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ON COGENERATOR RINGS AS ^-TRIVIAL EXTENSIONS
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Kazunori Sakano

Let R be a ring with identity and M an (R, i?)-bimodule with a pairing

0=1―, ―]: M<g>RM->R, that is, an (R, /?)-bilinearmap satisfying [m, m'~]m"

=m[m', m]. Then by defining a multiplication on the abelian group i?0A/ as

(r, m){r', m')={rrr+＼_m.,m'], mr'+rm'), RRM becomes a ring, which is called

the 0-trivialextension of R by Mand is denoted by A=Rt<M. Note that 0=0

corresponds to the trivialextension RxM. In particular, a generalized matrix

ring defined by a Morita context can be considered as a special case of a 0-

trivialextension.

The main purpose of this paper is to give a necessary and sufficientcondi-

tion for A to be a right cogenerator ring under the condition that lm0 is

nilpotent.

In Section 1, we study the form of the injective hull of a simple right A-

module and decide the condition for A to be a right cogenerator ring under the

assumption that Im$ is nilpotent. Furthermore, in case of the trivial exten-

sion RxM, we investigate the condition for M=0, when i?t≪M is a right

cogenerator ring. In Section 2, we give a sufficientcondition for A to be right

self-injectiveunder the assumption that Im 0 is nilpotent. Moreover, in case of

the trivialextension RxM, we give a necessary and sufficient condition for

i?xM to be a right injective cogenerator ring. Let F=(tj j be a generalized

triangular matrix ring, where both S and T are rings with identity and U a

(T, 5)-bimodule. In the final Section 3, we study an application of results in

Sections 1 and 2 to a generalized triangular matrix ring F. Especially, we

show that F is a right injective cogenerator ring if and only if both S and T

are right injective cogenerator rings, and U=0. This result was mentioned by

T. Kato during a conversation and he pointed out whether the similar result

as above holds when F is a right cogenerator ring (in case of F being a QF

ring, see [6, Exercise (3)-(2),p. 362]). In case of 5=T in F, there holds that

F is a right cogenerator ring if and only if T is a right cogenerator ring and
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U=0. But it remains an unsolved problem when S=£T in F.

Throughout this paper, unless otherwise specified, A denotes the (^-trivial

extension i? txM and lR(K) the left annihilator of K in R for a subset K of a

right i?-module X. For a right i?-module Y, E(YR) means the injective hull of

YR.

The author wishes to express his hearty thanks to Professor T. Kato for

his useful suggestions and remarks during the preparation of this paper.

. 1. Cogenerator rings as $-trivial extensions.

■In this section, we assume that Im 0 is nilpotent. By a slight modification

of the proof of [14, Lemma 3.1], we have the following.

Lemma 1.1. Let X be a right R-module and K a nilpotentideal of R. Then

lx(K) is essentialin Xr.

Lemma 1.2. Im#0M is a nilpotentideal of A.

Proof. This is found in the proof of [12, Lemma 1].

Lemma 1.3. Let X be a simple right A-module. Then the injective hull of

Xa has the form B.ovaR{AR, E{Xr))a.

Proof. Since E(XR) is injective and aA is flat, HomR(AR, E{XR))A is in-

jective. Therefore, it sufficesto show that Xa is essentialin ＼{omR{AR, E(Xr))a-

Since

lnomBa.Eix≫(lm0RM)A=*HomA{A/lm0RM, HomR(A, E{X)))A

2LRomR{A/lmQRMRAA, E{X))A

=HomR(A/l .0RM, E{X))A,

HomR{A/lm0Q)M> E{X))A is essentialin EomR(A, E{X))A by Lemmas 1.1 and

1.2. Since EomR(A/lm0RM, E{X))RQE{XR), we may consider XRQY＼QmR{A/

lm0@M,E{X))R and XR is essential in HomR(A/lm0RM, E(X))R. Since

HomR(A/lm0RM, E(X))Im0=Q, XA is also essential in HomB(A/＼m0RM,

E(X))a- Thus we obtain XA is essentialin HomR(AR, E{Xr))a-

In the remainder of this section,let a: M-≫HomR (MR, RR) be the natural

map defined via

(a{m))(jn')―[m, ?n'] for m, m'^M,

and a : /?-^End (MR) the canonical map. We put Kera=M'.
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Since every simple right ^-module is isomorphic to i?RM/tncM, where m

is a maximal right ideal of R, every simple right yi-module is also simple as a

rrceht /P-mnrhilpanri virp vpr<3a

Theorem 1.4. A is a right cogenerator ring if and only if, for each simple

right R-module X and ER=E(XR)> there exists a primitive idempotent e in R

satisfying the following condition

(1) ER^eRR=elR(Mf)R and a': eMR=eliomR(MR, RR)R, where a' is the in-

duced map by a,

or

(2) ER^eMR and a': eRR=eEnd(MR)R, where a' is the induced map by a.

Proof. (=4). Let X be a simple right i?-module and ER=E(XR). Since

every simple right /?-module is also simple as a right /1-module, Horn* (AR, Er)a

is the injective hull of Xa by Lemma 1.3. Since A a is a cogenerator, there

exists a primitive idempotent (e, m) in /I such that (e, m)AA~Y{omR{AR, ER)A.

Then it is easily seen that e is a primitive idempotent in R and [m, m]=0.

Moreover, since (e, rnf―{e, m), we have m=em-＼-me, from which it follows that

eme=0. Therefore, we have rneRr＼eM=0 and eRr＼[me, M]=0. Hence we get

(<?,m)AAQ{eRReM)A(&{[me, M~＼RmeR)A. Since (0, m)yf is the injective hull of a

simple right ^-module, there holds (e, m)AAQ(eR(&eM)A or (e, m)AAQ([me, M]

($meR)A. U(e, m)AAQ{[rne, M~＼RmeR)A, then eRQIm@QRad(R). Therefore, we

obtain (e, m)=0. Hence we must have (e, m)AAQ{e, 0)Aa. Since (e, m)AA is

injective and (e, 0)Aa is indecomposable, we have (e, m)AA = (e, 0)Aa. Therefore,

we may take m=0. Since (e, 0)AA^HomR(AR, Er)a, we have eR(BeMR^ER@

＼iomR{M, E)R. Since ER is the injective hull of a simple right i?-module, there

holds ERQeRR or ERQeMR. Furthermore, since

Homfl(/f/Im00M, E)A=HomR{A/＼m0RMRAA, E)A

=ViomA{A/lm0RM, Hom^U, E))

=Hom^(^/Im0cM, (e, 0)A)

= (e, 0)GU(M)cM')j

and UomR(A/lm@(S)M, E)R~UomR(R/lm0) E)R is essentialin ER by Lemma 1.1,

there holds the following condition

(i) eM'=0 and elR(M)R is essentialin ER.

or

(u) e＼j,(M)= 0 and eMi is essentialin Ed.
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First, we consider the case (i). In this case, ERQeRR. Since eRR is indecom-

posable, we have ER=eRR. Since e^lR{M') by (i), we have eRdelR(M'),

Therefore, we get eR=elR(M'). It follows that ER^eRR=elR(M')R. We define

a map /2: (ei?ceM)fl-^(ei?ceHom*(M, R))R via

fi{er,em)=(er, a'(em)) for r^R, m&M.

Since Ker/j^O, Ker a')=(0, eM')=0, fx is a right i?-monomorphism. Fur-

thermore, a routine calculation shows that /i is also a right /1-monomorphism.

Consider the following composition map:

gx＼{fi,0)AAQ(eRReHomR(M, R))A=EomR(AR, eRR)A=EomR(AR, ER)A.

Since HomR(AR, ER)A is indecomposable and (e, 0)AA is injective, gx is an isomor-

phism. Hence/i is an isomorphism. Thus we get a':eMR^eHomR(M, R)R.

Hence we conclude that (1) holds. Next, we consider the case (ii). In this

case, ERQeMR. We claim that eMR is indecomposable. Suppose that eMR―

eMlR@eM2R with eM^O and eM2^0. Then (e, 0)([Mlf AfJSM^+Ce, 0)

([M2, M]0M2)^Q(e, 0)AA. We show that the above sum is direct. Let

(e, 0)([m1,m], m[)^(e, 0)([M1, M^M^e, 0)([M2, M1RM2). Then em'^eM^

eMz=0. Moreover, since

[em,, m]Me[gMa, M]Mn[>M2, M]M

=eMj[M, M]neM2[M, M]

QeM^eM^O,

we have [em!, m]eel≪(M). Since elR(M)=0, we have [em!, m]=0. Therefore,

we have (e, 0)([M1, Ml^M^e^, 0)([M2, M]cM2)^C;(e, 0)^^. Since (e, 0)^^ is

the injective hull of a simple right yl-module, there holds (e, 0)([Mi, M]c^)

=0 or (e, 0)([M2, M]0M2)=O. Thus eMfl is indecomposable. Hence we get

ER~eMR. We define a map /2: (ei?0eM)/j->-(eEnd(M^QeM)^ via

fz(er,em)=(o'{er), em) for reR, m^M.

Since Ker/2=(Ker a', 0)=(elR(M), 0)=0, /2 is a right i?-monomorphism. Fur-

thermore, it is easily verified that /2 is also a right yi-monomorphism. Consider

the following composition map:

gt:(e, 0)AAQ(eEnd(MR)ReM)A=HomR(AR, eMR)A^UornR(AR, ER)A.
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Since UomR(AR, Er)a is indecomposable and

morphism. Therefore,/2is an isomorphism.

Thus we conclude that (2) holds.

125

(e, O)Aa is injective, g2 is an iso-

Hence we get a': eRR^.eEnd(MR)R.

(£=).Let X be a simple right ^-module. Then X is simple as a right R-

module. Suppose that(1) holds. Then we can take fx and gx as in the proof

of the part (=}). Sincef1 is a right ^-isomorphism, gx becomes also a right

yl-isomorphism. Thus we obtain UomR(AR, Er)aQAa. Similarly,in caseof(2),

we can show that UomR(AR, Er)aQAa- Hence we conclude that A is a right

cogenerator ring.

If 0=0, that is, A is the trivialextension RkM, then Theorem 1.4 is re-

writed as follows. In this case, note that M'―M.

Corollary 1.5. Assume thatlm@=0. Then A is a right cogenerator ring

if and only if, for each simple right R-module X and ER=E(XR), there exists a

primitive idempotent e in R satisfying the following condition

(1) ER^eUM)n and EomR(MR, ER)=0,

or

(2) ER=eMR and a': eRR=eEnd(MR), where a' is the induced map by a.

Example 1.6. Let R be a right cogenerator ring and A=Rt<R. Then A

becomes also a right cogenerator ring in view of Corollary1.5.

In the remainder of this section,let A denote the trivialextension RmM.

Lemma 1.7 ([9, Theorem 1]). // R is a right cogenerator ring, then the

following holds.

(1) The mapping

Ra-^aR, aei?

gives a one-to-one,onto, correspondence between isomorphism classes of simple left

ideals and isomorphism classesof simple right ideals.

(2) Each simple left ideal is of the form Re/Rad(R)e, e―ez^R.

Lemma 1.8 (cf. [13]). Rad(^)=Rad(/?)cM.

Theorem 1.9. // A is a right cogenerator ring, then M=0 if and only if

Soc(RM)QSoc(RrR(M)＼

Proof. (=)). Obvious.
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(£=). We firstshow that ＼Soc(MR)=0. Suppose that Soc(Mr)=£0 and let

mRR be a simple right i?-module contained in Soc(A/r). Then (O0mi?)j―(0, m)^

is also simple as a right /i-module. Since AA is a cogenerator, there exists a

primitive idempotent e in R such that (0, m)AA=(e, 0)r^(Rad (yi)) (̂cf.[9, Proof

of (2), p. 116]). Since (e, 0)rA(Rad(A))A=(e, 0)(rA{Rad(R)RM)A=(e, 0)(r*(M)n

YR(Rad(R))(&rM(Rad(R))A by Lemma 1.8, we have mRR-= exM (Rad (R))R and

e(rR(M)r＼rR(Rad(R)))=0. Moreover, by Lemma 1.7, AA(0, m)=A(QQ)Rm) is also

a simple left ideal of A isomorphic to A(A(e, Q)/Rad{A)(e, 0)). So, we get

R(Re/Rad(R)e)=R(A(e> 0)/Rad(4)(e, 0))^RRm(ZSoc(RM). Therefore, we see that

Soc(RrR(M))^0 if Soc(Mij)^0. Since Soc(iSM)QSoc(iJr/J(M)), there exists a

simple left ideal Ra^Soc(RrR(M)) of R which is isomorphic to R(Re/Rad(R)e).

Since A(Ra($)Q)=AA(a, 0) is a simple leftideal of A and A is a right cogenerator

ring, (a, 0)^ is also a simple right ideal of A which is isomorphic to

(e, 0)rA(Rad(A))A by Lemma 1.7. Furthermore, we get (a, 0)AA=(ef, 0)rA(Rad(A))A

by Lemma 1.7, where e' is a primitive idempotent in R such that (er,0)^=

£((a,0)J^). Therefore, we have aRR=e'(rR (M)r＼rR(Rad (i?)))fland e'r^(Rad (/?))

=0. Since (e, Q)AA^(e', 0)AA, we get eRR=e'RR. Therefore, we obtain

erM(R&d(R))^e'TM(Rad(R))=0. On the other hand, mRR=erM(Rad(R))R^O.

This is a cotradiction. So, we must have Soc(MR)=0. Since only (1) of Corol-

lary 1.5 holds, we conclude that M― 0.

2. Iitjectivecogeiteratorrings.

Let a: M-*HomR(MR, RR) and a : R->End (Mr) be the natural maps as in

Section 1. We set Kera^M'.

Lemma 2.1 ([15, Theorem 2.4]). Assume that lm@ is nilpotent. Then the

injective hull of A has the form

YLomR(AR,E{UM)RM%).

Theorem 2.2. Assume that Im$ is nilpotent. Then A is right self-injective

if the following conditions are satisfied:

(1) ＼R(M)R and MR are injective.

(2) (i) For each /GHomfl(MK, Ir(M)r), there exists mo^M such that f―

[m0, -].

(ii) For each g<=HomR(MR) Mr), there exists ro^R such thatg=r0, where r0

denotes left multiplicationby r0.

Proof. Suppose that (1) and (2) are satisfied. Since lR(M)R and MR are
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injective, the inclusion maps MRQMR and lR(M)RQRR split. So, let p;M->M'

and q: R->lR(M) be the natural projection maps. We define a map ＼: A-*

EomR(AR,lR(M)RRMR) via

(W(r, m)){a, x)=(tf(r)a+<?([m, *]), p(m)a + (pr)(x)) for (r, m), {a, x)(=A.

It is easily verified that ＼ is a right yi-homomorphism. We claim that W is an

isomorphism. Let f―Qfi,ft)eHomR(Aa, ＼R{M)RRMR), where^eHom^ft lR(M)R

RM'R) and f2^HomR(MR) lR(M)R(BMR). Then by (2), there exist moeM and

roe.R such that /2(w)=([m0, m], rom) for every msM. We put /iCl^Cai, %i).

Since

(^Cd-^W+fl!, (l-/>)(mo) + xi))(a, x)

=(^((l-(?)(ro) + ai)fl+9(C(l-/>)(mo) + *1, x]), />((l-/>)(mo) + x1)a

+(/≫-((l-^o)+fli))W) = (fl1a + C(l-/>)(mo), x], x.a + d-^r,)!)

=(a1a + [m0, x], x1a+rox)=/1(a)+/8U)=/(a, a:) for (a,x)eA,

＼ is an epimorphism. Let c:(Ir(M)@M')aQAa be the inclusion map. Then c

is an essential monomorphism by Lemmas 1.1 and 1.2. Since ＼c is a monomor-

phism, ＼ is also a monomorphism. Thus ?T is an isomorphism. Since

(lR(M)($M')R is injective, HomR(AR> lR{M)RRMR)A is injective, from which it

follows that A is right self-injective.

Following [2], a right /?-raodule X is called lower distinguished if it con-

tains a copy of each simple right Z?-module.

Theorem 2.3. Assume thatIm# is nilpotent. Then A a is lower distinguished

if and only if {Ir(M)RM')r is lower distinguished.

Proof. Since every maximal right ideal X of A has the form tncM, where

m is a maximal right ideal of R, and

HomA(A/X, A)=HomA(A/mRM, A)

sli(mcM)

we conclude that A a is lower distinguished if and only if(lR{M)Q)M')R is lower

distinguished.

From now on, let A be the trivialextension RxM.

Lemma 2.4 ([13, Theorem 1.4.1]). A is right self-injectiveif and onlyif the
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following conditionsare satisfied:

(1) ＼R(M)R and MR are injective.

(2) a :i?-≫End(Mr) is an epimorphism.

(3) Hom^CM^l^CM)^^.

The followingis derived from Theorem 2.3 and Lemma 2.4,directly.

Theorem 2.5. A is a right injective cogenerator ring if and only if the

following coditionsare satisfied:

(1)

(2)

(3)

(Iij(M)0M)/j is an injective cogenerator.

o :i?―>End(MR) is an epimorphism.

HomR(MR,lR(M)R)=0.

Remark. Y. Kitamura also obtained the above Theorem 2.5independently

(cf.[10, Theorem 3]).

3. Generalized triangular matrix rings.

In this section,let

＼u t)

be a generalized triangular matrix ring, where S and T are rings with identity,

and U a (T, S)-bimodule. Since U is regarded as an (5cT, ScT)-bimodule in

the natural way, F is isomorphic to {SRT) x U.

Lemma 3.1 ([13, Theorem 1.5.1]). F is semiperfect if and only if both S

and T are semiperfect.

Lemma 3.2 ([11, Theorem 1]). // R is a right injective cogenerator ring

then R is semiperfect.

Lemma 3.3 ([8, Theorem 1]). The following conditions on a ring R are

equivalent:

(1) R is a right injective cogenerator ring.

(2) E(Rr) is torsionless,and both RR and RR are lower distinguished.

(3) RR is a cogenerator and there are only finitelymany non-isomorphic simple

right {or left)ideals.

If we apply Theorem 1.9 to F, then we have the following.



On cogenerator rings as ^-trivial extensions 129

Corollary 3.4. // F is a right cogenerator ring, then U―0 if and onlyif

SocW/)CSoc(rT).

The following indicates that F can not be a right injective cogenerator ring

except the trivialcase.

Theorem 3.5. F is a right injective cogenerator ring if and only if both S

and T are right injective cogenerator rings, and U=0.

Proof. (£=). Obvious.

(=4). Since Fr is an injective cogenerator, F is semiperfect by Lemma 3.2.

Therefore, Tis semiperfect by Lemma 3.1. On the other hand, since ＼T{U)Tis

an injective cogenerator in view of Theorem 2.5, TT is an injective cogenerator

by Lemma 3.3, from which it follows that rT is lower distinguished together

with Lemma 3.3. Thus we get Soc(r£/)CSoc(rT). Hence £7=0 by Corollary 3.4,

from which it follows that Ss and TT are injective cogenerators in view of

Theorem 2.5.

Theorem 3.6. If S=T in F, then F is a right cogenerator ring if and only

if T is a right cogenerator ring, and U=0.

Proof. ≪=)･ Obvious.

(=4). If Soc(TU)=0, then 0=Soc(r£/)C;Soc(rT). Therefore, U=O by Corol-

lary 3.4. Next, we suppose that Soc(TU)^0 and let TTu be a simple left T-

module contained in Soc(r£7). Then rFr^ q) is also a simple leftideal of F

Since Fr is a cogenerator, lT(U)T is a cogenerator in view of Corollary 1.5 and

foil

o)r'r=(u'p q) is a simple right ideal of F by Lemma 1.7, from which it

ows that uTT is isomorphic to a simple right ideal aTT of T together with

the fact that ＼T{U)T is a cogenerator. Since (% q)/Y is a simple right ideal

of F and Fr is a cogenerator, /^(q q) *s a^so a s P^e ^e^ ^ea^ °fF which

is isomorphic to r^Y^ q) by Lemma 1.7. Hence TTa is a simple left ideal of

T which is isomorphic to TTu. Therefore, we have Soc(r£/)C;Soc(rT). Hence

we have U=0 by Corollary 3.4, and T is a right cogenerator ring.
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