ON COGENERATOR RINGS AS ϕ -TRIVIAL EXTENSIONS

Dedicated to the memory of Professor Akira Hattori

By

Kazunori SAKANO

Let R be a ring with identity and M an (R, R)-bimodule with a pairing $\Phi = [-, -]: M \otimes_R M \to R$, that is, an (R, R)-bilinear map satisfying [m, m']m'' = m[m', m]. Then by defining a multiplication on the abelian group $R \oplus M$ as (r, m)(r', m') = (rr' + [m, m'], mr' + rm'), $R \oplus M$ becomes a ring, which is called the Φ -trivial extension of R by M and is denoted by $A = R \underset{q}{\ltimes} M$. Note that $\Phi = 0$ corresponds to the trivial extension $R \ltimes M$. In particular, a generalized matrix ring defined by a Morita context can be considered as a special case of a Φ -trivial extension.

The main purpose of this paper is to give a necessary and sufficient condition for Λ to be a right cogenerator ring under the condition that $\operatorname{Im} \Phi$ is nilpotent.

In Section 1, we study the form of the injective hull of a simple right Λ module and decide the condition for Λ to be a right cogenerator ring under the assumption that $\operatorname{Im} \varphi$ is nilpotent. Furthermore, in case of the trivial extension $R \ltimes M$, we investigate the condition for M=0, when $R \ltimes M$ is a right cogenerator ring. In Section 2, we give a sufficient condition for Λ to be right self-injective under the assumption that $\operatorname{Im} \Phi$ is nilpotent. Moreover, in case of the trivial extension $R \ltimes M$, we give a necessary and sufficient condition for $R \ltimes M$ to be a right injective cogenerator ring. Let $\Gamma = \begin{pmatrix} S & 0 \\ U & T \end{pmatrix}$ be a generalized triangular matrix ring, where both S and T are rings with identity and U a (T, S)-bimodule. In the final Section 3, we study an application of results in Sections 1 and 2 to a generalized triangular matrix ring Γ . Especially, we show that Γ is a right injective cogenerator ring if and only if both S and T are right injective cogenerator rings, and U=0. This result was mentioned by T. Kato during a conversation and he pointed out whether the similar result as above holds when Γ is a right cogenerator ring (in case of Γ being a QF ring, see [6, Exercise (3)-(2), p. 362]). In case of S=T in Γ , there holds that Γ is a right cogenerator ring if and only if T is a right cogenerator ring and

Received December 3, 1985; Revised March 10, 1986.

U=0. But it remains an unsolved problem when $S \neq T$ in Γ .

Throughout this paper, unless otherwise specified, Λ denotes the Φ -trivial extension $R \underset{\Phi}{\ltimes} M$ and $l_R(K)$ the left annihilator of K in R for a subset K of a right R-module X. For a right R-module Y, $E(Y_R)$ means the injective hull of Y_R .

The author wishes to express his hearty thanks to Professor T. Kato for his useful suggestions and remarks during the preparation of this paper.

1. Cogenerator rings as Φ -trivial extensions.

In this section, we assume that $\operatorname{Im} \Phi$ is nilpotent. By a slight modification of the proof of [14, Lemma 3.1], we have the following.

LEMMA 1.1. Let X be a right R-module and K a nilpotent ideal of R. Then $\mathbf{l}_X(K)$ is essential in X_R .

LEMMA 1.2. Im $\Phi \oplus M$ is a nilpotent ideal of Λ .

PROOF. This is found in the proof of [12, LEMMA 1].

LEMMA 1.3. Let X be a simple right A-module. Then the injective hull of X_A has the form $\operatorname{Hom}_{R}(A_R, E(X_R))_A$.

PROOF. Since $E(X_R)$ is injective and ${}_A\Lambda$ is flat, $\operatorname{Hom}_R(\Lambda_R, E(X_R))_A$ is injective. Therefore, it suffices to show that X_A is essential in $\operatorname{Hom}_R(\Lambda_R, E(X_R))_A$. Since

 $\mathbf{l}_{\operatorname{Hom}_{R}(\Lambda, E(X))}(\operatorname{Im} \Phi \oplus M)_{\Lambda} \cong \operatorname{Hom}_{\Lambda}(\Lambda / \operatorname{Im} \Phi \oplus M, \operatorname{Hom}_{R}(\Lambda, E(X)))_{\Lambda}$ $\cong \operatorname{Hom}_{R}(\Lambda / \operatorname{Im} \Phi \oplus M \otimes_{\Lambda} \Lambda, E(X))_{\Lambda}$ $\cong \operatorname{Hom}_{R}(\Lambda / \operatorname{Im} \Phi \oplus M, E(X))_{\Lambda},$

Hom_R($\Lambda/\operatorname{Im} \Phi \oplus M, E(X)$)_A is essential in Hom_R($\Lambda, E(X)$)_A by Lemmas 1.1 and 1.2. Since Hom_R($\Lambda/\operatorname{Im} \Phi \oplus M, E(X)$)_R $\subseteq E(X_R)$, we may consider $X_R \subseteq \operatorname{Hom}_R(\Lambda/\operatorname{Im} \Phi \oplus M, E(X))_R$ and X_R is essential in Hom_R($\Lambda/\operatorname{Im} \Phi \oplus M, E(X)$)_R. Since Hom_R($\Lambda/\operatorname{Im} \Phi \oplus M, E(X)$) Im $\Phi = 0$, X_A is also essential in Hom_R($\Lambda/\operatorname{Im} \Phi \oplus M, E(X)$)_R. E(X))_A. Thus we obtain X_A is essential in Hom_R($\Lambda_R, E(X_R)$)_A.

In the remainder of this section, let $\alpha: M \rightarrow \operatorname{Hom}_R(M_R, R_R)$ be the natural map defined via

$$(\alpha(m))(m') = [m, m']$$
 for $m, m' \in M$,

and $\sigma: R \rightarrow \text{End}(M_R)$ the canonical map. We put $\text{Ker } \alpha = M'$.

Since every simple right Λ -module is isomorphic to $R \oplus M/\mathfrak{m} \oplus M$, where \mathfrak{m} is a maximal right ideal of R, every simple right Λ -module is also simple as a right R-module and vice versa.

THEOREM 1.4. Λ is a right cogenerator ring if and only if, for each simple right R-module X and $E_R = E(X_R)$, there exists a primitive idempotent e in R satisfying the following condition

(1) $E_R \cong eR_R = el_R(M')_R$ and $\alpha' : eM_R \cong eHom_R(M_R, R_R)_R$, where α' is the induced map by α ,

or

(2) $E_R \cong eM_R$ and $\sigma' : eR_R \cong e \operatorname{End}(M_R)_R$, where σ' is the induced map by σ .

PROOF. (\Rightarrow). Let X be a simple right R-module and $E_R = E(X_R)$. Since every simple right R-module is also simple as a right Λ -module, $\operatorname{Hom}_R(\Lambda_R, E_R)_{\Lambda}$ is the injective hull of X_A by Lemma 1.3. Since Λ_A is a cogenerator, there exists a primitive idempotent (e, m) in Λ such that $(e, m)\Lambda_A \cong \operatorname{Hom}_R(\Lambda_R, E_R)_A$. Then it is easily seen that e is a primitive idempotent in R and [m, m]=0. Moreover, since $(e, m)^2 = (e, m)$, we have m = em + me, from which it follows that eme=0. Therefore, we have $meR \cap eM=0$ and $eR \cap [me, M]=0$. Hence we get $(e, m)\Lambda_{\Lambda} \subseteq (eR \oplus eM)_{\Lambda} \oplus ([me, M] \oplus meR)_{\Lambda}$. Since $(e, m)\Lambda$ is the injective hull of a simple right Λ -module, there holds $(e, m)\Lambda_{\Lambda} \subseteq (eR \oplus eM)_{\Lambda}$ or $(e, m)\Lambda_{\Lambda} \subseteq ([me, M])$ $\bigoplus meR)_A$. If $(e, m)\Lambda_A \subseteq ([me, M] \oplus meR)_A$, then $eR \subseteq \operatorname{Im} \Phi \subseteq \operatorname{Rad}(R)$. Therefore, we obtain (e, m)=0. Hence we must have $(e, m)\Lambda_A \subseteq (e, 0)\Lambda_A$. Since $(e, m)\Lambda_A$ is injective and $(e, 0)\Lambda_A$ is indecomposable, we have $(e, m)\Lambda_A \cong (e, 0)\Lambda_A$. Therefore, we may take m=0. Since $(e, 0)\Lambda_A \cong \operatorname{Hom}_R(\Lambda_R, E_R)_A$, we have $eR \oplus eM_R \cong E_R \oplus$ $\operatorname{Hom}_{\mathbb{R}}(M, E)_{\mathbb{R}}$. Since $E_{\mathbb{R}}$ is the injective hull of a simple right R-module, there holds $E_R \subseteq eR_R$ or $E_R \subseteq eM_R$. Furthermore, since

$$\operatorname{Hom}_{R}(\Lambda/\operatorname{Im} \Phi \oplus M, E)_{A} \cong \operatorname{Hom}_{R}(\Lambda/\operatorname{Im} \Phi \oplus M \otimes_{A} \Lambda, E)_{A}$$
$$\cong \operatorname{Hom}_{A}(\Lambda/\operatorname{Im} \Phi \oplus M, \operatorname{Hom}_{R}(\Lambda, E))$$
$$\cong \operatorname{Hom}_{A}(\Lambda/\operatorname{Im} \Phi \oplus M, (e, 0)\Lambda)$$
$$\cong (e, 0)(\mathbf{l}_{R}(M) \oplus M')_{A}$$

and $\operatorname{Hom}_R(\Lambda/\operatorname{Im} \Phi \oplus M, E)_R \cong \operatorname{Hom}_R(R/\operatorname{Im} \Phi, E)_R$ is essential in E_R by Lemma 1.1, there holds the following condition

(i) eM'=0 and $el_R(M)_R$ is essential in E_R .

or

(ii) $el_R(M) = 0$ and eM'_R is essential in E_R .

First, we consider the case (i). In this case, $E_R \subseteq eR_R$. Since eR_R is indecomposable, we have $E_R \cong eR_R$. Since $e \in l_R(M')$ by (i), we have $eR \subseteq el_R(M')$. Therefore, we get $eR = el_R(M')$. It follows that $E_R \cong eR_R = el_R(M')_R$. We define a map $f_1: (eR \oplus eM)_R \rightarrow (eR \oplus e \operatorname{Hom}_R(M, R))_R$ via

$$f_1(er, em) = (er, \alpha'(em))$$
 for $r \in R, m \in M$.

Since Ker $f_1=(0, \text{Ker } \alpha')=(0, eM')=0$, f_1 is a right *R*-monomorphism. Furthermore, a routine calculation shows that f_1 is also a right *A*-monomorphism. Consider the following composition map:

$$g_1: (e, 0)\Lambda_A \subseteq (eR \oplus e \operatorname{Hom}_R(M, R))_A \cong \operatorname{Hom}_R(\Lambda_R, eR_R)_A \cong \operatorname{Hom}_R(\Lambda_R, E_R)_A.$$

Since $\operatorname{Hom}_R(\Lambda_R, E_R)_A$ is indecomposable and $(e, 0)\Lambda_A$ is injective, g_1 is an isomorphism. Hence f_1 is an isomorphism. Thus we get $\alpha': eM_R \cong e\operatorname{Hom}_R(M, R)_R$. Hence we conclude that (1) holds. Next, we consider the case (ii). In this case, $E_R \subseteq eM_R$. We claim that eM_R is indecomposable. Suppose that $eM_R = eM_{1R} \oplus eM_{2R}$ with $eM_1 \neq 0$ and $eM_2 \neq 0$. Then $(e, 0)([M_1, M] \oplus M_1)_A + (e, 0)$ $([M_2, M] \oplus M_2)_A \subseteq (e, 0)\Lambda_A$. We show that the above sum is direct. Let $(e, 0)([m_1, m], m_1') \in (e, 0)([M_1, M] \oplus M_1) \cap (e, 0)([M_2, M] \oplus M_2)$. Then $em_1' \in eM_1 \cap eM_2 = 0$. Moreover, since

$$[em_1, m]M \in [eM_1, M]M \cap [eM_2, M]M$$
$$= eM_1[M, M] \cap eM_2[M, M]$$
$$\subseteq eM_1 \cap eM_2 = 0,$$

we have $[em_1, m] \in el_R(M)$. Since $el_R(M)=0$, we have $[em_1, m]=0$. Therefore, we have $(e, 0)([M_1, M] \oplus M_1)_A \oplus (e, 0)([M_2, M] \oplus M_2)_A \subseteq (e, 0)A_A$. Since $(e, 0)A_A$ is the injective hull of a simple right Λ -module, there holds $(e, 0)([M_1, M] \oplus M_1) = 0$ or $(e, 0)([M_2, M] \oplus M_2)=0$. Thus eM_R is indecomposable. Hence we get $E_R \cong eM_R$. We define a map $f_2: (eR \oplus eM)_R \to (e \operatorname{End}(M_R) \oplus eM)_R$ via

$$f_2(er, em) = (\sigma'(er), em)$$
 for $r \in R, m \in M$.

Since Ker $f_2 = (\text{Ker } \sigma', 0) = (el_R(M), 0) = 0$, f_2 is a right *R*-monomorphism. Furthermore, it is easily verified that f_2 is also a right Λ -monomorphism. Consider the following composition map:

$$g_2: (e, 0)\Lambda_A \stackrel{J_2}{\hookrightarrow} (e \operatorname{End}(M_R) \oplus eM)_A \cong \operatorname{Hom}_R(\Lambda_R, eM_R)_A \cong \operatorname{Hom}_R(\Lambda_R, E_R)_A.$$

124

Since $\operatorname{Hom}_R(\Lambda_R, E_R)_A$ is indecomposable and $(e, 0)\Lambda_A$ is injective, g_2 is an isomorphism. Therefore, f_2 is an isomorphism. Hence we get $\sigma' : eR_R \cong e \operatorname{End}(M_R)_R$. Thus we conclude that (2) holds.

 (\Leftarrow) . Let X be a simple right Λ -module. Then X is simple as a right R-module. Suppose that (1) holds. Then we can take f_1 and g_1 as in the proof of the part (\Rightarrow) . Since f_1 is a right Λ -isomorphism, g_1 becomes also a right Λ -isomorphism. Thus we obtain $\operatorname{Hom}_R(\Lambda_R, E_R)_{\Lambda} \subset \Lambda_{\Lambda}$. Similarly, in case of (2), we can show that $\operatorname{Hom}_R(\Lambda_R, E_R)_{\Lambda} \subset \Lambda_{\Lambda}$. Hence we conclude that Λ is a right cogenerator ring.

If $\Phi=0$, that is, Λ is the trivial extension $R \ltimes M$, then Theorem 1.4 is rewrited as follows. In this case, note that M'=M.

COROLLARY 1.5. Assume that $\text{Im } \Phi = 0$. Then Λ is a right cogenerator ring if and only if, for each simple right R-module X and $E_R = E(X_R)$, there exists a primitive idempotent e in R satisfying the following condition

(1) $E_R \cong el_R(M)_R$ and $\operatorname{Hom}_R(M_R, E_R) = 0$,

or

(2) $E_R \cong eM_R$ and $\sigma' : eR_R \cong e \operatorname{End}(M_R)$, where σ' is the induced map by σ .

EXAMPLE 1.6. Let R be a right cogenerator ring and $A = R \ltimes R$. Then A becomes also a right cogenerator ring in view of Corollary 1.5.

In the remainder of this section, let Λ denote the trivial extension $R \ltimes M$.

LEMMA 1.7 ([9, Theorem 1]). If R is a right cogenerator ring, then the following holds.

(1) The mapping

$$Ra \rightarrow aR$$
, $a \in R$

gives a one-to-one, onto, correspondence between isomorphism classes of simple left ideals and isomorphism classes of simple right ideals.

(2) Each simple left ideal is of the form Re/Rad(R)e, $e=e^2 \in R$.

LEMMA 1.8 (cf. [13]). $\operatorname{Rad}(\Lambda) = \operatorname{Rad}(R) \oplus M$.

THEOREM 1.9. If Λ is a right cogenerator ring, then M=0 if and only if $Soc(_{R}M) \subseteq Soc(_{R}r_{R}(M))$.

PROOF. (\Rightarrow) . Obvious.

 (\Leftarrow) . We first show that $"Soc(M_R)=0$. Suppose that $Soc(M_R)\neq 0$ and let mR_R be a simple right R-module contained in Soc (M_R) . Then $(0 \oplus mR)_A = (0, m)\Lambda_A$ is also simple as a right A-module. Since Λ_A is a cogenerator, there exists a primitive idempotent e in R such that $(0, m) \Lambda_A = (e, 0) \mathbf{r}_A (\text{Rad}(\Lambda))_A$ (cf. [9, Proof of (2), p. 116]). Since $(e, 0) \mathbf{r}_A(\text{Rad}(\Lambda))_A = (e, 0)(\mathbf{r}_A(\text{Rad}(R) \oplus M)_A) = (e, 0)(\mathbf{r}_R(M) \cap (e, 0))(\mathbf{r}_R(M)) = (e, 0)(\mathbf{r}_R(M)) = (e, 0)(\mathbf{r}_R(M))$ $\mathbf{r}_{R}(\operatorname{Rad}(R)) \oplus \mathbf{r}_{M}(\operatorname{Rad}(R))_{A}$ by Lemma 1.8, we have $mR_{R} = e\mathbf{r}_{M}(\operatorname{Rad}(R))_{R}$ and $e(\mathbf{r}_R(M) \cap \mathbf{r}_R(\operatorname{Rad}(R))) = 0$. Moreover, by Lemma 1.7, $_A \Lambda(0, m) = _A(0 \oplus Rm)$ is also a simple left ideal of Λ isomorphic to $_{\Lambda}(\Lambda(e, 0)/\operatorname{Rad}(\Lambda)(e, 0))$. So, we get $_{R}(Re/\operatorname{Rad}(R)e) \cong_{R}(\Lambda(e, 0)/\operatorname{Rad}(\Lambda)(e, 0)) \cong_{R}Rm \subset \operatorname{Soc}(_{R}M).$ Therefore, we see that $\operatorname{Soc}({}_{R}\mathbf{r}_{R}(M)) \neq 0$ if $\operatorname{Soc}(M_{R}) \neq 0$. Since $\operatorname{Soc}({}_{R}M) \subseteq \operatorname{Soc}({}_{R}\mathbf{r}_{R}(M))$, there exists a simple left ideal $Ra \in Soc(_{R}\mathbf{r}_{R}(M))$ of R which is isomorphic to $_{R}(Re/Rad(R)e)$. Since $_{\mathcal{A}}(Ra\oplus 0) = _{\mathcal{A}} \mathcal{A}(a, 0)$ is a simple left ideal of \mathcal{A} and \mathcal{A} is a right cogenerator ring, $(a, 0)A_A$ is also a simple right ideal of A which is isomorphic to $(e, 0) \mathbf{r}_A(\operatorname{Rad}(\Lambda))_A$ by Lemma 1.7. Furthermore, we get $(a, 0) \Lambda_A = (e', 0) \mathbf{r}_A(\operatorname{Rad}(\Lambda))_A$ by Lemma 1.7, where e' is a primitive idempotent in R such that $(e', 0)\Lambda_A =$ $E((a, 0)\Lambda_A)$. Therefore, we have $aR_R = e'(\mathbf{r}_R(M) \cap \mathbf{r}_R(\operatorname{Rad}(R)))_R$ and $e'\mathbf{r}_M(\operatorname{Rad}(R))$ Since $(e, 0)\Lambda_A \cong (e', 0)\Lambda_A$, we get $eR_R \cong e'R_R$. Therefore, we obtain =0. $e\mathbf{r}_{\mathcal{M}}(\operatorname{Rad}(R)) \cong e'\mathbf{r}_{\mathcal{M}}(\operatorname{Rad}(R)) = 0.$ On the other hand, $mR_{R} = e\mathbf{r}_{\mathcal{M}}(\operatorname{Rad}(R))_{R} \neq 0.$ This is a cotradiction. So, we must have $Soc(M_R)=0$. Since only (1) of Corollary 1.5 holds, we conclude that M=0.

2. Injective cogenerator rings.

Let $\alpha: M \to \operatorname{Hom}_{R}(M_{R}, R_{R})$ and $\sigma: R \to \operatorname{End}(M_{R})$ be the natural maps as in Section 1. We set $\operatorname{Ker} \alpha = M'$.

LEMMA 2.1 ([15, Theorem 2.4]). Assume that Im Φ is nilpotent. Then the injective hull of Λ has the form

Hom_R
$$(\Lambda_R, E(\mathbf{l}_R(M) \oplus M')_R)$$
.

THEOREM 2.2. Assume that $\operatorname{Im} \Phi$ is nilpotent. Then Λ is right self-injective if the following conditions are satisfied:

(1) $\mathbf{l}_{\mathbf{R}}(M)_{\mathbf{R}}$ and $M'_{\mathbf{R}}$ are injective.

(2) (i) For each $f \in \operatorname{Hom}_{R}(M_{R}, \mathbf{l}_{R}(M)_{R})$, there exists $m_{0} \in M$ such that $f = [m_{0}, -]$.

(ii) For each $g \in \operatorname{Hom}_{R}(M_{R}, M_{R}')$, there exists $r_{0} \in R$ such that $g = \overline{r}_{0}$, where \overline{r}_{0} denotes left multiplication by r_{0} .

PROOF. Suppose that (1) and (2) are satisfied. Since $l_R(M)_R$ and M'_R are

injective, the inclusion maps $M'_R \subseteq M_R$ and $\mathbf{l}_R(M)_R \subseteq R_R$ split. So, let $p: M \to M'$ and $q: R \to \mathbf{l}_R(M)$ be the natural projection maps. We define a map $\Psi: \Lambda \to \operatorname{Hom}_R(\Lambda_R, \mathbf{l}_R(M)_R \oplus M'_R)$ via

$$(\Psi(r, m))(a, x) = (q(r)a + q([m, x]), p(m)a + (pr)(x))$$
 for $(r, m), (a, x) \in \Lambda$.

It is easily verified that Ψ is a right Λ -homomorphism. We claim that Ψ is an isomorphism. Let $f = (lf_1, f_2) \in \operatorname{Hom}_R(\Lambda_R, \mathbf{l}_R(M)_R \oplus M'_R)$, where $f_1 \in \operatorname{Hom}_R(R_R, \mathbf{l}_R(M)_R \oplus M'_R)$ and $f_2 \in \operatorname{Hom}_R(M_R, \mathbf{l}_R(M)_R \oplus M'_R)$. Then by (2), there exist $m_0 \in M$ and $r_0 \in R$ such that $f_2(m) = ([m_0, m], r_0m)$ for every $m \in M$. We put $f_1(1) = (a_1, x_1)$. Since

$$\begin{aligned} & (\Psi((1-q)(r_0)+a_1, (1-p)(m_0)+x_1))(a, x) \\ = & (q((1-q)(r_0)+a_1)a+q([(1-p)(m_0)+x_1, x]), p((1-p)(m_0)+x_1)a \\ & +(p\cdot((1-q)(r_0)+a_1))(x)) = (a_1a+[(1-p)(m_0), x], x_1a+(1-q)(r_0)x) \\ = & (a_1a+[m_0, x], x_1a+r_0x) = f_1(a)+f_2(x) = f(a, x) \quad \text{for} \quad (a, x) \in \Lambda, \end{aligned}$$

 Ψ is an epimorphism. Let $\iota: (\mathbf{l}_R(M) \oplus M')_A \subset \mathcal{A}_A$ be the inclusion map. Then ι is an essential monomorphism by Lemmas 1.1 and 1.2. Since Ψ_ℓ is a monomorphism, Ψ is also a monomorphism. Thus Ψ is an isomorphism. Since $(\mathbf{l}_R(M) \oplus M')_R$ is injective, $\operatorname{Hom}_R(\mathcal{A}_R, \mathbf{l}_R(M)_R \oplus M'_R)_A$ is injective, from which it follows that Λ is right self-injective.

Following [2], a right R-module X is called lower distinguished if it contains a copy of each simple right R-module.

THEOREM 2.3. Assume that $\operatorname{Im} \Phi$ is nilpotent. Then Λ_A is lower distinguished if and only if $(l_R(M) \oplus M')_R$ is lower distinguished.

PROOF. Since every maximal right ideal X of Λ has the form $\mathfrak{m} \oplus M$, where \mathfrak{m} is a maximal right ideal of R, and

$$\operatorname{Hom}_{\Lambda}(\Lambda/X, \Lambda) \cong \operatorname{Hom}_{\Lambda}(\Lambda/\mathfrak{m} \oplus M, \Lambda)$$
$$\cong \mathbf{l}_{\Lambda}(\mathfrak{m} \oplus M)$$
$$= \mathbf{l}_{(\mathbf{l}_{\mathbf{R}}(M) \oplus M')}(\mathfrak{m}),$$

we conclude that Λ_{Λ} is lower distinguished if and only if $(l_{R}(M) \oplus M')_{R}$ is lower distinguished.

From now on, let Λ be the trivial extension $R \ltimes M$.

LEMMA 2.4 ([13, Theorem 1.4.1]). Λ is right self-injective if and only if the

following conditions are satisfied:

- (1) $\mathbf{l}_{\mathbf{R}}(M)_{\mathbf{R}}$ and $M_{\mathbf{R}}$ are injective.
- (2) $\sigma: R \rightarrow \text{End}(M_R)$ is an epimorphism.
- (3) $\operatorname{Hom}_{R}(M_{R}, \mathbf{l}_{R}(M)_{R}) = 0.$

The following is derived from Theorem 2.3 and Lemma 2.4, directly.

THEOREM 2.5. Λ is a right injective cogenerator ring if and only if the following coditions are satisfied:

- (1) $(\mathbf{l}_{R}(M) \oplus M)_{R}$ is an injective cogenerator.
- (2) $\sigma: R \rightarrow \text{End}(M_R)$ is an epimorphism.
- (3) Hom_R(M_R , $\mathbf{l}_R(M)_R$)=0.

REMARK. Y. Kitamura also obtained the above Theorem 2.5 independently (cf. [10, Theorem 3]).

3. Generalized triangular matrix rings.

In this section, let

$$\Gamma = \begin{pmatrix} S & 0 \\ U & T \end{pmatrix}$$

be a generalized triangular matrix ring, where S and T are rings with identity, and U a (T, S)-bimodule. Since U is regarded as an $(S \oplus T, S \oplus T)$ -bimodule in the natural way, Γ is isomorphic to $(S \oplus T) \ltimes U$.

LEMMA 3.1 ([13, Theorem 1.5.1]). Γ is semiperfect if and only if both S and T are semiperfect.

LEMMA 3.2 ([11, Theorem 1]). If R is a right injective cogenerator ring, then R is semiperfect.

LEMMA 3.3 ([8, Theorem 1]). The following conditions on a ring R are equivalent:

(1) R is a right injective cogenerator ring.

(2) $E(R_R)$ is torsionless, and both R_R and $_RR$ are lower distinguished.

(3) R_R is a cogenerator and there are only finitely many non-isomorphic simple right (or left) ideals.

If we apply Theorem 1.9 to Γ , then we have the following.

COROLLARY 3.4. If Γ is a right cogenerator ring, then U=0 if and only if $Soc(_{T}U) \subseteq Soc(_{T}T)$.

The following indicates that Γ can not be a right injective cogenerator ring except the trivial case.

THEOREM 3.5. Γ is a right injective cogenerator ring if and only if both S and T are right injective cogenerator rings, and U=0.

PROOF. (\Leftarrow). Obvious.

 (\Rightarrow) . Since Γ_{Γ} is an injective cogenerator, Γ is semiperfect by Lemma 3.2. Therefore, T is semiperfect by Lemma 3.1. On the other hand, since $\mathbf{l}_T(U)_T$ is an injective cogenerator in view of Theorem 2.5, T_T is an injective cogenerator by Lemma 3.3, from which it follows that $_TT$ is lower distinguished together with Lemma 3.3. Thus we get $\operatorname{Soc}(_TU) \subset \operatorname{Soc}(_TT)$. Hence U=0 by Corollary 3.4, from which it follows that S_S and T_T are injective cogenerators in view of Theorem 2.5.

THEOREM 3.6. If S=T in Γ , then Γ is a right cogenerator ring if and only if T is a right cogenerator ring, and U=0.

PROOF. (\Leftarrow). Obvious.

(\Rightarrow). If Soc($_{T}U$)=0, then 0=Soc($_{T}U$) \subseteq Soc($_{T}T$). Therefore, U=0 by Corollary 3.4. Next, we suppose that Soc($_{T}U$) \neq 0 and let $_{T}Tu$ be a simple left T-module contained in Soc($_{T}U$). Then $_{\Gamma}\Gamma\begin{pmatrix}0&0\\u&0\end{pmatrix}$ is also a simple left ideal of Γ . Since Γ_{Γ} is a cogenerator, $\mathbf{l}_{T}(U)_{T}$ is a cogenerator in view of Corollary 1.5 and $\begin{pmatrix}0&0\\u&0\end{pmatrix}\Gamma_{\Gamma}=\begin{pmatrix}0&0\\u&0\end{pmatrix}_{\Gamma}$ is a simple right ideal of Γ by Lemma 1.7, from which it follows that uT_{T} is isomorphic to a simple right ideal aT_{T} of T together with the fact that $\mathbf{l}_{T}(U)_{T}$ is a cogenerator. Since $\begin{pmatrix}a&0\\0&0\end{pmatrix}\Gamma_{\Gamma}$ is a simple right ideal of Γ which is isomorphic to $_{\Gamma}\Gamma\begin{pmatrix}a&0\\u&0\end{pmatrix}$ is also a simple left ideal of Γ which is isomorphic to $_{T}Tu$. Therefore, we have Soc($_{T}U$) \subseteq Soc($_{T}T$). Hence we have U=0 by Corollary 3.4, and T is a right cogenerator ring.

References

[1] Anderson, F.W. and Fuller, K.R., Rings and Categories of Modules. Graduate Texts in Math. vol. 13, Springer-Verlag, New York-Heidelberg-Berlin, 1973.

- [2] Azumaya, G., Completely faithful modules and self-injective rings. Nagoya Math. J. 27 (1966), 697-708.
- [3] Faith, C., Self-injective rings. Proc. Amer. Math. Soc. 77 (1979), 157-164.
- [4] Fossum, R., Griffith, P. and Reiten, I., Trivial Extensions of Abelian Categories. Lecture Notes in Math. vol. 456, Springer-Verlag, Berlin-Heidelberg-New York, 1975.
- [5] Goodearl, K.R., Ring Theory. Pure and Applied Math. vol. 33, Dekker, New York, 1976.
- [6] Kasch, F., Modules and Rings. L. M. S. Monographs vol. 17, Academic Press, London, 1982.
- [7] Kato, T., Self-injective rings. Tohoku Math. J. 19 (1967), 485-495.
- [8] -----, Torsionless modules. Tohoku Math. J. 20 (1968), 234-243.
- [9] -----, Some generalizations of QF-rings. Proc. Japan Acad. 44 (1968), 114-119.
- [10] Kitamura, Y., On QF-3 trivial extension rings. unpublished.
- [11] Osofsky, B.L., A generalization of quasi-Frobenius rings. J. Algebra 4 (1966), 373-387.
- [12] Palmér, I., The global homological dimension of semi-trivial extensions of rings. Math. Scand. 37 (1975), 223-256.
- [13] Reiten, I., Trivial extensions and Gorenstein rings. Thesis, University of Illinois, Urbana, 1971.
- [14] Sakano, K., Maximal quotient rings of generalized matrix rings. Comm. Algebra 12 (1984), 2055-2065.
- [15] ——, Injective hulls of Ø-trivial extensions of rings. Comm. Algebra 13 (1985), 1367-1377.

Institute of Mathematics University of Tsukuba Ibaraki, 305, Japan