
TSUKUBA J. MATH.

Vol. 18 No. 1 (1994), 207-215

GEODESIC HYPERSPHERES IN COMPLEX

PROJECTIVE SPACE

By

Tohru Gotoh

1. Introduction

Let PnC be an n(^2)-dimensional complex projective space with the Fubini-

Study metric of constant holomorphic sectional curvature 4. A firstinteresting

progress in the theory of real hypersurfaces in complex projective space is R.

Takagi's work on homogeneous real hypersurfaces. In [Tl], he classifiedall

the homogeneous real hypersurfaces in PnC into six types, Au Az, B, C, D and

E. A real hypersurface of type A1 is also called a geodesic hypersphere, which

can be characterized as a real hypersurface with two constant principal curva-

tures [T2]. Furthermore he characterized real hypersurfaces of type A2 and B

as those with three constant principal curvatures [T3]. Next important studies

are found in [C-R]. In thier paper [C-R], T. E. Cecil and P. J. Ryan investi-

gated a real hypersurface which lies in a tube over a submanifold in PnC.

Especially, they found that every homogeneous real hypersurface in Takagi's

classificationcan be realized as a tube of a constant radius over a compact

Hermitian symmetric space of rank 1 or rank 2: Every homogeneous real

hypersuface in PnC is locally congruent to a tube of radius r over one of the

following;

(A) hyperplane Pn'lC, where 0<r<jr/2,

(At) totally geodesic PkC(l<k£n-l), where 0<r<7t/2,

(B) complex quadric Qn~＼ where 0O<tt/4,

(C) /"CxP(B-1)/8C, where 0<r<7r/4 and n is odd,

(D) complex Grassmann G2,5C, where 0<r<7r/4 and n―9,

(E) Hermitian symmetric space SO(10)/U(5), where 0<r<7r/4 and ft= 15.

On the other hand, many differentialgeometers have studied real hyper-

surfaces in PnC by making use of the almost contact structure induced from

PnC. For example, M. Okumura [Ok] proved that a real hypersurface is of

type Al or A2 if and only if the almost contact structure commutes with the

second fundamental form of it.
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In this paper, we characterize a geodesic hypersphere by a certain condition

on the second fundamental form (Theorem 4.1 and Theorem 4.2.).

The author is grateful to Prof. Ryoichi Takagi for advices and encourage-

ment.

2. Preliminaries

Let M be a real hypersurface in PnC. The Riemannian metrics of PnC

and M are denoted by the same letter g, while the Riemannian conections oi

them are denoted by lp and V respectively. Let v be a (local) field of unit

normal vector of M. Then Gauss's and Weingarten's formulas are given as

(2.1) !pxY=lxY+g{AX,Y),

(2.2) lpxv=-AX,

for any vector fieldsX and Y. Here A is an endomorphism of the tangent

bundle TM of M which is defined by (2.2) and called the shape operator in the

direction v. Let / denote the complex structure of PnC. Then we define $

of type (1, 1), a vector field£ and a 1-form y on M as follows:

(2.3) <f>X=(JX)＼ S=-Jv, and y(X)=g(X,$),

where -T: TPnC-^TM indicates the orthogonal projection. From definitions

above we obtain

(2.4) 02=-/+>?(g)f, ^=0, 3(0=0,

where / denotes the identity transformation of TM. We also obtain

(2.5) Vx<f>(Y)=V(Y)AX-g(AX, Y%,

(2.6) Vx£=0^Z.

Let Rp and i? denote the curvature tensor of PnC and M respectively. Then

since Rp is given by

RP(X, Y)Z=g{Y, Z)X-g{X, Z)Y

+g(JY, Z)JX-gUX, Z)JY+2g(X, JY)JZ,

the equations of Gauss and Codazzi are respectively given as follows:

(2.6) R{X, Y)Z=g(Y, Z)X-g{X, Z)Y+g{<f>Y, ZtyX-gtyX, ZW

-2g(<f>X, Y)<j>Z+g{AY, Z)AX-g{AX, Z)AY,

(2.7) VxA(y)-lYA(X)=V(X)6Y―n(Y)6X-2g(6X, Y%.
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Finally we recall the Ricci formula. For each tensor field T of type (r, s)

its covariant derivative IT, a tensor fieldof type (r, s-f-1),is defined by

1T(XU .-.,*,; X)=1XT{XU -,*,).

Then the second covariant derivative V2T=7VT is computed as

(2.8) VT(Xlt -,X.;X; Y)=1Y1XT{X1} - , Xs)-11yXT{Xu -,Xt).

From (2.8) we have the following which is known as the Ricci formula:

(2.9) WT(XU .≫, Xs; X; Y)-VT(XU -,XS;Y; X)

= -(R(X,Y)T)(X1> -,X.),

where R(X. Y) acts on T as a derivation.

3. Key lemma

In the study of real hypersurfaces of PnC, it is a crucial condition that the

structure vector £ is principal. In fact in proofs of many known results,it

seems that the most difficultpart is to show that £is principal under a certain

condition. For thisreason, thissectionis devoted to show the following lemma:

Lemma 3.1. Assume n^3 and the shape operator A satisfies

(R(Y, Z)A)X=0

for each vector X, Y, Z perpendicular to £. Then $ is principal.

Proof. We denote by £x the subbundle of TM consisting of vectors per-

pendicular to £. In what follows eu ■■■,e2n-2 stand for an orthonormal basis

of |x at a point in M, and the index / runs from 1 to In― 2.

On account of (2.6) and the condition, the following holds:

(3.2) g(Z, AX)Y-g(Y, AX)Z+g(<j>Z, AX)0Y-g(0Y, AX)<f>Z

-2g(#Y, Z)<f>AX+g(AZ, AX)AY-g{AY, AX)AZ

-g{Z, X)AY+g{Y, X)AZ-gWZ, X)A<j>Y+g{<j>Y, X)A0Z

+2g{$Y, Z)A<j>X-g(AZ, X)A*Y+g{AY, X)AZZ

=0,

where X, Y, Z are tangent vectors perpendicular to £. Putting X=e, and Z―

(be,in (3.2), and taking summation on /, we obtain
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(3.3)
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- {TrA-y(A£)}$Y-fyAY+(2n + l)A$Y

-Ad>A*Y+A*$AY-7)(A6Y)$=Q.

Taking £-and F-component of (3.3)to get

(3.4)

and

(3.5)

2ny](A<f>Y)-7](A<pA*Y) + 7](A*<f>AY)=0

(2n+A)g(A$Y, Y)+2g{A*<j>AY, Y)=0.

Note that TrA0=TrA2$A=O because A is symmetric and <j>is skew-symmetric.

Therefore putting Y = ej in (3.5) and taking summation on j,

(3.6) g(A^A^,$)=0.

Now define a cross section U of |x and a smooth function a on M by

Then $A£=<?>U and ^2|=^lt/+af/+≪2|, so (3.6) implies

(3.7) g{<j>U,AU)=7](A^U)=0.

Using (3.7), we also have

(3.8) g(A*U, </>U)=d

by putting Y = U in (3.4). We also note

(3.9) gtyU, A$)=V(A$U)=0.

Thus from (3.7) and (3.9), we get the following by putting Z=U and X=<f>U

in (3.2):

(3.10) -g(Y, A$U)U-g($Y, A$U)<j>U-}-g{<i>U,A<j)U)<j)Y-2g^Y, U)<f>A<j>U

-g{AY, A0U)AU+3g(Y, $U)AU-＼＼U＼＼2A<f>Y+g(Y, U)A<j>U

+g{AY, <f>U)AzU=0,

where ||£/||8=g(£/,U). Taking 0f/-component of (3.10),

g{g(A(f>U, <f>U)U+＼＼U＼＼l$A<l>U,Y)=Q.

Since this equation holds for all Y perpendicular to £, we obtain

(3.11) -＼＼U＼＼tA#U=g($A$U,U)$U.

Now suppose ＼＼U＼＼2i=Qat a point, say x. Then a contradiction is derived

as follows. In this case, by virture of (3.11), there exists a certain real number

X such that
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(3.12) A<j>U=X<j>U.

That is,$U is principalcurvature vector with principalcurvature X. Then

(3.10)is reduced to

(3.13) -MgQT, $U)U+X＼＼U＼＼*<l>Y+Q-?)g(Y,&U)AU

-＼＼U＼＼aA#Y+Xg(Y,&U)A2U='Q.

Therefore if Y is perpendicularto allof U, <j)Uand £,

X＼＼U＼＼20Y-＼＼U＼＼2A$Y=Q,

so that
A$Y=X$Y.

Now let TxM=V(Bspan{U, £}be the orthogonaldecomposition. Then the above

argument implies

(3.14) A＼V=XIV,

where Iv stands for the identitytransformationof V. Further we decompose

V orthogonallyas V = y'0span{0£/}. Note that dimF'^l by the assumption

ft̂ 3. Since V is invariantby <f>,(3.3)reduces to

-{TM-≪}^r-3^r+(2n+i)^y=o,

for each FeF'. So we have

(3.15) TrA-{2n-2)X-a=Q.

On the other hand, (3.14)implies

(3.16) TrA=(2n-3)X+g(AU,U) + a.

Thus b(AU, U)-X, which implies

(3.17)

and

(3.18)

Putting Y

AU=W+＼＼U＼＼i£

A'U^^+WUW^U+ia+MUW2^.

―6U in (3.13) and substituting (3.17),(3.18) into it, we get

which contradicts to ||t/||2^0. Consequently U=0 and £is principal, a

Next lemma is contained in previous Lemma (3.1)in the case n^3, but is

verified even in the rase n = 2:
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Lemma 3.19. Assume the shape operator A satisfies

(^A)(X; Y ; Z)=f{g(X, <j>Y)<}>Z+g{X,<j>Z)<j>Y)

for all X, Y, Z perpendicular to £,where f in a C^-f unction on M. Then £is

principal.

Proof. By making use of the equation of Codazzi (2.7), we find the fol-

lowing formula in general:

(3.20) W2A)(X; Y ; Z)-(72A)(Y ; X; Z)

=gQT, $AZ)<j>X-g{X, <j>AZ)<j>Y-2g{X, <j>Y)<j>AZ

+3{V(X)g(AY, Z)-V(Y)g(AX, Z)}$,

for arbitrary tangent vectors X, Y, Z.

Therefore the condition and (3.20) implies

(3.21) -f{g(Y, $Z)<f>X-g(X, <f>Z)<j>Y-2g(X,<J>Y)}

=g(Y, $AZ)$X-g(X, <j>AZ)<f>Y-2g{X, <f>Y)<j>AZ.

Putting Y=<f>X in (3.21) and taking 0X-component, we obtain

(3.22) AZ=-fZ+i)(AZ)£,

for all Z perpendicular to $.

On the other hand, the condition and the Ricci formula (2.9) implies

(R(Y, Z)A)X=0

for all vectors X, Y, Z perpendicular to £. In what follows we use notation

in the proof of lemma (3.1). Suppose U^O at a point. Then from (3.12) and

(3.22), ―f=X at the point, so that

AU=XU+＼＼U＼＼*$.

This derives a contradiction by a similar argument in the proof of lemma (3.1).

■

Type number at xgM is, by definition,the rank of linear transformation

A, and denoted by t(x). As a result of this proof, we obtain

Proposition 3.23. There exist no real hypersurfaces in PnC satisfing

{12A){X; Y ; Z)=0

for all X, Y, Z perpendicular to £.
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Proof. Since $ is principal under the condition as f―0 on M in Lemma

(3.9),(3.22) reduces to AZ=0. Thus t(x)^l at each xgM. However it is

known that any real hypersurface has a point x with t(x)>l (cf. p. 156 [Y-K],

see all so [Tl]). This contradiction shows the assertion, m

4. Theorems

In this section we will prove the following two Theorems:

Theorem 4.1. Let M be a real hypersurface in PnC, w^3. // the shape

operator A satisfies

(R(Y, Z)A)X=0

for all tangent vectors X, Y, Z perpendicular to £,then M is locally congruent

to a geodesic hypersphere.

Theorem 4.2. Let M be a real hypersurface in PnC, n~^2. If the shape

operator A satisfies

{1*A){X;Y; Z)=f{g(X, <j>Y)<l>Z+g{X, $Z)<j>Y}

for all tangent vectors X, Y, Z perpendicular to £,where f is a C°°-functionon

M, then f is non-zero constant and M is locally congruent to a geodesic hy-

persphere.

For proof we need the following results:

Fact 4.3. ([K-Ms]) Let M be a real hypersurface in PnC, n^2. Suppose

that M satisfies

Rx.r.z(R(Y, Z)A)X=0

for all X, Y, Z^TM. Here &x,y,z indicates cyclic sum with respect to X, Y, Z.

Then M is locally congruent to one of the following:

(i ) a geodesic hypersphere, n^3,

(ii) a real hypersurface in P2C on which £is a principal curvature vector.

Fact 4.4. ([T2]) // M is a connected complete real hypersurface in PnC

with two constant principal curvatures, then M is a geodesic hypersphere. If we

do not assume the completeness of M, M is locally congruent to a geodesic hypers-

phere.

Proof of Theorem 4.1. We have seen in Lemma (3.1) that the structure

vector $ is principal under the condition. Then it is easy to verify <BX y z
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(R(Y, Z)A)X=Q for alltangent vectorsX,Y,Z. Therefore our assertioncomes

from Fact (4.3). ■

Remark 4.5. Maeda [Ms] proved that there exist no real hypersurfaces

in PnC, n^3, satisfying RA=0.

Proof of Theorem 4.2. Theorem 4.2is containedin Theorem 4.1 in the

case n^3, but we proceed independently.

Since $ is principal by Lemma (3.19),let Y be a (local) vector field ortho-

gonal to £such that AY=XY. Then it is known ([My]) that

**Y=£g*Y

Putting X=Z=$Y in (3.2)to get

-2aA4+(2≪2-2O)23+3O≪A2+(2o-8≪2)^-8≪=O.

It is also known ([My]) that a is locally constant. Thus 1.is constant. On

the other hand, from (3.22)

A＼P=-fItx,

and so f=―X is constant. Consequently M has two constant principalcurva-

tures. Therefore Fact (4.4)implies the assertion. Moreover this constant /

is not zero by Proposition(3.23). ■
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