A SEQUENCE ASSOCIATED WITH THE ZEROS OF THE RIEMANN ZETA FUNCTION

By

Yasushi Matsuoka

Let $\zeta(s)$ be the Riemann zeta function, let C_{n} denote the generalized Euler constants associated with $\zeta(s)$, i. e.,

$$
C_{n}=\lim _{N \rightarrow \infty}\left\{\sum_{k=1}^{N} \log ^{n} k / k-\log ^{n+1} N /(n+1)\right\},
$$

and define the numbers $\delta_{n}(n \geqslant 1)$ by

$$
\delta_{1}=1+\frac{1}{2} C_{0}-\frac{1}{2} \log \pi-\log 2,
$$

and, for $n \geqslant 2$,

$$
\begin{equation*}
\delta_{n}=1-\left(1-2^{-n}\right) \zeta(n)+n \sum_{h=1}^{n} \frac{1}{h_{j_{1}}+\cdots, j_{j}=n-n} \prod_{\substack{j_{1} \geq 0, \cdots, j_{h} \geqslant 0}} \prod_{b=1}^{n} \frac{C_{j_{j}}}{j_{b}!} . \tag{1}
\end{equation*}
$$

Then we have, for $n \geqslant 1$,
(2)

$$
\delta_{n}=\sum_{\rho} \rho^{-n},
$$

where the sum Σ_{ρ} is taken over all complex zeros ρ of $\zeta(s)$ (see [2]).
In this paper we shall study the sequence $\left\{\delta_{n}\right\}$ and prove four theorems. In Theorem 1 we shall give an expression of δ_{n}, and, using it, we shall derive, in Theorem 2 , a necessary and sufficient condition for the truth of the Riemann hypothesis. The expression of δ_{n} will be specified in Theorem 3 under the Riemann hypothesis, and in the final Theorem 4, we shall give an upper bound for the quantity $\left|\delta_{n}\right|$.

We start with the following lemma.
Lemma. Let m be a positive integer, let $a_{j}(j=1,2, \cdots, m)$ be real numbers, and let $b_{j}(j=1,2, \cdots, m)$ be mutually distinct positive numbers $<\pi$. If

$$
\sum_{j=1}^{m} a_{j} \cos b_{j} n \longrightarrow 0
$$

[^0]as an integer $n \rightarrow \infty$, then $a_{j}=0$ for all $j=1,2, \cdots, m$.
Proof. Suppose that $a_{k} \neq 0$ for some integer k with $1 \leqslant k \leqslant m$, and let ε be a positive number $<\frac{1}{4}\left|a_{k}\right|$. Then, from the condition of the lemma, there exists a positive integer n_{0} such that the inequality
\[

$$
\begin{equation*}
\left|\sum_{j=1}^{m} a_{j} \cos b_{j} n\right|<\varepsilon \tag{3}
\end{equation*}
$$

\]

holds for all integers $n \geqslant \mathrm{n}_{0}$. Let N be an arbitrary positive integer. If we multiply both sides of (3) by $\left|2 \cos b_{k} n\right|$, and add them with respect to n form $n_{0}+1$ to $n_{0}+N$, then we get

$$
\sum_{j=1}^{m} a_{j} \sum_{n=n_{0}+1}^{n_{0}+N}\left\{\cos \left(b_{k}-b_{j}\right) n+\cos \left(b_{k}+b_{j}\right) n\right\}=r, \text { say }
$$

with $|r|<2 \varepsilon N$. It follows that

$$
\begin{equation*}
a_{k} \sum_{n=n_{0}+1}^{n_{0}+N} \cos 2 b_{k} n+\sum_{\substack{j=1 \\ j \neq k}}^{m} a_{j} \sum_{n=n_{0}+1}^{n_{0}+N}\left\{\cos \left(b_{k}-b_{j}\right) n+\cos \left(b_{k}+b_{j}\right) n\right\}=r-N a_{k} . \tag{4}
\end{equation*}
$$

Since b_{j} are mutually distinct positive numbers $<\pi, 2 b_{k} \neq 0(\bmod 2 \pi)$ and $b_{k} \pm b_{j} \neq 0(\bmod 2 \pi)$ for any pair of k and j with $k \neq j$, so that the left hand side of (4) is $o(N)$, as $N \rightarrow \infty$. On the other hand, the absolute value of the right hand side is greater than $\frac{1}{2}\left|a_{k}\right| N$, and hence the equation (4) yields a contradiction. This completes the proof.

Theorem 1. For any $n \geqslant 1, \delta_{n}$ can be uniquely expressed in the form

$$
\begin{equation*}
\delta_{n}=2 \sum_{k=1}^{\infty} r_{k}^{-n} \sum_{j=1}^{m_{k}} a_{k j} \cos b_{k j} n, \tag{5}
\end{equation*}
$$

where $\left\{r_{k}\right\}$ is an increasing sequence of positive numbers, $m_{k}(k \geqslant 1)$ and $a_{k j}\left(j=1,2, \cdots, m_{k}\right)$ are positive integers, and $b_{k j}\left(j=1,2, \cdots, m_{k}\right)$ are mutually distinct positive numbers $<\frac{1}{2} \pi$ such that $r_{k} \cos b_{k j}<1$. The constants $r_{k}, m_{k}, a_{k j}$ and $b_{k j}$ are independent of n.

Proof. If we put $\rho=\beta+i \gamma$ in (2), we get

$$
\delta_{n}=2 \sum_{\gamma>0}\left(\beta^{2}+\gamma^{2}\right)^{-\frac{1}{2} n} \cos \left(n \arctan \frac{\gamma}{\beta}\right),
$$

noting that the complex conjugate of ρ is also the zero of $\zeta(s)$. If we make use of the fact that $0<\beta<1$, we get $0<\arctan (\gamma / \beta)<\frac{1}{2} \pi$, and $\left(\beta^{2}+\gamma^{2}\right)^{1 / 2} \cos \{\arctan (\gamma / \beta)\}<1$. Hence, we can obtain the expression (5).

It remains to show the uniqueness. Suppose that δ_{n} has two expressions

$$
\begin{equation*}
\delta_{n}=2 \sum_{k=1}^{\infty} r_{k}^{-n} \sum_{j=1}^{m_{k}} a_{k j} \cos b_{k j} n=2 \sum_{k=1}^{\infty} R_{k}^{-n} \sum_{j=1}^{M_{k}} A_{k j} \cos B_{k j} n \tag{6}
\end{equation*}
$$

Then we can get

$$
\begin{equation*}
r_{1}^{-n} \sum_{j=1}^{m_{1}} a_{1 j} \cos b_{1 j} n+O\left(r_{2}^{-n}\right)=R_{1}^{-n} \sum_{j=1}^{M_{1}} A_{1 j} \cos B_{1 j} n+O\left(R_{2}^{-n}\right) \tag{7}
\end{equation*}
$$

To prove (7), we make use of the estimate ([4], Theorem 9. 4.)

$$
N(T)=\frac{T}{2 \pi} \log T-\frac{1}{2 \pi}(1+\log 2 \pi) T+O(\log T)
$$

where $N(T)$ is the number of the zeros of $\zeta(\sigma+\mathrm{it})$ in the region $0 \leqslant \sigma \leqslant 1,0<t \leqslant T$. Then we obtain

$$
\sum_{T \leqslant\left(r_{k}^{2}-\frac{1}{4}\right)^{1 / 2}<2 T} r_{k}^{-n} \sum_{j=1}^{m_{k}} a_{k j}=\sum_{T \leqslant \gamma<2 T}|\rho|^{-n}<T^{-n}\{N(2 T)-N(T)\}=O\left(T^{-n+1} \log T\right),
$$

so that

$$
\sum_{T \leqslant\left(r_{k}^{2}-\frac{1}{4}\right)^{1 / 2}} r_{k}^{-n} \sum_{j=1}^{m_{k}} a_{k j}=O\left(T^{-n+1} \log T\right) .
$$

It follows that, for sufficiently large T,

$$
\begin{aligned}
\sum_{k=1}^{\infty} r_{k}^{-n} \sum_{j=1}^{m_{k}} a_{k j} \cos b_{k j} n= & r_{1}^{-n} \sum_{j=1}^{m_{1}} a_{1 j} \cos b_{1 j} n+O\left(\sum_{\substack{\left(r_{k}^{2}-\frac{1}{4}\right)^{1 / 2}<T \\
k \neq 1}} r_{k}^{-n} \sum_{j=1}^{m_{k}} a_{k j}\right) \\
& +O\left(\sum_{T \leqslant\left(\left(_{k}^{2}-\frac{1}{4}\right)^{1 / 2}\right.} r_{k}^{-n} \sum_{j=1}^{m_{k}} a_{k j}\right) \\
& =r_{1}^{-n} \sum_{j=1}^{m_{1}} a_{1 j} \cos b_{1 j} n+O\left(r_{2}^{-n} T \log T\right)+O\left(T^{-n+1} \log T\right) ;
\end{aligned}
$$

which leads to (7). Now, if we compare the orders of both sides of (7), we get, using the lem$\mathrm{ma}, r_{1}=R_{1}$. Thus we have

$$
\sum_{j=1}^{m_{1}} a_{1 j} \cos b_{1 j} n-\sum_{j=1}^{M_{1}} A_{1 j} \cos B_{1 j} n=O\left(r_{1}^{n} r_{2}^{-n}+R_{1}^{n} R_{2}^{-n}\right)
$$

where we may assume that $b_{11}<b_{12}<\cdots<b_{1 m_{1}}$ and $B_{11}<B_{12}<\cdots<B_{1 M_{1}}$. If the equation above holds, then we see that

$$
\sum_{j=1}^{m_{1}} a_{1 j} \cos b_{1 j} n-\sum_{j=1}^{M_{1}} A_{1 j} \cos B_{1 j} n \longrightarrow 0
$$

as the integer $n \rightarrow \infty$. We therefore have by the lemma

$$
\begin{equation*}
m_{1}=M_{1}, a_{1 j}=A_{1 j}, b_{1 j}=B_{1 j} . \tag{8}
\end{equation*}
$$

We next consider the case of $k=2$. We have from (6) and (8)

$$
r_{2}^{-n} \sum_{j=1}^{m_{2}} a_{2 j} \cos b_{2 j} n+O\left(r_{3}^{-n}\right)=R_{2}^{-n} \sum_{j=1}^{M_{2}} A_{2 j} \cos B_{2 j} n+O\left(R_{3}^{-n}\right),
$$

which implies that $r_{2}=R_{2}, m_{2}=M_{2}, a_{2 j}=A_{2 j}$ and $b_{2 j}=B_{2 j}\left(j=1,2, \cdots, m_{2}\right)$. Repeating this, we get, for all $k, r_{k}=R_{k}, m_{k}=M_{k}, a_{k j}=A_{k j}$ and $b_{k j}=B_{k j}\left(j=1,2, \cdots, m_{k}\right)$. This proves the uniqueness for the expression (5) of δ_{n}, and the proof is completed.

We next prove the following theorem.
Theorem 2. Let the notations be as in Theorem 1. Then the Riemann hypothesis holds if and only if $m_{k}=1$, and $r_{k} \cos b_{k 1}=\frac{1}{2}$ for all k.

Proof. If the Riemann hypothesis is true, then we get $m_{k}=1$ for all k. Because, if $m_{k}>1$ for some $k \geqslant 1$, we have at least two different complex zeros of $\zeta(s)$ on a circle with center 0 and radius r_{k} in the upper plane $\operatorname{Im} s>0$; a contradiction. We now consider the modulus of the complex zero $\rho=\beta+i \gamma$ of $\zeta(s)$. Then we get $|\rho|=\gamma_{k}$ for some k, and therefore we have $r_{k} \cos b_{k 1}=\frac{1}{2}$ under the hypothesis, since $\beta=|\rho| \cos \{\arctan (\gamma / \beta)\}=\frac{1}{2}$. The uniqueness of the expression (5) completes the proof.

At present, we do not have a formula for δ_{n} which enables us to determine $r_{k}, m_{k}, a_{k j}$ and $b_{k j}$. However we have the following theorem. We define inductively the sequence $\delta(n, k)$ with positive integers n and k. We put

$$
\delta(n, 1)=\delta_{n}
$$

and define $\delta(n, k)$ for $k \geqslant 2$ by

$$
\delta(n, k)=\delta(n, k-1)-2 R_{k-1}^{-n} \sum_{\substack{v=0 \\ v \text { even }}}^{n}(-1)^{v / 2}\binom{n}{v}\left(\frac{1}{2} R_{k-1}^{-1}\right)^{n-v}\left(1-\frac{1}{4} R_{k-1}^{-2}\right)^{v / 2}
$$

with

$$
R_{k-1}=\lim _{n \rightarrow \infty}\left\{\frac{1}{2} \delta^{2}(n, k-1)-\frac{1}{2} \delta(2 n, k-1)\right\}^{-1 / 2 n}
$$

Theorem 3. Let the notations be as in Theorem 1. Suppose that the Riemann hypothesis is true, and all of the zeros of $\zeta(s)$ are simple. Then, for all $k, m_{k}=1, r_{k}=R_{k}, a_{k 1}=1$, and $b_{k 1}=\arctan \left(R_{k}^{2}-\frac{1}{4}\right)^{1 / 2}$.

Proof. By Theorem 2, we get $m_{k}=1, b_{k 1}=\arctan \left(r_{k}^{2}-\frac{1}{4}\right)^{1 / 2}$, and easily obtain $a_{k 1}=1$ from the fact that all of the zeros are simple. Hence, it is enough to prove that, for every k,

$$
\begin{equation*}
\delta(n, k)=2 \sum_{k=k}^{\infty} r_{h}^{-n} \cos b_{h 1} n, \quad r_{k}=R_{k} . \tag{9}
\end{equation*}
$$

We prove this by induction on k. In case $k=1$, we have $\delta(n, 1)=\delta_{n}$, and hence we have only to show $r_{1}=R_{1}$. We get from the distribution of the zeros of $\zeta(s)$

$$
\delta(n, 1)=2 r_{1}^{-n} \cos b_{11} n+O\left(r_{2}^{-n}\right)
$$

It follows that

$$
\frac{1}{2} \delta^{2}(n, 1)-\frac{1}{2} \delta(2 n, 1)=r_{1}^{-2 n}+O\left(r_{2}^{-n} r_{1}^{-n}\right)
$$

since, for any $\theta, 2 \cos ^{2} \theta-\cos 2 \theta=1$. Therefore

$$
\left\{\frac{1}{2} \delta^{2}(n, 1)-\frac{1}{2} \delta(2 n, 1)\right\}^{1 / 2 n}=r_{1}^{-1}\left[1+O\left\{\frac{1}{n}\left(\frac{r_{2}}{r_{1}}\right)^{-n}\right\}\right]
$$

and hence we get $r_{1}=R_{1}$. We next assume that the condition (9) holds in case $k-1$. We then have from the definition of $\delta(n, k)$
(10) $\delta(n, k)=2 \sum_{h=k-1}^{\infty} r_{h}^{-n} \cos b_{h 1} n-2 r_{k-1}^{-n} \sum_{\substack{v=0 \\ v \text { even }}}^{n}(-1)^{v / 2}\binom{n}{v}\left(\frac{1}{2} r_{k-1}^{-1}\right)^{n-v}\left(1-\frac{1}{4} r_{k-1}^{-2}\right)^{v / 2}$,
since $r_{k-1}=R_{k-1}$. By Theorem 2, we get $r_{k-1} \cos b_{k-1,1}=\frac{1}{2}$, and hence

$$
\begin{aligned}
\cos b_{k-1,1} n & =\sum_{\substack{v=0 \\
v \text { even }}}^{n}(-1)^{v / 2}\binom{n}{v} \cos ^{n-v} b_{k-1,1} \sin ^{v} b_{k-1,1} \\
& =\sum_{\substack{v=0 \\
v \text { even }}}^{n}(-1)^{v / 2}\binom{n}{v}\left(\frac{1}{2} r_{k-1}^{-1}\right)^{n-v}\left(1-\frac{1}{4} r_{k-1}^{-2}\right)^{v / 2},
\end{aligned}
$$

which implies

$$
2 r_{k-1}^{-n} \cos b_{k-1,1} n=2 r_{k-1}^{-n} \sum_{\substack{v=0 \\ v \text { even }}}^{n}(-1)^{v / 2}\binom{n}{v}\left(\frac{1}{2} r_{k-1}^{-1}\right)^{n-v}\left(1-\frac{1}{4} r_{k-1}^{-2}\right)^{v / 2}
$$

It follows from (10) that

$$
\delta(n, k)=2 \sum_{h=k}^{\infty} r_{h}^{-n} \cos b_{h 1} n .
$$

We can easily prove that $r_{k}=R_{k}$ by means of the formula $\frac{1}{2}\left\{\delta^{2}(n, k)-\delta(2 n, k)\right\}$ $=r_{k}^{-2 n}+O\left(r_{k}^{-n} r_{k+1}^{-n}\right)$, and the proof is completed.

Recently, we obtained an expression of $\gamma_{1}([3]$, Theorem 8$)$, where $\frac{1}{2}+i \gamma_{1}\left(\gamma_{1}>0\right)$ is the first complex zero of $\zeta(s)$, which states that

$$
\gamma_{1}=\lim _{n \rightarrow \infty}\left\{\left(\frac{1}{2} \delta_{n}^{2}-\frac{1}{2} \delta_{2 n}\right)^{-1 / n}-\frac{1}{4}\right\}^{1 / 2}
$$

Let γ_{k} be the kth ordinate of the zeros of $\zeta(s)$. Noticing that $r_{k}=\left|\frac{1}{2}+i \gamma_{k}\right|$ for all k under the assumptions of Theorem 3, we have, in general, the following corollary.

Corollary 3. With the same assumptions as in Theorem 3, we have, for every k,

$$
\gamma_{k}=\lim _{n \rightarrow \infty}\left[\left\{\frac{1}{2} \delta^{2}(n, k)-\frac{1}{2} \delta(2 n, k)\right\}^{-1 / n}-\frac{1}{4}\right]^{1 / 2} .
$$

It is desirable to have a precise estimate for δ_{n} and $\delta(n, k)$. In this direction, we can show the following upper bound for the quantity $\left|\delta_{n}\right|$.

Theorem 4. $\delta_{n}=O\left\{\left(1+C_{0}\right)^{n}\right\}$.
Proof, Let us recall an estimate for $C_{n}([3]$, Theorem 4) which states that $\left|C_{n}\right|<0.0001 \exp (n \log \log n)$ for all $n \geqslant 10$, and the numerical values for $0 \leqslant n \leqslant 9$ (see [1]), that is, $C_{0}=0.57721566, C_{1}=-0.07281584, C_{2}=-0.00969036, C_{3}=0.00205387$, $C_{4}=0.00232537, \quad C_{5}=0.00079332, \quad C_{6}=-0.00023876, \quad C_{7}=-0.00052728, \quad C_{8}=$ -0.00035212 and $C_{9}=-0.00003439$. Then we can prove that $\left|C_{n}\right| / n$! has the maximum $\left|C_{0}\right| / 0!=C_{0}$ at $n=0$. Hence, for $n \geqslant 2$, we have from (1)

$$
\begin{aligned}
\delta_{n} & =1-\left(1-2^{-n}\right) \zeta(n)+n \sum_{h=1}^{n} \frac{1}{h} \sum_{\substack{j_{1}+\cdots,+j_{n}=n=-n \\
i n \geq 0, \cdots, j_{n} \geqslant 0}} \prod_{b=1}^{n} \frac{C_{j_{b}}}{j_{b}!} \\
& =O(1)+O\left\{\sum_{h=1}^{n}\binom{n}{h} C_{0}^{h}\right\}=O\left\{\left(1+C_{0}\right)^{n}\right\},
\end{aligned}
$$

since $1-\left(1-2^{-n}\right) \zeta(n)=O(1)$, and $\Sigma_{j} C_{0}^{h}=\binom{n-1}{h-1} C_{0}^{h}$. This proves the theorem.
If we use Theorem 3 and Theorem 4, we obtain $r_{1} \geqslant\left(1+C_{0}\right)^{-1}$, so that the first complex zero ρ_{1} satisfies $\left|\rho_{1}\right| \geqslant\left(1+C_{0}\right)^{-1}$, which leads to the following corollary.

Corollary 4. $\quad \gamma_{1}>\left\{\left(1+C_{0}\right)^{-2}-\frac{1}{4}\right\}^{1 / 2}$.

References

[1] Liang, J. J. and Todd, J., The Stiltyes constants, J. Res. National Bureau of Standards Math. Sci. B76 (1972) 161-178.
[2] Matsuoka, Y., A note on the relation between generalized Euler constants and the zeros of the Riemann zeta function, J. Fac. Educ. Shinshu Univ. 53 (1985) 81-82.
[3] Matsuoka, Y., Generalized Euler constants associated with the Riemann zeta function, Number Theory and Combinatrics Japan 1984, 279-295, World Scientific Publishing Co., Singapore, 1985.
[4] Titchmarsh, E. C., The theory of the Riemann zeta function, Clarendon Press, Oxford, 1951.

Yasushi Matsuoka
Department of Mathematics
Faculty of Education
Shinshu University
Nishinagano, Nagano 380
Japan

[^0]: Received September 2, 1985.

