ON SPAN AND INVERSE LIMITS

By

Kazuhiro KAWAMURA

1. Introduction.

A compact metric space is called a *compactum* and a connected compactum is called a *continuum*. All maps in this paper are continuous. Let $f: X \rightarrow Y$ be a map between continua. Ingram [2] and Lelek [11] defined the *span*, *semispan*, *surjective span*, and *surjective semispan* of f by the following formulas (the map $p_i: X \times X \rightarrow X$ denotes the projection to the *i*-th factor, i=1, 2).

 $\tau = \sigma, \sigma_0, \sigma^*, \sigma_0^*.$ $\tau(f) = \sup \left\{ c \ge 0 \middle| \begin{array}{c} \text{there exists a continuum } Z \subset X \times X \text{ such} \\ \text{that } Z \text{ satisfies the condition } \tau \text{) and} \\ d(f(x), f(y)) \ge c \text{ for each } (x, y) \in Z \end{array} \right\},$

where the condition τ) is:

$$p_1(Z) = p_2(Z) \quad \text{if } \tau = \sigma, \qquad p_1(Z) \supset p_2(Z) \quad \text{if } \tau = \sigma_0,$$

$$p_1(Z) = p_2(Z) = X \quad \text{if } \tau = \sigma^*, \qquad p_1(Z) = X \quad \text{if } \tau = \sigma_0^*.$$

The span of a continuum X is defined by $\sigma(id_X)$. The other cases are similar. In the same way, we can define the symmetric span of f by the formula

$$s(f) = \sup \left\{ c \ge 0 \middle| \begin{array}{l} \text{there exists a continuum } Z \subset X \times X \text{ such that} \\ Z \text{ is symmetric (i. e. } (x, y) \in Z \text{ iff } (y, x) \in Z) \\ \text{and } d(f(x), f(y)) \ge c \text{ for each } (x, y) \in Z \end{array} \right\}.$$

It is a mapping version of symmetric span of a continuum due to J. F. Davis [1].

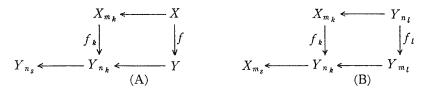
Let $X = \underset{j}{\lim} (X_n, p_{n n+1})$ be a continuum, where $p_{n n+1}: X_{n+1} \rightarrow X_n$. Ingram [2] and [4] showed that $\sigma(X)=0$ if and only if there exists a cofinal subsequence $(n_i)_{i\geq 1}$ such that $\underset{j}{\lim} \sigma(p_{n_i n_j})=0$ for each $i\geq 1$. In section 2 of this paper, we will prove a mapping version of this theorem. H. Cook proved essentially that the symmetric span of the dyadic solenoid is zero ([1], p. 134), while its span is positive. The author wishes to thank to the referee for pointing out this fact. In section 3, we generalize this to the poly-adic solenoid. Let f and $g: X \rightarrow Y$ be maps. d(f, g) denotes $\sup\{d(f(x), g(x))| x \in X\}$.

Received March 12, 1987.

2. Span and a limit of maps.

Let $X = \underline{\lim} (X_n, p_{n n+1})$ and $Y = \underline{\lim} (Y_n, q_{n n+1})$ be compacta, where all X_n and Y_n are polyhedra and both of $p_{n n+1} \colon X_{n+1} \to X_n$ and $q_{n n+1} \colon Y_{n+1} \to Y_n$ are surjective for each $n \ge 0$. The maps $p_n \colon X \to X_n$ and $q_n Y \to Y_n$ denote the projection maps. Under these notations, Mioduszewski showed the following [15].

THEOREM 1. 1) For every sequence (ε_n) of positive numbers with $\lim \varepsilon_n = 0$, there exist cofinal increasing subsequences (m_k) and (n_k) and maps $f_k: X_{m_k} \to Y_{n_k}$ such that diagrams (A) and (B) are ε_k -commutative for each $s \leq k \leq l$.



2) Conversely, if we are given diagram (B), then we can find a map $f: X \to Y$ which satisfies diagram (A) for each k. If all f_k 's are surjective, f can be constructed so as to be surjective.

Notice that the map f is defined by $q_{n_s}f = \lim_{k} q_{n_s n_k} f_k p_{m_k}$.

We say that f is *weakly induced* by the sequence (f_k) . This terminology is due to Oversteegen and Tymchatyn [13].

THEOREM 2. Let $f: X \to Y$ be a map between continua which is weakly induced by a sequence $(f_k: X_{m_k} \to Y_{n_k})$ Then,

 $\tau(f)=0$ if and only if there exists a cofinal subsequence (n_{k_j}) of (n_k) such that $\lim_{i} \tau(q_{n_{k_i}n_{k_j}}f_{k_j})=0$ for each i. Where, $\tau=\sigma$, σ^* , σ_0 , σ_0^* , and s.

The basic idea of the proof is in [2] and [3]. But we need some preparations. Throughout this section, τ denotes σ , σ_0 , σ^* , σ_0^* , and s unless otherwise stated.

PROPOSITION 3. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be maps. 1) $\tau(gf) \leq \tau(g)$. 2) If $\tau(f) = 0$, then $\tau(gf) = 0$.

POPOSITION 4. Let $(f_n : X \to Y)$ be a sequence of maps which converges uniformly to a map $f : X \to Y$. Then $\tau(f) = \lim \tau(f_n)$.

The proof of the above two propositions are easy and will be omitted.

PROPOSITION 5. 1) Let X_n 's and X be continua in a metric space M and let Y_n 's and Y be continua in a metric space N. Suppose that $f: X \rightarrow Y$, $f_n: X_n \rightarrow Y_n$, $p_n: X \rightarrow X_n$, and $q_n: Y \rightarrow Y_n$ satisfy the following conditions.

a) Lim X_n=X, Lim Y_n=Y. Both of X∪ ∪ X_n and Y∪ ∪ Y_n are compact.
b) Both of the maps p_n and q_n are 1/2ⁿ-translation (that is, d(x, p_n(x))<
1/2ⁿ for each x∈X etc.).

c) There exists a decreasing sequence of prositive numbers ε_n 's with $\lim \varepsilon_n = 0$, such that $d(q_n f, f_n p_n) < \varepsilon_n$.

d) Define $F: X \cup \bigcup X_n \to Y \cup \bigcup Y_n$ by F | X = f, $f | X_n = f_n$. Then F is well defined and continuous.

Then $\tau(f) = \lim \tau(f_n)$.

- 2) We can replace condition d) by
- e) Each p_n is surjective.

Reasoning the same way as in [10, 3.1] and [5, 2.1], we can show two inequalities; $\limsup \tau(f_n) \leq \tau(f) \leq \liminf \tau(f_n)$, which imply the conclusion.

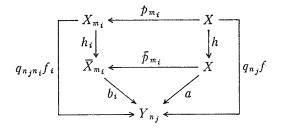
PROOF OF THEOREM 2. To simplify the notations, a cofinal subsequence of (n_i) is also denoted by (n_i) . First we assume that $\tau(f)=0$. Take any subsequence (n_i) and an integer j>0. It suffices to prove that $\lim_i \tau(q_{n_j n_i} f_i)=0$. Let A be a compactum satisfying the following conditions.

1) $A = \overline{X} \cup \bigcup \overline{X}_{m_k}$, where \overline{X} and \overline{X}_{m_k} are homeomorphic to X and X_{m_k} respectively. $\overline{X} \cap \overline{X}_{m_k} = \emptyset = \overline{X}_{m_k} \cap \overline{X}_{m_l}$ for each $k \neq l$.

2) Let $h: X \to \overline{X}$ and $h_k: X_{m_k} \to \overline{X}_{m_k}$ be homeomorphisms. There exists an ε_k -translation $\overline{p}_{m_k}: \overline{X} \to \overline{X}_{m_k}$ satisfying $h_k p_{m_k} = \overline{p}_{m_k} h$.

3) Lim $\overline{X}_{m_{k}} = \overline{X}$.

That such space A exists is well known. As each bonding map is surjective, we can take each \bar{p}_{m_k} to be surjective. Consider the following diagram.



Where, $a=q_{n_i}fh^{-1}$ and $b_i=q_{n_i n_j}f_ih_i^{-1}$. Then,

4)
$$d(a, b_i \bar{p}_{m_i}) = d(q_{n_j} f h^{-1}, q_{n_j n_i} f_i h_i^{-1} h_i p_{m_i} h^{-1})$$

= $d(q_{n_j n_i} q_{n_i} f, q_{n_j n_i} f_i p_{m_i}) < \varepsilon_i$

by the ε_i -commutativity of (A). It is easy to see that $\tau(a) = \tau(q_{n_j}f)$ and $\tau(b_i) = \tau(q_{n_j n_i}f_i)$. Applying Proposition 3.2), Proposition 5 and by condition 4), we have

$$\lim_i \tau(q_{n_j n_i} f_i) = \lim_i \tau(b_i) = \tau(q_{n_j} f) = 0.$$

Next we assume that a cofinal subsequence satisfies the hypothesis. By Proposition 4 and Proposition 3.1),

$$\tau(q_{n_j}f) = \lim_{i} \tau(q_{n_j n_i}f_i p_i)$$
$$\leq \lim_{i} \tau(q_{n_j n_i}f_i) = 0$$

To show that $\tau(f)=0$, we take any continuum Z in $X \times X$ satisfying condition τ). There exists a point $(x^j, y^j) \in Z$ such that $q_{n_j}f(x^j)=q_{n_j}f(y^j)$, because $\tau(q_{n_j}f)=0$ for each j. We can assume that $(x^j, y^j) \rightarrow (x, y)$ as $j \rightarrow \infty$. If j < i,

$$q_{n_j}f(x^i) = q_{n_j n_i}q_{n_i}f(x^i)$$
$$= q_{n_j n_i}q_{n_i}f(y^i) = q_{n_j}f(y^i)$$

Tending i to infinity, we have

$$q_{n_j}f(x) = q_{n_j}f(y)$$
 for each j and hence $f(x) = f(y)$.

This completes the proof.

THEOREM 6. Suppose that X, Y, f and f_n satisfy the hypothesis of Theorem 2. If there exists a cofinal subsequence (n_i) such that $\lim_j \tau(f_{n_i}p_{n_i,n_j})=0$, then $\tau(f)=0$.

PROOF. For each s < i, $\tau(q_{n_s n_i} f_{n_i} p_{n_i}) = 0$, because by Proposition 3,

$$\tau(f_{n_i}p_{n_i}) = \lim_{j} \tau(f_{n_i}p_{n_i n_j}p_{n_j})$$
$$\leq \lim_{i} \tau(f_{n_i}p_{n_i n_j}) = 0.$$

Using the ε_j -commutativity of the diagram (A) and (B), we have $\tau(q_{n_i}f) \leq \tau(q_{n_i n_j}f_j p_{n_j}) + 2\varepsilon_j = 2\varepsilon_j$ for each j > i. Therefore $\tau(q_{n_i}f) = 0$ for each i and $\tau(f) = 0$.

COROLLARY 7 [8 and 10]. Let $X = \lim_{n \to \infty} (X_n, p_{n n+1})$ be a continuum represented as the inverse limit of continua and onto bonding maps. Then the followings are equivalent.

1) $\tau(X)=0.$

2) There exists a cofinal subsequence (n_i) such that $\lim_{j} \tau(p_{n_i n_j}) = 0$ for each *i*.

336

3) For each n, $\tau(p_n)=0$.

In Theorem 2 and 6, no conditions on p_n 's and q_n 's, on X_n 's and Y_n 's are required. If we add some conditions, the followings are obtained.

PROPOSITION 8. Suppose X, Y, f, f_n , p_n and q_n satisfy the hypothesis of Theorem 2. Moreover assume that:

1) All p_n 's are monotone. or

2) X is tree-like and each X_n is a finite tree. Each p_n is an open onto map. $\tau = \sigma, \sigma_0$, and s.

If $\tau(f)=0$, then $\lim_{n\to\infty} \tau(f_n)=0$.

PROOF. 1) For each $n \ge 0$ and for each continuum $Z \subset X_n \times X_n$ satisfying τ), $(p_n \times p_n)^{-1}(Z)$ is a continuum in $X \times X$ satisfying τ). There exists a $(x, y) \in (p_n \times p_n)^{-1}(Z)$ such that f(x) = f(y). Then

$$d(f_n p_n(x), f_n p_n(y)) \leq d(f_n p_n(x), q_n f(x)) + d(q_n f(y), f_n p_n(y))$$
$$\leq 2\varepsilon_n.$$

Hence $\tau(f_n) \leq 2\varepsilon_n$ and this completes the proof.

2) We need the following theorem for the proof.

THEOREM 9 [14, p. 189]. Let X and Y be compacta and $f: X \rightarrow Y$ be a light open map from X onto Y. For each dendrite D in Y, there exists a dendrite D_1 in X such that $f(D_1)=D$ and $f|D_1$ is a homeomorphism on D.

Using this Theorem, 2) is shown as follows.

Let *n* be a positive integer. There exists a continuum W_n and maps $r_n: X \to W_n$, $s_n: W_n \to X_n$ such that r_n is monotone and s_n is light open and $s_n r_n = p_n$. As X_n is a tree, there exists a dendrite T_n in W_n such that $s_n(T_n) = X_n$ and $s_n | T_n$ is a homeomorphism by Theorem 9. For each continuum $Z \subset X_n \times X_n$ satisfying the condition τ) ($\tau = \sigma$, τ_0 , and s), the set $(s_n \cdot (r_n | r_n^{-1}(T_n)))^{-1}(Z)$ is a continuum in $X \times X$ which also satisfies the condition τ). Arguing the same way as in 1), we obtain the conclusion.

An easy example shows that the converse of Proposition 8 does not hold. But by Theorem 6 and Proposition 3, we can prove:

If $\tau(f_n)=0$ for each *n*, then $\tau(f)=0$.

Monotone maps preserve span zero ([3], theorem 2). The author recently proved that open maps also preserve span zero [7]. Hence,

COROLLARY 10. Let $X = \lim_{n \to 1} (X_n, p_{n n+1})$ be a continuum as the inverse limit of continua and onto bonding maps. Suppose that all $p_{n n+1}: X_{n+1} \rightarrow X_n$'s are monotone or all $p_{n n+1}$'s are open. Then $\sigma(X)=0$ if and only if $\sigma(X_n)=0$ for each n.

3. Some examples.

In this section, we are concerned with circle-like continua.

PROPOSITION 11. Let $X = \varprojlim (X_n, p_{n n+1}), Y = \varprojlim (Y_n, q_{n n+1})$ be circle-like continua and $f: X \rightarrow Y$ be a map which is weakly-induced by a sequence of maps $(f_n: X_n \rightarrow Y_n)$. If all X_n 's and Y_n 's are simple closed curves and all $q_{n n+1}$ are essential, then the followings are equivalent.

a) $\sigma(f)=0$.

b) There exists a subsequence (n_j) such that $f_{n_j} \cong 0$ for each j.

As was shown in [5, 2.2], a map $f: X \to S^1$ from a continuum X to the unit circle S^1 is essential if and only if $\sigma(f) = \text{diam } S^1 > 0$ Using this result, this proposition is easily proved. (See also [16]).

H. Cook has essentially proved that the symmetric span of the dyadic solenoid is zero ([1], p. 134). Here we consider general *p*-adic solenoid. Let $p=(p_1, p_2, \cdots)$ be a sequence of positive integers. The *p*-adic solenoid S_p is defined by the inverse limit of the unit circles $X_n=S^1=\{z\in C \mid |z|=1\}$, whose bonding maps $f_n: X_{n+1} \rightarrow X_n$ are defined by the formulas; $f_n(z)=z^{p_n}$. We show the following result.

PROPOSITION 12. Let S_p be the p-adic solenoid, $p=(p_1, p_2, \cdots)$. Then $s(S_p)>0$ if and only if there exists a positive integer N such that for each n>N, p_n is odd.

First we calculate the symmetric span of maps between the unit circles.

LEMMA 13. Let $f: S^1 \rightarrow S^1$ be the map between the unit circles defined by $f(z)=z^n$, where n is a positive integer. Then s(f)=0 or diam S^1 (=2). Also, s(f)=0 if and only if n is even.

PROOF. $S^1 \times S^1$ is obtained from the rectangle $[0, 2\pi] \times [0, 2\pi]$ by identifying (x, 0) and $(x, 2\pi)$, (0, y) and $(2\pi, y)$ $(0 \le x, y \le 2\pi)$. Let $F = \{(x, y) \in S^1 \times S^1 | f(x) = f(y)\}$. Then F contains diagonal set. Let

$$A_i = [2\pi \cdot (i-1)/n, 2\pi \cdot i/n] \times 0,$$

$$B_i = 0 \times [2\pi \cdot (i-1)/n, 2\pi \cdot i/n],$$

On span and inverse limits

$$C_i = [2\pi \cdot (i-1)/n, 2\pi \cdot i/n] \times 2\pi,$$

$$D_i = 2\pi \times [2\pi \cdot (i-1)/n, 2\pi \cdot i/n], \quad i = 1, \dots, n.$$

 A_i and C_i , B_i and D_i are identified in $S^1 \times S^1$ respectively. Let X_i be the tetragon bounded by F and A_i and D_{n+1-i} in $[0, 2\pi] \times [0, 2\pi]$, and \tilde{X}_i be the set in $S^1 \times S^1$ obtained from X_i by the identification. Notice that s(f) > 0 if and only if there exists a continuum Z in $S^1 \times S^1$ such that Z is symmetric and $Z \cap F = \emptyset$.

First we assume that *n* is odd. Then $(\pi, 0)(=(\pi, 2\pi)$ in $S^1 \times S^1)$ and $(0, \pi)(=(2\pi, \pi)$ in $S^1 \times S^1)$ do not belong to *F*. So we can join $(\pi, 0)$ and $(0, \pi)$ by the symmetric arc $A = \{(x, y) \in S^1 \times S^1 | | \arg x - \arg y | = \pi \}$. It is easy to see that $d(f(x), f(y)) = \operatorname{diam} S^1 = 2$ for each (x, y) of *A*. Hence s(f) = 2.

Next we assume that n is even. Suppose that s(f)>0. Then by the above remark, there exists a continuum Z in $S^1 \times S^1$ such that Z is symmetric and $Z \cap F = \emptyset$. For each $i=1, \dots, n$, let $Z_i = Z \cap \widetilde{X}_i$. Then $Z_i^{-1} = Z \cap \widetilde{X}_i^{-1}$. Let j be the first integer such that $Z_j \neq \emptyset$.

We claim that $Z_j \cap Z_j^{-1} = \emptyset$. If j=1, $\tilde{X}_1 \cap \tilde{X}_1^{-1} \subset (\text{diagonal}) \subset F$. Since $Z \cap F = \emptyset$, $Z_1 \cap Z_1^{-1} = \emptyset$. Assume j > 1. As *n* is even, $i \neq n+1-i$ for each integer. Hence $B_i \cap D_{n+1-i} \subset F$, $A_i \cap C_{n+1-i} \subset F$, and we have $\tilde{X}_j \cap \tilde{X}_j^{-1} \subset F$. As $Z \cap F = \emptyset$, we have the claim.

As Z is connected, $Z_j \cup Z_j^{-1} \neq Z$. If Z does not intersect $\operatorname{Int}_{S^1 \times S^1}(\widetilde{X}_{n+1-j}^{-1})$, then $Z_j \cup Z_j^{-1}$ is a clopen set in Z, because $\widetilde{X}_{n+1-j}^{-1}$ is the only one of the \widetilde{X}_s 's which meets \widetilde{X}_j in $S^1 \times S^1 - F$. So $Z \cap \operatorname{Int} \widetilde{X}_{n+1-j}^{-1} \neq \emptyset$. By the similar argument, we see that $\widetilde{X}_j \cup \widetilde{X}_{n+1-j}$ does not intersect any other \widetilde{X}_s 's and \widetilde{X}_s^{-1} 's in $S^1 \times S^1 - F$ and $\widetilde{X}_j \neq \widetilde{X}_{n+1-j}$. Therefore $Z_j \cup Z_{n+1-j}^{-1}$ is a clopen proper subset of Z. This is a contradiction which completes the proof.

PROOF OF PROPOSITION 12.

First we assume $s(S_p)>0$. If there exists a cofinal subsequence (n_i) such that p_{n_i} is even, $s(f_{n_i+1,n_{i+1}})=0$ by Lemma 13. By Corollary 7, $s(S_p)=0$, a contradiction.

Next suppose that there exists a positive integer N satisfying the hypothesis. Then for each m > n > N, $s(f_{nm})=2$. Therefore $\lim_{m} s(f_{nm})>0$ and $s(S_p)>0$, as desired.

This completes the proof.

References

[1] Davis, J.F., The equivalence of zero span and zero semispan, Proc. A.M.S. 90 (1984), 135-138.

Kazuhiro KAWAMURA

- [2] Ingram, W. T., An atriodic tree-like continuum with positive span, Fund. Math. 77 (1972), 99-107.
- [3] -----, Hereditarily indecomposable tree-like continua II, ibidem. 111 (1981), 95-106.
- [4] ——, Positive span and inverse limits, Top. Proc. 9 (1984), 313-317.
- [5] Koyama, A., On mappings of span zero, mimeographical notes (1985).
- [6] ——, A note on span under refinable maps, Tsukuba J. Math. 9 (1985), 237-240.
- [7] Kawamura, K., On some properties on span, to appear.
- [8] Lelek, A., Disjoint mappings and the span of spaces, Fund. Math. 55 (1964), 199-214.
- [9] ——, On surjective span and semispan of connected metric spaces, Colloq. Math.
 37 (1977), 35-45.
- [10] —, The span and the width of continua, Fund. Math. 98 (1978), 181-199.
- [11] ——, Continua of constant distances in span theory, Pacific J. of Math. 123 (1986), 161-171.
- [12] Oversteegen, L.G. and Tymchatyn, E.D., On span and weakly chainable continua, Fund. Math. 123 (1984), 159-174.
- [13] and , On span of weakly chainable continua, ibidem, 119 (1983), 151-156.
- [14] Whyburn, G.T., Analytic topology, Amer. Math. Soc. Colloq. Pub. 28 (1963).
- [15] Mioduszewski, J., Mappings of inverse limits, Colloq. Math. 10 (1964), 39-44.
- [16] Koyama, A. and Tymchatyn, E.D., On mappings with zero surjective span, preprint (1986).

Institute of Mathematics University of Tsukuba Ibaraki, 305 Japan

340