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ON SPAN AND INVERSE LIMITS

By

KazuhiroKawamura

1. Introduction.

A compact metric space is called a compactum and a connected compactum is

called a continuum. All maps in this paper are continuous. Let /: X―>Y be a

map between continua. Ingram [2] and Lelek [11] defined the span, semispan,

surjectivespan, and surjective semispan of / by the following formulas (the map

pt: XxX-*X denotes the projection to the z-th factor,i―1, 2).

r=o＼ <To, o *, °1>

e>0

there exists a continuum ZdXxX such j

that Z satisfies the condition r) and >

d(f(x), f(y))^c for each (*, y)^Z
I

where the condition r) is:

Pi(Z)=p2(Z) if t=g, p1(Z)Z^p2(Z) if t=<Jo,

p1(Z)=p2(Z)=X if r=a*, px{Z)-X if t^at.

The span of a continuum X is defined by a{idx). The other cases are

similar. In the same way, we can define the symmetric span of / by the formula

c>0

there existsa continuum ZdXxX such that!

Z is symmetric (i.e.(x, y)^Z iff(y, x)eZ)

and d(f(x),f(y))^c for each (x, y)<^Z j

It is a mapping version of symmetric span of a continuum due to J.F. Davis [1].

Let X=＼jm(Xn, pnn+1) be a continuum, where pnn+1: Xn+1->Xn. Ingram

[2] and [4] showed that a(X)=0 if and only if there exists a cofinalsubsequence

(≪i)isisuch that lima(pninj)=0 for each i7>l. In section 2 of this paper, we

will prove a mapping version of this theorem. H. Cook proved essentiallythat

the symmetric span of the dyadic solenoid is zero ([1], p. 134), while its span

is positive. The author wishes to thank to the referee for pointing out this

fact. In section 3, we generalize this to the poly-adic solenoid. Let / and

g: X->Y be maps. d(f, g) denotes sup{d(f(x), g(x))＼x^X＼.
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2. Span and a limit of maps.

Let X―＼＼m{Xn, pnn+＼) and Y=＼jm(Yn> qnn+1) be compacta, where all Xn

and Yn are polyhedra and both of pn n+1: Xn+l->Xn and qn n+1: Yn+1-^Yn are

surjective for each n^O. The maps pn : X-^Xn and ^nF->Yn denote the pro-

jection maps. Under these notations, Mioduszewski showed the following [15].

Theorem 1. 1) For every sequence (sn) of positivenumbers withlim £n=0,

there exist cofinalincreasing subsequences (mk) and (nk) and maps fk: Xmk->Ynk

such that diagrams (A) and (B) are £k-commutative for each s<k^l.

■y v ~y -y

'■

I

y
^

y
1 ≪s nk

(A)

Y

Y
(B)

I"

2) Conversely, if we are given diagram (B), then we can find a map f: X

―>y which satisfiesdiagram (A) for each k. If all fk's are surjective,f can be

constructed so as to be surjective.

Notice that the map f is defined by qn f Y＼mqnsnjkpmk
k

We say that / is weakly induced by the sequence (fk). This terminology is

due to Oversteegen and Tymchatyn [131

Theorem 2. Let f : X-^Y be a map between continua which is weakly induced

by a sequence (fk: Xmk-^Ynk) Then,

2"(/)=0 if and only if there existsa cofinalsubsequence (nkj) of (nk) such that

＼ivaT(qnk.nk.fkj)=zOfor each i. Where, t=o, a*, a0, g*, and s.

The basic idea of the proof is in [2] and [3]. But we need some prepara-

tions. Throughout this section, t denotes a, o0, a*, at, and s unless otherwise

stated.

Proposition 3.

1) T(gf)<T(g).

Let f: X-+Y and g: Y^Z be maps

2) // r(/)=0, thenr(^/)=0.

POPOSITION 4. Let (/,

formly to a map f : X―> Y.

X^Y) be a sequenceof maps which converges uni

Then z(f)=＼lmt(fn).

The proof of the above two propositions are easy and will be omitted.
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Proposition 5. 1) Let Xn's and X be continua in a metric space M and let

Yn's and Y be continua in a metric space N. Suppose that f: X-+Y, fn: Xn-^Yn,

pn: X-^Xn, and qn: Y-+Y＼ satisfy the following conditions.

a) Lim Xn-X, Lim Yn=Y. Both of X＼J＼JXn and Y＼J＼JYn are compact.
t>=1 n=1

b) Both of the maps pn and qn are 112n-translation {that is, d{x, pn(x))<

l/2rtfor each xe! etc.).

c) There exists a decreasing sequence of prositivenumbers sn'swith lim en―0,

SUCh that d(qnf, fnPn)<Sn.

d) Define F: X＼J＼JXn-^Y＼J＼jYn by F＼X=f, f＼Xn=fn. Then F is well de-

fined and continuous.

Then r(/)=limr(/B).

2) We can replace condition d) by

e) Each pn is surjective.

Reasoning the same way as in [10, 3.1] and [5, 2.1], we can show two in-

equalities;limsupr(/n)^r(/)^lim inf r(/n), which imply the conclusion.

Proof of Theorem 2. To simplify the notations, a cofinal subsequence of

(rii)is also denoted by (n*). First we assume that r(/)=0. Take any sub-

sequence (nj) and an integer />0. It sufficesto prove that lirnr(^nj-ni/i)=0.

Let A be a compactum satisfying the following conditions.

1) A―X＼J＼JXmk, where X and Xmk are homeomorphic to X and Xmk re-

spectively. Xr＼Xmk = 0―Xmkr＼Xmi for each &=£/.

2) Let /i:X-≫X and hk: Xmk-+Xmk be homeomorphisms. There exists an

e*-translation pmk :X-*Xmk satisfying hkpmk―pmkh.

3) LimXm,=Z.

That such space A exists is well known. As each bonding map is surjective,

we can take each pm. to be surjective. Consider the following diagram.

Qnjn-iJi

≪―^ x

Pmj

Ynj

Where, a―qnjhrl and bi=gninjfihi1. Then,

h
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4) d{a, bipmi)=d{qn.fh-1, q^njih^htp^h-1)

= d(qnjniqnj, qnjnJtPmiXet

by the £i-commutativity of (A). It is easy to see that r{a)=z{qnjf) and r(6<)=

T{qnjnji)- Applying Proposition 3.2), Proposition 5 and by condition 4), we have

lim r(qnj Bi/i)=lim r(6i)=r(a)=r(?B-,/)=0.

Next we assume that a cofinal subsequence satisfies the hypothesis. By

Proposition 4 and Proposition 3.1),

T(gnjf )=＼im t(qnj njtpi)

^lirnr(^.ni/i)=0.

To show that r(/)=0, we take any continuum Z in XxX satisfying condi-

tion t). There exists a point (xj, yj)^Z such that qnjf(xi)=qnjf(yj)) because

t(qnjf)=^0 for each j. We can assume that (xj, yj)^>(x, y) as /-+oo. If j<i,

Qnjfix^gnjn^njix*)

=qnj nfinj^y^qujky1) ･

Tending i to infinity, we have

gnjf(x)=gnjf(y) for each j and hence f(x)=f(y).

This completes the proof.

Theorem 6. Suppose that X, Y, f and fn satisfy the hypothesis of Theorem

2. If there exists a cofinal subsequence (nt) such that lim t{fnipni nj)―0, ther,

rrn=o.

Proof. For each s<i, T(gnsnifnipni)=0, because by Proposition 3,

T(/≪i/>≫i)=limT(fnipni njpnj)

^＼imz(fnipninj)=0.

Using the srcommutativity of the diagram (A) and (B), we have t(qnif)^

^(Qntnjfjpnj)+2,£j=2sj for each j>i. Therefore t(qnif)=Q for each i and r(/)=0.

Corollary 7 [8 and 10]. Let X=＼jm(Xn, pnn+i) be a continuum represented

as the inverse limit of continua and onto bonding maps. Then the followings are

equivalent.

1) r(Z)=0.

2) Thsre exists a cofinalsubsequence (nt) such thatlim r(pni n})―0for each i.
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3) For each n, T(pn)―0.

In Theorem 2 and 6, no conditions on pn's and qn's, on Xn's and 3^£'sare

required. If we add some conditions, the followings are obtained.

Proposition 8. Suppose X, Y, f, fn, pn and qn satisfy the hypothesis of

Theorem 2. Moreover assume that:

1) All pn's are monotone, or

2) X is tree-likeand each Xn is a finitetree. Each pn is an open onto map.

r=a, a0, and s.

If r(/)=0, then limr(/B)=0.
77.

Proof. 1) For each n^O and for each continuum Z(ZXnxXn satisfying

t),(pnXpn)~＼Z) is a continuum in XxX satisfying r). There exists a (x, y)<^

(pnXpn)~＼Z) such that f(x)=f(y). Then

d{fnpn{x), fnPn(y))^d(fnPn(x), Qnf(x))+ d(qnf(y), fnPn(y))

Hence r(/re)^2sraand this completes the proof.

2) We need the following theorem for the proof.

Theorem 9 [14, p. 189]. Let X and Y be compacta and f: X-+Y be a light

open map from X onto Y. For each dendrite D in Y, there existsa dendrite Dx

in X such that f(D1)=D and f＼D,is a homeomorphism on D.

Using this Theorem, 2) is shown as follows.

Let n be a positive integer. There exists a continuum Wn and maps rn: X

->Wn, sn: WV->Zn such that rn is monotone and sn is light open and snrn ―pn.

As Xn is a tree, there exists a dendrite Tre in Wn such that s7l(Tn)=Z7l and

sn＼Tn is a homeomorphism by Theorem 9. For each continuum ZdXnxXn

satisfying the condition r) (r=a, r0, and s), the set (Sn-irnlr^iTn^XSn-

(Tn＼r~^(Tn))Yl{Z)is a continuum in IxZ which also satisfiesthe condition r).

Arguing the same way as in 1), we obtain the conclusion.

An easy example shows that the converse of Proposition 8 does not hold.

But by Theorem 6 and Proposition 3, we can prove:

If T(/B)=0 for each n, then r(/)=0.

Monotone maps preserve span zero ([3], theorem 2). The author recently

proved that open maps also preserve span zero [71. Hence,
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Corollary 10. Let X=＼jm(Xn, pnn+i) be a continuum as the inverse limit

of continua and onto bonding maps. Suppose that all pn n+1: Xn+1―>Xn's are

monotone or all pnn+i's are open. Then a(X)=0 if and only if <x(Xn)=0 for

s＼ft/≫in 4A

3. Some examples.

In this section, we are concerned with circle-likecontinua.

Proposition 11. Let X=＼^m(Xn, pnn+l), Y=＼jm(Yn, qnn+1) be circle-like

continua and f: X-+Y be a map which is weakly-induced by a sequence of maps

(/,: Xn―>Yn). If all Xn's and Yn's are simple closed curves and all qnn+＼ are

essential,then the followings are equivalent.

a) <r(/)=0.

b) There existsa subsequence (tij)such that fnj=0 for each j.

As was shown in [5, 2.2], a map /: X^-S1 from a continuum Zto the unit

circleS1 is essential if and only if a(/)=diam 5x>0 Using this result, this pro-

position is easily proved. (See also [16]).

H. Cook has essentially proved that the symmetric span of the dyadic

solenoid is zero ([1], p. 134). Here we consider general p-adlc solenoid. Let

P~(Pi> p2> "■■)be a sequence of positive integers. The p-adic solenoid Sp is de-

fined by the inverse limit of the unit circles Xn=Sl = {zGC＼ ＼z＼=1}, whose

bonding maps /,: Xn+l^Xn are defined by the formulas; fn(z)―zPn. We show

thf≫fniinwincr rpisulf

Proposition 12. Let Sp be the p-adic solenoid,p―(pu p2, ･･･)･ Then s(Sp)>0

if and only if there existsa positiveinteger N such that for each n>N, pn is odd.

First we calculate the symmetric span of maps between the unit circles.

Lemma 13. Let f: S1-^-S1be the map between the unit circles defined by

f(z)―zn, where n is a positiveinteger. Then s(/)=0 or diarn S1 (=2). Also,

s(f)=Q if and onlv if n is even.

Proof. S*xSl is obtained from the rectangle [0, 2;r]X[0, 2x] by identify-

ing Qc, 0) and (x, 2k), (0, y) and (2ff,3≫)(O^x, ^^2?:). Let F={(x, 3')eS1xS1|

/(x)=/(3')}. Then F contains diagonal set. Let

Ai-[2n-(i―V)/n, 2w≫/n]xO,

5,=0xr2ff.f/-lVn. 27r-f/nl.
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Ci=[2ff-(i-l)/n, 2x-i/n']x2x,

Di=2jcXl2x-(i―l)/n,27c-i/n'], i=l, ･･･, n.

>44 and Ci, 5t and D* are identified in S^S1 respectively. Let Xt be the

tetragon bounded by F and At and Dn+i-i in [0, 2;r]X[0, 2n~＼,and .J* be the

set in S^S1 obtained from Xt by the identification. Notice that s(/)>0 if and

only if there exists a continuum Z in S^S1 such that Z is symmetric and

ZnF=0.

First we assume that n is odd. Then (n, O)(=(tt,2tt) in S^XS1) and

(0, 7r)(=(27r,w) in S'XS1) do not belong to K So we can join (x, 0) and (0, 7r)

by the symmetric arc A={(x, y)^S1xS1 ＼|arg x―arg y＼=n}. It is easy to see

that d(f(x), f(y))=diamS1=2 for each (*, y) of ^4. Hence s(f)=2.

Next we assume that n is even. Suppose that s(/)>0. Then by the above

remark, there exists a continuum Z in S^S1 such that Z is symmetric and

Zr＼F=0. For each z=l, ･･-,n, let Z^ZnXi. Then Zi1=ZnXi1. Let / be

the firstinteger such that Zji=0.

We claim that Z,nZ71=0. If;=1, XxHifrcKdiagonalJCi51. Since ZnF=0,

Z1nZi1=0. Assume y>l. As n is even, /^n+l―i for each integer. Hence

Bir＼Dn+1-iCLF, AiC^Cn+x-iCF, and we have XjnXfdF. As Zr＼F=0, we have

the claim.

As Z is connected, ZjKjZj^Z. If Z does not intersect lntSixsi(Xn+i-j),

then ZjKjZ']1 is a clopen set in Z, because ^n+i-j is the only one of the Xs's

which meets Xj in S1xS1―F. So Zr＼lntXn+i-ji=0. By the similar argument,

we see that Xj＼jXn+i-j does not intersect any other Xs's and ^.r^s in SlxS1―F

and-Xj=frXn+i-j. Therefore Zj＼jZn+i-j is a clopen proper subset of Z. This is

a contradiction which completes the proof.

Proof of Proposition 12.

First we assume s(Sp)>0. If there exists a cofinal subsequence (n*) such

that pni is even, s(/rai+in.+1)=0by Lemma 13. By Corollary 7, s(Sp)=O, a con-

tradiction.

Next suppose that there exists a positiveinteger N satisfying the hypothesis.

Then for each m>n>N, s(/nm)=2. Therefore lim s(/nm)>0 and s(Sp)>Q, as

desired.

This completes the proof.
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