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ON THE WEIGHT OF HIGHER ORDER WEIERSTRASS POINTS
By
Masaaki Homma and Shoji OumMor:

Introduction. Let C be a complete nonsingular curve of genus ¢=2 over an
algebraically closed field % of characteristic zero and D a divisor on C with dim|D)|
z0. Then we may define the notion of [)-Weierstrass points (see e. g. [3]).

Let P be a point on C and /=dim|D|+1. If v is a positive integer such that
dim (D —(w—-1)P)>dim L(D—vP), we call this integer v a “ D-gap” at P. There
are exactly / D-gaps and the sequence of [)-gaps vi(P), -, u(P) at P, v (P)< -+
<w(P), is called the D-gap sequence at P. The multiplicty of the Wronskian of
D at a point P can be computed as i(ui(P)—i)‘ This integer is called the D-
weight at P and denoted by wy(P). Z{Z{Ihen wp(P) is positive, we call the point P
a D-Weierstrass point. It is well known that for the canonical divisor K,

wrP)=2g(g—1)
2
and equality occurs if and only if C is hyperelliptic and P is a K-Weierstrass
point. Furthermore, T. Kato [2] showed that if C is nonhyperelliptic, then wg(P)
=k(y), where
1 .
go(g—l) if 9=3,4,6,7,9
k(g)= )
rg(g3—5g+10) if g=5,8 or ¢=190,
and this maximum is achieved for every ¢=3.
Our purpose is to give such good bounds on wy(P) for a divisor D) of degree
>29—2.
Tueorem L. Let D be « divisor of degree d>29—2 on C. Then

1
wilP)=5g(g+1).

Furthermore, equality occurs if and only if C is hypevelliptic, P is a K-Weiersrass
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point and D is linearly equivalent to K+(d-—2g+2)F.

TueorREM 1L Let D be a divisor of degree d>2g—2 on C. If C is nonhy-
perelliptic, then

wp(PY=k(9)+9.
Furthermor, the maximum is achived for every g=3 and every d>2¢—2

TugoreMm 1L Let P be a point on a nonhwperelliptic curve C and D a divisor
of degree d>29—2 on C. If wp(P)=Fk(g)+g, then wk(P)="Fk(g).

In his paper [1], A. Duma posed the conjecture: if C is nonhyperelliptic of
genus ¢ and if PeC is a K-Weierstrass point, then wer(P)Swx(P)+g for every
¢=2. Unfortunately, there is a counterexample of this conjecture (see §4 below).
However, our theorems show that the conjecture is true for a certain limited case.

Notation. Let z be a function or a differential on C. The divisor of zeros
of z is denoted by (z), and the divisor of poles of z is denoted by (). The
divisor div 2 means (z)o—(z).. Let E be a divisor on C. We denote by L(£) the
the k-vector space of all functions x on C such that divaz+£E is effective and by
IE) the dimension of _L(E)over k. The dimension of the k-space of all holo-
morphic differentials o with (0)>E is denoted by #'(F). The degree of £ is
denoted by deg E. If two divisors £ and £’ are linearly equivalent, we denote it
by E~E'. The complete linear system of all effective divisors £’ with E~Iis
denoted by |E|.

S1. wpP)=go(o+1)

Let C be a complete nonsingular curve of genus ¢=2 over k and D a divisor
of degree d>2g—2 on C. The dimension A°(D) of the k-space (D) is always
denoted by /. Note that /=d+1—¢ by the Riemann-Roch theorem. Let PeC.
We denote by v (P)< -+-<w(P) the D-gap sequence at P. Then we have

vi(P)=i for 1=i=d—29+1
by the Riemann-Roch theorem, and may denote by
vi(PY=d—2¢+ 14 pi_ca-2q:in(P) for d—2g+2=i=l,

where u,(P)< -+ <py(P) are positive integers. Hence we have

wilP)= émi(m-— i),
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TueoreM 1. We have
1
wo(P)=5-9(g+1).

Furthermore, equality occurs if and only if C is hyperelliptic, P is a K-Weierstrass
point and D ~ K+(d—2g+2)P.
Proor. By the definition of gap sequence, we have
L) 2(D—(d~29+p)P)=g—j+1.
Since
(2) deg(D—(d—2g+p;)P)=29—p,,
we have g—jg—%@g*m) by Clifford’s theorem. Hence p;=<2; and therefore we

have
g L1
wo(P)= X (uy=)=50g+1)

If equality occurs, then g;=2j for j=1.---,¢. In particular, putting j=1 we have
deg(D—(d—29+2)P)=2g—2 and #*(D—(d—2¢g+2)P)=g. This means D—(d—2g+2)P
~K. Putting j=2 and appealing to Clifford’s theorem, we have that C is hyperel-
liptic and |D—(d—2¢9+4)P|=(g—2)g}, where ¢} is the linear system of dimen-
sion 1 and degree 2 on C. Hence we have |2P|=g¢! which means that P is a
K-Weierstrass point.

Conversely, it is obvious that if C is hyperelliptic, D~K+(d—2g+2)P and P
is a K-Weierstrass point, then the D-gap sequence at P is

{1,2,-+-,d—2¢g+1,d—29+3,d—29+5,---,d+1}.

Hence we have wD(P)=%g(g+1).

§ 2. Nonhyperelliptic case (1)

From now on, we assume that C is nonhyperelliptic. The following theorem,
which is essentially due to H.H. Martens [4], plays an important role in our es-
timate of a bound on wp(P).

THeEOREM 2.1 (Martens). Assume that C is nonhyperelliptic of genus g=4.
Let E be a divisor of degree e with 0=e=<2g—1. If E~0 nor K, then

2((E)-1)=e—1.
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Furthermore, equality holds if and only if one of the following occurs:
(i) e=1 and E~ Q, where Q is a point;
(i) C is trigonal, e=3 and \E|=¢}, where ¢} is a linear system of dimension
1 and degree 3;
(iil) C is plane quintic, e=5 and FE is a line section;
(vi) C is trigonal, e=2g—5 and |K—E|=¢};
(v) e=2¢-3 and K—E~Q, where @ is a point;
(vi) e=2¢—1.

Proor. The first assertion follows from Clifford’s theorem. The “if” part of
the second assertion is obvious and the “only if ” part is an immediate consequence
of the following lemma. (Note that if 2(A%FE)—1)=e—1, then 2(A%K-E)-1)=
deg(K—FE)—1.)

LeMMA 2.2. Let E be a divisor of degree e on a nonhypevelliptic curve of
genus g=4. If 20(E)—1)=e—1 and 0se=qg—1, then I°(E)=2 except that the case
(iii) in Theorem 2.1 occurs.

For the proof, see [4], 2.5.1.

THeOREM Il Let D be a divisor of degree d>29—2 on a nonhyperelliplic curve
C of genus g. Then we have

wp(P)=k(9)+9

for any PeC, where k(g) is Kato's bound on wx(P).

Proor. We prove this by several steps.

Step 1. First we estimate p;’s by applying Clifford’s theorem to (1) and (2).
Since C is nonhyperelliptic, we have:

m=2 and equality occurs if and only if D~K+(d—2¢+2)P;

m=21—1 if i=2,---,9-1;

1#,=2¢ and equality occurs if and only if D~dP.

Step 2. If =2, then the K-gap sequence at P coincides with p—1, p—1,-+,
po—1. Indeed, if p,=2, then D—(d—2¢+2)P~K by Step 1. Hence we have

WK —(pri—2)P)=h (D~ (d—2g + p2:)P) > h°(D—(d— 29+ pi+ P ) =K — (s — 1) P).
This means that g,—1,-++, p,—1 is the K-gap sequence at P.

This fact implies that

wp(P)=wx(P)+g if (P)=2.
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In particular, our inequality holds if p(P)=2. lSo we may assume that yp,(P)=1.
Step 3. Assume that ¢=3. Using Step 1, we have
w(P)= 5 (=)= (3-2)+(6-3)=4 if =1.

On the other hand, k(3)+3=5. Therefore our theorem holds when g=3.
Next assume that y=4. Then we have wp(P)=7 if y#,=1. On the other hand,
k(4)+4=8. Thus our theorem holds when g¢g=4.

Step 4. From now on, we assume that ¢=5. By virtue of Martens’ theorem,
the u’s can be estimated as follows:

#:=3 and equality occurs if and only if there is a point @ such that K-—D4+
(d—2g+3)P~Q;

/3 =5 and ejuality occurs if and only if Cis trigonal and |[K—=D+(d—2¢+5)P|=g};

#=7 and equality occurs if and only if C is plane quintic (§=6) and D—(d— 5P
is linearly equivalent to a line section ;

wi=21—-2 for i=5,--+,¢g—2 if ¢=7;

ttg-1=2(g—1)—1 and equality occurs if and only if C is trigonal and |D—(d—3)P| =
gs;

1e=2¢ and equality occurs if and only if D~dP.

Step 5. In this step we prove the following lemma.

Lemma 2.3, If m=1, then at least one of the following holds <5 or Mgt
<2g—1)—1 or p,<2g.

Proor. Suppose that ps=5, g,-,=2(¢g—1)—1 and g,=2¢g. Then, by Step 4 we
have that |K—D+(d—2¢+45)P| =g}, |D—(d—3)P|=g¢} and D~dP. Since g=5, ¢} is
unique. Hence K—D+(d—2¢+5P~D—(d—-3)P and D—(d—29+2)P~K. This
implies g, =2, which is a contradiction.

Step 6. Assume that ¢=6. If p,=1, then at least one of the inequalities
13<5, ps<9, us<12 holds by Lemma 2.3.
Hence

wp(P)=QR—2)+(5—-3)+(7T—4)+(9-5)+(12—6)—1=15<16=Fk(6)+6.

Therefore the theorem holds when ¢=6.

Step 7. We will establish the theorem in this step. Let g=5 or g=7. Using
Step 4 and Lemma 2.3, we have
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wu(P)g(B—z)+(5-3)+§(z’—2) +(g——2)+g~lZé-(gz~3g+10),
if #,=1. On the other hand,
21 if g=7
k(g)+g=|33 if =9
[7(g2—3g+10) if ¢g=5,8 or ¢=10

Note that if ¢g=7, then

%(92—3(}+10):19<k(7)+7
and that if ¢=9, then

%(g?—3g+10)=32<k(9)+9

Therefore the inequality wn(P)=<k(g)+¢ holds for all ¢=3. This complete the
proof.

Remark 2.4. For every fixed couple (g, d) with d>2¢g—2=4, there is a triple
(C,D, P) such that C is of genus ¢,D is of degree d and that wp(P)=k(g)+g.
Indeed, Kato [2] showed that there is a couple (C, P) such that C is of genus g and
wx(P)=k(g). Letting D=K+(d—29+2)P, (C, D, P) has the required properties.

§ 3. Nonhyperelliptic case (2)

Let E be a divisor on C and let PeC. We denote by J1(£; P) the set of pos-
itive integers which are not E-gap at P. Note that J2(K; P) is a semigroup. We
need the following lemmas, but their proofs are not difficult.

LemMa 3.1. The semigroup J1(K; P) acts on JUE; P) by a natural way, i.e.,
if meJUK; P) and neJ(E; P), then m+neJUE; P).

LeMMA 3.2. Let E be a divisor on C with h(E)>0. If a point PeC is not a
base point of |\K—E)|, then any E-gap is also a K-gap.

The aim of this section is to prove the following theorem.

TaeoreM 11  Let C be a nonhyperelliptic curve of genus g end D a divisor
of degree d>2g—2 on C. Let PeC. If wo(P)=k(g9)+g, then wx(P)=Fk(g).

Proor. Note that wp(P)=wx(P)+g if p(P)=2, which was shown in Step 2
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of the proof of Theorem II. Hence the assertion holds when p(P)=2.

First we will show that wp(P)=k(g)+y¢ implies p,(P)=2 except for the case
g=5. If ¢=3,4,6,7 or 9, this was shown in the proof of Theorem II (see Step 3,
Step 6 and Step 7). So we assume that ¢=8 or ¢=10. By virtue of Step 7, in
the inequalities wp(P)<k(9)+¢ and p(P)=1, equality may occur in the three
cases :

Case 1. pi=1, po=3, py=5, pi=2,—2 (i=4,---,9-2),

to-1=2¢—3, tg=2¢9—1;
Case 2. =1, pu=3, ps=5,;=2i—2 (i=4,---,9-2),
Mo-1=2g9 —4, py=2g;
Case 3. m=1, =3, ps=4, ;=22 (i=4,---,9-2),
Pa-1=29—3, pty=2g.
In every case, since p;=3, there is a point @ such that D—(d—2¢g+3)P~K—-@Q
(see Step 4). Note that Q=P. In fact, if @=P, then D—(d—2¢+2)P~K, which
implies p;=2. Since K—Q~D—(d—2¢+3)P and Q+P, the (K—Q)-gap sequence
at P coincides with p;—2,---, py—2. Hence there is a positive integer « such that
the set of all K-gaps at P coincides with {g.—2,---, p,—2)\ {a} by Lemma 3.2.
Using the above list, we can write down the (K—@)-gap sequence at P according
to each case:

Case 1. 1,3,4,6,---,29—8,29—5,2¢g—3;
Case 2. 1,3,4,6,---,29—8,29—6,29—2;
Case 3. 1,2,4,6,--+,29—8,29—5, 29—2.

Note that since C is nonhyperelliptic, a=2 when either Case 1 or Case 2 occurs.
Suppose that Case I occurs. Since 2¢g—7 is a non-K-gap at P and 2 is a non-
(K—@Q)-gap at P, 29—5 (=2¢g—7+2) must be a non-(K—@Q)-gap at P by Lemma 3.1,
which is a contradiction. Next, suppose that Case 2 occurs. Since 5 is a non-K-
gap at P and 2¢—7 is a non-(K—@Q)-gap at P, 29—2 (=5+2¢9—7) must be a non-
(K—Q)-gap at P, which is a contradiction. Finally, suppose that Case 3 occurs.
In this case, either 3 or 5 is a non-K-gap at P and 3 and 5 are non-(K—@Q)-gaps
at P. Hence 8 (=3+5) must be a non-(K—@Q)-gap at P, which is a contradiction.
Therefore equality wp(P)=k(g)+¢ can not be compatible with u,(P)=1 when g+b5.

Now, we will show the theorem when ¢g=5. By an argument similar to the
previous case, in the inequalities wp(P)=<k(5)+5 and x(P)=1, equality may occur
in the following three cases:

Case i. =1, p:=3, ps=5, ps=7, us=9;

Case ii. pi=1, p2=3, ts=5, pta=6, ;=10;

Case iii. =1, p2=3, ps=4, pu=7, ps=10.
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In every case there is a point @+ P such that the (KX —Q)-gap sequence at P
is yo—2,--+, 5 —2 and there is an integer « such that the set of all K-gaps at P is

{pte—2, p3—2, pra—2, ps —2} U {er}.

Therefore, we have
(i) If Case i occurs, then the K-gap sequence at P coincides with 1,2,3,5,7.
(ii) If Case ii occurs, then it coincides with 1,2, 3, 4, 8.
(iii) If Case iii occurs, then it coincides with one of the following :
(. 1) 1,2,3,5,8;
(iii. 2) 1,2,4,5,8;
(iii. 3) 1,2,5,6,8;
(iii. 4) 1,2,5,7,8;
(iii. 5) 1,2,5,8,9.
Suppose that Case ii occurs. Since 6 is a non-K-gap at P and 2 is a non-(K--Q)-
gap at P, 8 (=6+2) must be a non-(K—@)-gap at P, which is a contradiction.
Hence Case ii can not occur. Since the set of all non-K-gaps forms a semigroup,
the cases (iii. 1), (iii. 3), (iii. 4) and (iii. 5) cannot occur. If (iii. 2) occurs, then
wxr(P)=Fk(5), and then the theorem holds. We will show that Case i does not
occur. Since M(K—-Q—2P)=3, we have |Q+2P|=¢g}. On the other hand [4P|=g.
Hence, we have |2Q+4P|=g¢} which is a contradiction.

The proof of Theorem III shows also the following corollary.

COROLLARY 3.3. Let notation and assumption be as in Theovem III. Further-
more, assume that g+5. Then wp(P)=k(g)+g if and only if D~K+(d—29+2)P
and wx(P)=Fk(g).

§4. Examples

First we will show that the conclusion of corollary 3.4 does not hold if ¢=5.

ExampLr 4.1. (see [1)], Beispiel 2.2). Let C be the normalization of the plane
curve C’ defined by

yi=2¥z—1).

It is easy to check that the normalization C LN C’ is one to one as set theoretic
and C is of genus 5. Let Py=z"((0:0:1)) and let P.=="'((0:1:0)). Then the
K-gap sequence at P, is

1,2,4,5,8,
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and the (K—F.)-gap sequence at P, is
1,2,5,8.
Letting
D=K—-P.+(d-7)F,,
the D-gap sequence at P, is
1,2,---,d—-9,d-8,d—6,d-5,d-2,d+1.
Hence p(Po)=1 and wp(Pe)=10 (=£k(5)+5).

The next is a counterexample of Duma’s conjecture.

ExampLE 4.2. Let ¢’ be a plane curve defined by
y=x(x— )z —A2)"(x— As)%,

where 2, 4;, 43 are mutually distinct nonzero scalars.

7

Let C —— C’ be the normalization. Then = is one to one and C is of genus 6. Letting
Py =27"((2;:0:1)) (1=1,2,3)
Py =a"((0:0:1))
P,=2"%((0:1:0)),

we have

div z=5F,—5F.,
diV y:Pﬁ—ZPl 42Pz+2P4—7Pw
div de =4FPy+4P, +4P,+4P;—6P..

Hence we have
. dzx
div o =3P, +2P, +2P;+2P;+ P,
div %— =2P,+8P,

div -—;%dx=71’0+3pw
div (x — A )x— ) (w — 2s)|y*de = Py + 3P, + 3P, + 3P,
div(z—2)(x— )@ — )y da =P+ P+ Ps+ 7P,
div x(xz— 2)(x — ) (2 — 2)[y*dx =5P+ P, + P+ Py + 2P..
Hence the K-gap sequence at P, is
1,2,3,4,6,8,
and 13 integers 1,2,---,9,10,11, 13,15 are 2K-gaps at F,. Now,
div z?fy(x — )2 — 2 )(x — As)(dz2)* =17 Py+ P+ P+ P,
div %Z;(dx)2=19Po+Pw,
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hence the 2K-gap sequence at P, is
1,2,---,9,10,11, 13,15, 18, 20.

Therefore we have
WK(P0)+Q:9<12:L{/2K(P0).
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