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A SEQUENCE ASSOCIATED WITH THE ZEROS OF THE

RIEMANN ZETA FUNCTION

By

Yasushi Matsuoka

Let £(s)be the Riemann zeta function,let Cn denote the generalized Euler constants

associated with C(s),i. e.,

Cn= lim
i

y. lognk/k-logn+1N/(n + l)＼

N^ U=i J

and define the numbers <5M(w>l)by

and, for n>2,

(1)

<5i= l+― Co-― Iog7r-log2,

dn=l-(l-2-n)C(n)+n

Then we have, for≪>1,

(2)

k 1 h C
yi. y tt^

A =l nh+-+jk=n-h b=l Jb-

P

h>0, ■■･Jk>0

where the sum T,pis taken over allcomplex zeros p of £(s)(see[2]).

In this paper we shall study the sequence {Sn} and prove four theorems. In Theorem 1

we shall give an expression of dn, and, using it,we shall derive, in Theorem 2, a necessary

and sufficient condition for the truth of the Riemann hypothesis. The expression of Sn will

be specified in Theorem 3 under the Riemann hypothesis, and in the final Theorem 4, we

shall give an upper bound for the quantity ＼5n＼.

We start with the following lemma.

Lemma. Let m be a positive integer, let aj{j=＼, 2, ･･ ･,rn) be real numbers, and let

bj(j=l, 2, ･ ･･,m) be mutually distinctpositive numbers<n. If

m
2 a, cos bjn ―*■0,

7=1
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as an integer n-^oo, then ≪;=0 for allj=l, 2, ･･ ･,m.

Proof. Suppose that ak^0 for some Integer k with K£<m, and let e be a positive

number<j＼ak＼. Then, from the condition of the lemma, there exists a positive integer n0

such that the inequality

(3) I m
＼Yjaicos bjfi <e

7= 1

holds for allintegers w>n0. Let TV be an arbitrary positive integer. If we multiply both

sides of(3) by 12 cos bkn|, and add them with respect to n form n0 +1 to no+N, then we get

ms fly

no+N
S

n=no+l

with Irl <2eN. It follows that

(4)
ak

{cos (bk ― bj)n +cos {bk + b;)n} =r, say,

no+N m no+N
2 cos2bkn + J]aj J] {cos (bk ―bj)n +cos (bk + bj)n} =r-Nak.

≪=Mo+l 7=1 K=no+1

Since fyare mutually distinct positive numbers <7i, 2bk^0 (mod 2n) and bk±b0Q (mod 2ri)

for any pair of k and/ with &=£/,so that the left hand side of (4) is o(N), as iV-^oo. On the

other hand, the absolute value of the right hand side is greater than ＼ ＼ak＼N, and hence the

equation (4) yields a contradiction. This completes the proof.

Theorem 1. For any n>＼,5n can be uniquely expressed in theform

(5)

Sn = 2
k=l

mk
rkn Yiakicos bkjn,

7= 1

where {rk} is an increasing sequence of positive numbers, mk(k^l) and akj(j=l, 2, ･ ･･, mk)

are positive integers, and bkj(j=l, 2, ･･ ･, mk) are mutually distinct positive numbers<＼ n

such that rk cos bkj<t. The constants rk,mk, akjand bkjare independent of n.

Proof. If we put p=B+iy in (2),we get

y>0

2" cos ( n arctan ― !,

noting that the complex conjugate of p is also the zero of £(s).If we make use of the fact

that 0<jS<1, we get CKarctan {ylp)<＼ n, and ($2 + y2)1/2cos {arctan (y/fi)]<l. Hence,

we can obtain the expression (5).

It remains to show the uniqueness. Suppose that Sn has two expressions

(6)

Then we can get

Sn = 2

k=l

mk

akj cos bkjn = 2 2 RknJ]AkjcosBkjn
k=＼ y=i



(7)

A Sequence Associated With the Zeros of the Riemann Zeta Function

rrn 2 axjcos bxjn+ O{r2n)=Rin

7=1

Mi
J] Atj cos B^n + OiRp).

To prove (7),we make use of the estimate([4],Theorem 9. 4.)

7V(T)=-^log T-^-(l + log27r)T+O(log T),
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where N(T) is the number of the zeros of((cr+ it)in the region 0<a<l, 0<£<T. Then

we obtain

, ?w/2 nnf,akj= 2 l/>rM<T-≪{iV(2r)-7V(T)}=O(T-'!+1logn

T<[r＼-±)<2T j=l T<y<2T

so that

^
1^rpJ]akj=O(T-n+liogT).-^ / 2 1 ＼1/2

It follows that, for sufficientlylarge T,

*=1

;=i

mk mi
nn Y,akjcos bkJn=rfn Y,axjcos bijti+ O

;=i

r＼

;=i

(

(-

s

ir-
k*l

v-n

j=＼ /

n S axjcos byn + Oir^Tlog T) + O(T~n+1 log T);

7=1

which leads to(7). Now, if we compare the orders of both sides of(7), we get, using the lem

ma, r-i=R＼.Thus we have

mi

2 01; COS 6l;W -

7=1

Mi
%AljcosBljn = O(rn1r2n+RiR2n),

y=i

where we may assume that bn<bi2< ■■■<bXmi and Bn<B12< ･ ･■<BiMl- If the equation

above holds, then we see that

Y] a,＼jcos bijfi ― Y＼ A＼j cos Bijn ―*- 0

;=1 ;=i

as the integer ≪->oo.We therefore have by the lemma

(8) mi=Mi, alj=Alj, bxj=BXj.

We next consider the case of k=2. We have from (6) and (8)

rp
Ttt2

a2jcos b2jn+ O(r3n)=R2n
M2s

A2j cos B2jn + O(Rp),
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which implies thatr2=R2, M2=M2, a2j=A2j and b2j=B2j(j= 1,2, ･･･,m2).Repeating this,

we get,for all k,rk=Rk, mk=Mk, akj=Akj and bkj=Bkj(j=t, 2, ･･･,mk). This proves the

uniqueness for the expression (5) of Sn,and the proof is completed.

We next Drove the following theorem.

Theorem 2. Let the notations be as in Theorem 1. Then the Riemann hypothesis holds

if and only ifmk=l, and rk cos bkl=＼ for allk.

Proof. If the Riemann hypothesis is true, then we get mk=l for allk. Because, if

mk>l for some &>1, we have at least two different complex zeros of £(s)on a circle with

center 0 and radius rk in the upper plane Im s>0; a contradiction. We now consider the

modulus of the complex zero p=fi+iy of C(s). Then we get ＼p＼=rk for some k, and

therefore we have rk cos bk＼―＼under the hypothesis, since 0= ＼p＼cos {arctan {yip)} =＼.

The uniqueness of the expression (5) completes the proof.

At present, we do not have a formula for dn which enables us to determine rk,mk, akj

and bkj. However we have the following theorem. We define inductively the sequence

S(n, k) with positive integers n and k. We put

S(n, 1)=4,

and define din. k) for &>2 bv

with

d(n,k)=d(n,k-l)-2Rr?

i?£_i= lim

1

_

2

t< -*■(;)(l^)-(x-i
veven

S2(n,k-l)-＼d{2n,k-l)＼
z J

-l/2≫

Theorem 3. Let the notations be as in Theorem 1. Suppose that the Riemann hypothesis

is true, and all of the zeros of £(s)are simple. Then, for all k,mk=l, rk=Rk, aw = l, and

6H=arctan(i^-i)1/2.

PROOF. By Theorem 2, we get mk=l, &w = arctan {r2k―j)1/2,and easily obtain aki= l

from the fact that allof the zeros are simple. Hence, itis enough to prove that, for every k,

(9) S(n, k)=2 S rln cos bkln, rk=Rk.

h=k

We prove this by induction on k. In case k = 1, we have S(n, l)=Sn, and hence we have only

to show ri=R1. We get from the distribution of the zeros of £(s)

din, l) = 2rp cos bnn + O(ron).
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It follows that

＼t＼n
,1)--S(2n, l)= r^ + O(rprn

since, for any 8, 2 cos20―cos 26=1. Therefore

{|≪. ,1)~J(2≫,1)J

l/2≪

■'･-'[Hi ft)"}]'
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and hence we get ri=/?i.We next assume that the condition(9) holds in case k―1. We

then have from the definitionof din,k)

(10) 3(n, k) = 2
f]

h=k-＼

rh n cos hhln-2n-
ns

v=0
v even

since rk-i=Rk-v By Theorem 2, we get n_i

which implies

cos bk-nn
n

= s

v=Q
v even

(-l)"/2(

<-o
(!r-i

{
2

n-1 H1

cos bk-ii=|, and hence

")

V )
cos" %-hl sin^-ii

veven

2rk?1cosbk-hln = 2rkJ?1

i _2y2

1 ＼n-v/ 1 ＼v/2

It follows from (10) that

2 <-*･(:)(i'*rK*-r
veven

S(n, k}=2 2 rh n cos hhin.

h=k

We can easily prove that rk=Rk by means of the formula ＼{S2(n, k) ―S(2n, k)}

=rk2n + O(rknTk+i), and the proof is completed.

Recently, we obtained an expression of yi([3],Theorem 8),where ＼+ iy＼(y＼>Q)is the

first complex zero of C(s),which states that

7i
lim {(i'--i *.)

l/≫ 1 1 1/2

Let yk be the kth ordinate of the zeros of £(s).Noticing that rk= ＼＼+iykI for allk under the

assumptions of Theorem 3, we have, in general, the following corollary.

Corollary 3. With the same assumptions as in Theorem 3, we have, for every k,
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[{
j62(n,k)-^6(2n,k)j

-1/" 1 ~]l/2

"I

J

It is desirable to have a precise estimate for 5n and 8{n, k). In this direction, we can

show the following upper bound for the quantity ＼Sn＼.

Theorem 4. Sn=O {(1+Cof}.

Proof, Let us recall an estimate for C≫([3], Theorem 4) which states that

I Cn |< 0.0001 exp (n log log n) for all n> 10, and the numerical values for 0<m<9 (see [1]),

that is, C0=Q.57721566, d=-0.07281584, C2= -0.00969036, C3=0.00205387,

C4 = 0.00232537, C5 = 0.00079332, C6=-0.00023876, C7=-0.00052728, C8 =

-0.00035212 and C9= -0.00003439. Then we can prove that ＼Cn＼/n＼has the maximum

|Cn|/0! = Co at n = 0. Hence, for n>2, we have from (1)

Sn = l-a-2-n)C(n) + n
ns

k=l

i h n.

h h+...ffn=n_ht=ljbl
h>o,■■■,u>o

=o(i)+o{i;
(^c04=o{(i+c0n,

since l-(l-2-tt)£(n) = 0(l), and S;-C§=
( ?_. )

C§. This proves the theorem.

If we use Theorem 3 and Theorem 4, we obtain r1>(t + Co) ＼so that the firstcomplex

zero p＼satisfies ＼p＼| Xl + Co)"1, which leads to the following corollary.

f 1 1 1/2

Corollary 4. y1>Ul+C0)~2 ―- Y .
{ 4 I
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