-

morphism. Then induction on i gives the desired result.

2)=}1). Since R is n-Gorenstein, G-idN^n for all modules N by Theorem

3.2 above. So G ext*(L, N)=0 for i^n+1 and all N. Hence Extre+1(L, N)=0

for all N and so pd L^n.

Remark 4.2. If R is n-Gorenstein, for all left i?-modules M and N

G extx(M, Ny->Ext＼M, N) is an injection.

Proof. If N-+G is a Gorenstein injective envelope of N let 0->N-^G^H

―>0 be the associated exact sequence. Then we get a commutative diagram

Horn (M. G) ―> Horn (M, H) ―> G ext＼M, N) ―> 0

I

Horn (M, G) ―> Horn (M, H) ―> Ext＼M, N)

with exact rows. The result then follows.

If we consider the elements of Ext!(M, N) as classes of short exact sequences

Q-^N-^L-^M->0 we get that

Corollary 4.3. The short exact sequence 0―+N^L―>M―>0 corresponds to

an element of G ext*(M, N")cExt1(M, N) is and only if for every Gorenstein

injective module G, Hom(L, G)―>Hom(iV, G)―>0 is exact.

Proof. Let

0―> n―>G―>K―>0

II 1 i

0 ―>N ―> E ―>K ―>0

be a commutative diagram with exact rows and N-^-G a Gorenstein injective

preenvelope of N and E an injective module. Given a map M―*K, using a
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pull-back diagram we get the commutative diagram

0_> jv―> L―>M―->0

II 1 I

0―>n―>G―> K―>0

and so get the element corresponding to 0->iV-*L->M―>() of G extx(M, N). Then

if G' is Gorenstein injective, any map JV―>G' gives rise to a map G―>G' (since

N-+G is a preenvelope) and so we get the desired map L-^G'.

Now given a map M―>/f form the commutative diagram

O_^jV―> L―>M―>0

II 1 I

0_>jv―+E―> K―>0

with exact rows. If 0-^N-^L-^M^O has the desired property, then the map

N―>G gives rise to a map L―>G and so to a commutative diagram

0―>jv―> L―>M―>0

II I I

0_>jV-^G―> K―>0

This shows that Q-+N->L-+M^Q corresponds to an element of G ext＼M, N)

and completes the proof.

If M is taken finitely generated in the previous result, a dual argument

gives that the elements of G extx(M, N) correspond to the sequences O^N-^L

―>M^0 such that Hom(C, L)-^Hom(C, M)―≫0 is exact when C is a finitely

generated Gorenstein projective module, vpp

5. G tor.

Lemma 5.1. If R is n-Gorenstein then for a left R-module C the following

are equivalent:

1) C is Gorenstein projective

2) Ext*(C, L)=0 for all L with idL<oo and all i^l

3) ExtJ(C, L)=0 /or a// L w^/i id L<cx)

4) Torf(L, C)=0 /or a// n^/z? R-modules L with idL<oo and ?^1

5) Tor^L, C)=0 /or a// right R-modules L with pdL<co

6) Hom3(C, Q/Z) is a Gorenstein injective right R-module.

Proof. 1H2) is by 2)=)3) is trivial.
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3)=}1). By [2], there is an exact sequence Q^L―>C―>C-≫Q with C a finitely

generated Gorenstein projective module and idL<co. By 3), this splits and so

C is Gorenstein projective.

2)=M). Letting M+=Homz(M, Q/Z) for any left or right i?-module, we

have

Tor,(L, C)+=ExtXC, L+)

If pdL<oo then idL+<oo, so Ext*(C, L+)=0 for i^l and pdL<oo. Hence

Torj(L, C)=0 for such i and L.

4)=45) is trivial.

5)=^6) and 6)=43). Tor^L, C)=0 if and only if Extx(L, C+)=Torx(L, C)+=0

so using Proposition 1.11 we get our claims.

As a result we get

Theorem 5.2. // R is n-Gorenstein then ―(g)―is left balanced on 3SX3Q

(finitelygenerated right R-modules for the first 32 and left for the second) by

S^Gor ProjXS^Gor Proj (again left and right).

Proof. Let >Cj―>C0-≫M―>0 be a Gorenstein projective resolution of a

finitelygenerated right i?-module and let D be a finitely generated Gorenstein

projective left i?-module. Then

> C&D ―> Co0D ―> M&D ―> 0

is exact if and only if

0 ―> (M(g)/})+ ―> (C0<S>D)+ ―> (C1(g)JD)+―> ･･･

i.e. if and only if

0 ―> Horn (M, i)+) ―> Horn (Co, i)+) ―* Horn (d, D+)

is exact. But Z)+ is Gorenstein injective by the Lemma 5.1. Hence this sequ-

ence is exact by Theorem 2.1.

So we can now compute left derived functors of ―(£)―computed using

Gorenstein projective resolutions of finitelygenerated modules (see [6]).

These derived functors will defined denoted G tor^M, N).

Then it is easy to check the following:

a) Gtor0(-, -)s-(g)-

b) G tori(C, ―)=0 if i^＼ and C is a finitelygenerated Gorenstein projec-

tive right i?-module.

c) G torj(―,D)―0 if z'Sgland D is a finitelygenerated Gorenstein projec-

tive left i?-module
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d) for any exact sequence 0-*M'-*M^>M"-+0 of finitelygenerated right

i?-modules which remains exact when ―<S)Dis applied to it with finitely

generated Gorenstein projective, there is a long exact sequence

>G tori+1(M", -) ― G tort(M', -) ― G1 tor,(M, -) ― G tor,(M*, -)-≫･･■

e) same as d) but for an exact sequence of lefti?-modules 0―>N'―*N―>N"―>0

f) there are natural transformations

Tor<(-, -)―^Gtor^-, -)

for each *'2>0and these natural transformations commute with the con-

necting homomorphisms associated with short exact sequences as in d)

and e). If z=0 the natural transformations is an isomorphism.

Proposition 5.3. // R is n-Gorenstein then for a finitely generated right

R-module L the following are equivalent:

1) pdL<oo (so pd L^n)

2) Torf(L, ―)―*Gtor^L, ―)is an isomorphism for all z'2|0

3) Tor^L, D)=0 for all finitelygenerated Gorenstein projective modules D

4) Tor^L, D)=0 for all finitelygenerated Gorenstein projective modules D

and all i>l.

Proof. 1H4). Tor,(L, D)+=Ext＼L, D+). By Lemma 5.1 6), D+ is Goren-

stein injective. Then Lemma 1.3 says Ext*(L, D+)=0 for /^l and so Tor^L, D)

=0 for i^l.

4)=^3) is trivial.

2)=>1). By Theorem 3.2 G-pd L^n so G torf(L, N)=0 for j^n+1. There-

fore Tor^L, N)=0 for all *'2^n+ l and all m. Hence ph L^n.

4)=42). This is standard. For example, it is straightforward modification

of ([4], Proposition 4.4).

3)=}4). By the definition of a Gorenstein projective module, there is an

exact sequence 0^K-*P-+D-^0 with P finitelygenerated and projective and K

Gorenstein projective. So Tor2(L, D) = Tor^/T, D) = 0. Similarly we get

Tor^L, D)=0 for all *^1.
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