GEODESIC HYPERSPHERES IN COMPLEX PROJECTIVE SPACE

By

Tohru Goroh

1. Introduction

Let $P^{n} C$ be an $n(\geqq 2)$-dimensional complex projective space with the FubiniStudy metric of constant holomorphic sectional curvature 4. A first interesting progress in the theory of real hypersurfaces in complex projective space is R. Takagi's work on homogeneous real hypersurfaces. In [T1], he classified all the homogeneous real hypersurfaces in $P^{n} C$ into six types, A_{1}, A_{2}, B, C, D and E. A real hypersurface of type A_{1} is also called a geodesic hypersphere, which can be characterized as a real hypersurface with two constant principal curvatures [T2]. Furthermore he characterized real hypersurfaces of type A_{2} and B as those with three constant principal curvatures [T3]. Next important studies are found in [C-R]. In thier paper [C-R], T.E. Cecil and P. J. Ryan investigated a real hypersurface which lies in a tube over a submanifold in $P^{n} \boldsymbol{C}$. Especially, they found that every homogeneous real hypersurface in Takagi's classification can be realized as a tube of a constant radius over a compact Hermitian symmetric space of rank 1 or rank 2: Every homogeneous real hypersuface in $P^{n} C$ is locally congruent to a tube of radius r over one of the following;
$\left(A_{1}\right)$ hyperplane $P^{n-1} C$, where $0<r<\pi / 2$,
(A_{2}) totally geodesic $P^{k} \boldsymbol{C}(1 \leqq k \leqq n-1)$, where $0<r<\pi / 2$,
(B) complex quadric Q^{n-1}, where $0<r<\pi / 4$,
(C) $P^{1} C \times P^{(n-1) / 2} C$, where $0<r<\pi / 4$ and n is odd,
(D) complex Grassmann $G_{2,5} C$, where $0<r<\pi / 4$ and $n=9$,
(E) Hermitian symmetric space $S O(10) / U(5)$, where $0<r<\pi / 4$ and $n=15$.

On the other hand, many differential geometers have studied real hypersurfaces in $P^{n} C$ by making use of the almost contact structure induced from $P^{n} C$. For example, M. Okumura [Ok] proved that a real hypersurface is of type A_{1} or A_{2} if and only if the almost contact structure commutes with the second fundamental form of it.

In this paper, we characterize a geodesic hypersphere by a certain condition on the second fundamental form (Theorem 4.1 and Theorem 4.2.).

The author is grateful to Prof. Ryoichi Takagi for advices and encouragement.

2. Preliminaries

Let M be a real hypersurface in $P^{n} \boldsymbol{C}$. The Riemannian metrics of $P^{n} \boldsymbol{C}$ and M are denoted by the same letter g, while the Riemannian conections of them are denoted by ∇^{P} and ∇ respectively. Let ν be a (local) field of unit normal vector of M. Then Gauss's and Weingarten's formulas are given as

$$
\begin{gather*}
\nabla_{X}^{P} Y=\nabla_{X} Y+g(A X, Y), \tag{2.1}\\
\nabla_{X}^{P} \nu=-A X, \tag{2.2}
\end{gather*}
$$

for any vector fields X and Y. Here A is an endomorphism of the tangent bundle $T M$ of M which is defined by (2.2) and called the shape operator in the direction ν. Let J denote the complex structure of $P^{n} C$. Then we define ϕ of type (1, 1), a vector field ξ and a 1 -form η on M as follows:

$$
\begin{equation*}
\phi X=(J X)^{\top}, \quad \xi=-J \nu, \quad \text { and } \quad \eta(X)=g(X, \xi) \tag{2.3}
\end{equation*}
$$

where $\cdot{ }^{\top}: T P^{n} C \rightarrow T M$ indicates the orthogonal projection. From definitions above we obtain

$$
\begin{equation*}
\phi^{2}=-I+\eta \otimes \xi, \quad \phi \xi=0, \quad \eta(\xi)=0 \tag{2.4}
\end{equation*}
$$

where I denotes the identity transformation of $T M$. We also obtain

$$
\begin{gather*}
\nabla_{X} \phi(Y)=\eta(Y) A X-g(A X, Y) \xi \tag{2.5}\\
\nabla_{X} \xi=\phi A X \tag{2.6}
\end{gather*}
$$

Let R^{P} and R denote the curvature tensor of $P^{n} C$ and M respectively. Then since R^{P} is given by

$$
\begin{aligned}
R^{P}(X, Y) Z= & g(Y, Z) X-g(X, Z) Y \\
& +g(J Y, Z) J X-g(J X, Z) J Y+2 g(X, J Y) J Z
\end{aligned}
$$

the equations of Gauss and Codazzi are respectively given as follows:

$$
\begin{align*}
& R(X, Y) Z= g(Y, Z) X-g(X, Z) Y+g(\phi Y, Z) \phi X-g(\phi X, Z) \phi Y \tag{2.6}\\
&-2 g(\phi X, Y) \phi Z+g(A Y, Z) A X-g(A X, Z) A Y, \\
& \nabla_{X} A(Y)-\nabla_{Y} A(X)=\eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi \tag{2.7}
\end{align*}
$$

Finally we recall the Ricci formula. For each tensor field T of type (r, s), its covariant derivative ∇T, a tensor field of type ($r, s+1$), is defined by

$$
\nabla T\left(X_{1}, \cdots, X_{s} ; X\right)=\nabla_{X} T\left(X_{1}, \cdots, X_{s}\right) .
$$

Then the second covariant derivative $\nabla^{2} T=\nabla \nabla T$ is computed as

$$
\begin{equation*}
\nabla^{2} T\left(X_{1}, \cdots, X_{s} ; X ; Y\right)=\nabla_{Y} \nabla_{X} T\left(X_{1}, \cdots, X_{s}\right)-\nabla_{\nabla_{Y} X} T\left(X_{1}, \cdots, X_{s}\right) . \tag{2.8}
\end{equation*}
$$

From (2.8) we have the following which is known as the Ricci formula:

$$
\begin{align*}
& \nabla^{2} T\left(X_{1}, \cdots, X_{s} ; X ; Y\right)-\nabla^{2} T\left(X_{1}, \cdots, X_{s} ; Y ; X\right) \tag{2.9}\\
& \quad=-(R(X, Y) T)\left(X_{1}, \cdots, X_{s}\right),
\end{align*}
$$

where $R(X, Y)$ acts on T as a derivation.

3. Key lemma

In the study of real hypersurfaces of $P^{n} C$, it is a crucial condition that the structure vector ξ is principal. In fact in proofs of many known results, it seems that the most difficult part is to show that ξ is principal under a certain condition. For this reason, this section is devoted to show the following lemma:

Lemma 3.1. Assume $n \geqq 3$ and the shape operator A satisfies

$$
(R(Y, Z) A) X=0
$$

for each vector X, Y, Z perpendicular to ξ. Then ξ is principal.
Proof. We denote by ξ^{\perp} the subbundle of $T M$ consisting of vectors perpendicular to ξ. In what follows $e_{1}, \cdots, e_{2 n-2}$ stand for an orthonormal basis of ξ^{\perp} at a point in M, and the index j runs from 1 to $2 n-2$.

On account of (2.6) and the condition, the following holds:

$$
\begin{align*}
g(Z, & A X) Y-g(Y, A X) Z+g(\phi Z, A X) \phi Y-g(\phi Y, A X) \phi Z \tag{3.2}\\
& -2 g(\phi Y, Z) \phi A X+g(A Z, A X) A Y-g(A Y, A X) A Z \\
& -g(Z, X) A Y+g(Y, X) A Z-g(\phi Z, X) A \phi Y+g(\phi Y, X) A \phi Z \\
& +2 g(\phi Y, Z) A \phi X-g(A Z, X) A^{2} Y+g(A Y, X) A^{2} Z \\
= & 0,
\end{align*}
$$

where X, Y, Z are tangent vectors perpendicular to ξ. Putting $X=e_{j}$ and $Z=$ ϕe_{j} in (3.2), and taking summation on j, we obtain

$$
\begin{align*}
& -\{T r A-\eta(A \xi)\} \phi Y-3 \phi A Y+(2 n+1) A \phi Y \tag{3.3}\\
& -A \phi A^{2} Y+A^{2} \phi A Y-\eta(A \phi Y) \xi=0 .
\end{align*}
$$

Taking $\hat{\xi}$ - and Y-component of (3.3) to get

$$
\begin{equation*}
2 n \eta(A \phi Y)-\eta\left(A \phi A^{2} Y\right)+\eta\left(A^{2} \phi A Y\right)=0 \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
(2 n+4) g(A \phi Y, Y)+2 g\left(A^{2} \phi A Y, Y\right)=0 \tag{3.5}
\end{equation*}
$$

Note that $\operatorname{Tr} A \phi=\operatorname{Tr} A^{2} \phi A=0$ because A is symmetric and ϕ is skew-symmetric.
Therefore putting $Y=e_{j}$ in (3.5) and taking summation on j,

$$
\begin{equation*}
g\left(A^{2} \phi A \xi, \xi\right)=0 \tag{3.6}
\end{equation*}
$$

Now define a cross section U of ξ^{\perp} and a smooth function α on M by

$$
A \hat{\xi}=U+\alpha \hat{\xi}
$$

Then $\phi A \xi=\phi U$ and $A^{2} \xi=A U+\alpha U+\alpha^{2} \xi$, so (3.6) implies

$$
\begin{equation*}
g(\phi U, A U)=\eta\left(A^{2} \phi U\right)=0 . \tag{3.7}
\end{equation*}
$$

Using (3.7), we also have

$$
\begin{equation*}
g\left(A^{2} U, \phi U\right)=0 \tag{3.8}
\end{equation*}
$$

by putting $Y=U$ in (3.4). We also note

$$
\begin{equation*}
g(\phi U, A \xi)=\eta(A \phi U)=0 . \tag{3.9}
\end{equation*}
$$

Thus from (3.7) and (3.9), we get the following by putting $Z=U$ and $X=\phi U$ in (3.2):

$$
\begin{align*}
& -g(Y, A \phi U) U-g(\phi Y, A \phi U) \phi U+g(\phi U, A \phi U) \phi Y-2 g(\phi Y, U) \phi A \phi U \tag{3.10}\\
& -g(A Y, A \phi U) A U+3 g(Y, \phi U) A U-\|U\|^{2} A \phi Y+g(Y, U) A \phi U \\
& +g(A Y, \phi U) A^{2} U=0
\end{align*}
$$

where $\|U\|^{2}=g(U, U)$. Taking ϕU-component of (3.10),

$$
g\left(g(A \phi U, \phi U) U+\|U\|^{2} \phi A \phi U, Y\right)=0 .
$$

Since this equation holds for all Y perpendicular to ξ, we obtain

$$
\begin{equation*}
-\|U\|^{2} A \phi U=g(\phi A \phi U, U) \phi U \tag{3.11}
\end{equation*}
$$

Now suppose $\|U\|^{2} \neq 0$ at a point, say x. Then a contradiction is derived as follows. In this case, by virture of (3.11), there exists a certain real number λ such that

$$
\begin{equation*}
A \phi U=\lambda \phi U . \tag{3.12}
\end{equation*}
$$

That is, ϕU is principal curvature vector with principal curvature λ. Then (3.10) is reduced to

$$
\begin{align*}
& -3 \lambda g(Y, \phi U) U+\lambda\|U\|^{2} \phi Y+\left(3-\lambda^{2}\right) g(Y, \phi U) A U \tag{3.13}\\
& -\|U\|^{2} A \phi Y+\lambda g(Y, \phi U) A^{2} U=0
\end{align*}
$$

Therefore if Y is perpendicular to all of $U, \phi U$ and ξ,

$$
\lambda\|U\|^{2} \phi Y-\|U\|^{2} A \phi Y=0,
$$

so that

$$
A \phi Y=\lambda \phi Y .
$$

Now let $T_{x} M=V \oplus \operatorname{span}\{U, \xi\}$ be the orthogonal decomposition. Then the above argument implies

$$
\begin{equation*}
A \mid V=\lambda I_{V}, \tag{3.14}
\end{equation*}
$$

where I_{V} stands for the identity transformation of V. Further we decompose V orthogonally as $V=V^{\prime} \oplus \operatorname{span}\{\phi U\}$. Note that $\operatorname{dim} V^{\prime} \geqq 1$ by the assumption $n \geqq 3$. Since V^{\prime} is invariant by ϕ, (3.3) reduces to

$$
-\{\operatorname{Tr} A-\alpha\} \phi Y-3 \lambda \phi Y+(2 n+1) \lambda \phi Y=0,
$$

for each $Y \in V^{\prime}$. So we have

$$
\begin{equation*}
\operatorname{Tr} A-(2 n-2) \lambda-\alpha=0 \tag{3.15}
\end{equation*}
$$

On the other hand, (3.14) implies

$$
\begin{equation*}
\operatorname{Tr} A=(2 n-3) \lambda+g(A U, U)+\alpha \tag{3.16}
\end{equation*}
$$

Thus $g(A U, U)=\lambda$, which implies

$$
\begin{equation*}
A U=\lambda U+\|U\|^{2} \xi, \tag{3.17}
\end{equation*}
$$

and

$$
\begin{equation*}
A^{2} U=\left(\lambda^{2}+\|U\|^{2}\right) U+(\alpha+\lambda)\|U\|^{2} \xi \tag{3.18}
\end{equation*}
$$

Putting $Y=\phi U$ in (3.13) and substituting (3.17), (3.18) into it, we get

$$
\lambda\|U\|^{4} U+(\alpha \lambda+4)\|U\|^{4} \xi=0,
$$

which contradicts to $\|U\|^{2} \neq 0$. Consequently $U=0$ and ξ is principal.
Next lemma is contained in previous Lemma (3.1) in the case $n \geqq 3$, but is verified even in the case $n=2$:

Lemma 3.19. Assume the shape operator A satisfies

$$
\left(\nabla^{2} A\right)(X ; Y ; Z)=f\{g(X, \phi Y) \phi Z+g(X, \phi Z) \phi Y\}
$$

for all X, Y, Z perpendicular to $\hat{\xi}$, where f in a C^{∞}-function on M. Then $\hat{\xi}$ is principal.

Proof. By making use of the equation of Codazzi (2.7), we find the following formula in general:

$$
\begin{align*}
&\left(\nabla^{2} A\right)(X ; Y ; Z)-\left(\nabla^{2} A\right)(Y ; X ; Z) \tag{3.20}\\
&= g(Y, \phi A Z) \phi X-g(X, \phi A Z) \phi Y-2 g(X, \phi Y) \phi A Z \\
& \quad+3\{\eta(X) g(A Y, Z)-\eta(Y) g(A X, Z)\} \xi
\end{align*}
$$

for arbitrary tangent vectors X, Y, Z.
Therefore the condition and (3.20) implies

$$
\begin{align*}
& -f\{g(Y, \phi Z) \phi X-g(X, \phi Z) \phi Y-2 g(X, \phi Y)\} \tag{3.21}\\
& \quad=g(Y, \phi A Z) \phi X-g(X, \phi A Z) \phi Y-2 g(X, \phi Y) \phi A Z .
\end{align*}
$$

Putting $Y=\phi X$ in (3.21) and taking ϕX-component, we obtain

$$
\begin{equation*}
A Z=-f Z+\eta(A Z) \xi \tag{3.22}
\end{equation*}
$$

for all Z perpendicular to ξ.
On the other hand, the condition and the Ricci formula (2.9) implies

$$
(R(Y, Z) A) X=0
$$

for all vectors X, Y, Z perpendicular to ξ. In what follows we use notation in the proof of lemma (3.1). Suppose $U \neq 0$ at a point. Then from (3.12) and (3.22), $-f=\lambda$ at the point, so that

$$
A U=\lambda U+\|U\|^{2} \xi .
$$

This derives a contradiction by a similar argument in the proof of lemma (3.1).

Type number at $x \in M$ is, by definition, the rank of linear transformation A, and denoted by $t(x)$. As a result of this proof, we obtain

Proposition 3.23. There exist no real hypersurfaces in $P^{n} C$ satisfing

$$
\left(\nabla^{2} A\right)(X ; Y ; Z)=0
$$

for all X, Y, Z perpendicular to ξ.

Proof. Since ξ is principal under the condition as $f=0$ on M in Lemma (3.9), (3.22) reduces to $A Z=0$. Thus $t(x) \leqq 1$ at each $x \in M$. However it is known that any real hypersurface has a point x with $t(x)>1$ (cf. p. 156 [Y-K], see all so [T1]). This contradiction shows the assertion.

4. Theorems

In this section we will prove the following two Theorems:
Theorem 4.1. Let M be a real hypersurface in $P^{n} C, n \geqq 3$. If the shape operator A satisfies

$$
(R(Y, Z) A) X=0
$$

for all tangent vectors X, Y, Z perpendicular to ξ, then M is locally congruent to a geodesic hypersphere.

Theorem 4.2. Let M be a real hypersurface in $P^{n} C, n \geqq 2$. If the shape operator A satisfies

$$
\left(\nabla^{2} A\right)(X ; Y ; Z)=f\{g(X, \phi Y) \phi Z+g(X, \phi Z) \phi Y\}
$$

for all tangent vectors X, Y, Z perpendicular to ξ, where f is a C^{∞}-function on M, then f is non-zero constant and M is locally congruent to a geodesic hypersphere.

For proof we need the following results:
FACT 4.3. ([K-Ms]) Let M be a real hypersurface in $P^{n} \boldsymbol{C}, n \geqq 2$. Suppose that M satisfies

$$
\mathfrak{S}_{X, Y, Z}(R(Y, Z) A) X=0
$$

for all $X, Y, Z \in T M$. Here $\Im_{X, Y, Z}$ indicates cyclic sum with respect to X, Y, Z. Then M is locally congruent to one of the following:
(i) a geodesic hypersphere, $n \geqq 3$,
(ii) a real hypersurface in $P^{2} C$ on which ξ is a principal curvature vector.

FACT 4.4. ([T2]) If M is a connected complete real hypersurface in $P^{n} C$ with two constant principal curvatures, then M is a geodesic hypersphere. If we do not assume the completeness of M, M is locally congruent to a geodesic hypersphere.

Proof of Theorem 4.1. We have seen in Lemma (3.1) that the structure vector ξ is principal under the condition. Then it is easy to verify $\mathbb{G}_{X, Y, Z}$
$(R(Y, Z) A) X=0$ for all tangent vectors X, Y, Z. Therefore our assertion comes from Fact (4.3).

Remark 4.5. Maeda [Ms] proved that there exist no real hypersurfaces in $P^{n} C, n \geqq 3$, satisfying $R A \equiv 0$.

Proof of Theorem 4.2. Theorem 4.2 is contained in Theorem 4.1 in the case $n \geqq 3$, but we proceed independently.

Since ξ is principal by Lemma (3.19), let Y be a (local) vector field orthogonal to ξ such that $A Y=\lambda Y$. Then it is known ([My]) that

$$
A \phi Y=\frac{\alpha \lambda+2}{2 \lambda-\alpha} \phi Y .
$$

Putting $X=Z=\phi Y$ in (3.2) to get

$$
-2 \alpha \lambda^{4}+\left(2 \alpha^{2}-20\right) \lambda^{3}+30 \alpha \lambda^{2}+\left(20-8 \alpha^{2}\right) \lambda-8 \alpha=0 .
$$

It is also known ([My]) that α is locally constant. Thus λ is constant. On the other hand, from (3.22)

$$
A \mid \xi^{\perp}=-f I_{\xi_{1}},
$$

and so $f=-\lambda$ is constant. Consequently M has two constant principal curvatures. Therefore Fact (4.4) implies the assertion. Moreover this constant f is not zero by Proposition (3.23).

References

[C-R] Cecil, T.E. and Ryan, P.J., Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), 481-499.
[K-Ms] Kimura, M. and Maeda, S., On real hypersurfaces of a complex projective space III, Hokkaido Math. J. 22 (1993), 63-78.
[Ms] Maeda, S., Real hypersurfaces of complex projective spaces, Math. Ann. 263 (1983), 473-478.
[My] Maeda, Y., On real hypersurfaces in a complex projective space, J. Math. Soc. Japan 26 (1976), 529-540.
[Ok] Okumura, M., On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975), 355-364.
[T1] Takagi, R., On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495-506.
[T2] Real hypersurfaces in a complex projective space with constant principal curvatures, J. Math. Soc. Japan 27 (1975), 43-53.
[T3] Real hypersurfaces in a complex projective space with constant principal curvatures II, J. Math. Soc. Japan 27 (1975), 507-516.
[Y-K] Yano, K. and Kon, M., "CR-submanifolds of Kaehlerian and Sasakian manifolds", Birkäuser, 1983.

Department of Mathematics
Faculty of Science
Chiba University
Chiba-city, 263
Chiba
Present Address
Department of Mathematics
College of Liberal Arts
Kanazawa University
Kanazawa, 920-11

