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A SEQUENCE ASSOCIATED WITH THE ZEROS OF THE
RIEMANN ZETA FUNCTION

By
Yasushi MATSUOKA

Let {(s) be the Riemann zeta function, let C, denote the generalized Euler constants
associated with £(s), i. e.,

N
C,,=}]im {Z log"k/k—log”“N/(n+1)},
and define the numbers J,(n>1) by
) —1+1C —llo —log 2
1 g 07Ty gn g &,

and, for n>2,

- z 1 h c.b
@ 9,=1-(1-2 ){(n)+nh§_:1; "y I:]:—"
= it +jp=n—h b=1Jb
1120, -, 7,20
Then we have, for n>1,
) 6=2,p"
p

where the sum X, is taken over all complex zeros p of {(s)(see [2]).

In this paper we shall study the sequence {J,} and prove four theorems. In Theorem 1
we shall give an expression of d,, and, using it, we shall derive, in Theorem 2, a necessary
and sufficient condition for the truth of the Riemann hypothesis. The expression of &, will
be specified in Theorem 3 under the Riemann hypothesis, and in the final Theorem 4, we
shall give an upper bound for the quantity |J,].

We start with the following lemma.

LEMMA. Let m be a positive integer, let a;(j=1, 2, -+, m) be real numbers, and let
bi(j=1, 2, - - -, m) be mutually distinct positive numbers<n. If

m
> a;cos bin — 0,
j=1
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as an integer n— oo, then a;=0 for all j=1,2, -+ -, m.

PROOF. Suppose that @,#0 for some integer £ with 1<k<\m, and let ¢ be a positive
number<3${a,|. Then, from the condition of the lemma, there exists a positive integer #,
such that the inequality

<e

3) li a; cos bin
j=1

holds for all integers n=>ny. Let N be an arbitrary positive integer. If we multiply both
sides of (3) by |2 cos by |, and add them with respect to # form ny+1 to n,+ N, then we get

m not+N
>ia; >, {cos (by—b)n+cos (by+b;)n} =7, say,
j=1 n=mno+1

with |7| <2eN. It follows that

ng+ N m no+N
4) ar >, cos2bm+Da; >, {cos(by—bjm+cos (by+b;n} =r— Na,.
n=mng+1 i=1 n=np+1
J*k

Since b, are mutually distinct positive numbers<r, 26,%0 (mod 27) and b,+b;%0 (mod 27)
for any pair of 2 and j with 2+, so that the left hand side of (4) is 0(/N), as N— 0. On the
other hand, the absolute value of the right hand side is greater than 3 |a,| N, and hence the
equation (4) yields a contradiction. This completes the proof.

THEOREM 1. For any n>1, 6, can be uniquely expressed in the form

Y mp
5) 6,=2 D, 7" D, ay; COS byn,
k=1 Jj=1
where {r,) is an increasing sequence of positive numbers, my(k>1) and ay;(j=1,2, - - -, my)
are positive integers, and by (j=1, 2, - - -, m,) are mutually distinct positive numbers<i

such that 7, cos by;<1. The constants r,, my, ay; and by; are independent of n.

ProoF. If we put p=pg+1iy in (2), we get

8,=2 ), (/32+y2)‘%” cos (n arctan l) ,
y>0 ﬁ
noting that the complex conjugate of p is also the zero of {(s). If we make use of the fact
that 0<8<1, we get 0<arctan (y/B)<31 n, and (82+y%)"? cos {arctan (y/B)} <1. Hence,
we can obtain the expression (5).
It remains to show the uniqueness. Suppose that &, has two expressions

) mp oo M,
(6) G.=2 D 7" >, aycos bym=2 >, Ry" >, Ay cos Byn.
k=1 j=1 k i=1

=1 =

Then we can get
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my M

(7 71" >, apc08 bym+O(r;)=Ri™ > Ayj cos Byyn+O(R; ™).

j=1 j=1

To prove (7), we make use of the estimate ([4], Theorem 9. 4.)
T 1
N(T)=—1log T—— (1+log 2rn) T+ O(log T),
2n 2n

where N(T') is the number of the zeros of {(g+it) in the region 0<o<1, 0<¢<T. Then
we obtain

% i Sa= Y Ipl < TNE@T)-N(T) =0(T " log T),
=1

2 1\12
T<(n,—z) <oT T<y<2T

so that
My

e > ay=0(T "*1log T).
i=1

It follows that, for sufficiently large 7,

3 my m M
Zr;”Eakjcosbk,»n=rf”Zaljcosbljn+0( > r;”Zakj>
k=1 j=1 j=1 (72_%)1/2@ j=1
E#1
M
+0 ( 2 it ak,->
ri—l j=1

I)1/2

=r" 3 @y cos bm+O0(r; T log T)+O0(T " log T);

Jj=1

7<(

which leads to (7). Now, if we compare the orders of both sides of (7), we get, using the lem-
ma, r;=R,;. Thus we have

my M,

Z a,; COS bl,-n— Z Alj cos Bljn=0(r§‘rz_"+Ri‘Rz_"),
j =1

j=1 J
where we may assume that by <8;3<- - - <by,, and By; <By;<- - <Byy,. If the equation
above holds, then we see that

my M
Dl ajcos bym—>, Ayjcos Bin — 0,
=1 =1

as the integer #— o0, We therefore have by the lemma
) m1=M, a;j=Ayj, b;;=B;;.

We next consider the case of #=2. We have from (6) and (8)

my M,
7’2_’2 Z a3 COS szn+0(r3_")=R{" Z Azl‘ [ol0 1] szn+0(R3_"),

j=1 j=1
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which implies that 7, =R, my=M,, ay;=A,;and by;=B,;(j=1, 2, - - -, m;). Repeating this,
we get, for all k, 7,=Ry, m,=M,, ayy=A;; and b,=B,;(j=1, 2, -- -, m,). This proves the
uniqueness for the expression (5) of &,, and the proof is completed.

We next prove the following theorem.

THEOREM 2. Let the notations be as in Theorem 1. Then the Riemann hypothesis holds
if and only if my=1, and 7, cos by =1 for all k.

PROOF. If the Riemann hypothesis is true, then we get m,=1 for all k. Because, if
m;,>1 for some k2>1, we have at least two different complex zeros of {(s) on a circle with
center 0 and radius 7, in the upper plane Im s>0; a contradiction. We now consider the
modulus of the complex zero p=pg+iy of {(s). Then we get |p|=7, for some %, and
therefore we have 7, cos by; =3 under the hypothesis, since = |p| cos {arctan (y/g)} =1.
The uniqueness of the expression (5) completes the proof.

At present, we do not have a formula for &, which enables us to determine 7, m, @
and b,;. However we have the following theorem. We define inductively the sequence
d(n, k) with positive integers # and k. We put

o(n, 1)=4,

and define d(n, k) for £>2 by

_ 2 n 1 _ n-v 1 ~ v/2
6(",k)=5(7’l,k_1)_2Rk_"1 Z (_l)v/2< ) (_Rk_ll) <l_*Rk_21>
=0 v 2 4

veven

with
1 1 ~1/2n
Ry =lim {—2~52(n, k=1)=5 62, k—l)} :

THEOREM 3. Let the notations be as in Theorem 1. Suppose that the Riemann hypothesis
1s true, and all of the zeros of ((s) ave simple. Then, for all k, m,=1, r,=R,, an=1, and
by =arctan (R;—1)2,

PROOF. By Theorem 2, we get m,=1, by =arctan (r;—1)"/2, and easily obtain a, =1
from the fact that all of the zeros are simple. Hence, it is enough to prove that, for every &,

) o(n, k)=2 >, ri"cos bun, n=R,
h=k

We prove this by induction on . In case k=1, we have §(»n, 1)=4,, and hence we have only
to show r1=R;. We get from the distribution of the zeros of {(s)

d(n, 1)=2r{" cos byn+0O(r;").
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It follows that
1, 1 2 e
2 94n, 1)~E 0@n, D=r*+0(r;"r"),

since, for any 8, 2 cos?d— cos 20=1. Therefore

1/2n -7
{lJZ(n, H-=sn, 1)} =y [1+o{l <Q> }:|
2 2 n \n

and hence we get ,=R,. We next assume that the condition (9) holds in case k—1. We
then have from the definition of (n, k)

23 n 1 n—v 1 v/2
(10) 6(n, R)=2 >, 7;"cos bun—2r;" >, (=12 ( Z ) (-—2— r;_l1> <1_Z rk‘_zl) ,
h=k~-1 =0

since 7,-1=R,-;. By Theorem 2, we get 7,_; cos bk_m:% , and hence

n n .
o8 bp_ym= D (—1)"2 ( > €0S" b1 SinBe—1 1
v

=0
veven

which implies

% n 1 n-v v/2
2777 €08 byoym =275 >, (=12 < ) < - 7’1?—11) <1—— 7’1?—21) .
v

v=0
veven

It follows from (10) that

o(n, k)=2 3 r;" cos byn.

h=k

We can easily prove that »,=R, by means of the formula 1 {6%n, k)—&(@2n, k)}

=772+ O(ry"ridy), and the proof is completed.
Recently, we obtained an expression of y,([3], Theorem 8), where 1+ iy, (y;>0) is the
first complex zero of {(s), which states that

. 1 1 -1/ ] 12
Y1='1‘1_{£1°{<55§—“2—52n) _Z} .

Let 7, be the kth ordinate of the zeros of £(s). Noticing that 7,= |3 +4y,| for all £ under the
assumptions of Theorem 3, we have, in general, the following corollary.

COROLLARY 3. With the same assumptions as in Theorem 3, we have, for every k,
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. 1., 1 “Un {1 2
= = - 3 - .
Ve 31_12[{25(;1,1@) 5 9@n, )} 4]
It is desirable to have a precise estimate for &, and &(n, £). In this direction, we can

show the following upper bound for the quantity |J,].
THEOREM 4. 6,=0 {(1+Cy)"}.

ProOOF, Let us recall an estimate for C,([3], Theorem 4) which states that
{C,| <0.0001 exp ( log log #) for all #>>10, and the numerical values for 0<% <9 (see [1]),
that is, C,=0.57721566, C,=-0.07281584, C,=-0.00969036, C;=0.00205387,
C,=0.00232537, C5=0.00079332, Cz=—0.00023876, C,=—0.00052728, Cs=
—0.00035212 and Cy= —0.00003439. Then we can prove that |C,|/»! has the maximum
[Col/0'=C, at n=0. Hence, for »>2, we have from (1)

n 1 h
&=1-(1=2"%w+n 35— > JI-

=o(1)+o{ 3 <Z ) cg} —0(1+C)Y,
h=1

since 1—(1—2")¢(1)=0(1), and T, Ck= ( Z:l

If we use Theorem 3 and Theorem 4, we obtain 7, >(1+C,) ™}, so that the first complex

) Ct. This proves the theorem.

zero p, satisfies |p,| =>(1+Cy)~!, which leads to the following corollary.

: 1/2
COROLLARY 4. p,> {(1 +Co)_2—%} .
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